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This paper aims to reconstruct the initial condition of a hyperbolic equation with an unknown damping 
coefficient. Our approach involves approximating the hyperbolic equation’s solution by its truncated Fourier 
expansion in the time domain and using the recently developed polynomial-exponential basis. This truncation 
process facilitates the elimination of the time variable, consequently, yielding a system of quasi-linear elliptic 
equations. To globally solve the system without needing an accurate initial guess, we employ the Carleman 
contraction principle. We provide several numerical examples to illustrate the efficacy of our method. The 
method not only delivers precise solutions but also showcases remarkable computational efficiency.

1. Introduction

Let 𝑇 be a positive number that represents the final time and let 𝑑 ≥ 1 be the spatial dimension. Let 𝑢 ∶ℝ𝑑 × [0, 𝑇 ] →ℝ be the solution of
⎧
⎪
⎨
⎪⎩

𝑢𝑡𝑡(𝐱, 𝑡) + 𝑎(𝐱)𝑢𝑡(𝐱, 𝑡) =Δ𝑢(𝐱, 𝑡) (𝐱, 𝑡) ∈ℝ𝑑 × (0,𝑇 ]
𝑢(𝐱,0) = 𝑓 (𝐱) 𝐱 ∈ℝ𝑑 ,
𝑢𝑡(𝐱,0) = −𝑎(𝐱)𝑓 (𝐱) 𝐱 ∈ℝ𝑑 .

(1.1)

We are interested in the following inverse problem.

Problem 1.1. Let Ω be a bounded domain of ℝ𝑑 with a smooth boundary. Assume that |𝑓 (𝐱)| > 0 for all 𝐱 ∈ Ω. Given the measurement of lateral 
data

𝑝(𝐱, 𝑡) = 𝑢(𝐱, 𝑡) and 𝑞(𝐱, 𝑡) = 𝜕𝜈𝑢(𝐱, 𝑡) (1.2)
for all (𝐱, 𝑡) ∈ 𝜕Ω × [0, 𝑇 ], determine the function 𝑓 (𝐱) for 𝐱 ∈Ω.

Problem 1.1 is an important problem arising from bio-medical imaging, called thermo/photo-acoustics tomography (see, e.g., [44,45,69,79,25,
24]). One sends non-ionizing laser pulses or microwave to a biological tissue under inspection (for instance, woman’s breast in mamography). A part 
of the energy will be absorbed and converted into heat, causing a thermal expansion and a subsequence ultrasonic wave propagating in space. The 
ultrasonic pressures 𝑢 on a surface around the tissue are measured. Although the Neumann data 𝜕𝜈𝑢 are not directly measured in the experiment, 
one can find it by solving the external hyperbolic equation [11]. Finding the initial pressure 𝑓 from these measurements yields helpful structural 
information of the tissue. Most of the current publications focus on standard models with non-damping and isotropic media. The methods include 
explicit reconstruction formulas in [10–12,26,13,57,66], the time reversal method [20,21,23,75,76], the quasi-reversibility method [9,52] and 

* Corresponding author.
E-mail addresses: tle9@ncsu.edu (T.T. Le), lnguyen@uidaho.edu (L.V. Nguyen), loc.nguyen@charlotte.edu (L.H. Nguyen), hpark0@gwu.edu (H. Park).

https://doi.org/10.1016/j.camwa.2024.03.038
Received 1 September 2023; Received in revised form 14 February 2024; Accepted 29 March 2024

0898-1221/© 2024 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.camwa.2024.03.038
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2024.03.038&domain=pdf
mailto:tle9@ncsu.edu
mailto:lnguyen@uidaho.edu
mailto:loc.nguyen@charlotte.edu
mailto:hpark0@gwu.edu
https://doi.org/10.1016/j.camwa.2024.03.038


T.T. Le, L.V. Nguyen, L.H. Nguyen et al. Computers and Mathematics with Applications 166 (2024) 77–90

the iterative methods [73,22,72,6,14]. The reader can find publications about thermo/photo-acoustics tomography for more sophisticated model 
involving a damping term or attenuation term [1–3,8,15,16,19,42,43,56,63].

The model under investigation (1.1) and Problem 1.1 were studied in [19,70,15,71]. However, in those works, the absorption coefficient 𝑎(𝐱)
was known for every point 𝐱 ∈ Ω. In this paper, in contrast, we assume that 𝑎(𝐱) is unknown. Since our focus is the inverse problem, we assume 
that (1.2) has a unique solution 𝑢(𝐱, 𝑡). Assume further that this solution is bounded; i.e. there is an 𝑀 > 0 such that

|𝑢(𝐱, 𝑡)| <𝑀 for all (𝐱, 𝑡) ∈ℝ𝑑 × [0,𝑇 ]. (1.3)
Solving Problem 1.1 when 𝑎 is known is possible, see [19,70,15,71]. However, the problem becomes challenging and interesting when 𝑎 is not 
known.

1. Regarding “challenging”, the challenge at hand stems from the necessity of computing two unknown functions, 𝑎 and 𝑢 while there is only 
one single governing equation, the hyperbolic equation in (1.1). Additionally, the product 𝑎(𝐱)𝑢𝑡(𝐱, 𝑡) in (1.1) adds nonlinearity to Problem 1.1. 
Solving nonlinear problems without providing a good initial guess poses an intriguing and scientifically significant challenge for the community. 
We propose to use a recently developed method, the Carleman contraction mapping method, that quickly delivers reliable solutions without 
requesting such a good initial guess, see [48,50,62]. This new method is designed based on the fixed-point iteration, the contraction principle, 
and a suitable Carleman estimate.

2. Regarding “interesting”, in real-world applications, the function 𝑎(𝐱) is typically unknown as it represents the value of the damping coefficient 
at an internal point 𝐱 in Ω where one has no access. Therefore, being able to solve Problem 1.1 without requesting the knowledge of this internal 
data is a substantial contribution to the field. To the best of our knowledge, this is the first work that tackles this problem. A similar problem, 
which is to reconstruct the initial pressure with unknown sound speed has been studied theoretically (see [21,77,78,54]) and numerically (e.g., 
[80,55]). However, theoretically sound numerical approach for this problem is still out-of-reach.

Due to the lack of knowledge of the coefficient 𝑎, Problem 1.1 becomes nonlinear. Conventional approaches to computing solutions to nonlinear 
inverse problems typically rely on optimization techniques. However, these methods are local in nature, meaning they yield solutions only if good 
initial approximations of the true solutions are provided. Even in this case, local convergence is not guaranteed unless certain additional conditions 
are met. For a condition ensuring the local convergence of the optimization method employing Landweber iteration, we direct the reader to [17]. 
There is a general framework to globally solve nonlinear inverse problems, called convexification. The main idea of the convexification method is 
to include some suitable Carleman weight functions into the mismatch cost functionals, making these mismatch functionals uniformly convex. The 
convexified phenomenon is rigorously proved by employing the well-known Carleman estimates. Several versions of the convexification method 
[4,29–32,35,38,36,39,51] have been developed since it was first introduced in [34]. Especially, the convexification was successfully tested with 
experimental data in [27,28,36] for the inverse scattering problem in the frequency domain given only backscattering data. We consider the 
convexification method as the first generation of numerical methods based on Carleman estimates to solve nonlinear inverse problems. Although 
effective, the convexification method has a drawback. It is time-consuming. We, therefore, propose to apply the Carleman contraction mapping 
method, see [48,50,62]. The strength of the Carleman contraction mapping method includes global and fast convergence; i.e., this method can 
provide reliable numerical solutions without requesting a good initial guess and the rate of the convergence is 𝑂(𝜃𝑛) where 𝜃 ∈ (0, 1) and 𝑛 is the 
number of iterations. For more details about these strengths, we refer the reader to [62].

The Carleman contraction mapping methods developed in [48,50,62] are suitable for solving nonlinear elliptic equations given Cauchy boundary 
data. However, the governing equation for Problem 1.1 is hyperbolic. Hence, to place Problem 1.1 into the framework of the Carleman contraction 
mapping method, we must reduce the time dimension. To achieve this, we express the function 𝑢(𝐱, 𝑡), for (𝐱, 𝑡) ∈ Ω × (0, 𝑇 ), through its Fourier 
coefficients 𝑢1(𝐱), 𝑢2(𝐱), … , where 𝐱 ∈ Ω. These coefficients are related to the polynomial-exponential basis of 𝐿2(0, 𝑇 ) introduced in [33]. Using 
straightforward algebra, we derive an approximate model consisting of a system of elliptic PDEs for these Fourier coefficients. As a result, the time 
dimension is reduced, and the Carleman contraction mapping method can be applied. This process suggests our approach the name: “the time 
dimensional reduction method.” Another benefit of this method is its more efficient computational cost, as we are now dealing with a 𝑑 dimensional 
problem instead of a 𝑑 + 1 dimensional one.

The paper is organized as follows. In Section 2, we introduced the time reduction model. In Section 3, we recall a version of the Carleman 
contraction mapping method and its convergence. In Section 4, we present several numerical results.

2. An approximate model

In this section, we derive a system of nonlinear partial differential equations. The solution to this system directly yields the solution to Prob-
lem 1.1. It follows from the initial conditions in (1.1) 𝑢(𝐱, 0) = 𝑓 (𝐱) and 𝑢𝑡(𝐱, 0) = −𝑎(𝐱)𝑓 (𝐱) that

𝑎(𝐱) = −
𝑢𝑡(𝐱,0)
𝑢(𝐱,0) ∼ −

𝑢𝑡(𝐱,0)𝑢(𝐱,0)
|𝑢(𝐱,0)|2 + 𝜂2

, 𝐱 ∈Ω (2.1)

for a fixed regularization number 0 < 𝜂 ≪ 1.

Remark 2.1. The replacement of − 𝑢𝑡(𝐱,0)
𝑢(𝐱,0) by its regularized version − 𝑢𝑡(𝐱,0)𝑢(𝐱,0)

|𝑢(𝐱,0)|2+𝜂2 in (2.1) is necessary. This approximation helps prevent a situation 
where the denominator of the fraction − 𝑢𝑡(𝐱,0)

𝑢(𝐱,0) becomes zero for some values of 𝐱.

Substituting (2.1) into the governing hyperbolic equation in (1.1), we derive the following approximate equation

𝑢𝜂𝑡𝑡(𝐱, 𝑡)−
𝑢𝜂𝑡 (𝐱,0)𝑢𝜂(𝐱,0)
|𝑢𝜂(𝐱,0)|2 + 𝜂2

𝑢𝜂𝑡 (𝐱, 𝑡)−Δ𝑢𝜂(𝐱, 𝑡) = 0 (𝐱, 𝑡) ∈ℝ𝑑 × (0,𝑇 ] (2.2)

for an approximation 𝑢𝜂 of the wave function 𝑢. To address Problem 1.1, we compute the solution for (2.2) given the lateral data of the function 𝑢𝜂
on 𝜕Ω × [0, 𝑇 ] as in (1.2) when 𝑢𝜂 replaces 𝑢. Once we obtain the solution 𝑢𝜂(𝐱, 𝑡) for (𝐱, 𝑡) ∈ Ω × [0, 𝑇 ] to (2.2), we can set the required function 
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𝑓 (𝐱) as 𝑢𝜂(𝐱, 0) for 𝐱 ∈ Ω. However, given that (2.2) is nonlocal and nonlinear, finding its solution is extremely challenging. Currently, an efficient 
numerical method to handle this task is not yet developed. We only demonstrate a numerical solver for the following approximation where the time 
variable and the nonlocal terms are eliminated. The first step in removing the time dimension is to cut-off the Fourier series of 𝑢𝜂 (𝐱, 𝑡) with respect to 
an appropriate basis of 𝐿2(0, 𝑇 ). We choose the polynomial-exponential basis {Ψ𝑛}𝑛≥1 originally introduced in [33]. The set {Ψ𝑛}𝑛≥1 is constructed 
as follows. For any 𝑡 ∈ (0, 𝑇 ), we define 𝜙𝑛(𝑡) = 𝑡𝑛−1𝑒𝑡. It is clear that the set {𝜙𝑛}𝑛≥1 is complete in 𝐿2(0, 𝑇 ). By applying the Gram-Schmidt 
orthonormalization process to this set, we obtain an orthonormal basis for 𝐿2(0, 𝑇 ), which is denoted by {Ψ𝑛}𝑛≥1.

Remark 2.2. The polynomial-exponential basis set {Ψ𝑛}𝑛≥1 was initially introduced in [33] as a tool to solve inverse problems. We have demon-
strated its effectiveness by employing to numerous inverse problems of nearly all types of equations. This includes elliptic equations [27–29,49,65], 
parabolic equations [18,48,50], hyperbolic equations [52,58], transport equations [40], and full radiative transfer equation [74]. In addition, we 
have used this basis to solve the critical task of differentiating noisy data, as described in [67].

For (𝐱, 𝑡) ∈Ω × [0, 𝑇 ], we approximate

𝑢𝜂(𝐱, 𝑡) =
∞∑
𝑛=1

𝑢𝑛(𝐱)Ψ𝑛(𝑡) ≈
𝑁∑
𝑛=1

𝑢𝑛(𝐱)Ψ𝑛(𝑡) (2.3)

for some cut-off number 𝑁 , chosen later in Section 4.2, where

𝑢𝑛(𝐱) =
𝑇

∫
0

𝑢𝜂(𝐱, 𝑡)Ψ𝑛(𝑡)𝑑𝑡, 𝑛 ≥ 1. (2.4)

Note that in (2.3) and (2.4), rather than writing 𝑢𝜂𝑛, we write 𝑢𝑛 and drop the superscript 𝜂 for simplicity. This is acceptable in the context that 𝜂 is 
a fixed number. Substituting (2.3) into the governing equation (2.2) gives

𝑁∑
𝑛=1

𝑢𝑛(𝐱)Ψ′′
𝑛 (𝑡)−

[∑𝑁
𝑙=1 𝑢𝑙(𝐱)Ψ′

𝑙(0)
][∑𝑁

𝑙=1 𝑢𝑙(𝐱)Ψ𝑙(0)
]

|||
∑𝑁

𝑙=1 𝑢𝑙(𝐱)Ψ𝑙(0)
|||
2
+ 𝜂2

𝑁∑
𝑛=1

𝑢𝑛(𝐱)Ψ′
𝑛(𝑡)−

𝑁∑
𝑛=1

Δ𝑢𝑛(𝐱)Ψ𝑛(𝑡) = 0 (2.5)

for (𝐱, 𝑡) ∈Ω × (0, 𝑇 ]. For each 𝑚 ∈ {1, … , 𝑁}, multiply Ψ𝑚(𝑡) to both sides of (2.5) and then integrate the resulting equation. We obtain

𝑁∑
𝑛=1

𝑢𝑛(𝐱)
𝑇

∫
0

Ψ′′
𝑛 (𝑡)Ψ𝑚(𝑡)𝑑𝑡−

[∑𝑁
𝑙=1 𝑢𝑙(𝐱)Ψ′

𝑙(0)
][∑𝑁

𝑙=1 𝑢𝑙(𝐱)Ψ𝑙(0)
]

|||
∑𝑁

𝑙=1 𝑢𝑙(𝐱)Ψ𝑙(0)
|||
2
+ 𝜂2

𝑁∑
𝑛=1

𝑢𝑛(𝐱)
𝑇

∫
0

Ψ′
𝑛(𝑡)Ψ𝑚(𝑡)𝑑𝑡−

𝑁∑
𝑛=1

Δ𝑢𝑛(𝐱)
𝑇

∫
0

Ψ𝑛(𝑡)Ψ𝑚(𝑡)𝑑𝑡 = 0 (2.6)

for 𝐱 ∈Ω. Define the vector 𝑈 = (𝑢1, … , 𝑢𝑁 )T. Since {Ψ𝑛}𝑛≥1 is an orthonormal basis of 𝐿2(0, 𝑇 ), we can deduce from (2.6) that

Δ𝑈 (𝐱)−𝑆𝑈 (𝐱) = 𝐹 (𝑈 (𝐱)) for all 𝐱 ∈Ω (2.7)
where the matrix 𝑆 is given by

𝑆 = (𝑠𝑚𝑛)𝑁𝑚,𝑛=1 =
( 𝑇

∫
0

Ψ′′
𝑛 (𝑡)Ψ𝑚(𝑡)𝑑𝑡

)𝑁

𝑚,𝑛=1
(2.8)

and the function 𝐹 = [ 𝐹1 𝐹2 … 𝐹𝑁 ]T ∶ℝ𝑁 →ℝ𝑁 whose the 𝑚th component, 𝑚 = 1, … , 𝑁 , is defined as

𝐹𝑚(𝑉 ) = −
[∑𝑁

𝑙=1 𝑣𝑙Ψ′
𝑙(0)

][∑𝑁
𝑙=1 𝑣𝑙Ψ𝑙(0)

]

|||
∑𝑁

𝑙=1 𝑣𝑙Ψ𝑙(0)
|||
2
+ 𝜂2

𝑁∑
𝑛=1

𝑣𝑛

𝑇

∫
0

Ψ′
𝑛(𝑡)Ψ𝑚(𝑡)𝑑𝑡 (2.9)

for all 𝑉 =
[
𝑣1 𝑣2 … 𝑣𝑁

]T. Due to (2.3) and the boundedness of 𝑢(𝐱, 𝑡), see (1.3), the vector 𝑈 is bounded, say, there is a positive number 𝐌
depending only on 𝑀 , (which is a bound for |𝑢(𝐱, 𝑡)|, see (1.3)), 𝑁 , {Ψ𝑛}𝑁𝑛=1 and 𝑇 such that

|𝑈 (𝐱)| ≤𝐌 for all 𝐱 ∈Ω. (2.10)
On the other hand, it follows from (1.2) and (2.4) that

𝑈 (𝐱) =
( 𝑇

∫
0

𝑝(𝐱, 𝑡)Ψ𝑚(𝑡)𝑑𝑡
)𝑁

𝑚=1
, and 𝜕𝜈𝑈 (𝐱) =

( 𝑇

∫
0

𝑞(𝐱, 𝑡)Ψ𝑚(𝑡)𝑑𝑡
)𝑁

𝑚=1
(2.11)

for all 𝐱 ∈ 𝜕Ω. So, we have derived the following “time-reduction” model
⎧
⎪
⎪
⎨
⎪
⎪⎩

Δ𝑈 (𝐱)− 𝑆𝑈 (𝐱) = 𝐹 (𝑈 (𝐱)) 𝐱 ∈Ω
𝑈 (𝐱) =

(∫ 𝑇
0 𝑝(𝐱, 𝑡)Ψ𝑚(𝑡)𝑑𝑡

)𝑁

𝑚=1
𝐱 ∈ 𝜕Ω,

𝜕𝜈𝑈 (𝐱) =
( ∫ 𝑇

0 𝑞(𝐱, 𝑡)Ψ𝑚(𝑡)𝑑𝑡
)𝑁

𝑚=1
𝐱 ∈ 𝜕Ω.

(2.12)
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Remark 2.3 (The validity of the approximation model (2.12)). Due to the truncation in (2.3), and the term-by-term differentiation to obtain (2.5), 
problem (2.12) is not precise. Proving the convergence of this model as 𝑁 →∞ is extremely challenging. Since this paper focuses on computation, we 
do not address this issue here. Instead, we assume that (2.12) well-approximates the model for the Fourier coefficients 𝑈 (𝐱) = ( 𝑢1(𝐱) … 𝑢𝑁 (𝐱) )T
of the function 𝑢(𝐱, 𝑡). Although the validity of this approximation model is not theoretically proven, we numerically observe its strength. In fact, 
similar approximations were successfully applied in [27–29,49] in which we solved the highly nonlinear and severely ill-posed inverse scattering 
problem with backscattering data experimentally measured by microwave facilities built at the University of North Carolina at Charlotte. The 
successful applications of several versions of this approximation with highly noisy simulated data can be found at [40,52,58,65,74].

Remark 2.4 (The choice of the basis {Ψ𝑛}𝑛≥1). The use of the basis {Ψ𝑛}𝑛≥1 is crucial to the efficacy of our method. One may question why we have 
chosen this specific basis out of countless alternatives for the Fourier expansion in (2.3). The answer lies in the limitations of more common bases 
like Legendre polynomials or trigonometric functions. These bases typically commence with a constant function, whose derivatives are identically 
zero. As a result, the corresponding Fourier coefficient 𝑢1(𝐱) in the sums 

∑𝑁
𝑛=1 𝑢𝑛(𝑥)Ψ′

𝑛(𝑡) and 
∑𝑁

𝑛=1 𝑢𝑛(𝑥)Ψ′′
𝑛 (𝑡) in (2.5) is overlooked, causing some 

inaccuracy of the outcome. The basis {Ψ𝑛}𝑛≥1 is suitable for (2.4) as it fulfills the necessary condition wherein the derivatives of Ψ𝑛, for 𝑛 ≥ 1, are 
not constantly zero. The effectiveness of this basis is well-documented in various research, such as in [52,67]. In the study [52], we use the basis 
{Ψ𝑛}𝑛≥1 and a traditional trigonometric basis to expand wave fields and address problems in photo-acoustic and thermo-acoustic tomography. Our 
results indicated a notably superior performance from the polynomial-exponential basis. In [67], we employed Fourier expansion to compute the 
derivatives of data affected by noise. Our findings confirmed that the basis {Ψ𝑛}𝑛≥1 outperformed the trigonometric basis in terms of accuracy when 
differentiating term-by-term of the Fourier expansion in solving ill-posed problems.

Remark 2.5. The task of solving Problem 1.1 is reduced to the problem of computing solution to (2.12). In fact, let 𝑈 comp = (𝑢comp
1 , … , 𝑢comp

𝑁 )T
denote the computed solution to (2.12). Then, since 𝑓 (𝐱) = 𝑢(𝐱, 0) and due to (2.3), we set the desired solution to Problem 1.1 as

𝑓 comp(𝐱) =
𝑁∑
𝑛=1

𝑢comp
𝑛 (𝐱)Ψ𝑛(0) for 𝐱 ∈Ω. (2.13)

We present the Carleman contraction method to solve (2.12) in the next section. Some earlier versions of this method can be found in [48,50,62].

3. The Carleman contraction method

Some versions of the Carleman contraction method, which were established in [48,50,62], and the one in this paper rely on Carleman estimates. 
We recall a version of Carleman estimate.

Lemma 3.1 (Carleman estimate). Fix a point 𝐱0 ∈ℝ𝑑 ⧵Ω. Define 𝑟(𝐱) = |𝐱− 𝐱0| for all 𝐱 ∈Ω. Let 𝑏 >max𝐱∈Ω 𝑟(𝐱) be a fixed constant. There exist positive 
constants 𝛽 depending only on 𝐱0, Ω, 𝑏, and 𝑑 such that for all function 𝑣 ∈ 𝐶2(Ω) satisfying

𝑣(𝐱) = 𝜕𝜈𝑣(𝐱) = 0 for all 𝐱 ∈ 𝜕Ω, (3.1)
the following estimate holds true

∫
Ω

𝑒2𝜆𝑟−𝛽 (𝐱)|Δ𝑣|2𝑑𝐱 ≥ 𝐶𝜆∫
Ω

𝑒2𝜆𝑟−𝛽 (𝐱)|∇𝑣(𝐱)|2 𝑑𝐱 +𝐶𝜆3 ∫
Ω

𝑒2𝜆𝑟−𝛽 (𝐱)|𝑣(𝐱)|2 𝑑𝐱 (3.2)

for all 𝜆 ≥ 𝜆0. Here, 𝜆0 = 𝜆0(𝐱0, Ω, 𝑑, 𝛽, 𝑏) and 𝐶 = 𝐶(𝐱0, Ω, 𝑑, 𝛽, 𝑏) > 0 depend only on the listed parameters.

Lemma 3.1 can be straightforwardly derived from [59, Lemma 5]. For a detailed exposition of the proof, we direct the reader to [53, Lemma 
2.1]. Another approach to derive (3.2), using a different Carleman weight function, involves the application of the Carleman estimate from [47, 
Chapter 4, Section 1, Lemma 3] for generic parabolic operators. The methodology to derive (3.2) via [47, Chapter 4, Section 1, Lemma 3] resembles 
the one in [52, Section 3], albeit with the Laplacian swapped out for the operator Div(𝐴∇⋅). We would like to specifically highlight to the reader the 
varied forms of Carleman estimates for all three types of differential operators (elliptic, parabolic, and hyperbolic) and their respective applications 
in inverse problems and computational mathematics [5,7,37,60]. Additionally, it is noteworthy that certain Carleman estimates remain valid for all 
functions 𝑣 that satisfy 𝑣|𝜕Ω = 0 and 𝜕𝜈𝑣|Γ = 0, where Γ constitutes a portion of 𝜕Ω. Examples can be seen in [41,64]. These Carleman estimates are 
applicable to the resolution of quasilinear elliptic PDEs given the data on only a part of 𝜕Ω.

We will seek the solution 𝑈 to (2.12) in the set of admissible solutions

𝐻 =
{
ℎ ∈𝐻𝑠(Ω)𝑁 ∶ ‖ℎ‖𝐻𝑠(Ω)𝑁 ≤𝐌,ℎ|𝜕Ω =

( 𝑇

∫
0

𝑝(𝐱, 𝑡)Ψ𝑚(𝑡)𝑑𝑡
)𝑁

𝑚=1
and 𝜕𝜈ℎ|𝜕Ω =

( 𝑇

∫
0

𝑞(𝐱, 𝑡)Ψ𝑚(𝑡)𝑑𝑡
)𝑁

𝑚=1

}
(3.3)

where 𝑠 is an integer with 𝑠 > ⌈𝑑∕2⌉ + 2. Throughout the paper, we assume that 𝐻 is nonempty. Let 𝜆0 be the number in Lemma 3.1. For 𝜆 ≥ 𝜆0, 
we define the map Φ𝜆,𝜖 ∶𝐻 →𝐻

Φ𝜆,𝜖(𝑉 ) = min
𝜑∈𝐻 ∫

Ω

𝑒2𝜆𝑟−𝛽 (𝐱)|||Δ𝜑− 𝑆𝜑− 𝐹 (𝑉 (𝐱))|||
2
𝑑𝐱 + 𝜖‖𝜑‖2𝐻𝑠(Ω)𝑁 (3.4)

where 𝜖 > 0 is a regularization parameter. The map Φ𝜆,𝜖 is well-defined. In fact, for each 𝑉 ∈𝐻 , the functional

𝐽𝜆,𝜖(𝑉 ) ∶𝐻 →ℝ, 𝜑↦ ∫
Ω

𝑒2𝜆𝑟−𝛽 (𝐱)|||Δ𝜑− 𝑆𝜑− 𝐹 (𝑉 (𝐱))|||
2
𝑑𝐱 + 𝜖‖𝜑‖2𝐻𝑠(Ω)𝑁 (3.5)
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is strictly convex. It has a unique minimizer on a closed and convex subset 𝐻 of 𝐻𝑠(Ω)𝑁 . We refer the reader to [62, Remark 3.1] for more details. 
A similar argument for the well-posedness of the map Φ𝜆,𝜖 can be found in [48, Theorem 4.1].

Remark 3.1 (The Carleman quasi-reversibility method). Consider a vector-valued function 𝑉 in 𝐻 . Define 𝜑 as Φ𝜆,𝜖(𝑉 ). As 𝜑 ∈𝐻 minimizes the 
function 𝐽𝜆,𝜖(𝑉 ), it can be informally said that computing 𝜑 is about finding a solution for the following system of equations:

⎧
⎪
⎪
⎨
⎪
⎪⎩

Δ𝜑−𝑆𝜑− 𝐹 (𝑉 (𝐱)) = 0 𝐱 ∈Ω,
𝜑(𝐱) =

(∫ 𝑇
0 𝑝(𝐱, 𝑡)Ψ𝑚(𝑡)𝑑𝑡

)𝑁

𝑚=1
𝐱 ∈ 𝜕Ω,

𝜕𝜈𝜑(𝐱) =
( ∫ 𝑇

0 𝑞(𝐱, 𝑡)Ψ𝑚(𝑡)𝑑𝑡
)𝑁

𝑚=1
𝐱 ∈ 𝜕Ω.

(3.6)

Due to the presence of the regularization term 𝜖‖𝜑‖2𝐻𝑠(Ω), we refer to 𝜑 as the regularized solution of problem (3.6). The technique for deter-
mining the regularized solution to the linear equation (3.6) by minimizing 𝐽𝜆,𝜖(𝑉 ) is named the Carleman quasi-reversibility method. The name of 
this method is suggested by the existence of the Carleman weight function in the formulation of 𝐽𝜆,𝜖(𝑉 ), as well as the use of the quasi-reversibility 
technique to address linear PDEs with Cauchy data. We refer the reader to [46] for original work regarding the quasi-reversibility method.

Let 𝑝∗ and 𝑞∗ be the noiseless versions of the measured data 𝑝 and 𝑞 respectively. We assume that these data are corrupted by noise with the 
noise level 𝛿. Define the set

𝐸 =
{
𝐞 ∈𝐻𝑠(Ω)𝑁 ∶ 𝐞|𝜕Ω = 𝑝− 𝑝∗ and 𝜕𝜈𝐞|𝜕Ω = 𝑞 − 𝑞∗

}

By noise level 𝛿, we mean that 𝐸 ≠ ∅ and
inf{‖𝐞‖𝐻𝑠(Ω)𝑁 ∶ 𝐞 ∈𝐸} < 𝛿. (3.7)

By (3.7), there is a vector function 𝐞 ∈𝐻𝑠(Ω)𝑁 such that
⎧
⎪
⎨
⎪⎩

‖𝐞‖𝐻𝑠(Ω)𝑁 < 2𝛿,
𝐞|𝜕Ω = 𝑝− 𝑝∗,
𝜕𝜈𝐞|𝜕Ω = 𝑞 − 𝑞∗.

(3.8)

Remark 3.2. The condition that 𝐸 ≠ ∅ and (3.7), as well as, (3.8) imply that the differences 𝑝 − 𝑝∗ and 𝑞 − 𝑞∗ are traces of smooth vector-valued 
functions on 𝜕Ω. This implies the noise must exhibit smooth characteristics, which may not always be true in real-world scenarios. The demand for 
smoothness is a crucial component in the convergence result in Theorem 3.1. In real-world applications, the data can be smoothed using several 
established techniques, such as spline curves or the Tikhonov regularization approach. Nevertheless, this smoothing step can be relaxed during 
numerical investigations. This implies that our method’s practical application may surpass its theoretical proof. In our numerical tests, we do not 
have to smooth out the noisy data. Instead, we directly derive the desired numerical solutions to (1.1) using the noisy (raw) data of the form

𝑝 = 𝑝∗(1 + 𝛿rand) and 𝑞 = 𝑞∗(1 + 𝛿rand) (3.9)
where rand is a function taking uniformly distributed random numbers in the range [−1, 1].

Let 𝑈∗ be the true solution to the following analog of (2.12), in which the boundary data are replaced by the exact ones,
⎧
⎪
⎪
⎨
⎪
⎪⎩

Δ𝑈∗(𝐱)−𝑆𝑈∗(𝐱) = 𝐹 (𝑈∗(𝐱)) 𝐱 ∈Ω
𝑈 (𝐱) =

(∫ 𝑇
0 𝑝∗(𝐱, 𝑡)Ψ𝑚(𝑡)𝑑𝑡

)𝑁

𝑚=1
𝐱 ∈ 𝜕Ω,

𝜕𝜈𝑈 (𝐱) =
( ∫ 𝑇

0 𝑞∗(𝐱, 𝑡)Ψ𝑚(𝑡)𝑑𝑡
)𝑁

𝑚=1
𝐱 ∈ 𝜕Ω.

(3.10)

Define the sequence
{

𝑈0 is an arbitrary vector-valued function in 𝐻 ,
𝑈𝑛+1 =Φ𝜆,𝜖(𝑈𝑛), 𝑛 ≥ 0. (3.11)

We claim that {𝑈𝑛}𝑛≥1 well-approximates 𝑈∗ with respect to the Carleman weighted norm

‖𝜑‖𝜆,𝜖 =
(
∫
Ω

𝑒2𝜆𝑟−𝛽 (𝐱)(|𝜑|2 + |∇𝜑|2)𝑑𝐱
)1∕2

+ 𝜖
𝜆
‖𝜑‖𝐻𝑠(Ω)𝑁 (3.12)

for all 𝜑 ∈𝐻𝑠(Ω)𝑁 , for 𝜖 > 0 and 𝜆 > 𝜆0.
We have the theorem.

Theorem 3.1. Recall 𝛽 and 𝜆0 as in Lemma 3.1. Let 𝜆 ≥ 𝜆0 be such that (3.2) holds true. Let {𝑈𝑛}𝑛≥0 ⊂𝐻 be the sequence defined in (3.11). Assume that 
(3.10) has a unique solution 𝑈∗ with ‖𝑈∗‖𝐻𝑠(Ω)𝑁 <𝐌 − 2𝛿. Let 𝜆0 be the number in Lemma 3.1. Then, for all 𝜆 ≥ 𝜆0,

‖𝑈𝑛+1 −𝑈∗‖2𝜆,𝜖 ≤
(𝐶
𝜆

)𝑛+1
‖𝑈0 −𝑈∗‖2𝜆,𝜖 +𝐶‖𝐞‖2𝜆,𝜖 +

𝐶∕𝜆
1−𝐶∕𝜆

(
∫
Ω

𝑒2𝜆𝑟−𝛽 (𝐱)|Δ𝐞|2𝑑𝐱 + ∫
Ω

|𝐞|2𝑑𝐱 + 𝜖‖𝐞‖2𝐻𝑠(Ω)𝑁 + 𝜖‖𝑈∗‖2𝐻𝑠(Ω)𝑁

)
(3.13)

where 𝐶 is a positive constant depending only on 𝐱0, Ω, 𝛽, 𝑇 , {Ψ𝑛}𝑁𝑛=1, 𝐌, 𝜂 and 𝑑.
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Theorem 3.1 has a broader scope than the theorem presented in [62, Theorem 4.1] in the sense that Theorem 3.1 can be applied to solve systems, 
whereas [62, Theorem 4.1] pertains to a single equation. Two simpler versions of this convergence theorem for the case of exact data can be found 
in [48,50]. On the other hand, the proof of the convergence in [48,50,62] requires the globally Lipschitz property of 𝐹 while the vector-valued 
function 𝐹 in this work is only locally Lipschitz.

Remark 3.3. Estimate (3.13) is interesting in the sense that it, together with (3.8), guarantees that 𝑈𝑛 tends to 𝑈∗ as the noise level 𝛿 and the 
regularization parameter 𝜖 tends to 0. In particular, fix 𝜆 ≫ 1 and set 𝜖 =𝑂(𝛿2), the convergence rate is Lipschitz.

Proof of Theorem 3.1. Since the function 𝐹 is smooth, it is Lipschitz in the bounded domain 𝐻 . In other words, we can find a constant 𝐶𝐹 ,𝐌
depending on 𝐹 and 𝐌 such that

|𝐹 (𝑉1(𝐱))− 𝐹 (𝑉2(𝐱))| ≤ 𝐶𝐹 ,𝐌|𝑉1(𝐱)− 𝑉2(𝐱)| for all 𝐱 ∈Ω (3.14)
for all 𝑉1, 𝑉2 in 𝐻 . Here, we have used the fact that when 𝑉1 and 𝑉2 are in 𝐻 , |𝑉1(𝐱)| ≤ 𝐶𝐌 and |𝑉1(𝐱)| ≤ 𝐶𝐌 for all 𝐱 ∈ Ω where 𝐶 > 0 is the 
embedding constant for 𝐻𝑠(Ω) →𝐿∞(Ω). It follows from (3.8) and the assumption ‖𝑈∗‖𝐻𝑠(Ω)𝑁 <𝐌 − 2𝛿 that ‖𝑈∗ + 𝐞‖𝐻𝑠(Ω)𝑁 ≤𝐌. Hence, 𝑈∗ + 𝐞
is in 𝐻 . Fix 𝑛 ≥ 0. Since 𝐻 is a convex subset of 𝐻𝑠(Ω)𝑁 , the vector-valued function 𝑈𝑛+1 + 𝜏(𝑈∗ + 𝐞 −𝑈𝑛+1) is in 𝐻 for all 𝜏 ∈ (0, 1). Since 𝑈𝑛+1
is the minimizer of 𝐽𝜆,𝜖(𝑈𝑛) in 𝐻 , we have

𝐽𝜆,𝜖(𝑈𝑛)(𝑈𝑛+1 + 𝜏(𝑈∗ + 𝐞−𝑈𝑛+1))− 𝐽𝜆,𝜖(𝑈𝑛)(𝑈𝑛+1)
𝜏

≥ 0 for all 𝜏 ∈ (0,1). (3.15)
It follows from (3.5) and (3.15) that

1
𝜏 ∫

Ω

𝑒2𝜆𝑟−𝛽 (𝐱)[Δ(2𝑈𝑛+1 + 𝜏(𝑈∗ + 𝐞−𝑈𝑛+1))−𝑆(2𝑈𝑛+1 + 𝜏(𝑈∗ + 𝐞−𝑈𝑛+1)) + 2𝐹 (𝑈𝑛(𝐱))]

× [Δ(𝜏(𝑈∗ + 𝐞−𝑈𝑛+1))−𝑆(𝜏(𝑈∗ + 𝐞−𝑈𝑛+1))]𝑑𝐱

+ 𝜖⟨2𝑈𝑛+1 + 𝜏(𝑈∗ + 𝐞−𝑈𝑛+1), 𝜏(𝑈∗ + 𝐞−𝑈𝑛+1⟩𝐻𝑠(Ω)𝑁 ≥ 0.

Letting 𝜏 tend to 0+, we obtain
⟨
𝑒2𝜆𝑟−𝛽 (𝐱)[Δ𝑈𝑛+1 −𝑆𝑈𝑛+1 − 𝐹 (𝑈𝑛(𝐱))],Δ(𝑈∗ + 𝐞−𝑈𝑛+1)−𝑆(𝑈∗ + 𝐞−𝑈𝑛+1)

⟩
𝐿2(Ω)𝑁

+ 𝜖⟨𝑈𝑛+1,𝑈∗ + 𝐞−𝑈𝑛+1⟩𝐻𝑠(Ω)𝑁 ≥ 0. (3.16)

On the other hand, since 𝑈∗ satisfies (3.10),
⟨
𝑒2𝜆𝑟−𝛽 (𝐱)[Δ𝑈∗ −𝑆𝑈∗ − 𝐹 (𝑈∗(𝐱))],Δ(𝑈∗ + 𝐞−𝑈𝑛+1)−𝑆(𝑈∗ + 𝐞−𝑈𝑛+1)

⟩
𝐿2(Ω)𝑁

+ 𝜖⟨𝑈∗,𝑈∗ + 𝐞−𝑈𝑛+1⟩𝐻𝑠(Ω)𝑁 = 𝜖⟨𝑈∗,𝑈∗ + 𝐞−𝑈𝑛+1⟩𝐻𝑠(Ω)𝑁 . (3.17)
It follows from (3.16) and (3.17) that

⟨
𝑒2𝜆𝑟−𝛽 (𝐱)[Δ(𝑈𝑛+1 −𝑈∗)−𝑆(𝑈𝑛+1 −𝑈∗)− 𝐹 (𝑈𝑛(𝐱)) + 𝐹 (𝑈∗(𝐱))],

Δ(𝑈∗ + 𝐞−𝑈𝑛+1)− 𝑆(𝑈∗ + 𝐞−𝑈𝑛+1)
⟩
𝐿2(Ω)𝑁

+ 𝜖⟨𝑈𝑛+1 −𝑈∗,𝑈∗ + 𝐞−𝑈𝑛+1⟩𝐻𝑠(Ω)𝑁 ≥ −𝜖⟨𝑈∗,𝑈∗ + 𝐞−𝑈𝑛+1⟩𝐻𝑠(Ω)𝑁 ,

which implies
⟨
𝑒2𝜆𝑟−𝛽 (𝐱)[Δ(𝑈𝑛+1 −𝑈∗ − 𝐞)− 𝑆(𝑈𝑛+1 −𝑈∗ − 𝐞)− 𝐹 (𝑈𝑛(𝐱)) + 𝐹 (𝑈∗(𝐱))],

Δ(𝑈𝑛+1 −𝑈∗ − 𝐞)−𝑆(𝑈𝑛+1 −𝑈∗ − 𝐞)
⟩
𝐿2(Ω)𝑁

+
⟨
𝑒2𝜆𝑟−𝛽 (𝐱)[Δ𝐞−𝑆𝐞− 𝐹 (𝑈𝑛(𝐱)) + 𝐹 (𝑈∗(𝐱))],Δ(𝑈𝑛+1 −𝑈∗ − 𝐞)− 𝑆(𝑈𝑛+1 −𝑈∗ − 𝐞)

⟩
𝐿2(Ω)𝑁

+ 𝜖⟨𝑈𝑛+1 −𝑈∗ − 𝐞,𝑈𝑛+1 −𝑈∗ − 𝐞⟩𝐻𝑠(Ω)𝑁

+ 𝜖⟨𝐞,𝑈𝑛+1 −𝑈∗ − 𝐞⟩𝐻𝑠(Ω)𝑁 ≤ −𝜖⟨𝑈∗,𝑈𝑛+1 −𝑈∗ − 𝐞⟩𝐻𝑠(Ω)𝑁 . (3.18)

Define ℎ𝑛 =𝑈𝑛 −𝑈∗ − 𝐞 for 𝑛 ≥ 0. Using the inequality 2𝑎𝑏 ≤ 𝑎2
8 + 8𝑏2, we have

∫
Ω

𝑒2𝜆𝑟−𝛽 (𝐱)|Δℎ𝑛+1 −𝑆ℎ𝑛+1|2𝑑𝐱 + 𝜖‖ℎ‖2𝐻𝑠(Ω)𝑁 ≤ 𝐶
[
∫
Ω

𝑒2𝜆𝑟−𝛽 (𝐱)|𝐹 (𝑈𝑛(𝐱))− 𝐹 (𝑈∗(𝐱))|2𝑑𝐱

+ ∫
Ω

𝑒2𝜆𝑟−𝛽 (𝐱)|Δ𝐞−𝑆𝐞|2𝑑𝐱 + 𝜖‖𝐞‖2𝐻𝑠(Ω)𝑁 + 𝜖‖𝑈∗‖2𝐻𝑠(Ω)𝑁

]
. (3.19)

From this point forward, 𝐶 denotes the substantial constants that are determined solely by 𝐹 , 𝐌, Ω, 𝐱0, 𝑏, 𝛽, 𝑁 , {Ψ}𝑁𝑛=1, and 𝑑. Note that the value 
of 𝐶 may vary across different estimates. We next use (3.14) and apply the inequality (𝑎 − 𝑏)2 ≥ 𝑎2

2 − 𝑏2 to obtain from (3.19) that
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∫
Ω

𝑒2𝜆𝑟−𝛽 (𝐱)|Δℎ𝑛+1|2𝑑𝐱 + 𝜖‖ℎ𝑛+1‖2𝐻𝑠(Ω)𝑁 ≤ 𝐶
[
∫
Ω

𝑒2𝜆𝑟−𝛽 (𝐱)|𝑆ℎ𝑛+1|2𝑑𝐱

+ ∫
Ω

𝑒2𝜆𝑟−𝛽 (𝐱)|𝑈𝑛(𝐱)−𝑈∗(𝐱))|2𝑑𝐱 + ∫
Ω

𝑒2𝜆𝑟−𝛽 (𝐱)|Δ𝐞−𝑆𝐞|2𝑑𝐱 + 𝜖‖𝐞‖2𝐻𝑠(Ω)𝑁 + 𝜖‖𝑈∗‖2𝐻𝑠(Ω)𝑁

]
. (3.20)

Let 𝜆0 be the number in Lemma 3.1. Using the Carleman estimate (3.2) for each component of ℎ𝑛+1, we have for all 𝜆 ≥ 𝜆0

∫
Ω

𝑒2𝜆𝑟−𝛽 (𝐱)|Δℎ𝑛+1|2𝑑𝐱 ≥ 𝐶𝜆∫
Ω

𝑒2𝜆𝑟−𝛽 (𝐱)|∇ℎ𝑛+1(𝐱)|2 𝑑𝐱 +𝐶𝜆3 ∫
Ω

𝑒2𝜆𝑟−𝛽 (𝐱)|ℎ𝑛+1(𝐱)|2 𝑑𝐱. (3.21)

Combining (3.20) and (3.21), recalling that ℎ𝑛 =𝑈𝑛 −𝑈∗ − 𝐞, and noting that 𝜆 ≫ 1 give

𝜆∫
Ω

𝑒2𝜆𝑟−𝛽 (𝐱)[|ℎ𝑛+1(𝐱)|2 + |∇ℎ𝑛+1(𝐱)|2 𝑑𝐱 + 𝜖‖ℎ𝑛+1‖2𝐻𝑠(Ω)𝑁

≤ 𝐶
[
∫
Ω

𝑒2𝜆𝑟−𝛽 (𝐱)|ℎ𝑛|2𝑑𝐱 + ∫
Ω

𝑒2𝜆𝑟−𝛽 (𝐱)|Δ𝐞|2𝑑𝐱 + ∫
Ω

|𝐞|2𝑑𝐱 + 𝜖‖𝐞‖2𝐻𝑠(Ω)𝑁 + 𝜖‖𝑈∗‖2𝐻𝑠(Ω)𝑁

]

≤ 𝐶
[
∫
Ω

𝑒2𝜆𝑟−𝛽 (𝐱)[|ℎ𝑛|2 + |∇ℎ𝑛|2]𝑑𝐱 + 𝜖
𝜆
‖ℎ𝑛‖2𝐻𝑠(Ω)𝑁

+ ∫
Ω

𝑒2𝜆𝑟−𝛽 (𝐱)|Δ𝐞|2𝑑𝐱 + ∫
Ω

|𝐞|2𝑑𝐱 + 𝜖‖𝐞‖2𝐻𝑠(Ω)𝑁 + 𝜖‖𝑈∗‖2𝐻𝑠(Ω)𝑁

]
. (3.22)

It follows from (3.12) and (3.22) that

‖ℎ𝑛+1‖2𝜆,𝜖 ≤ 𝐶
𝜆

[
‖ℎ𝑛‖2𝜆,𝜖 + ∫

Ω

𝑒2𝜆𝑟−𝛽 (𝐱)|Δ𝐞|2𝑑𝐱 + ∫
Ω

|𝐞|2𝑑𝐱 + 𝜖‖𝐞‖2𝐻𝑠(Ω)𝑁 + 𝜖‖𝑈∗‖2𝐻𝑠(Ω)𝑁

]
. (3.23)

Replacing 𝑛 + 1 by 𝑛 in (3.23) and then combining the resulting inequality with (3.23) give

‖ℎ𝑛+1‖2𝜆,𝜖 ≤ 𝐶
𝜆

[𝐶
𝜆

(
‖ℎ𝑛−1‖2𝜆,𝜖 + ∫

Ω

𝑒2𝜆𝑟−𝛽 (𝐱)|Δ𝐞|2𝑑𝐱 + ∫
Ω

|𝐞|2𝑑𝐱 + 𝜖‖𝐞‖2𝐻𝑠(Ω)𝑁 + 𝜖‖𝑈∗‖2𝐻𝑠(Ω)𝑁

)

+ ∫
Ω

𝑒2𝜆𝑟−𝛽 (𝐱)|Δ𝐞|2𝑑𝐱 + ∫
Ω

|𝐞|2𝑑𝐱 + 𝜖‖𝐞‖2𝐻𝑠(Ω)𝑁 + 𝜖‖𝑈∗‖2𝐻𝑠(Ω)𝑁

]
. (3.24)

Continuing the procedure, we obtain

‖ℎ𝑛+1‖2𝜆,𝜖 ≤
(𝐶
𝜆

)𝑛+1
‖ℎ0‖2𝜆,𝜖 +

𝑛∑
𝑖=1

(𝐶
𝜆

)𝑖(
∫
Ω

𝑒2𝜆𝑟−𝛽 (𝐱)|Δ𝐞|2𝑑𝐱 + ∫
Ω

|𝐞|2𝑑𝐱 + 𝜖‖𝐞‖2𝐻𝑠(Ω)𝑁 + 𝜖‖𝑈∗‖2𝐻𝑠(Ω)𝑁

)

≤ (𝐶
𝜆

)𝑛+1
‖ℎ0‖2𝜆,𝜖 +

𝐶∕𝜆
1−𝐶∕𝜆

(
∫
Ω

𝑒2𝜆𝑟−𝛽 (𝐱)|Δ𝐞|2𝑑𝐱 + ∫
Ω

|𝐞|2𝑑𝐱 + 𝜖‖𝐞‖2𝐻𝑠(Ω)𝑁 + 𝜖‖𝑈∗‖2𝐻𝑠(Ω)𝑁

)
.

Using the usual triangle inequality, we obtain (3.13). □

Remark 3.4. The name “Carleman contraction” for our approach is inspired by several factors. First, the definition of the sequence {𝑈𝑛}𝑛≥0 was 
inspired by the proof of the classical contraction principle. Second, we include a Carleman weight function in the definition of Φ𝜆,𝜖 . Third, we apply 
a Carleman estimate in the proof of Theorem 3.1. Furthermore, as demonstrated by estimate (3.23) in the proof, each successive term 𝑈𝑛+1 moves 
closer to the actual solution 𝑈∗ compared to its predecessor 𝑈𝑛. This indicates that the function Φ𝜆,𝜖 acts as a contraction towards 𝑈∗, independent 
of the initial choice of 𝑈0.

4. Numerical study

It is suggested by Remark 2.5 and Theorem 3.1 a Carleman contraction method to solve Problem 1.1. We present this method in Algorithm 1.
In this section, we display several numerical examples in 2D computed by Algorithm 1. In all tests below, we set Ω = (−1, 1)2 and 𝑇 = 1.

4.1. Discretization and data simulation

To generate noisy data 𝑝 and 𝑞 for Problem 1.1, we need to solve the hyperbolic equation (1.1). However, computing the solution to (1.1) on 
the whole domain ℝ2 × (0, 𝑇 ) is complicated. For simplicity, we replace ℝ𝑑 with the domain 𝐺 = (−3, 3)2 that contains the computational domain 
Ω. On 𝐺, we arrange a uniform grid of points

 = {𝐱𝑖𝑗 = (𝑥𝑖 = −1 + (𝑖− 1)𝑑𝐱,𝑦𝑗 = −1 + (𝑗 − 1)𝑑𝐱) ∶ 1 ≤ 𝑖, 𝑗 ≤𝑁𝐱} (4.1)
where 𝑁𝐱 = 241 and 𝑑𝐱 = 2

𝑁𝐱−1
= .025. We discretize the time domain (0, 𝑇 ) by the partition

 = {𝑡𝑙 = (𝑙 − 1)𝑑𝑡 ∶ 1 ≤ 𝑙 ≤𝑁𝑡}
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Algorithm 1 The procedure to compute the numerical solution to (1.1).
1: Choose a cut-off number 𝑁 .
2: Choose Carleman parameters 𝐱0 , 𝛽, and 𝜆 and a regularization parameter 𝜖.
3: Set 𝑛 = 0. Choose an arbitrary initial solution 𝑈0 ∈𝐻 .
4: Compute 𝑈𝑛+1 =Φ𝜆,𝜖(𝑈𝑛) where Φ𝜆,𝜖 is defined in (3.4).
5: if ‖𝑈𝑛+1 −𝑈𝑛‖𝐿2(Ω) > 𝜅0 (for some fixed number 𝜅0 > 0) then
6: Replace 𝑛 by 𝑛 + 1.
7: Go back to Step 4.
8: else
9: Set the computed solution 𝑈 comp =𝑈𝑛+1.
10: end if
11: Write 𝑈 comp = (𝑢comp

1 , … , 𝑢comp
𝑁 )T and set the desired solution as in (2.13).

where 𝑁𝑡 = 201 and 𝑑𝑡 = 𝑇 ∕(𝑁𝑡 − 1) = 0.005.
We write the governing partial differential equation in the finite difference scheme as

𝑢(𝐱𝑖𝑗 , 𝑡𝑙+1)− 2𝑢(𝐱𝑖𝑗 , 𝑡𝑙) + 𝑢(𝐱𝑖𝑗 , 𝑡𝑙−1)
𝑑2𝑡

+ 𝑎(𝐱𝑖𝑗 )
𝑢(𝐱𝑖𝑗 , 𝑡𝑙+1)− 𝑢(𝐱𝑖𝑗 , 𝑡𝑙)

𝑑𝑡
=Δ𝑑𝐱𝑢(𝐱𝑖𝑗 , 𝑡𝑙), (4.2)

for all 𝐱𝑖𝑗 ∈  and 𝑡𝑙 ∈  where

Δ𝑑𝐱𝑢(𝐱𝑖𝑗 , 𝑡𝑙) =
𝑢(𝐱(𝑖+1)𝑗 , 𝑡𝑙) + 𝑢(𝐱(𝑖−1)𝑗 , 𝑡𝑙) + 𝑢(𝐱𝑖(𝑗−1), 𝑡𝑙) + 𝑢(𝐱𝑖(𝑗+1), 𝑡𝑙)− 4𝑢(𝐱𝑖𝑗 , 𝑡𝑙)

𝑑2𝐱
.

Solving (4.2) for 𝑢(𝐱𝑖𝑗 , 𝑡𝑙+1) gives

𝑢(𝐱𝑖𝑗 , 𝑡𝑙+1) =
1
𝑑2𝑡
(2𝑢(𝐱𝑖𝑗 , 𝑡𝑙)− 𝑢(𝐱𝑖𝑗 , 𝑡𝑙−1)) +

𝑎(𝐱𝑖𝑗 )
𝑑𝑡

𝑢(𝐱𝑖𝑗 , 𝑡𝑙) +Δ𝑑𝐱𝑢(𝐱𝑖𝑗 , 𝑡𝑙)

1
𝑑𝑡2 + 𝑎(𝐱𝑖𝑗 )

𝑑𝑡

(4.3)

for all 𝐱𝑖𝑗 ∈  and 𝑡𝑙 ∈  . Due to the initial conditions in (1.1), we can compute
𝑢(𝐱𝑖𝑗 , 𝑡1) = 𝑓 (𝐱𝑖𝑗 ), 𝑢(𝐱𝑖𝑗 , 𝑡2) = 𝑓 (𝐱𝑖𝑗 )− 𝑎(𝐱𝑖𝑗 )𝑓 (𝐱𝑖𝑗 )𝑑𝑡

for all 𝐱𝑖𝑗 ∈ . Using (4.3), we can compute 𝑢(𝐱𝑖𝑗 , 𝑡3), 𝑢(𝐱𝑖𝑗 , 𝑡4), … , for all 𝐱𝑖𝑗 ∈ . This method of solving hyperbolic equations is well-known as the 
explicit method. Having the function 𝑢 on  ×  in hand, we can extract the noiseless data 𝑝∗ and 𝑞∗ on ( ∩ 𝜕Ω) ×  easily. The corresponding 
noisy data 𝑝𝛿 and 𝑞𝛿 are computed as in (3.9). In our computation, we take 𝛿 = 0.1.

4.2. Implementation

We now present some remarkable points in computing solutions to the inverse problem. The first step is to find a suitable number 𝑁 for (2.3).
We employ the strategy in [18] to determine the cut-off number 𝑁 in step 1. More precisely, the knowledge of given data 𝑝(𝐱, 𝑡), (𝐱, 𝑡) ∈ 𝜕Ω ×(0, 𝑇 )

is helpful in determining the cut-off numbers for step 1 of Algorithm 1. The procedure is based on a trial-and-error process. Inspired by (2.3) and the 
fact that 𝑢(𝐱, 𝑡) = 𝑝(𝐱, 𝑡) for all (𝐱, 𝑡) ∈ 𝜕Ω × (0, 𝑇 ), for each 𝑁 ≥ 1, we define the function 𝜑 ∶ ℕ → ℝ that represents the relative distance between 
the data 𝑝 and the truncation of its Fourier expansion in (2.3). The function 𝜂 is defined as follows

𝜑(𝑁) =
‖𝑝(𝐱)−∑𝑁

𝑛=1 𝑝𝑛(𝐱)Ψ𝑛(𝑡)‖𝐿∞(𝜕Ω×(0,𝑇 ))
‖𝑝(𝐱)‖𝐿∞(𝜕Ω×(0,𝑇 ))

where 𝑝𝑛(𝐱) =
𝑇

∫
0

𝑝(𝐱, 𝑡)Ψ𝑛(𝑡)𝑑𝑡 (4.4)

We increase the numbers 𝑁 until 𝜂(𝑁) is sufficiently small. In our numerical tests below, 𝑁 = 35.
The selection of artificial parameters in Step 2 of Algorithm 1 is facilitated by a process of trial and error. We use a reference test (Test 1 below) 

where the correct solution is already known. Manually, we select 𝐱0, 𝜆, 𝜆, 𝜖, 𝜅0 such that the solution computed through Algorithm 1 is satisfactory. 
Then, we take these parameters for all other tests where the true solutions are not known. In our computation, 𝐱0 = (0, 5.5), 𝛽 = 25, and 𝜆 = 45. The 
regularization parameter 𝜖 is 10−5. We also set the number 𝜂 in (2.1) is 10−11.

Step 3 of Algorithm 1 requires us to choose a vector-valued function 𝑈0 in 𝐻 . A straightforward approach for computing such a function involves 
solving the linear problem, which results from excluding the nonlinearity 𝐹 from (2.12), namely,

⎧
⎪
⎪
⎨
⎪
⎪⎩

Δ𝑈0(𝐱)− 𝑆𝑈0(𝐱) = 0 𝐱 ∈Ω,
𝑈0(𝐱) =

(∫ 𝑇
0 𝑝(𝐱, 𝑡)Ψ𝑚(𝑡)𝑑𝑡

)𝑁

𝑚=1
𝐱 ∈ 𝜕Ω,

𝜕𝜈𝑈0(𝐱) =
( ∫ 𝑇

0 𝑞(𝐱, 𝑡)Ψ𝑚(𝑡)𝑑𝑡
)𝑁

𝑚=1
𝐱 ∈ 𝜕Ω,

(4.5)

using the Carleman quasi-reversibility method, as indicated in Remark 3.1. Similarly, in Step 4, we aim to minimize 𝐽𝜆,𝜖(𝑈𝑛) in 𝐻 , 𝑛 ≥ 0. As in 
Remark 3.1, the minimizer we obtain, 𝑈𝑛+1, can be viewed as the regularized solution to the following system
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Fig. 1. (a) and (b) the true and computed initial condition 𝑓 true and 𝑓 comp respectively; (c) the consecutive relative difference ‖𝑈𝑛+1−𝑈𝑛‖𝐿∞ (Ω)

‖𝑈𝑛‖𝐿∞ (Ω)
. The horizontal axis of 

this figure is the number of iteration 𝑛. The boundary data used to reconstruct the function 𝑓 is corrupted with 𝛿 = 0.1.

⎧
⎪
⎪
⎨
⎪
⎪⎩

Δ𝑈𝑛+1(𝐱)− 𝑆𝑈𝑛+1 + 𝐹 (𝑈𝑛(𝐱)) = 0 𝐱 ∈Ω,
𝑈𝑛+1(𝐱) =

(∫ 𝑇
0 𝑝(𝐱, 𝑡)Ψ𝑚(𝑡)𝑑𝑡

)𝑁

𝑚=1
𝐱 ∈ 𝜕Ω,

𝜕𝜈𝑈𝑛+1(𝐱) =
( ∫ 𝑇

0 𝑞(𝐱, 𝑡)Ψ𝑚(𝑡)𝑑𝑡
)𝑁

𝑚=1
𝐱 ∈ 𝜕Ω.

(4.6)

We briefly mention the numerical implementation of this step. For fixed 𝑛, when solving (4.6), we are in the context that 𝑈𝑛 and hence the term 
𝐹 (𝑈𝑛) are known. So, (4.6) is a linear system for 𝑈𝑛+1. To compute 𝑈𝑛+1(𝐱) in the finite difference scheme, we arrange a grid of points 𝐱𝑖𝑗 of Ω in 
the same manner of (4.1) with Ω replacing 𝐺, named as 𝔊. Then, we can rewrite the differential equations in (4.6) as a linear system 𝔏𝔘𝑛+1 =𝔉
where 𝔘𝑛+1 and 𝔉 are vectors whose entries are 𝑈𝑛+1(𝐱𝑖𝑗 ) and 𝐹 (𝑈𝑛(𝐱𝑖𝑗 )) respectively. Similarly, we also approximate the Dirichlet and Neumann 
conditions in (4.6) as a linear system for 𝔘𝑛+1, say 𝔇𝔘𝑛+1 = 𝔭 and 𝔑𝔘𝑛+1 = 𝔮 where 𝔇 and 𝔑 are the “matrix versions” of Dirichlet and Neumann 
operators, respectively, and 𝔭 and 𝔮 are the vector versions of the right-hand sides of the Dirichlet and Neumann conditions in (4.6), respectively. 
Regarding the regularization term, we define a matrix 𝔖 such that 𝔖𝔘𝑛+1 corresponds to 𝑈𝑛+1 +

∑
|𝛼|≤𝑠 𝐷𝛼𝑈𝑛+1 where 𝛼 is the usual multi-index. 

We refer the reader to [50,61,68] for details on the implementation of those matrices and vectors. We then need to minimize

∑
𝐱𝑖𝑗∈𝔊

|||||||

⎡
⎢
⎢⎣

𝑒2𝜆𝑟−𝛽𝔏
𝔇
𝔑

⎤
⎥
⎥⎦
𝔘𝑛+1 −

⎡
⎢
⎢⎣

𝑒2𝜆𝑟−𝛽𝔉
𝔭
𝔮

⎤
⎥
⎥⎦

|||||||

2

+ 𝜖|𝔖𝔘𝑛+1|2

for 𝔘𝑛+1. Hence, 𝔘𝑛+1 solves the system

⎛
⎜
⎜⎝

[
𝑒2𝜆𝑟−𝛽𝔏T 𝔇T 𝔑T

] ⎡
⎢
⎢⎣

𝑒2𝜆𝑟−𝛽𝔏
𝔇
𝔑

⎤
⎥
⎥⎦
+ 𝜖𝔖T𝔖

⎞
⎟
⎟⎠
𝔘𝑛+1 =

[
𝑒2𝜆𝑟−𝛽𝔏T 𝔇T 𝔑T

] ⎡
⎢
⎢⎣

𝑒2𝜆𝑟−𝛽𝔉
𝔭
𝔮

⎤
⎥
⎥⎦
.

In our Matlab script, we simply define

𝔘𝑛+1 = lsqlin
⎛
⎜
⎜⎝

[
𝑒2𝜆𝑟−𝛽𝔏T 𝔇T 𝔑T

] ⎡
⎢
⎢⎣

𝑒2𝜆𝑟−𝛽𝔏
𝔇
𝔑

⎤
⎥
⎥⎦
+ 𝜖𝔖T𝔖,

[
𝑒2𝜆𝑟−𝛽𝔏T 𝔇T 𝔑T

] ⎡
⎢
⎢⎣

𝑒2𝜆𝑟−𝛽𝔉
𝔭
𝔮

⎤
⎥
⎥⎦

⎞
⎟
⎟⎠

where lsqlin is a build-in command of Matlab, used to solve linear systems. Again, the details of the implementation above to compute the 
regularized solution 𝑈𝑛+1 to (4.6) respectively can be found in [50,61,68]. One can solve (4.5) using the same technique.

4.3. Numerical examples

Test 1. We test the case when the “donut-shaped” function 𝑓 true is given by

𝑓 true(𝑥,𝑦) =
{

2 if 0.152 < (𝑥− 0.35)2 + 𝑦2 < 0.62
1 otherwise for all (𝑥,𝑦) ∈Ω.

The true and computed source functions 𝑓 are displayed in Fig. 1.
Fig. 1 illustrates that Algorithm 1 provides a satisfactory solution to Problem 1.1. By comparing the “donut”-shaped inclusions in both Fig. 1a 

and Fig. 1b, we conclude that the computation of the donut’s shape and position is quite accurate. Furthermore, the maximum value of the function 
𝑓 within the computed donut is 1.765, which corresponds to a relative error of 11.73%. The approaching zero behavior of the curve in Fig. 1c 
numerically demonstrates the convergence of the Carleman contraction method.

Test 2. We consider an intriguing case 𝑓 true whose graphs feature an “Σ” shape. The true value of the function 𝑓 true(𝑥, 𝑦) = 2 if the point (𝑥, 𝑦)
in the letter Σ. Otherwise, 𝑓 true(𝑥, 𝑦) = 1. The true and computed source functions 𝑓 are displayed in Fig. 2.

Fig. 2 presents a numerical solution that is satisfactory for Problem 1.1. The letter “Σ” and its position are accurately reconstructed. The maximum 
value of the function 𝑓 inside the computed “Σ” is 1.8454, representing a relative error of 7.73%. Similar to Test 1, the convergence of the Carleman 
contraction method is numerically confirmed by Fig. 2c.

Test 3.We test a similar experiment to the source function 𝑓 in Test 2. The function 𝑓 true has a graph looking like the letter “Ω.” The true value 
of the function 𝑓 true(𝑥, 𝑦) = 2 if the point (𝑥, 𝑦) in the letter Ω. Otherwise, 𝑓 true(𝑥, 𝑦) = 1. The true and computed source functions 𝑓 are displayed 
in Fig. 3.
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Fig. 2. (a) and (b) the true and computed initial condition 𝑓 true and 𝑓 comp respectively; (c) the consecutive relative difference ‖𝑈𝑛+1−𝑈𝑛‖𝐿∞ (Ω)

‖𝑈𝑛‖𝐿∞ (Ω)
. The horizontal axis of 

this figure is the number of iteration 𝑛. The boundary data used to reconstruct the function 𝑓 is corrupted with 𝛿 = 0.1.

Fig. 3. (a) and (b) the true and computed initial condition 𝑓 true and 𝑓 comp respectively; (c) the consecutive relative difference ‖𝑈𝑛+1−𝑈𝑛‖𝐿∞ (Ω)

‖𝑈𝑛‖𝐿∞ (Ω)
. The horizontal axis of 

this figure is the number of iteration 𝑛. The boundary data used to reconstruct the function 𝑓 is corrupted with 𝛿 = 0.1.

Fig. 4. (a) and (b) the true and computed initial condition 𝑓 true and 𝑓 comp respectively; (c) the consecutive relative difference ‖𝑈𝑛+1−𝑈𝑛‖𝐿∞ (Ω)

‖𝑈𝑛‖𝐿∞ (Ω)
. The horizontal axis of 

this figure is the number of iteration 𝑛. The boundary data used to reconstruct the function 𝑓 is corrupted with 𝛿 = 0.1.

Fig. 3 presents a numerical solution that is satisfactory for Problem 1.1. The letter “Ω” and its position are accurately reconstructed. The 
maximum value of the function 𝑓 inside the computed “Ω” is 1.7473, representing a relative error of 12.64%. The convergence of the Carleman 
contraction method is numerically confirmed by Fig. 3c.

Test 4. In this test, we consider a more complicated circumstance in which the graph of the true function 𝑓 has two “inclusions”. Each inclusion 
looks like a horizontal line segment. The value of function 𝑓 true is 4 in the line on the top and 3 inside the line in the bottom. The true and computed 
source functions 𝑓 are displayed in Fig. 4.

Our algorithm works well for this test. It is evident that both “horizontal inclusions” are successfully identified. The peak value of the computed 
function 𝑓 inside the “top” inclusion is 3.9845 (relative error 0.39%). The peak value of the computed function 𝑓 inside the “bottom” inclusion is 
3.25782 (relative error 8.59%).

Remark 4.1. To emphasize that our method is independent of the unknown damping coefficient 𝑎, we use different 𝑎 in the tests above.

1. The unknown function 𝑎true in Test 1 is given by

𝑎true(𝑥,𝑦) =
{

2𝑒
𝑥2+𝑦2

𝑥2+𝑦2−1 if 𝑥2 + 𝑦2 < 1
0 otherwise,

for all (𝑥,𝑦) ∈Ω.

2. The unknown function 𝑎true in Test 2 is given by

𝑎true(𝑥,𝑦) = |𝑦2 − 𝑥| for all (𝑥,𝑦) ∈Ω.
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Fig. 5. (a) and (b) the true and computed initial conditions 𝑓 respectively; (c) and (d) the true and computed damping coefficients 𝑎 respectively. The data 
incorporated in this test includes a noise level of 10%.

3. The unknown function 𝑎true in Test 3 is given by

𝑎true(𝑥,𝑦) = 𝑥2 for all (𝑥,𝑦) ∈Ω.

4. The unknown function 𝑎true in Test 4 is given by

𝑎true(𝑥,𝑦) =
{

2𝑒
𝑟2

𝑟2−1 if 𝑟 < 1
0 otherwise,

for all (𝑥,𝑦) ∈Ω,

where 𝑟 = 𝑟(𝑥, 𝑦) =
√

𝑥2
0.52 + 𝑦2

0.252 .

Remark 4.2. Figs. 1c through 4c present the graphs of the function 𝑛 ↦ ‖𝑈𝑛+1−𝑈𝑛‖𝐿∞(Ω)
‖𝑈𝑛‖𝐿∞(Ω)

, representing the relative difference between consecutive 
estimations of 𝑈𝑛 as calculated within the loop from Step 4 to Step 10 in Algorithm 1. These figures provide numerical evidence for the convergence 
of Algorithm 1 as 𝑛 approaches infinity. It is important to note that this convergence leads to an approximation of the actual solution 𝑈∗ to the 
equation (3.10), not the function 𝑓 (𝐱).

Upon calculating the vector value 𝑈 comp = (𝑢comp
1 , … , 𝑢comp

𝑁 ) at Step 11, one might intuitively consider the problem of reconstructing the unknown 
coefficient 𝑎(𝑥, 𝑦), (𝑥, 𝑦) ∈Ω, by combining equations (2.1) and (2.3). More precisely, one could suggest the following formula

𝑎(𝑥,𝑦) = −
[∑𝑁

𝑙=1 𝑢
comp
𝑙 (𝑥,𝑦)Ψ′

𝑙(0)
][∑𝑁

𝑙=1 𝑢
comp
𝑙 (𝑥,𝑦)Ψ𝑙(0)

]

|||
∑𝑁

𝑙=1 𝑢
comp
𝑙 (𝑥,𝑦)Ψ𝑙(0)

|||
2
+ 𝜂2

for all (𝑥,𝑦) ∈Ω. (4.7)

However, we find that equation (4.7) is not universally successful. Our numerical observations suggest that its applicability is heavily contingent on 
the nature of the function 𝑓 true. If 𝑓 true is smooth, equation (4.7) can reliably reconstruct the coefficient 𝑎. Conversely, if 𝑓 true lacks continuity, the 
formula presented in (4.7) fails. In the next two tests, we show the reconstruction of both 𝑓 and 𝑎 when 𝑓 is smooth.

Test 5. In this test, we set

𝑓 true(𝑥,𝑦) = 𝑦2 − 𝑥+ 5

and

𝑎true(𝑥,𝑦) =
{

0 if max{
√
2|𝑥− 0.4|, |𝑦|} > 0.5or max{|𝑥− 0.4|, |𝑦|}1 < 0.12,

2 otherwise,
for all (𝑥, 𝑦) ∈Ω. The true and reconstructed of these functions are displayed in Fig. 5.
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Fig. 6. (a) and (b) the true and computed initial conditions 𝑓 respectively; (c) and (d) the true and computed damping coefficients 𝑎 respectively. The data 
incorporated in this test includes a noise level of 10%.

Fig. 7. The function 𝑓 has been reconstructed using a range of values for the cut-off number 𝑁 and the parameter 𝜂. The reconstructions in the first row do not 
meet expectations due to inappropriate selections of these two parameters. However, the reconstructions’ accuracy in the second row, achieved with a large 𝑁
and a small 𝜂, alongside the reconstruction of 𝑓 shown in Fig. 1b (where 𝑁 = 35 and 𝜂 = 10−11), numerically demonstrates our method’s convergence when these 
parameters are properly chosen. The data in this experiment is generated in Test 1.

The relative error for the initial condition, calculated as ‖𝑓
comp−𝑓 true‖𝐿2(Ω)
‖𝑓 true‖𝐿2(Ω)

, is 5.47%, which falls below the noise level. Although the 𝐿2 relative 
error in calculating the damping coefficient 𝑎 is large, the reconstructed maximum value of 𝑎 within the inclusion resembling a square with a void 
is still considered acceptable. Inside the inclusion, the computed maximum value of 𝑎comp is 1.8474, corresponding to a relative error of 7.63%.

Test 6. In this test, we set

𝑓 true(𝑥,𝑦) = 𝑥− 𝑦+ 7
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and

𝑎true(𝑥,𝑦) = 1
16

[
3(1− 3𝑥)2𝑒−3𝑥2−(2.5𝑦+1)2 − 10

(3𝑥
5 − 27𝑥3 − 97.6562𝑦5

)
𝑒−9𝑥2−6.25𝑦2 − 𝑒−(3𝑥+1)2−6.25𝑦2

3

]

for all (𝑥, 𝑦) ∈ Ω. This test is interesting since we are solving a nonlinear problem when the values of the unknown 𝑓 are high and the formula of 
the unknown 𝑎 is very complicated. Both unknowns function are continuous. The true and reconstructed of these functions are displayed in Fig. 6.

The relative error for the initial condition, calculated as ‖𝑓 comp−𝑓 true‖𝐿2(Ω)
‖𝑓 true‖𝐿2(Ω) , is 0.62%, which is very impressive. As in Test 5, the 𝐿2 relative error 

in calculating the damping coefficient 𝑎 is large. However, the visual reconstruction of 𝑎 meets the expectation. One can see all peaks in the graph 
of the function 𝑎comp.

Remark 4.3. Our Algorithm 1 relies on two key elements: using an approximation model (2.12) with a regularization parameter 𝜂, as shown in 
(2.3), and applying a cutoff number 𝑁 for truncation in (2.3). However, as mentioned in Remark 2.3, this model and method are approximations, 
not exact. Therefore, it is important to test how well our method works when we use large values of 𝑁 and small values of 𝜂. To do this, we run 
tests with various 𝑁 and 𝜂 values to observe the convergence. The results, shown in Fig. 7, confirm our desired convergence.

Data availability

Data will be made available on request.
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