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Gravitational-wave (GW) interferometers are able to detect a change in distance of ∼ 1/10,000th
the size of a proton. Such sensitivity leads to large appearance rates of non-Gaussian transient noise
bursts in the main detector strain, also known as glitches. These glitches come in a wide range of
frequency-amplitude-time morphologies and are caused by environmental or instrumental processes,
hindering searches for all sources of gravitational waves. Current approaches for their identification
use supervised models to learn their morphology in the main strain, but do not consider relevant in-
formation provided by auxiliary channels that monitor the state of the interferometers nor provide a
flexible framework for novel glitch morphologies. In this work, we present an unsupervised algorithm
to find anomalous glitches. We encode a subset of auxiliary channels from LIGO Livingston in the
fractal dimension, a measure for the complexity of the data, and learn the underlying distribution
of the data using an auto-encoder with periodic convolutions. In this way, we uncover unknown
glitch morphologies, and overlaps in time between different glitches and misclassifications. This led
to the discovery of anomalies in 6.6% of the input data. The results of this investigation stress
the learnable structure of auxiliary channels encoded in fractal dimension and provide a flexible
framework to improve the state-of-the-art of glitch identification algorithms.

I. INTRODUCTION

The first detection of a gravitational wave (GW) signal
from a binary black hole (BBH) event [1] by the Laser
Interferometer Gravitational-Wave Observatory (LIGO)
and Virgo collaborations established the field of GW as-
tronomy [2, 3]. Since then, over 90 confident astronomi-
cal events have been detected in the past three observa-
tion runs by LIGO-Virgo collaboration [4–6] and other
research groups [7–12]. In 2017, after an improvement of
the detector configuration, the joint observation of Ad-
vanced LIGO and Advanced Virgo led to the first de-
tection of a binary neutron star (BNS) inspiral, labelled
as GW170817 [13]. The initial announcement of the de-
tection by the Fermi Gamma-ray Burst (GRB) Monitor
of GRB170817A [14, 15], and the precise sky location
of GW170817 by GW detectors, enabled a rapid elec-
tromagnetic follow-up which led to the detection of the
associated kilonova, later called AT2017gfo [16].

The detection of GW170817 posed the added challenge
of mitigating the effect of a transient non-astrophysical
burst of non-Gaussian noise from the data, also known as
a glitch, for its subsequent analysis [17, 18]. Glitches may

* These authors contributed equally to this work.

be caused by the environment (e.g., earthquakes, wind,
anthropogenic noise) or instruments (e.g., control sys-
tems, electronic components [19]), though in many cases
their causes remain unknown [20]. They come in a large
variety of time-frequency morphologies, have a typical
duration of between sub-seconds and seconds, and have
a high rate of occurrence (∼ 1 per minute during the first
half of the third observing run, O3a [5]). They can reduce
the amount of analyzable data increasing the noise floor,
produce false positives in GW data, affect the estimation
of the detector power spectral density and reduce can-
didate significance in searches for short- and long-lived
GW signals [21–25].

Glitches can also bias astrophysical parameter estima-
tion, making it difficult to determine which part of the
signal corresponds to a glitch and which part to the ac-
tual GW event [26–28]. Additionally, glitches can impact
line-cleaning procedures in GW searches, which rely on
replacing disturbed frequency bins with artificially gen-
erated data, consistent with their neighbours [25, 29, 30].
If the surrounding data contains elevated noise floors, the
efficacy of mitigation methods will be reduced.

Glitch identification and characterization is a crucial
first step towards their mitigation [31, 32]. Most of the
current approaches to glitch characterization with ML
utilize supervised classification algorithms, where models
learn to identify glitches through labelled time-frequency
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representations of GW strain data h(t) [33–39]. How-
ever, this procedure presents several limitations. Super-
vised learning needs fixed class definitions that are not
exhaustive nor representative of all glitch morphologies,
as there could be many possible sub-classes to discover
[35]. Furthermore, as GW detectors are improved, novel
glitch morphologies could arise [40]. Moreover, generat-
ing these labels is an expensive task, since ML methods
need a lot of examples for training, and experts must vet
the labelling procedure.
In this context, unsupervised methods to identify

glitches based on ML algorithms could help overcome
such limitations. In this paper, we propose a novel
ML algorithm that combines auxiliary channel informa-
tion with an unsupervised anomaly detection algorithm.
We encode the information from auxiliary channels from
LIGO Livingston in the fractal dimension, a measure of
the complexity of the time series. This representation of
the data is input to a data-driven algorithm, which con-
sists of a convolutional autoencoder with periodic con-
volutions that learns the underlying representation of
the data, clustering glitches according to their similar-
ity in a compressed representation. By exploiting this
compressed representation for anomaly detection, we can
identify glitches that strongly deviate from the general
distribution of the input data, improving the understand-
ing of glitch populations. We test the method’s perfor-
mance by identifying anomalies on three classes of known
glitches in LIGO data.
This paper is structured as follows. In section II we

introduce the current state-of-the-art glitch characteri-
zation and explain the fractal dimension encoding. In
section III we provide details about data acquisition and
its pre-processing. In section IV we describe the ML
method employed in this investigation. In section V we
present the main results of this research, showing differ-
ent anomalies found with our methodology, and in section
VI we conclude , proposing avenues for future research.

II. IDENTIFICATION OF DETECTOR

TRANSIENT NOISE

A. Characterization via auxiliary channels

The status of GW detectors is continuously monitored
through a large set of data streams at various sampling
rates, outputting ∼ 106 time-series from instrumen-
tal and environmental sensors. These auxiliary channels
can be divided into safe (insensitive to GW) and unsafe
(sensitive to GW). Depending on their origins, glitches
present varied morphologies in different sets of auxiliary
channels. Some subset of these channels may serve as
“witnesses” of glitches and are used to create data qual-
ity flags before performing GW searches [41–43].

Despite the huge amount of auxiliary channels in a sin-
gle detector, many of them do not provide useful infor-
mation for noise transient investigations as they remain

constant or vary with a consistent pattern , constituting
a data set containing redundant and/or non-informative
characteristics [18, 44, 45]. Therefore, LVK researchers
have compiled a “reduced” standard list of ∼ 103 auxil-
iary channels that are used in data quality investigations.
In this work, we limit our investigation to safe auxiliary
channels with sampling rates > 512Hz, yielding a set of
347 channels.

B. Fractal dimension

The first step towards characterizing glitches through
safe auxiliary channels requires identifying anomalous
data stretches within them [43, 45, 46]. In [47], the au-
thor proposes the measurement of fractal dimension (FD)
as an additional effective tool for characterizing the in-
strument output in low latency. FD is an index that
characterizes the self-similarity of a set and provides a
measure of the complexity of the signal in the context
of signal processing [48]. There are several definitions of
this magnitude [49–51], implying that the FD measure
for a physical process can differ depending on the chosen
definition. Nonetheless, in this work, we focus on the
FD variation over time as an indicator of the evolution
of the signal’s complexity. As the presence of a glitch
in the data affects the noise power spectrum, which in
turn varies the value of FD, we are only interested in the
relative change which is definition independent.
To illustrate this, Fig. 1 presents the variation of FD

for two minutes of data from the L1:LSC-PRCL OUT DQ

auxiliary channel, which measures the Power Recycling
Cavity Length (PRCL) from the Length Sensing Con-
tol (LSC) of the LIGO Livingston (L1) interferometer.
The computation was performed with a time window
W(t) = 1 s, i.e. every FD value is the result of encoding
1 s of the input data. Points greater than one standard
deviation σ from the mean FD correlate to the presence of
Whistle glitches in the detector. As we can observe from
Fig. 1, FD can be an effective tool to further understand
the coupling between glitches and auxiliary channels. To
extend this analysis to a larger set of safe auxiliary chan-
nels and glitch classes, we first need to speed up the FD
calculation to near-real time.
Following [47] we numerically estimate the measured

FD with the variation (VAR) method (see [47] for de-
tails). For a discretely-sampled set of data with N mea-
surements C ∈ R

N , we can define a sliding window to
compute the variation of the data with centre l and scale
k,

Fk,l = |max [Cl−k, . . . , Cl+k]−min [Cl−k, . . . , Cl+k]| . (1)

Thus, the VAR estimator for a given scale k is,

AVAR(k) =
1

N − 2k

N−1−k∑

l=k

Fk,l, (2)





4

trend of the FD-encoded data. While unsupervised ML
algorithms in the context of anomaly detection are agnos-
tic, as they do not make prior assumptions regarding the
data distribution, it is challenging to interpret their re-
sults. To understand the results of our algorithm and as-
sess its performance we can compare the output of our al-
gorithm with the findings of supervised glitch classifiers,
employing them as a benchmark. In the following sub-
sections, we describe the benchmark used in this work,
the selection of glitch populations and the FD-encoding
of the data.

A. Glitch classification

In the present work, we employGravity Spy as a bench-
mark, finding anomalies from its high-confidence classi-
fications. Gravity Spy is an algorithm that combines su-
pervised ML and citizen science to characterize glitches
present in LIGO data according to their morphologies in
GW strain data h(t), represented in time-frequency [33] .
The trained algorithm assigns glitches a pre-defined class
and gives a confidence score that it belongs to this class.
In practice, alerts are generated by Omicron, which

is an algorithm designed to search for power excess in
time series data using the Q-transform, a modification
of the standard short-time Fourier transform parameter-
ized by a quality factor Q [46, 54]. Gravity Spy assigns
a class and a confidence value to Omicron’s alert if it ex-
ceeds 7.5 signal-to-noise ratio (SNR), a magnitud related
to the tranform coefficient of the Q-transform. Currently,
Gravity Spy considers 22 glitch classes, which have been
previously identified [18, 55, 56].

B. Glitches

In this proof-of-concept work, we select GPS times t
that contain in h(t) no apparent excess of power, and t
of three distinct glitch morphologies in LIGO Livingston
with Gravity Spy confidence > 90% [36]. One must note
that for the glitches t represents the peak time of the
Omicron alert. The three morphologies are chosen to
have short and long-duration glitches that are abundant
in LIGO Livingston data (> 800 samples per class), and
that impact GW searches due to their wide frequency
contribution. We detail each class below:

• No Glitch: in this class, no significant excess power
is visible in the Gravity Spy spectrograms (see Fig.
3a). In the context of this work, this class repre-
sents a stable behaviour of the GW detector, which
is reflected by non-deviant FD values.

• Whistle: these glitches have a characteristic V, U
or W shape at higher frequencies (& 128 Hz) with
typical durations ∼ 0.25 s. They are caused when

radio-frequency signals beat with the voltage con-
trolled oscillators [57]. In Fig. 3b we present a
Whistle glitch with a frequency content > 512Hz.

• Tomte: these glitches are also short-duration (∼
0.25 s) with a characteristic triangular morphology.
In Fig. 3c we show a Tomte glitch from LIGO Liv-
ingston, where these morphologies are quite abun-
dant. Since there is no clear correlation to the aux-
iliary channels, they cannot be removed from as-
trophysical searches.

• Scattered Light: also known as Slow Scatter-
ing, these glitches have longer duration harmonics
(∼ 2.0–4.0 s) that in time-frequency domain they
appear as arches being often stacked on top of each
other (see Fig. 3d). These glitches are quite prob-
lematic since their frequency content lies in the
band of interest of GW astrophysical events. In O3,
they were found to be coupled with the relative mo-
tion between the optical suspension system’s end
test-mass chain and the reaction-mass chain [58].

In this work we focus on LIGO Livingston, as the au-
thor in [47], but this investigation could be extended to
LIGO Hanford and Virgo. The details on how this data
was pre-processed for its posterior usage in our model,
can be found in the next section.

C. Auxiliary channels encoded in fractal dimension

Given a time t of interest, we select an array of GPS
time with duration ∆t = 8s, where t is in the center. For
each array of time, we retrieve 347 safe auxiliary channels
with sampling rates > 512Hz, excluding the GW strain
h(t), that is then whitened and encoded in FD with time
windowsW(t) ∈ {0.25, 0.5, 1, 2} s. For eachW(t) we have
∆t/W(t)−1 time bins to ensure that t is in the center of
the FD-encoded data, yielding a total of 56 time-bins for
sample. Since the duration of Scattered Light is ∼ 2-
− 4 s and the duration of Tomte is ∼ 0.25 s, the length of
these varying time windows ensure that any glitch mor-
phology will be contained at least within W(t) = 2s [33].
Note that the sampling rate of each independent auxil-
iary channel varies, but we only encode safe channels with
a sampling rate > 512Hz, to have enough data points to
perform a calculation of the FD, as demonstrated by the
experiments performed by [47].
Limited by the number of Whistle present in LIGO

Livingston, for the initial data set we select 896 GPS
times for each class defined in Section III B and presented
in Fig. 3, yielding a balanced data set. Since each aux-
iliary channel monitors distinct physical processes, their
average FD measurements can differ, giving priority to
certain channels over others. To improve the stability of
our model, we normalize in the range [0, 1] the data of
each individual auxiliary channel, as we are only inter-
ested in their relative variation. Normalizing collectively
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see Tomte glitches that appear to be overlapping
with Scratchy glitches, in Fig. 13b we see a glitch
labelled as Scattered Light but could be a novel
morphology, and in Fig. 13d we see a Scratchy

glitch misclassified as Scattered Light.

The outliers found at the outskirts of their clusters
are visually and manually selected from the t-SNE rep-
resentation in Fig. 8c, with the aim of automating the
procedure in future works. After outliers have been se-
lected, their spectrograms in h(t) are visually inspected
by comparing them to standard Gravity Spy morpholo-
gies. With this procedure, a total of 177 anomalies were
found out of 2688 samples, which implies 6.6% of the
data. In particular, for each class, we found:

• Whistle: 49 anomalies were found, 45% are un-
known morphologies, 28% are Gravity Spy misclas-
sifications, and 27% are glitch overlaps.

• Tomte: 57 anomalies were found, 32% are unknown
morphologies, 21% are misclassifications, and 47%
are glitch overlaps.

• Scattered Light: 71 anomalies were found, 28%
are unknown morphologies, 72% are misclassifica-
tions, and only one case of overlap is found.

After a visual inspection, we found that for Whistle

most outliers constitute unknown morphologies, while
for Tomte most anomalies are due to overlaps, where
it is common that two Tomte happen simultaneously.
For Scattered Light, most outliers correspond to mis-
classifications, since the other seven glitch classes hap-
pen at similar frequency intervals and duration periods,
namely Low Frequency Burst, Low Frequency Lines,
Power Line, Scratchy, Air Compressor, Paired Doves

and Fast Scattering.
While the misclassification of glitches could be coun-

tered with the improvement of training strategies, data
set construction or class definitions, the identification of
anomalies arising from overlaps and novel morphologies
would still be hampered by the strict class definitions
from supervised methods. Therefore, unsupervised ap-
proaches, such as the one presented in this work, will im-
prove the understanding of glitch populations for their
subsequent mitigation.

VI. CONCLUSIONS

In this paper we have performed an exploratory analy-
sis of a reduced set of safe auxiliary channels from LIGO
Livingston with FD-encoding in the context of anomaly
detection. The focus of this work is, on one hand, to ex-
plore the potential of this data representation in the con-
text of glitch characterization, and on the other hand, to
build a data-driven model to cluster glitches in an unsu-
pervised way with direct information from the detector,

finding anomalies that deviate from the general distribu-
tion of the data.

For this aim, we first speeded up the FD calculation
from a computational complexity of O(N3) in [47] to
O(N2 logN), constructing the FD-encoded safe auxiliary
channel data set. Afterwards, we implemented a periodic
convolutional autoencoder to learn the local and global
structure of the data, compressed in a lower-dimensional
space, known as embedded space. The reconstruction
errors of the output of the autoencoder were ∼ 98.8% of
glitches < 0.002, implying that the autoencoder was able
to learn the general trend of the data.

We can also observe the reliable compression of the au-
toencoder, using solely safe auxiliary channels, when we
project the embedded space in a two-dimensional t-SNE.
This t-SNE representation clusters the different classes in
separate regions which are consistent with Gravity Spy’s
observation in the main detector strain, h(t). Samples
that deviate significantly from their closest cluster are
considered outliers. Representing these outliers in h(t),
we observed novel morphologies that strongly deviated
from the standard definitions of Gravity Spy.

This methodology has shown that the safe auxiliary
channel in the FD-encoding acts as a complementary rep-
resentation to the visualization of h(t), used to charac-
terize the noise of the detector and to identify glitches
for their subsequent mitigation. Furthermore, our algo-
rithm is flexible and completely data-driven, capable of
uncovering misclassifications, glitch overlaps and novel
glitch morphologies. While our method is independent
of supervised classification algorithms, we used Gravity
Spy as a benchmark to quantify its performance: in our
FD-encoded auxiliary channel data, constituted by 2688
times where glitches were present in h(t), we found a
6.6% of anomalies caused by unknown morphologies la-
belled as their closest glitch class, similar morphologies
assigned the incorrect class or glitch overlaps being over-
looked.

Data-driven approaches, such as the one demonstrated
in this work, can unveil anomalies present in the data
and reveal relations between glitch classes, allowing us
to further understand the glitch population. In future
work, this approach will be extended to the general pop-
ulation of LIGO-Livingston and other interferometers to
enhance the identification of glitches. Moreover, we will
provide an anomaly score to assess the significance of the
outliers found by our algorithm, and explore a data fu-
sion representation containing both the FD-encoded aux-
iliary channel data and the strain h(t) in time-frequency
representation, providing not only information about the
physical process within the detector but also their impact
on h(t). Last but not least, we will investigate the cor-
relation between safe auxiliary channels highlighted by
our model and glitches appearing in h(t), in the search
of witness auxiliary channels with the goal of improving
glitch mitigation in GW searches.
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