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Abstract. A frame (xj)j∈J for a Hilbert space H is said to do phase re-
trieval if for all distinct vectors x, y ∈ H the magnitudes of the frame coeffi-
cients (|⟨x, xj⟩|)j∈J and (|⟨y, xj⟩|)j∈J distinguish x from y (up to a unimodular
scalar). A frame which does phase retrieval is said to do C-stable phase re-
trieval if the recovery of any vector x ∈ H from the magnitude of the frame
coefficients is C-Lipschitz. It is known that if a frame does stable phase re-
trieval then any sufficiently small perturbation of the frame vectors will do
stable phase retrieval, though with a slightly worse stability constant. We
provide new quantitative bounds on how the stability constant for phase re-
trieval is affected by a small perturbation of the frame vectors. These bounds
are significant in that they are independent of the dimension of the Hilbert
space and the number of vectors in the frame.

1. Introduction

Frames, like ortho-normal bases, give a continuous, linear, and stable recon-
struction formula for vectors in a Hilbert space. The distinction between frames
and bases is that frames allow for redundancy. That is, the coefficients used for
reconstruction with a frame may be non-unique, and a frame for a finite dimen-
sional Hilbert space will usually contain more vectors than the dimension. Frames
have many applications in signal processing, physics, and engineering where one
wishes to analyze or reconstruct a vector from a collection of linear measurements.
However, in some situations such as X-ray crystallography and coherent diffraction
imaging, one is only able to obtain the magnitude of each linear measurement. This
loss of linearity makes the recovery of the vector much more difficult. As we have
lost the phase of each measurement, the recovery of a vector from a collection of
magnitudes of linear measurements is aptly named phase retrieval.

The importance of phase retrieval in applications has driven a significant amount
of research on the mathematics of phase retrieval in frame theory, and we recom-
mend [GKR] and [FaS] for surveys on the topic. A collection of vectors (xj)j∈J in
a Hilbert space H is called a frame of H if there are uniform constants B ≥ A > 0
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called the frame bounds, such that

(1.1) A∥x∥2 ≤
∑

j∈J

|⟨x, xj⟩|2 ≤ B∥x∥2 for all x ∈ H.

A frame is called tight if the optimal frame bounds satisfy A = B, and a frame is
called Parseval if A = B = 1. The analysis operator of a frame (xj)j∈J of H is
the map Θ : H → ℓ2(J) given by Θx = (⟨x, xj⟩)j∈J . That is, the analysis operator
maps a vector to its sequence of frame coefficients.

Recall that the goal of phase retrieval is to recover a vector (up to a unimodular
scalar) from the magnitude of its frame coefficients. This can be nicely expressed
in terms of the analysis operator. We say that a frame (xj)j∈J of a Hilbert space
H with analysis operator Θ : H → ℓ2(J) does phase retrieval if whenever x, y ∈ H
are such that |Θx| = |Θy| we have that x = λy for some |λ| = 1. We may define an
equivalence relation on H by x ∼ y if x = λy for some |λ| = 1. Then, (xj)j∈J does
phase retrieval is equivalent to |Θ| : H/∼→ ℓ2(J) is one-to-one. Any application of
phase retrieval will involve some error, and thus it is important that phase retrieval
not only be possible but that it also be stable. We say that (xj)j∈J does C-stable
phase retrieval if the recovery of [x]∼ ∈ H/∼ from |Θx| ∈ ℓ2(J) is C-Lipschitz.
That is, a frame (xj)j∈J of a Hilbert space H with analysis operator Θ : H → ℓ2(J)
does C-stable phase retrieval if

min
|λ|=1

∥x − λy∥H ≤ C
∥∥|Θx| − |Θy|

∥∥
ℓ2(J)

= C
(∑

j∈J

∣∣|⟨x, xj⟩| − |⟨y, xj⟩|
∣∣2
)1/2

(1.2)

for all x, y ∈ H.

Let (xj)j∈J be a frame of a Hilbert space H with optimal lower frame bound A
and analysis operator Θ : H → ℓ2(J). We have by (1.1) that the recovery of x ∈ H
from the frame coefficients Θx is A−1/2-Lipschitz. Thus, if (xj)j∈J does C-stable
phase retrieval then C ≥ A−1/2.

In both theory and applications, one often doesn’t work with the frame (xj)j∈J

itself, but instead with a frame (yj)j∈J which is a small perturbation of (xj)j∈J .
That is, one can think of moving each vector xj a small amount to obtain the vector
yj . For example, the Fourier transform and Gabor transform are important tools
in phase retrieval, but any implementation would require them to be discretized. A
natural way to discretize a transform on a continuous domain is to choose a discrete
ε-net in the domain and perturb each element in the domain to the center of an
ε-ball. As another example, random constructions of frames are of fundamental im-
portance in phase retrieval for finite dimensional Hilbert spaces [CL], [EM], [KL],
and [KS]. Randomly sampling vectors on the unit sphere of a finite dimensional
Hilbert space will produce a frame which is “close” to being tight with high prob-
ability [V], and the positive solution to the Paulsen problem gives that a frame of
unit vectors which is close to being tight may be perturbed a small amount to be a
tight frame of unit vectors [CC], [HM], and [KLLR]. This gives an example where
one may improve a frame in some respects by perturbing it. Conversely, physical
applications can involve setting up sensors which take linear measurements corre-
sponding to some frame (xj)j∈J . Any such implementation will involve some error,
and error of this form corresponds to the sensors giving measurements in terms of
some perturbation (yj)j∈J of (xj)j∈J instead of (xj)j∈J itself. Thus it is not only



STABLE PHASE RETRIEVAL AND PERTURBATIONS OF FRAMES 355

important to understand the frame properties of specific frames of interest, but also
how those properties behave under perturbation.

Given a frame (xj)j∈J for some Hilbert space H, Theorem 1.1 of Christensen [C]
provides frame bounds for any perturbation (yj)j∈J in terms of the frame bounds
for (xj)j∈J and how close (yj)j∈J is to (xj)j∈J .

Theorem 1.1 ([C]). Let (xj)j∈J be a frame of a Hilbert space H with frame bounds
B ≥ A > 0. Let A > ε > 0 and (yj)j∈J ⊆ H such that

∑
j∈J ∥xj − yj∥2 < ε. Then,

(yj)j∈J is a frame of H with upper frame bound B
(
1 +

√
ε
B

)2
and lower frame

bound A
(
1 −

√
ε
A

)2
.

Christensen’s perturbation theorem is of fundamental importance in frame the-
ory, and it is natural to consider how the stability of phase retrieval is affected by
perturbations of frame vectors. In [B], Balan proves that phase retrieval in finite di-
mensional Hilbert spaces is stable under small perturbations and provides a bound
for ε > 0 in terms of properties of the frame (xj)j∈J . However, a different method
of measuring stability is considered in [B]. We prove the following perturbation the-
orem for phase retrieval which is analogous to Christensen’s perturbation theorem
for frame bounds.

Theorem 1.2. Let (xj)j∈J be a frame of a finite dimensional Hilbert space H with
frame bounds B ≥ A > 0 which does C-stable phase retrieval. Let ε > 0 satisfy
ε < 2−4C−4B−1 and let (yj)j∈J ⊆ H such that

∑
j∈J ∥xj − yj∥2 < ε. Then,

(yj)j∈J is a frame of H with upper frame bound B
(
1 +

√
ε
B

)2
and lower frame

bound A
(
1 −

√
ε
A

)2
which does C(1 − 4 C2

√
εB)−1/2-stable phase retrieval for H.

Our proof of Theorem 1.2 relies on the recently proven theorem that if x, y ∈ H
and (xj)j∈J is a frame of H with analysis operator Θ then there exists x′, y′ ∈
span{x, y} with ⟨x′, y′⟩ = 0 such that min|λ|=1 ∥x − λy∥2 = min|λ|=1 ∥x′ − λy′∥2 =
∥x′∥2 + ∥y′∥2 and ∥|Θx′| − |Θy′|∥ ≤ ∥|Θx| − |Θy|∥ [AAFG]. Thus, when proving
that (xj)j∈J does C-stable phase retrieval, we only need to check that (1.2) holds
for orthogonal vectors. In Section 3 we show that the stability condition in [B]
provides a constant for the frame doing stable phase retrieval in ℓ4(J). That is, we
prove that if a frame (xj)j∈J ⊆ H with analysis operator Θ satisfies the stability
condition in [B] for a0 then for all x, y ∈ H we have that

(1.3) min
|λ|=1

∥x − λy∥H ≤ 21/2a−1/4
0

∥∥|Θx| − |Θy|
∥∥
ℓ4(J)

= 21/2a−1/4
0

(∑

j∈J

∣∣|⟨x, xj⟩| − |⟨y, xj⟩|
∣∣4
)1/4

.

As the ℓ2(J)-norm dominates the ℓ4(J)-norm, the conclusion of (1.3) is significantly
stronger than (1.2). This is particularly apparent when considering the uniform
stability of phase retrieval for frames of Hilbert spaces with arbitrary dimensions.
There are random constructions of frames which provide constants C > 0 and
k ∈ N, so that for all n ∈ N there exists a Parseval frame (xj)kn

j=1 of ℓn2 which
does C-stable phase retrieval [BW][CDFF][CL][EM][KL][KS]. However, ℓn2 is not
uniformly isomorphic to a subspace of ℓnk

4 [FLM], and thus for all a0 > 0 and k ∈ N
there exists n ∈ N so that every Parseval frame (xj)kn

j=1 of ℓn2 fails (1.3) for the
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value a0. On the other hand, working in ℓ4(J) or more generally L4(µ) allows for
the introduction of some powerful analytic methods [B][CPT].

Theorem 1.2 gives a solution to the problem of determining how perturbation
affects the stability of phase retrieval of frames for finite dimensional Hilbert spaces.
However, phase retrieval is often considered in more general settings, and there are
many opportunities for considering the effect of perturbations on phase retrieval.
In applications, one is usually interested in objects with some particular structure
and it is not necessary that (1.2) be satisfied for all x, y ∈ H, but only for x and
y in some subset of interest. Furthermore, it is often permissible to consider a
weaker equivalence relation than x ∼ y if and only if x = λy for some |λ| = 1. For
example, consider f and g to be audio recordings where the audio for f stops a
full second before the audio for g starts. Then f + g, f − g, −f + g, and −f − g
would all sound the same and would all have the same absolute value. Thus, we
may consider larger equivalence classes as we would be satisfied with obtaining
any of those vectors when doing phase retrieval. This situation arises in many
important contexts when studying phase retrieval and it is often possible to stably
reconstruct the components of a signal which are supported on separated islands
(even though it is not possible to determine the relative phase between different
components) [ADGY], [CCSW], [CDDL], [FKM], [GR], and [GR2]. The problem of
how stability is affected by perturbations in these kinds of circumstances remains
an important open problem. It is known that if a frame does norm retrieval and not
phase retrieval then norm retrieval is not stable under perturbations [HR], and it
would be interesting to know how perturbations affect phase retrieval by projections
[CGJT] and [EGK] and weak phase retrieval [BCGJT] as well. In [CDFF], [CPT],
and [FOPT], stable phase retrieval is studied for infinite dimensional subspaces of
Banach lattices, and the problem of how stability of phase retrieval is affected by
perturbations is considered in Section 4 of [FOPT]. There are many opportunities
for further research on how this may be quantified and how different Banach space
geometry allows for more refined perturbation estimates. Phase retrieval has also
been studied in the context of frames for Banach spaces [AG], and it would be
interesting to determine how the perturbation ideas used in [BC] and [FOSZ] for
frame pairs could be applied in this setting. We hope that this paper provides some
inspiration to further study the relationship between perturbation and the stability
of phase retrieval.

Note that in this paper we are considering only the stability of the recovery
map |Θx| ,→ [x]∼, and not how to implement it. There are many algorithms to
implement phase retrieval in various contexts [ABFM], [CSV], [FKMS], [GKK],
[NNB], [PBS], [PMVI], and [SBFIKSSZ]. The impact of measurement error has
been studied for these algorithms, and it would be worthwhile to consider the effect
of perturbation as well.

2. Perturbations of frames

Let (xj)j∈J be a frame of a Hilbert space H with analysis operator Θ : H → ℓ2(J)
given by Θx = (⟨x, xj⟩)j∈J . Let C > 0 be some constant. We say that (xj)j∈J
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does C-stable phase retrieval if

min
|λ|=1

∥x − λy∥H ≤ C
∥∥|Θx| − |Θy|

∥∥
ℓ2(J)

= C
(∑

j∈J

∣∣|⟨x, xj⟩| − |⟨y, xj⟩|
∣∣2
)1/2

(2.1)

for all x, y ∈ H.

Proving that a frame does C-stable phase retrieval using the definition would
require checking (2.1) for all pairs of vectors x, y ∈ H. However, Lemma 2.1 gives
that we only need to check orthogonal pairs of vectors. This greatly simplifies
calculations, as if x and y are orthogonal then min|λ|=1 ∥x − λy∥2 = ∥x∥2 + ∥y∥2.

Lemma 2.1 ([AAFG]). Let (xj)j∈J be a frame of a Hilbert space H. Then for all
x, y ∈ H there exists xo, yo ∈ H with ⟨xo, yo⟩ = 0 so that

(2.2)
min
|λ|=1

∥x − λy∥H = ∥xo − yo∥H

and
∣∣|⟨xo, xj⟩| − |⟨yo, xj⟩|

∣∣ ≤
∣∣|⟨x, xj⟩| − |⟨y, xj⟩|

∣∣ for all j ∈ J.

In particular, if Θ : H → ℓ2(J) is the analysis operator of (xj)j∈J then (xj)j∈J

does C-stable phase retrieval if and only if
(2.3)(
∥xo∥2

H + ∥yo∥2
H

)1/2 ≤ C
∥∥|Θxo|− |Θyo|

∥∥
ℓ2(J)

for all xo, yo ∈ H with ⟨xo, yo⟩ = 0.

We now restate and prove Theorem 1.2 from Section 1.

Theorem 2.2. Let (xj)j∈J be a frame of a finite dimensional Hilbert space H
with frame bounds B ≥ A > 0 which does C-stable phase retrieval. Let ε > 0
satisfy ε < 2−4C−4B−1 and let (yj)j∈J be an indexed collection of vectors in
H such that

∑
j∈J ∥xj − yj∥2 < ε. Then, (yj)j∈J is a frame of H with up-

per frame bound B
(
1 +

√
ε
B

)2
and lower frame bound A

(
1 −

√
ε
B

)2
which does

C(1 − 4 C2
√
εB)−1/2-stable phase retrieval for H.

Proof. As (xj)j∈J has lower frame bound A and does C-stable phase retrieval, we
have that C ≥ A−1/2. Thus, ε < 2−4C−4B−1 ≤ 2−4A2B−1 ≤ 2−4A. Our bound
on ε thus satisfies the hypothesis of Christensen’s perturbation theorem (Theorem
1.1). Thus, (yj)j∈J is a frame of H with upper frame bound B(1+

√
ε
B )2 and lower

frame bound A(1−
√

ε
B )2. Let ΘX : H → ℓ2(J) be the analysis operator of (xj)j∈J

and let ΘY : H → ℓ2(J) be the analysis operator of (yj)j∈J .
By Lemma 2.1, we only need to consider orthogonal vectors when proving that

(yj)j∈J does C2(1−4 C2
√
εB)−1/2-stable phase retrieval. Let x, y ∈ H with ⟨x, y⟩ =

0. We have that

(2.4)
∑

j∈J

∣∣∣|⟨x, yj⟩|− |⟨y, yj⟩|
∣∣∣
2

=
∑

j∈J

|⟨x, yj⟩|2−2
∑

j∈J

|⟨x, yj⟩∥⟨y, yj⟩|+
∑

j∈J

|⟨y, yj⟩|2.

We now compute bounds for each of the sums separately. We will do this by
comparing each sum to the corresponding one with (yj)j∈J replaced by (xj)j∈J .
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∑

j∈J

|⟨x, yj⟩|2 −
∑

j∈J

|⟨x, xj⟩|2

=
∑

j∈J

|⟨x, xj − (xj − yj)⟩|2 −
∑

j∈J

|⟨x, xj⟩|2

≥
∑

j∈J

(
|⟨x, xj⟩| − |⟨x, xj − yj⟩|

)2
−
∑

j∈J

|⟨x, xj⟩|2

= −2
∑

j∈J

|⟨x, xj⟩∥⟨x, xj − yj⟩| +
∑

j∈J

|⟨x, xj − yj⟩|2

≥ −2
(∑

j∈J

|⟨x, xj⟩|2
)1/2(∑

j∈J

|⟨x, xj − yj⟩|2
)1/2

+
∑

j∈J

|⟨x, xj − yj⟩|2 by Cauchy-Schwarz,

≥ −2
(∑

j∈J

|⟨x, xj⟩|2
)1/2(∑

j∈J

∥x∥2∥xj − yj∥2
)1/2

+
∑

j∈J

|⟨x, xj − yj⟩|2

≥ −2B1/2∥x∥
(
∥x∥2

∑

j∈J

∥xj − yj∥2
)1/2

+
∑

j∈J

|⟨x, xj − yj⟩|2 as (xj)j∈J has upper frame bound B

≥ −2
√
εB ∥x∥2 +

∑

j∈J

|⟨x, xj − yj⟩|2 as
∑

j∈J

∥xj − yj∥2 < ε.

Thus, we have that

(2.5)
∑

j∈J

|⟨x, yj⟩|2 ≥
∑

j∈J

|⟨x, xj⟩|2 − 2
√
εB∥x∥2 +

∑

j∈J

|⟨x, xj − yj⟩|2.

Likewise, we have that

(2.6)
∑

j∈J

|⟨y, yj⟩|2 ≥
∑

j∈J

|⟨y, xj⟩|2 − 2
√
εB∥y∥2 +

∑

j∈J

|⟨y, xj − yj⟩|2.

We now bound the remaining term.

∑

j∈J

|⟨x, yj⟩∥⟨y, yj⟩| −
∑

j∈J

|⟨x, xj⟩∥⟨y, xj⟩|

=
∑

j∈J

∣∣∣⟨x, xj − (xj − yj)⟩⟨y, xj − (xj − yj)⟩
∣∣∣−

∑

j∈J

|⟨x, xj⟩∥⟨y, xj⟩|

≤
∑

j∈J

|⟨x, xj − yj⟩⟨y, xj⟩| + |⟨x, xj⟩⟨y, xj − yj⟩| + |⟨x, xj − yj⟩⟨y, xj − yj⟩|

≤
(∑

j∈J

|⟨x, xj − yj⟩|2
)1/2(∑

j∈J

|⟨y, xj⟩|2
)1/2

+
(∑

j∈J

|⟨x, xj⟩|2
)1/2(∑

j∈J

|⟨y, xj − yj⟩|2
)1/2

+
∑

j∈J

|⟨x, xj − yj⟩⟨y, xj − yj⟩|
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≤ ∥x∥
(∑

j∈J

∥xj − yj∥2
)1/2(∑

j∈J

|⟨y, xj⟩|2
)1/2

+ ∥y∥
(∑

j∈J

|⟨x, xj⟩|2
)1/2(∑

j∈J

∥xj − yj∥2
)1/2

+
∑

j∈J

|⟨x, xj − yj⟩⟨y, xj − yj⟩|

≤ ∥x∥ε1/2
(∑

j∈J

|⟨y, xj⟩|2
)1/2

+ ∥y∥ε1/2
(∑

j∈J

|⟨x, xj⟩|2
)1/2

+
∑

j∈J

|⟨x, xj − yj⟩⟨y, xj − yj⟩|

≤ ∥x∥
√
εB∥y∥ + ∥y∥

√
εB∥x∥ +

∑

j∈J

|⟨x, xj − yj⟩⟨y, xj − yj⟩|.

Thus, we have that
(2.7)∑

j∈J

|⟨x, yj⟩∥⟨y, yj⟩|≤
∑

j∈J

|⟨x, xj⟩∥⟨y, xj⟩|+2
√
εB∥x∥∥y∥+

∑

j∈J

|⟨x, xj−yj⟩⟨y, xj−yj⟩|.

By combining (2.5), (2.6), and (2.7) with (2.4) we have that

∑

j∈J

∣∣∣|⟨x, yj⟩| − |⟨y, yj⟩|
∣∣∣
2

=
∑

j∈J

|⟨x, yj⟩|2 − 2
∑

j∈J

|⟨x, yj⟩∥⟨y, yj⟩| +
∑

j∈J

|⟨y, yj⟩|2

≥
∑

j∈J

|⟨x, xj⟩|2 − 2
∑

j∈J

|⟨x, xj⟩∥⟨y, xj⟩| +
∑

j∈J

|⟨y, xj⟩|2 − 2
√
εB∥x∥2

− 4
√
εB∥x∥∥y∥ − 2

√
εB∥y∥2 +

∑

j∈J

|⟨x, xj − yj⟩|2

− 2
∑

j∈J

|⟨x, xj − yj⟩⟨y, xj − yj⟩| +
∑

j∈J

|⟨y, xj − yj⟩|2

=
∑

j∈J

∣∣∣|⟨x, xj⟩| − |⟨y, xj⟩|
∣∣∣
2
− 2

√
εB(∥x∥ + ∥y∥)2

+
∑

j∈J

∣∣∣|⟨x, xj − yj⟩| − |⟨y, xj − yj⟩|
∣∣∣
2

≥ C−2 min
|λ|=1

∥x − λy∥2

− 2
√
εB(∥x∥ + ∥y∥)2 as (xj)j∈J does C-stable phase retrieval

≥ C−2 min
|λ|=1

∥x − λy∥2 − 4
√
εB(∥x∥2 + ∥y∥2) by Jensen’s Inequality

= C−2 min
|λ|=1

∥x − λy∥2 − 4
√
εB min

|λ|=1
∥x − λy∥2 as x and y are orthogonal

= C−2(1 − 4 C2
√
εB) min

|λ|=1
∥x − λy∥2.
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We have that ε < 2−4C−4B−1 and hence C−2(1− 4 C2
√
εB) is positive. Thus, we

have for every pair of orthogonal vectors x, y ∈ H that

min|λ|=1∥x − λy∥ ≤ C(1 − 4C2
√
εB)−1/2

∥∥|ΘY x| − |ΘY y|
∥∥.

Thus, the frame (yj)j∈J does C(1−4 C2
√
εB)−1/2-stable phase retrieval by Lemma

2.1. !

3. Stability comparisons

In [B], the value a0 in Lemma 3.1 is used as a measurement for the stability
of phase retrieval. Note that Lemma 3.1 is stated implicitly for complex Hilbert
spaces, but it holds for real Hilbert spaces as well.

Lemma 3.1 ([B]). Let (xj)m
j=1 be a frame for a finite dimensional Hilbert space

H. Then (xj)m
j=1 does phase retrieval if and only if there is a constant a0 so that

for all x, y ∈ H we have that

(3.1)
m∑

j=1

∣∣|⟨x, xj⟩|2 − |⟨y, xj⟩|2
∣∣2 ≥ a0

(
∥x − y∥2∥x + y∥2 − 4(imag(⟨x, y⟩))2

)
.

Theorem 3.2 characterizes how the value of a0 is affected by small perturbations.

Theorem 3.2 ([B]). Let X = (xj)m
j=1 be a frame for a finite dimensional Hilbert

space H with upper frame bound B which does phase retrieval. Let a0(X) be the
constant given in Lemma 3.1. Let ρ > 0 be given by

(3.2) ρ = min
( 1√

m
,

a0(X)

2
√

2(3B + 2)3/2

)
.

Then if Y = (yj)m
j=1 ⊆ H satisfies that ∥xj −yj∥ < ρ for all 1 ≤ j ≤ m then (yj)m

j=1

is a frame of H which does phase retrieval and 1
2a0(X) < a0(Y ).

Note that the value ρ stated in Theorem 3.2 depends on the number of frame
vectors. However, the condition that ρ ≤ m−1/2 is only used to guarantee that∑m

j=1 ∥xj − yj∥2 ≤ 1. Thus, we can add this inequality directly to the hypothesis
to obtain a perturbation theorem which provides a value for ρ which is independent
of the number of frame vectors. This gives Corollary 3.3 which is more analogous
to Theorem 1.1 and Theorem 1.2.

Corollary 3.3. Let X = (xj)m
j=1 be a frame for a finite dimensional Hilbert space

H with upper frame bound B which does phase retrieval. Let a0(X) be the constant
given in Lemma 3.1. Let ρ > 0 be given by

(3.3) ρ = min
(
1,

(a0(X))2

8(3B + 2)3

)
.

If Y = (yj)m
j=1 ⊆ H satisfies

∑m
j=1 ∥xj − yj∥2 < ρ then (yj)m

j=1 is a frame of H

which does phase retrieval and 1
2a0(X) < a0(Y ).

Thus, both our measurement of the stability of phase retrieval given in (1.2) and
the measurement given in (3.1) provide a similar perturbation theorem. The goal of
this section is to compare these two measurements of stability. Note that if (xj)m

j=1

satisfies (3.1), then plugging in y = 0 gives that a0∥x∥4 ≤
∑m

j=1 |⟨x, xj⟩|4. This
provides a lower frame bound of (xj)m

j=1 being a p-frame for the value p = 4. It is
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possible to consider p-frames for general Banach spaces, but we provide Definition
3.4 specifically in the context of finite dimensional Hilbert spaces.

Definition 3.4. Let H be a finite dimensional Hilbert space and let 1 ≤ p < ∞.
A family (fj)j∈J ⊆ H is called a p-frame of H with p-frame bounds 0 < A ≤ B if

(3.4) A∥x∥ ≤
(∑

j∈J

|⟨x, fj⟩|p
)1/p

≤ B∥x∥ for all x ∈ H.

Essentially, a p-frame bounds the norm of a vector in terms of the p-norm of
the frame coefficients [AST][CS]. Banach frames [AG][CCS][FG1][G] and associated
spaces for Schauder frames [BF][BFL][CDOSZ][L] extend this further and apply
more general Banach sequence space norms to the frame coefficients. Using p-
norms and more general Banach lattice norms can be very useful when studying
the stability of phase retrieval and are explicitly used in [AG][B][CPT][FG][FOPT].
Frames for Hilbert spaces are often constructed by sampling some continuous frame,
such as the short-time Fourier transform or wavelet transform. It is known that
every bounded continuous frame for a separable Hilbert space H may be sampled
to obtain a discrete frame for H [FS]. For the case of finite dimensional Hilbert
spaces, this may be quantified by their existing uniform constants A, B, D > 0 so
that if H is n-dimensional and (xt)t∈Ω is a continuous Parseval frame of H over a
probability space Ω with ∥xt∥ ≤ β

√
n for all t ∈ Ω then there exist sampling points

(tj)m
j=1 ⊂ Ω with m ≤ Dβ2n so that (m−1/2xtj )

m
j=1 is a frame of H with lower

frame bound A and upper frame bound B [LT]. Thus, it is possible to only consider
the usual Hilbert space norm when sampling a continuous frame to construct a
frame with certain desired frame bounds. In contrast to this, if one wishes to
discretize a continuous frame to obtain a frame which does C-stable phase retrieval
then it is necessary to control the bounds for discretizing both the L2-norm and
the L1-norm on the range of the analysis operator [FG]. As another example, there
exists a uniform constant C > 0 so that every finite dimensional Hilbert space
has a Parseval frame which does C-stable phase retrieval. However, all known
methods of constructing such frames involve sampling sub-Gaussian random vectors
[BW][CDFF][CL][EM][KL][KS]. The property that a random vector X = (xt)t∈Ω

in a Hilbert space H is sub-Gaussian is equivalent to the existence of a uniform
constant K > 0 so that ∥(⟨x, xt⟩)t∈Ω∥Lp(Ω) ≤ K

√
p ∥x∥ for all x ∈ H and p ≥ 1,

and this property is extremely useful in proving concentration inequalities in high
dimensional Hilbert spaces [V]. Essentially, one can think of the use of p-frame
bounds in frame theory as corresponding to the use of higher-moment conditions
in probability. We now generalize the definition of a frame doing C-stable phase
retrieval to a p-frame doing C-stable phase retrieval in ℓp(J).

Definition 3.5. Let H be a finite dimensional Hilbert space and let 1 ≤ p < ∞.
Let (fj)j∈J ⊆ H be a p-frame of H with analysis operator Θ : H → ℓp(J) given by
Θx = (fj(x))j∈J for all x ∈ H. We say that (fj)j∈J does C-stable phase retrieval
in ℓp(J) if

min
|λ|=1

∥x − λy∥ ≤ C
∥∥|Θx| − |Θy|

∥∥
ℓp(J)

= C
(∑

j∈J

∣∣|fj(x)| − |fj(y)|
∣∣p
)1/p

(3.5)

for all x, y ∈ H.
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In other words, if we define an equivalence relation ∼ on H by x ∼ y if and
only if x = λy for some |λ| = 1 then a p-frame (fj)j∈J of H with analysis operator
Θ : H → ℓp(J) does C-stable phase retrieval in ℓp(J) means that the recovery
of [x]∼ ∈ H/∼ from |Θx| ∈ ℓp(J) is a C-Lipschitz map from |Θ(H)| to H/∼.
Lemma 2.1 gives that (fj)j∈J does C-stable phase retrieval in ℓp(J) if and only if
(3.5) holds for orthogonal vectors in H. Note that if p > 2 then the ℓ2(J)-norm
dominates the ℓp(J)-norm and hence doing C-stable phase retrieval in ℓp(J) is a
stronger condition than doing C-stable phase retrieval in ℓ2(J). Proposition 3.6
relates the constant a0 in (3.1) to the stability of phase retrieval in ℓ4(J).

Proposition 3.6. Let (xj)j∈J be a frame of a Hilbert space H with Bessel bound
B which satisfies (3.1) for the value a0. Then (xj)j∈J is a 4-frame of H with

lower 4-frame bound a1/4
0 and upper 4-frame bound B1/2. Furthermore, (xj)j∈J

does (2a−1
0 B)1/2-stable phase retrieval in ℓ4(J).

Proof. Let x ∈ H. By plugging y = 0 into (3.1), we have that

a1/4
0 ∥x∥ ≤

(∑

j∈J

|⟨x, xj⟩|4
)1/4

≤
(∑

j∈J

|⟨x, xj⟩|2
)1/2

≤ B1/2∥x∥.

Thus, (xj)j∈J is a 4-frame with lower 4-frame bound a1/4
0 and upper 4-frame bound

B1/2. By Lemma 2.1, to prove that (xj)j∈J does C-stable phase retrieval in ℓ4(J) for

C = (2a−1
0 B)

1
2 , we only need to show that the inequality (3.5) holds for orthogonal

vectors. We now fix x, y ∈ H with ⟨x, y⟩ = 0.

a0∥x + y∥4 ≤
∑

j∈J

∣∣|⟨x, xj⟩|2 − |⟨y, xj⟩|2
∣∣2 as ⟨x, y⟩ = 0

=
∑

j∈J

∣∣|⟨x, xj⟩| − |⟨y, xj⟩|
∣∣2∣∣|⟨x, xj⟩| + |⟨y, xj⟩|

∣∣2

≤
(∑

j∈J

∣∣|⟨x, xj⟩| − |⟨y, xj⟩|
∣∣4
)1/2

×
(∑

j∈J

∣∣|⟨x, xj⟩| + |⟨y, xj⟩|
∣∣4
)1/2

by Cauchy-Schwarz,

≤
(∑

j∈J

∣∣|⟨x, xj⟩| − |⟨y, xj⟩|
∣∣4
)1/2 ∑

j∈J

∣∣|⟨x, xj⟩| + |⟨y, xj⟩|
∣∣2

≤
(∑

j∈J

∣∣|⟨x, xj⟩| − |⟨y, xj⟩|
∣∣4
)1/2 ∑

j∈J

2
(
|⟨x, xj⟩|2 + |⟨y, xj⟩|2

)

≤
(∑

j∈J

∣∣|⟨x, xj⟩| − |⟨y, xj⟩|
∣∣4
)1/2

2B
(
∥x∥2 + ∥y∥2

)

= 2B∥x + y∥2
(∑

j∈J

∣∣|⟨x, xj⟩| − |⟨y, xj⟩|
∣∣4
)1/2

as ⟨x, y⟩ = 0.

Thus, we have that

min
|λ|=1

∥x − λy∥ = ∥x + y∥ ≤ (2a−1
0 B)1/2

( m∑

j=1

∣∣|⟨x, xj⟩| − |⟨y, xj⟩|
∣∣4
)1/4

.
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This proves that the frame (xj)j∈J does (2a−1
0 B)1/2-stable phase retrieval in ℓ4(J).

!
It follows from classical results in Banach spaces that for all 2 < p < ∞ there

is a universal constant K > 0 so that if (xj)m
j=1 is a Parseval frame for an n-

dimensional Hilbert space with lower p-frame bound Ap and upper p-frame bound
Bp then Apn1/2 ≤ KBpm1/p [FLM]. By Proposition 3.6, if a0 satisfies (3.1) then
a0 ≤ K4mn−2. This gives a situation where the lower 4-frame bound is necessarily
small and hence a0 is small as well. However, the value a0 can be small for other
reasons independent of the 4-frame bounds. In Example 3.7 we show that it is
possible to construct Parseval frames for even the 2-dimensional Hilbert space C2

which do uniformly stable phase retrieval, have uniform 4-frame bounds, but a0 is
arbitrarily small.

Example 3.7. Let k ∈ N and p > 2. Consider the frame (xj)j∈J of C2 defined by

(xj)j∈J :=
(
(k−1/2, 0)

)k

j=1
⊔
(
(0, k−1/2)

)k

j=1
⊔
(
(1, 1), (1,−1), (1, i), (1,−i)

)
.

Then the following are all satisfied.

(1) (xj)j∈J is a tight frame of C2 with frame bound 5.
(2) (xj)j∈J has upper p-frame bound 51/2 and lower p-frame bound 1.
(3) (xj)j∈J does C2-stable phase retrieval in ℓ2(J) for some C2 independent of

k.
(4) If Cp < (2k)1/2−1/p then (xj)j∈J does not do Cp-stable phase retrieval in

ℓp(J).

In particular, for all a0 > 0 if k ∈ N is chosen large enough then (xj)j∈J does not
satisfy (3.1) for that choice of a0.

Proof. We first consider the case k = 1 and denote

F := {(1, 0), (0, 1), (1, 1), (1,−1), (1, i), (1,−i)}.

A direct calculation gives that F is a tight frame of C2 with frame bound 5. We
now show that this frame does phase retrieval in C2. Let Θ be the analysis operator
of F . Let (a, b) ∈ C2 with (a, b) ̸= (0, 0). By scaling, we may assume without loss of
generality that a ∈ R. By Lemma 2.1 we need to show for all c ≥ 0 that |Θ(a, b)| ̸=
|Θ(cb,−ca)|. For the sake of contradiction, we assume that |Θ(a, b)| = |Θ(cb,−ca)|.

As |⟨(a, b), (1, 0)⟩| = |⟨(cb,−ca), (1, 0)⟩| we have that |a| = |cb|. Likewise, |b| =
|ca|. Thus, c = 1 and |a| = |b|.

As |⟨(a, b), (1, 1)⟩| = |⟨(b,−a), (1, 1)⟩| we have that Re(b) = 0. Likewise,

|⟨(a, b), (1, i)⟩| = |⟨(b,−a), (1, i)⟩|
implies that Im(b) = 0. Hence b = 0. This however contradicts that |a| = |b|.

We now have that the frame F does phase retrieval. Every frame which does
phase retrieval for a finite dimensional Hilbert space does stable phase retrieval.
Thus, there exists C2 > 0 so that F does C2-stable phase retrieval. Let p > 2.
Note that {(1, 1), (1,−1), (1, i), (1,−i)} is a tight frame with frame bound 4 and
the norms on ℓ4p and ℓ42 are 41/2−1/p equivalent. Thus, {(1, 1), (1,−1), (1, i), (1,−i)}
has lower p-frame bound 41/2 · 41/p−1/2 = 41/p ≥ 1.

We now let k ∈ N and consider the frame

(xj)j∈J :=
(
(k−1/2, 0)

)k

j=1
⊔
(
(0, k−1/2)

)k

j=1
⊔
(
(1, 1), (1,−1), (1, i), (1,−i)

)
.
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That is, (xj)j∈J can be thought of replacing the vectors (1, 0) and (0, 1) in F
with k copies of (k−1/2, 0) and (0, k−1/2) respectively. This will preserve all the
frame properties which are measured in ℓ2. In particular, (xj)j∈J will be a tight
frame with frame bound 5 and will do C2-stable phase retrieval in ℓ2(J). As
{(1, 1), (1,−1), (1, i), (1,−i)} is a subset of (xj)j∈J , we have that 1 is a lower p-
frame bound of (xj)j∈J . As p > 2, we have that 51/2 is an upper p-frame bound
of (xj)j∈J . We now check the stability of phase retrieval of (xj)j∈J in ℓp(J). We
consider the orthogonal unit vectors (1, 0), (0, 1) ∈ C2.

∑

j∈J

∣∣|⟨(1, 0), xj⟩|−|⟨(0, 1), xj⟩|
∣∣p =

k∑

j=1

(k−1/2)p+
k∑

j=1

(k−1/2)p+0+0+0+0 = 2k1−p/2.

Note that for x = (1, 0) and y = (0, 1) we have that min|λ|=1 ∥x − λy∥ =
√

2 and
hence

min
|λ|=1

∥x − λy∥ = 21/2−1/pk1/2−1/p
(∑

j∈J

∣∣|⟨x, xj⟩| − |⟨y, xj⟩|
∣∣p
)1/p

.

As p > 2, we have that the stability of (xj)j∈J doing phase retrieval in ℓp(J) can be
forced to be arbitrarily large. That is, if Cp > 0 and k ∈ N is chosen large enough
so that Cp < 21/2−1/pk1/2−1/p then (xj)j∈J does not do Cp-stable phase retrieval
in ℓp(J). !

We now show that the idea used in Example 3.7 will work for any n-dimensional
Hilbert space with n > 1.

Proposition 3.8. There exists a uniform constant C2 > 0 so that for all p > 2,
all n ≥ 2, and all Cp > 0 there exists a frame (xj)j∈J of Cn so that

(1) (xj)j∈J is a tight frame of Cn with frame bound 2.
(2) (xj)j∈J has upper p-frame bound 21/2 and lower p-frame bound n1/p−1/2.
(3) (xj)j∈J does C2-stable phase retrieval in ℓ2(J).
(4) (xj)j∈J does not do Cp-stable phase retrieval in ℓp(J).

Proof. There is a uniform constant C2 > 0 so that for all n ∈ N there exists a
Parseval frame (zj)j∈I of Cn which does C2-stable phase retrieval [KS]. Let (ej)n

j=1

be the unit vector basis for Cn. We have that (ej)n
j=1 ⊔ (zj)j∈I is a tight frame of

Cn with frame bound 2 and hence (ej)n
j=1 ⊔ (zj)j∈I has upper p-frame bound 21/2

for all p ≥ 2. As it contains the unit vector basis for Cn, (ej)n
j=1⊔ (zj)j∈I has lower

p-frame bound n1/p−1/2.
We now let k ∈ N and consider the frame (xj)j∈J which consists of (ej)n

j=1

and k copies of (k−1/2zj)j∈I . We have that (xj)j∈J will preserve all the frame
properties of (ej)n

j=1 ⊔ (zj)j∈I which are measured in ℓ2. In particular, (xj)j∈J is a
tight frame of Cn with frame bound 2 and does C2-stable phase retrieval in ℓ2(J).
Furthermore, as (xj)j∈J contains the unit vector basis of Cn, we have that (xj)j∈J

has lower p-frame bound n1/p−1/2.
We now consider the orthogonal vectors x = 2−1(e1 + e2) and y = 2−1(e1 − e2).
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∑

j∈J

∣∣|⟨x, xj⟩| − |⟨y, xj⟩|
∣∣p

=
n∑

j=1

∣∣|⟨x, ej⟩| − |⟨y, ej⟩|
∣∣p + k

∑

j∈I

∣∣|⟨x, k−1/2zj⟩| − |⟨y, k−1/2zj⟩|
∣∣p

≤ 0 + k1−p/2
∑

j∈I

|⟨x − y, zj⟩|p

≤ k1−p/2
(∑

j∈I

|⟨e2, zj⟩|2
)p/2

= k1−p/2.

Thus, we have that

min
|λ|=1

∥x − λy∥ = 1 ≥ k1/2−1/p
(∑

j∈J

∣∣|⟨x, xj⟩| − |⟨y, xj⟩|
∣∣p
)1/p

.

Hence, if Cp is any constant then we may choose k ∈ N large enough so that (xj)j∈J

does not do Cp-stable phase retrieval in ℓp(J). !
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