

1 Effects of salt on phase behavior and rheological

2 properties of alginate-chitosan polyelectrolyte

3 complexes

4 *Anandavalli Varadarajan¹, Logan T Kearney², Jong K. Keum³, Amit K Naskar², Santanu*
5 *Kundu¹**

⁶ ¹Dave C Swalm School of Chemical Engineering, Mississippi State University, Mississippi
⁷ State, MS 39762, USA.

8 ²Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

⁹ ³Neutron Scattering Science Division and Center for Nanophase Materials Sciences, Oak Ridge
10 National Laboratory, Oak Ridge , TN 37831 , USA

11

12

13 **ABSTRACT:** Oppositely charged polyelectrolytes often form polyelectrolyte complexes (PECs)
14 due to the association through electrostatic interactions. Obtaining PECs using natural,
15 biocompatible polyelectrolytes is of interest in the food, pharmaceutical, and biomedical
16 industries. In this work, PECs were prepared from two biopolymers, positively charged chitosan
17 and negatively charged alginate. We investigate the changes in the structure and properties of PECs
18 by adding sodium chloride (salt-doping) to the system. The shear-modulus of PECs can be tuned
19 from $\sim 10 - 10^4$ Pa by changing the salt concentration. The addition of salt led to a decrease in the
20 water content of the complex phase with increasing shear-modulus. However, at a very high salt
21 concentration, the shear-modulus of the complex phase decreased but did not lead to the liquid
22 coacervates formation, typical of synthetic polyelectrolytes. This difference in phase behavior has
23 likely been attributed to the hydrophobicity of chitosan, and long semiflexible alginate and
24 chitosan chains that restrict the conformational changes. Large amplitude oscillatory shear
25 experiments captured nonlinear responses of PECs. The compositions of the PECs, determined as
26 a function of salt concentration, signify the preferential partitioning of salt into the complex phase.
27 Small-angle X-ray scattering of the salt-doped PECs indicates that the Kuhn length and radius of
28 the alginate-chitosan associated structure qualitatively agree with the captured phase behavior and
29 rheological data. This study provides insights into the structure-property as a function of salt
30 concentration of natural polymer-based PECs necessary for developing functional materials from
31 natural polyelectrolytes.

32 Keywords: Polyelectrolyte complexes, phase diagram, salt addition, alginate-chitosan, LAOS,
33 SAXS

34 INTRODUCTION

35 Polyelectrolytes (PEs) are macromolecules having ionizable groups that can dissociate in
36 aqueous solutions to form charged polymers and counterions.¹ After dissociation, these PEs gain
37 unique properties such as water solubility, ionic conductivity, and the capability of developing
38 ionic interactions with oppositely charged molecules.²⁻⁴ For example, ionic interactions with
39 oppositely charged polymers can lead to the formation of polyelectrolyte complexes (PECs).
40 Although PECs are increasingly being investigated for use in various fields such as biomedical,
41 food products, underwater adhesives, and personal care products, the mechanism of complex
42 formation and structure and properties of these complexes are still poorly understood.^{5,6}

43 In addition to the intrinsic polymer properties such as chemical structure, chain length, and
44 charge-ratio, the noncovalent interactions between polymer chains such as steric, van der Waals
45 and hydrophobic interactions, and external environments such as pH, ionic strength of the media,
46 and temperature dictate the structure and properties of the complexes.^{5,7-9} PECs can either form
47 one soluble/miscible phase or two phases, one rich and another dilute, for various combinations of
48 polyelectrolytes.^{5,7,10} The dense phase can be either a viscous liquid with high water content or a
49 solid with less water content.^{9,11}

50 The phase behavior in these systems results from a complex interplay between factors such as
51 polymer chemistry, chain length, polymer concentration, charge ratio, temperature, pH, and ionic
52 strength.^{5,7,8,12} The alteration in ionic strength of the media caused by the addition of salts (salt-
53 doping) can also alter the phase behavior.^{13,14} It has been shown that increased salt concentration
54 leads to phase transformation from solid precipitates to liquid coacervates and then to a
55 homogenous solution.^{7,10,15} The mechanical responses of the complexes and their phase behavior
56 with changing salt concentrations have been investigated by employing shear-rheometry.^{7,8,13}

57 Most of the investigations on the phase behavior of PECs in the literature involve a limited
58 selection of synthetic polyelectrolytes. In contrast, studies on the phase change of natural
59 polyelectrolyte complexes with the addition of salt are limited.^{9,11–14,16,17} Natural polyelectrolytes
60 with high molecular weight, stiffer backbones, and long-range ionic interactions are expected to
61 behave differently than synthetic polyelectrolytes. The formation of PECs from biopolymer pairs
62 can be seen in several living systems responsible for various biological functions.¹⁸ Examples
63 include calcification of cartilage in mammals through salt-mediated complexation between
64 cartilage lysozyme and proteoglycans¹⁹, the antithrombic activity of heparin through electrostatic
65 binding²⁰, and complexation of proteins secreted by sandcastle worm, which is used to glue the
66 exogenous mineral particles in their process to build protective shells.²¹ PECs formed from
67 polysaccharide polyelectrolytes such as alginate, chitosan, pectin, xantham gum, carrageenan, gum
68 arabic, and hyaluronic acid have gained significant interest due to their non-toxicity and
69 biocompatibility, making them suitable for biomedical applications and food products.^{2,5,22–27}

70 Herein, we utilized alginate, a natural anionic polysaccharide extracted from marine brown
71 algae, and chitosan, the only natural cationic polysaccharide formed by N-deacetylation of chitin
72 found in crustacean shells. Both alginate and chitosan are extensively studied biopolymers for
73 different applications, including as model polysaccharides. They have been studied individually,
74 as in the solution and in the gel form.^{28–32} Several studies have documented the complex formation
75 between alginate and chitosan, particularly focusing on the effect of alginate/chitosan ratio, pH,
76 and the order of addition, such as mixing alginate to chitosan, or vice versa.^{23,24,33} These complexes
77 have been investigated for several applications in various forms, including beads, nanoparticles,
78 and hydrogels for protein, drug, and cell encapsulation,^{23–25,34} and membranes for wound
79 dressing.^{26,27} In limited studies, it has been shown that salt addition can affect the alginate-chitosan

80 complex formations.^{35,36} For example, complexes obtained for NaBr concentration of 1M and
81 subsequent ultracentrifugation resulted in a complex with a high storage modulus of $\sim 10^6$ Pa.³⁵

82 Controlled complexation caused by desalting through dialysis was utilized to obtain macro
83 hydrogels and colloids from hyaluronic acid-chitosan, chitosan-heparin sodium salt, and chitosan-
84 dextran sulfate.^{22,37,38} Porod law was used to fit the scattering data for these samples, and fitting
85 for chitosan-heparin sodium salt and chitosan-dextran sulfate revealed rough fractal-like surfaces
86 with the rod-like intra-particular structure captured by a slope of 3.8 in the low q range, and 1 at
87 the high q range, respectively.^{37,38} Similar structure was revealed for stretchable hydrogels
88 obtained from hyaluronic acid and chitosan, where the semi-rough solid-like aggregates have sizes
89 in the range of 100 nm to 1 μm .²² For synthetic PEs, such as, in the case of
90 poly((vinylbenzyl)trimethylammonium chloride) (PVBTMA) - poly(styrenesulfonate) (PSS)
91 system, the formation of clustered aggregates (solid phase) in the undoped state and rearrangement
92 of that to ladder-like structure (liquid phase) with doping (using NaBr) has been revealed.¹³

93 Here, we investigated the change in phase behavior and rheological properties of the PECs
94 obtained from the alginate and chitosan upon salt doping using NaCl. We elucidated the
95 mechanical behavior of the complex (polymer-rich) phase using small amplitude and large
96 amplitude oscillatory shear measurements. Thermogravimetric analysis was utilized in measuring
97 the water, salt, and polymer content to probe the phase behavior. Small-angle x-ray scattering was
98 used to understand the physical structure of the complex phase.

99

100 **EXPERIMENTAL SECTION**

101 **Materials.** The following materials were purchased from Sigma-Aldrich and used as received:
102 sodium alginate (CAS # 9005-38-3), chitosan (CAS # 9012-76-4, low molecular weight), sodium
103 chloride, potassium bromide, sodium bromide, and potassium iodide. Glacial acetic acid with a
104 normality of 17.4 was used. DI water with a resistivity of 18.2 MΩ at 25 °C purified using a
105 MilliporeSigma filtration system was used to prepare the stock solutions.

106 **Preparation of alginate and chitosan solutions.** Alginate solutions (1% w/v) were prepared
107 using DI water, and chitosan solutions (1% w/v) were prepared using 0.2M acetic acid. The pH of
108 the as-prepared alginate and chitosan solutions were ~6.5 and 4.0, respectively.

109 **Molecular weight determination.** The molecular weights of alginate and chitosan were
110 determined from the intrinsic viscosity measured using Ubbelohde viscometer (approximate
111 constant: 0.03 cSt/sec, size-1C, viscosity range: 6 to 30 cSt). For molecular weight determination,
112 sodium alginate and chitosan solutions were prepared in 0.1M NaCl and 0.3M acetic acid/0.2M
113 sodium acetate with concentrations in the range of 0.001 to 0.01 g/mL, respectively.

114 **Degree of deacetylation (DD).** The degree of deacetylation of chitosan was determined using
115 IR spectroscopy. The analysis was carried out for the as-received chitosan powder in PerkinElmer
116 Spectrum Two spectrometer. A total of 256 scans were collected over the range of 550 to 4000
117 cm⁻¹ with a resolution of 4 cm⁻¹.

118 **Preparation of polyelectrolyte complexes (PECs).** To obtain PECs, chitosan solution was
119 added dropwise to the alginate solution until 1:1 volume ratio was obtained. The solution was
120 stirred using a mechanical stirrer at ≈700 rpm until the mixture changed to an opaque colloid. The
121 samples are stored in the refrigerator at ≈4°C prior to conducting characterizations. To dope the

122 PECs with salts, NaCl was added gradually in powder form until the desired molarity was attained.
123 The sample was then mixed with a glass stirrer until the salt dissolved completely.

124 **Thermogravimetric analysis.** PEC samples with different salt concentrations were centrifuged
125 in 1.5 mL Eppendorf tubes at 10,000 rpm for 15 min. The supernatant and complex phases were
126 separated by pipetting out the supernatant. Around 30-40 mg of supernatant and complex were
127 transferred to separate aluminum pans. The samples were then placed in the oven at 110 °C for 2.5
128 h to remove water. The corresponding weight loss was measured. Next, the pans were placed in a
129 muffle furnace at 600 °C for 12 h in an inert nitrogen environment to remove the remaining water
130 and to decompose the organic components, alginate, and chitosan. The weight loss for this process
131 was measured. Three samples were gravimetrically measured for each salt concentration.

132 **Rheology.** For rheological measurements, samples were prepared at the required salt
133 concentration and were centrifuged at 4000 rpm for 15-30 min. The complex phase was carefully
134 separated using the disposable pipette and was used for rheological experiments. The experiments
135 were performed using a stress-controlled rheometer, DHR-2 (TA Instruments), at 22 °C, precisely
136 controlled by a Peltier system. A 20 mm parallel-plate geometry with solvent trap attachment filled
137 with water was used to prevent drying of the sample during the rheological testing. Adhesive-
138 backed sandpapers (grit number # 600, Allied high-tech products Inc.) were attached to both upper
139 and lower plates to minimize sample slippage at the sample-rheometer plate interface. Experiments
140 were performed with a gap of 1000 μ m. LAOS experiments were conducted for the strain
141 amplitude range of 0.05-50% at a constant oscillation frequency of 1 Hz. Three sampling cycles
142 were used, and the average of these three cycles is shown in our results. We have used the
143 framework developed by Ewoldt et al.³⁹ to analyze the Lissajous plots. The stress response can be
144 represented using Chebyshev polynomials of the first kind as

145
$$\tau(t) = \gamma_0 \sum_{n:odd} e_n T_n(x) + \dot{\gamma}_0 \sum_{n:odd} v_n T_n(y)$$

146 where $T_n(x)$ and $T_n(y)$ are the n th order Chebyshev polynomials of the first kind, $\dot{\gamma}_0$ is the
147 strain rate amplitude, $x = \frac{\gamma}{\gamma_0}$, $y = \frac{\dot{\gamma}}{\dot{\gamma}_0}$, and e_n and v_n are the elastic and viscous Chebyshev
148 coefficients, respectively. MITlaos software has implemented this framework and was used to
149 estimate the Chebyshev coefficients.

150 **Small-Angle X-ray Scattering.** SAXS measurements were collected on a Xeuss 3.0 (Xenocs,
151 France) equipped with a D2+ MetalJet X-ray source (Ga K α , 9.2 keV, $\lambda = 1.3414 \text{ \AA}$). PECs were
152 loaded into 2 mm quartz capillaries, sealed, aligned perpendicular to the direction of the X-ray
153 beam (transmission mode) and measured for 10 minutes at a sample-to-detector distance of 900
154 mm. 2D images of the scattering patterns were collected on a Eiger 2R 4M hybrid photon counting
155 detector with a pixel dimension of $75 \times 75 \mu\text{m}^2$ (Dectris, Switzerland). The 2D SAXS images were
156 circularly averaged and reduced in the form of absolute intensity versus scattering vector (q),
157 where $q = (4\pi \sin\theta)/\lambda$. Direct beam intensity was used to calibrate the measured intensities of each
158 sample following background subtraction and transmission corrections were applied in the
159 XACT software package (Xenocs, France). Multiple exposures greater than 20 minutes on the
160 same sample area showed no effects of radiation damage. Data analysis and fitting were performed
161 using Igor Pro and the analysis packages available through NIST Center for Neutron Research.
162 Modeling of the PEC structure was performed using either the double power law or worm-like
163 chain (flexible cylinder) models available in IgorPro environment.

164

165

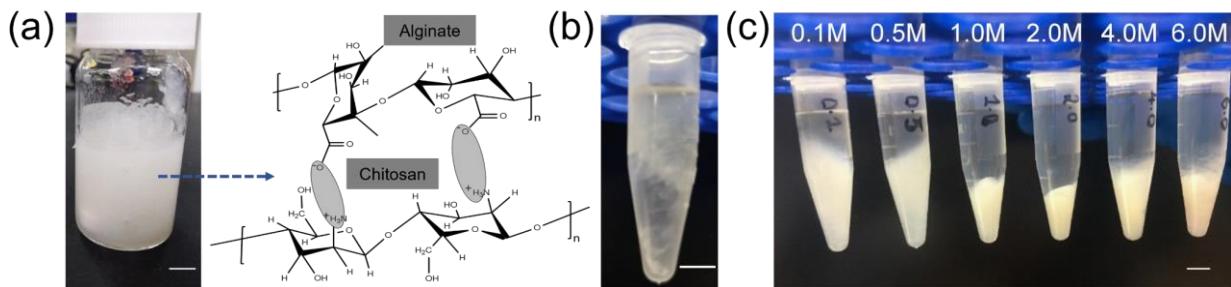
166

167 RESULTS AND DISCUSSION

168 **Molecular weight determination.** The molecular weights of alginate and chitosan used here
169 were estimated from the intrinsic viscosity values using Mark-Houwink equation, $[\eta] = k M^a$.
170 Here, $[\eta]$ is the intrinsic viscosity in mL/g, M is molecular weight in g/mol, k in mL/g and a are
171 constants specific for a particular polymer-solvent system. The a and k for alginate are 0.97 and
172 0.002, respectively.^{30,40} Similarly, a and k values for chitosan are 0.76 and 0.074, respectively.^{31,41}
173 Kraemer plots capturing inherent viscosity as a function of polymer concentration are shown in
174 Figure S1 (Supplementary Information), and the estimation of M is shown in Table S1. The
175 estimated molecular weight of alginate and chitosan are ≈ 230 and 260 kg/mol, respectively. We
176 calculated the number of charges considering full charge dissociation, and alginate and chitosan
177 molecular weight and their concentrations of 1% w/v as $\approx 2.79 \times 10^9$ /mL and 3.57×10^9 /mL,
178 respectively. The positive charges (in chitosan) was slightly higher than the negative charges (in
179 alginate) but not significantly different. However, as shown below, such a minor difference has
180 likely affected the phase behavior.

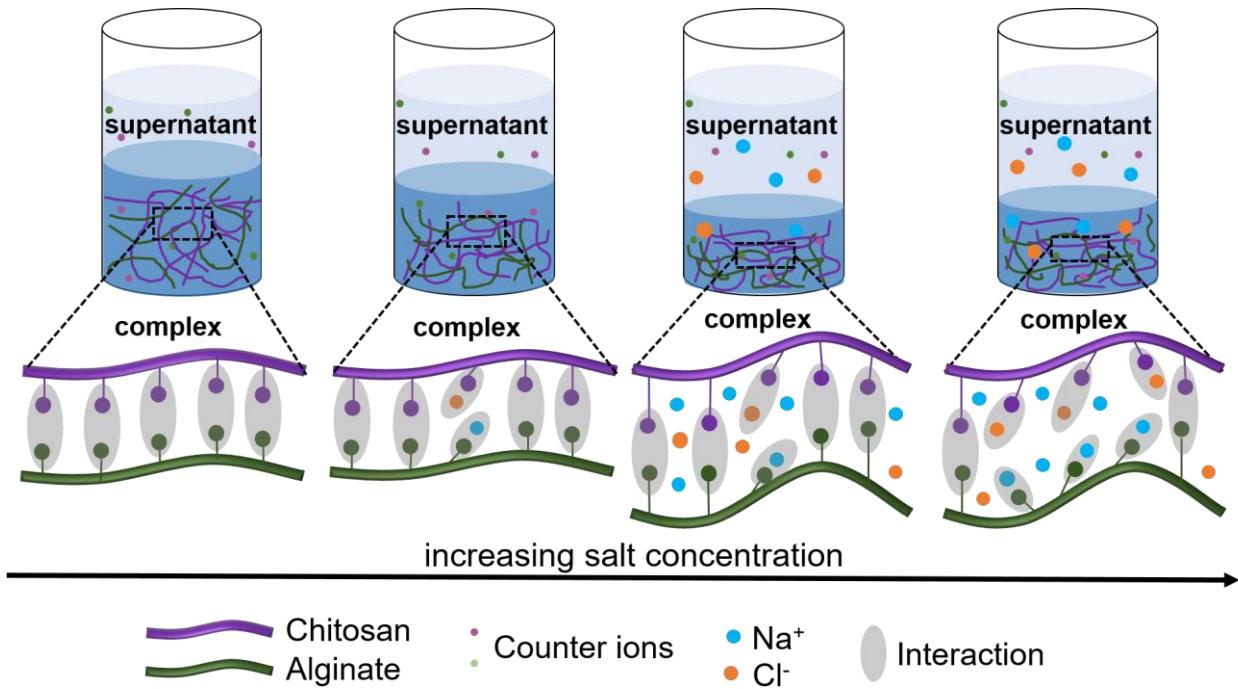
181 **Degree of deacetylation (DD).** Chitin is hydrophobic and can be made water soluble by
182 deacetylation of N-acetyl glucosamine group present in the chain.⁴² The degree of DD was
183 estimated using FTIR data as $\%DD = \left(\frac{A_{1655}}{A_{3450}} \right) * \left(\frac{100}{1.33} \right)$ (Figure S2, supporting
184 information).^{43,44} The intensity of the 1655 band, A_{1655} , is a measure of *N*-acetyl or amine content.
185 The intensity of a 3450, A_{3450} , is a measure of -OH stretching, which is the reference band that
186 does not change with deacetylation. The A_{1655}/A_{3450} ratio is equal to 1.33 for fully *N*-acetylated
187 chitin.⁴⁴ The %DD for the as-received chitosan sample was $\approx 82\%$.

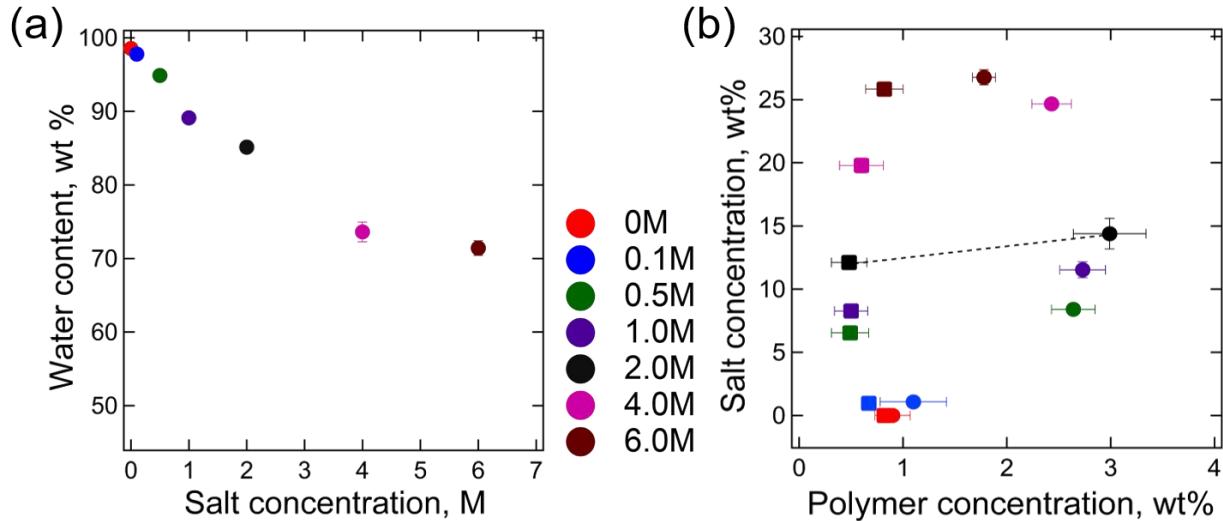
188 **Polyelectrolyte complexes formation and their morphology.** Alginate and chitosan with a
189 concentration of 1 % w/v were mixed in a 1:1 volume ratio using an overhead mixer until the


190 mixture became opaque, indicating the complexation between alginate and chitosan. The mixture
191 was stored overnight at 4 °C to ensure the completion of the process. The samples appeared to
192 have a colloidal structure with no distinct phase separation (Figure 1a).

193 The images of the samples after centrifugation without and with salt addition (salt-doped) are
194 shown in Figure 1b-c. Samples without salt did not show a clear phase separation with
195 centrifugation (Figure 1b). However, for the salt-doped samples, the centrifugation led to clear
196 phase separation, forming distinct solid (polyelectrolyte complex or PEC phase) and liquid
197 (supernatant) phases (Figure 1b). The PEC phase appeared to be denser with increasing salt
198 concentration (c) up to 2.0 M. However, the PECs for c equal to 4.0 and 6.0M became less dense.
199 Note that for this study, the maximum salt concentration considered was 6.0M, slightly lower than
200 the solubility limit of NaCl in water at the room temperature of 6.15 M.

201 In general, many synthetic cationic and anionic polyelectrolytes display two-phase separation
202 (solid-liquid) on mixing and centrifugation.^{7,10,13,17} Here, the solid phase is the polymer-rich phase,
203 and the liquid phase is the polymer-lean supernatant phase. The complex formation and phase
204 separation are consistent among different synthetic systems, the complexes obtained from them
205 have some similarities to that observed here. For example, a soft and white flowing particulate
206 system was observed with PECs from PVBTMA and PSS.¹³ However, the complex obtained from
207 PSS and poly(diallyldimethylammonium) (PDADMA) showed dense glassy solids.¹⁰ In both of
208 these systems, the addition of salt resulted in a transition where the solid polymer-rich phase
209 became the liquid phase (coacervate formation), resulting in liquid-liquid phase separation. This
210 is caused by the dissolution of the complex due to the weaker attractive interactions between
211 polyelectrolytes at high salt concentrations.^{7,10,13,17} But liquid-liquid phase separation was not
212 observed in our systems for the maximum salt concentration considered, and the complex phase


213 was not glassy. However, our results are similar to the literature report of solid phase formation
214 obtained after ultracentrifugation of alginate and chitosan mixtures.³⁵


215

216
217 **Figure 1.** Images of (a) as prepared undoped PEC from alginate and chitosan (1%w/v respectively)
218 mixed in 1:1 volume ratio. The possible complexation between alginate and chitosan chains is
219 shown; (b) Undoped PEC after centrifugation; (c) NaCl doped PECs showing two-phase
220 separation after centrifugation. Salt concentration in molarity for each case is shown. The scale
221 bar represents 5 mm

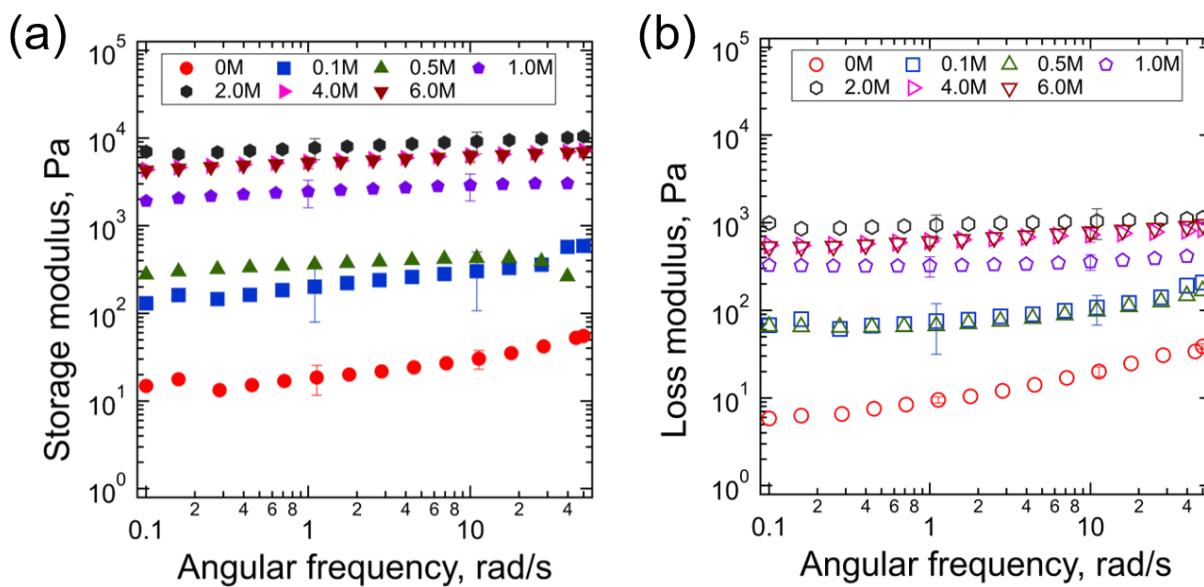
222 Figure 2 shows a schematic of the proposed mechanism involved in the complexation of alginate
223 and chitosan in the presence of salt. The ionic interactions between the positively charged chitosan
224 (Pol^+) and negatively charged alginate chains (Pol^-) result in a self-assembled structure, PECs. It
225 has been hypothesized when salt is added to the system, the charges are screened, which can cause
226 the change from intrinsic (Pol^+ and Pol^-) to extrinsic (charged polymer and counter ions from salt)
227 ion pairs. At low salt concentrations, fewer intrinsic ion pairs are substituted, and with an increase
228 in salt concentration, water is released because of osmotic pressure, causing the denser complex
229 phase.¹³ After a certain threshold in the salt concentration, more intrinsic pairs are substituted for
230 the extrinsic pairs, associations are loosened, and the polyelectrolytes possibly rearrange to form
231 loose ladder-like structures.¹³ Centrifugation of these salt-doped samples leads to phase separation,
232 forming polymer-rich (complex) and polymer-lean (supernatant) phases.

242

243 **Figure 3.** (a) Water content in the complex phase as a function of salt concentration. (b) Binodal
 244 phase behavior as a function of polymer and salt concentrations (wt%). The square (■) symbols
 245 represent the supernatant phase, and the circles (●) represent the complex phase. The dotted line
 246 is a representative tie-line. Error bars denote the standard deviation of three measurements.

247 Figure 3b displays the binodal phase diagram obtained from the salt and polymer content in the
 248 complex and supernatant phase using TGA. As discussed above, PECs in the undoped sample
 249 could not be separated well into complex and supernatant phases (Figure 1a), resulting in a similar
 250 amount of polymer concentration in both the complex and supernatant phases. The polymer
 251 concentration in the complex phase increased with increasing salt concentration until it reached c
 252 = 2.0M; however, it then decreased with increasing c . The polymer concentration in the complex
 253 phase was higher than in the supernatant phase for all cases. The increase in polymer concentration
 254 in the complex phase for up to 2M salt addition can be attributed to a dehydration behavior caused
 255 by the external osmotic pressure upon salt doping. This behavior is similar to poly-
 256 (diallyldimethylammonium)-PSS system and PVBTMA-PSS systems doped with NaCl and
 257 NaBr.^{13,45}

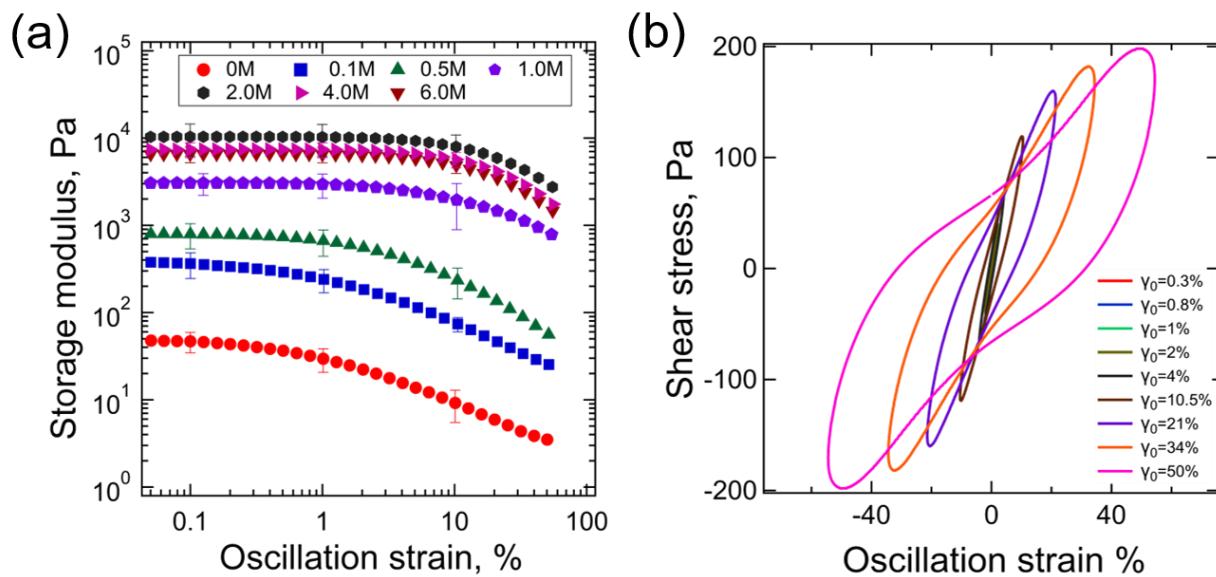
258 The polymer concentration in the PEC phase for $c=4$ and 6M salt-doping decreased, resulting in
259 a smaller difference in polymer concentration in the complex and supernatant phases. We
260 hypothesize that an excessive salt concentration in PEC led to the rupture of ion pairing between
261 oppositely charged polyelectrolytes (formation of extrinsic ion pairs), causing the decreased
262 polymer concentration in the complex phase. Since the behavior of polyelectrolytes is dependent
263 on environmental pH, we measured the pH of the supernatants and found that the pH was almost
264 similar for all cases.


265 The absence of transition from solid-liquid to liquid-liquid phase separation in our system can be
266 attributed to several reasons. The longer and semiflexible chains of the alginate and chitosan can
267 resist the conformational change of the polymers.⁴⁶⁻⁴⁸ We also hypothesize that the sodium
268 alginate chains are less susceptible to structural changes with the addition of NaCl as the polymer
269 is already under the influence of Na^+ ions.^{49,50} In a previous study, it has been shown using
270 isothermal titration calorimetry that the addition of NaCl does not significantly affect the change
271 of enthalpy of binding.⁴⁹ Further, the slight hydrophobic nature of the chitosan chain can also play
272 a role, as it reduces the hydration level.^{46,47} Previous work from Schlenoff and coworkers has
273 shown that the association between the polyelectrolytes in solid PECs is stronger with increasing
274 hydrophobicity in the system.⁵¹ Specifically, the complexes obtained from poly(allylamine
275 hydrochloride) and poly(acrylic acid sodium salt) did not show complete dissolution even at the
276 maximum solubility concentration (6M) of NaCl due to the hydrophobicity of the PEs.^{11,12,46} All
277 these factors, in addition to the osmotic effect, control the phase behavior of our system.^{52,53}
278 Correspondingly, Figure 1 and the characterization of PECs discussed below capture the change
279 in structure and properties with changing NaCl concentration.

280 A partitioning of salt in the complex phase was observed, as shown by a positive tie line (Figure
281 3b). This behavior matches with the predictions shown by Voorn–Overbeek (VO) model.⁵⁴
282 According to this model, increased polymer concentration with unbalanced charges in the complex
283 phase can attract more salt ions to the complex phase. For our system, the number of positive and
284 negative charges calculated based on molecular weight were slightly different from each other,
285 and the extra charges available after complexation can possibly attract additional counterions
286 leading to the partitioning of salt to the complex phase.

287 Further, we have extended our study by doping with different salts such as KBr, KI, and NaBr.
288 These were conducted near the solubility limits of those salts. The complex phase formation
289 appeared to be similar to that of NaCl. Particularly, adding salts did not cause liquid-liquid phase
290 separation or a homogenous solution of PECs (Figure S3). For many PEs, the efficiency of doping
291 and critical salt concentration leading to a transition from solid-liquid to liquid-liquid phase has
292 shown to be dependent on the type of salt ions, which usually follow the Hofmeister series.^{12,55–58}
293 The absence of such behavior in our system needs additional investigations.

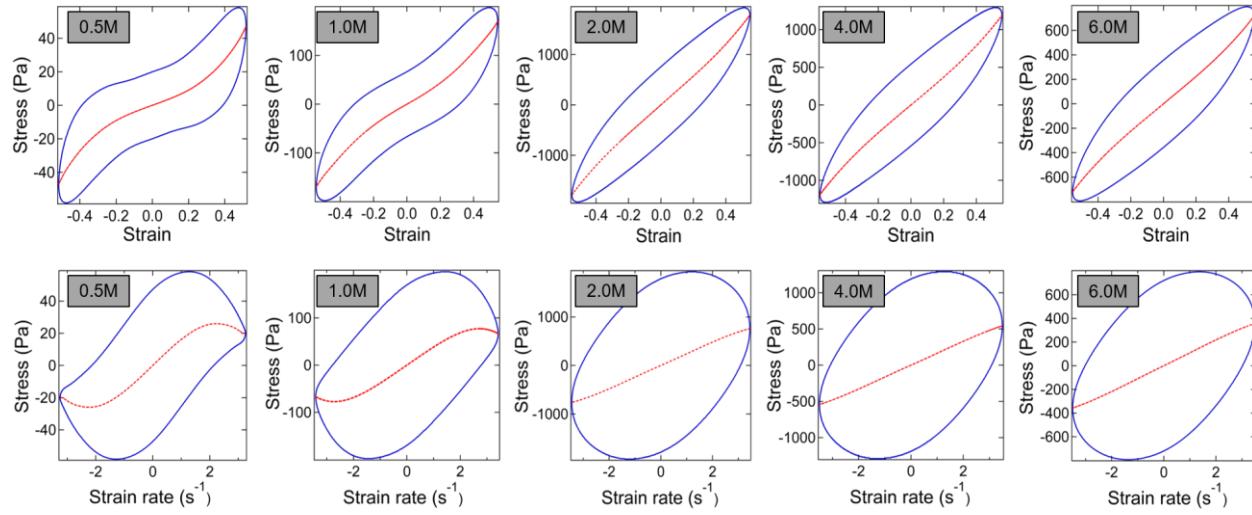
294 **Rheological properties.** Rheological experiments were performed on the complex phase to
295 demonstrate the change in mechanical properties with the addition of salt and the corresponding
296 change in the water content. Figure 4 displays the storage (G') and loss moduli (G'') as a function
297 of frequency obtained at a constant strain of 1% for different salt concentrations. Both G' and G''
298 increased with increasing c values up to 4.0M, and then it decreased. The samples showed a very
299 weak frequency dependence, as both the moduli increased slightly with the increase in frequency.
300 The storage modulus for the undoped sample was ~ 10 Pa, which increased significantly to $\sim 10^4$ Pa
301 with increasing c to 2.0M. Further increase in c resulted in a decrease in the modulus of the
302 complex phase, but the magnitude was still in the order of 10^3 Pa. Here, $\tan \delta < 1$ at any salt


303 concentration for the entire measured frequency range (Figure S4), signifying solid-like
 304 behavior.⁵⁹ The samples did not show any cross-over from solid to liquid behavior with the
 305 addition of salt, as mentioned in previous studies for the polyelectrolyte complexes formed from
 306 PSS-PDADMAC and PSS-PVBTMA.^{7,13} Further, Afzal et al. have shown that for pH ~ 4 (similar
 307 pH in our system), the alginate-chitosan complexes obtained from 2% w/v alginate-2% w/v
 308 chitosan with $G' \sim 100$ Pa.²⁴ Since we have considered 1% w/v of alginate and chitosan, our
 309 modulus values were slightly lower when no salt was added. Additionally, the change in G' with
 310 salt addition can be utilized to tune the modulus of PECs, which is important for different
 311 applications.

312
 313 **Figure 4.** Frequency sweep results for the complex of PECs doped with different concentrations
 314 of NaCl. (a) Storage modulus (G') vs frequency, (b) loss modulus (G'') vs frequency. The applied
 315 strain amplitude was 1%.

316 As discussed above and widely reported in the literature, the formation of the extrinsic ion pairs
 317 with the addition of salt can lead to increased mobility of the polymer chains (plasticization

318 effects).^{45,57,60} On the contrary, free salt ions with bound water in their hydration shells can restrict
 319 the mobility of the polymer chains (stiffening effects).⁶¹ These opposing influences of salts in
 320 PECs can cause both stiffening and plasticizing effects, as observed in our system. A distinct salt-
 321 stiffening behavior has also been reported in a PEC system formed from PVBTMA and PSS.¹³


322 **Figure 5.** (a) G' as a function of oscillatory strain for PECs doped with different concentrations of
 323 NaCl, (b) Lissajous-Bowditch curves as a function of strain for a sample with 1.0M NaCl. Here,
 324 the applied frequency was 1 Hz, and the Lissajous-Bowditch curves are an average of three cycles.
 325

326 The PECs were also subjected to increasing strain amplitude from linear to nonlinear regime,
 327 and Figure 5a displays G' as a function of strain amplitude. An increase of G' with salt
 328 concentration was similar to that captured in frequency sweep experiments. Beyond the linear
 329 viscoelastic region (LVE), a decrease in G' was observed for all samples. The LVE region extended
 330 to the higher strain value with salt added. For example, the deviation from the LVE region was
 331 observed at 1 % strain for $c < 1.0\text{M}$, whereas the LVE region extended to 2.5% for $c = 2\text{M}$, which
 332 did not change significantly for c equal to 4 and 6 M.

333 Characterizing nonlinear viscoelastic response provides additional information regarding the
334 microstructure and is also necessary to understand how samples behave in many applications.^{62,63}
335 In the nonlinear regime, the Lissajous plots (shear stress vs. strain) are not elliptical but distorted.
336 The results for $c = 1.0\text{M}$ salt concentration with increasing strain are shown in Figure 5b.
337 Chebyshev coefficients were obtained from LAOS data using MITlaos software. Here, the first-
338 order coefficients e_1 and v_1 are G' and G'' , respectively. The third-order parameters, e_3 and v_3 , can
339 be used to hypothesize whether a sample is strain-stiffening ($e_3 > 0$) or strain-softening ($e_3 < 0$),
340 and shear-thickening ($v_3 > 0$) or shear-thinning ($v_3 < 0$).³⁹ The magnitude of the ratio between the
341 third and first harmonic Chebyshev coefficients, i.e., e_3/e_1 and v_3/v_1 , characterizes the nonlinearity
342 in the sample, as the higher magnitude indicates increasing nonlinearity.^{63,64} In our experiments,
343 the highest strain amplitude considered was 50%, and the corresponding Lissajous curves for all
344 salt concentrations are shown in Figure 6. Here, the Lissajous plots were more distorted for low
345 salt concentration, in which the LVE region was smaller.

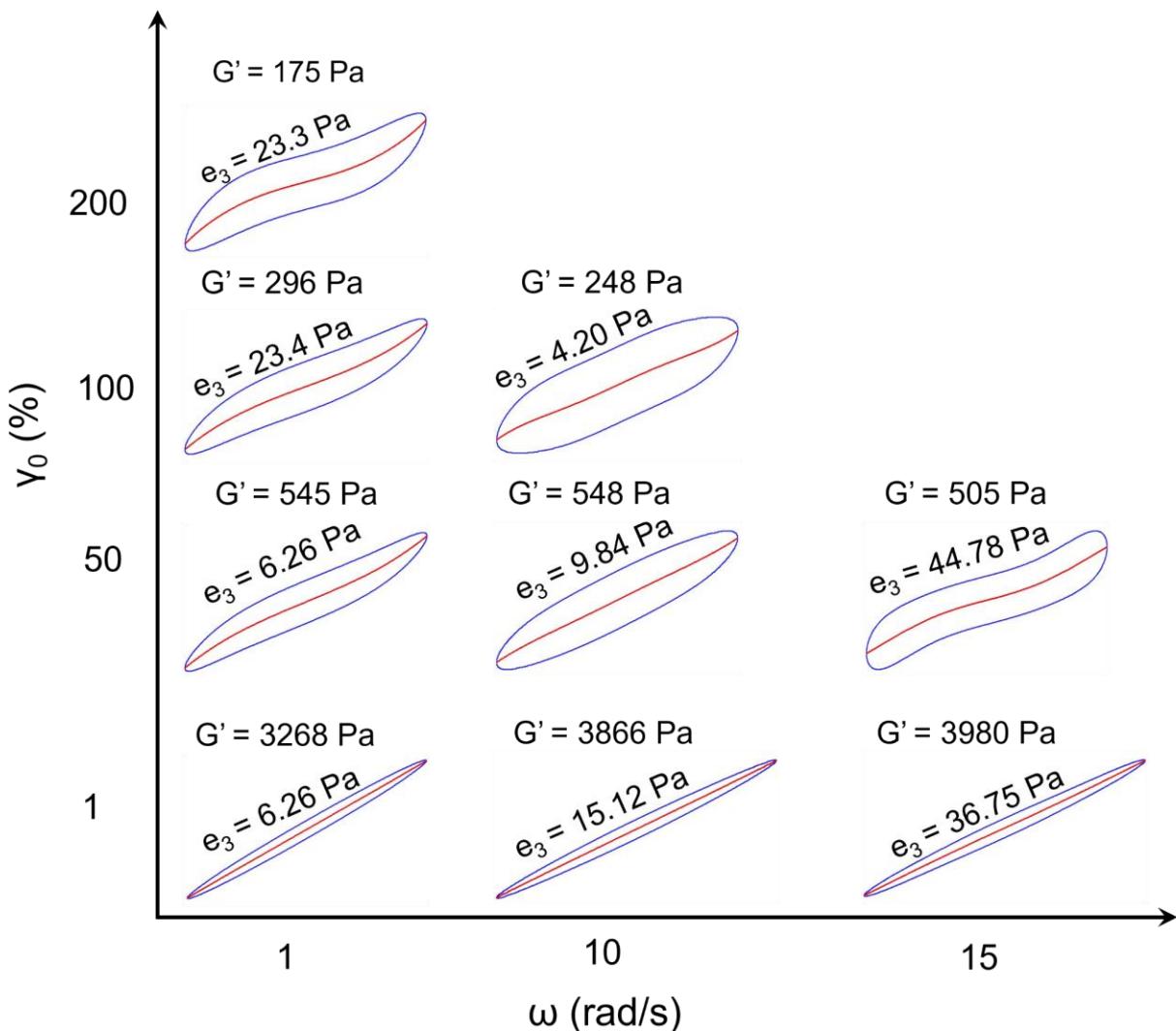
346 Third-order Chebyshev coefficients for the complexes obtained at different salt concentrations
347 were determined using MITlaos software.³⁹ Table 1 shows the elastic and viscous Chebyshev
348 coefficients measured slightly away from the onset of nonlinearity ($\gamma_0=1.6\%$ for $c = 0.5$ and 1.0M ,
349 and $\gamma_0 = 5\%$ for $c = 2.0, 4.0$, and 6.0M). Note that the strain values are chosen such that they are
350 equidistant from the onset of nonlinearity. Table 2 shows the values determined at the highest
351 measured strain ($\gamma_0=50\%$) for all salt concentrations. Here, $e_3 > 0$, and $v_3 < 0$ at any salt
352 concentration. These signify the intra-cycle elastic strain stiffening and viscous shear thinning
353 behavior of the sample. An increase in e_3 was observed beyond the onset of the nonlinear regime,
354 such as at the highest measured strain value ($\gamma_0 = 50\%$) considered here.

355 Elastic strain stiffening of the PECs can happen due to the stretching of the polymer chains,
 356 either of the individual chain or the paired alginate-chitosan chains. The shear thinning can take
 357 place likely due to the change of microstructure with applied strain, as the chains and complexes
 358 do not have any permanent crosslinks or do not have sufficient chain entanglements.^{65,66} This kind
 359 of behavior was previously reported for biopolymer gels and filled elastomer, but not for PECs.^{67,68}

360 **Figure 6.** Top: Elastic Lissajous curves of stress vs. strain amplitude at 50% strain for different
 361 salt concentrations. Bottom: viscous Lissajous curves of stress vs. strain rate amplitude at 50%
 362 strain; solid lines represent total stress and dashed lines represent elastic and viscous stress,
 363 respectively.

365

366 Table 1: Chebyshev coefficients at selected strain rate, near nonlinearity, $\gamma_0 = 1.6\%$ for $c = 0.5$
 367 and 1.0M ; $\gamma_0 = 5\%$ for $c = 2.0, 4.0$, and 6.0M .


Salt concentration, M	e ₁	e ₃	v ₁	v ₃
Near nonlinearity				
0.5	680	5.4	23	-0.5
1.0	2043	7.8	52	-0.5
2.0	11493	36.7	315	-1.1
4.0	7876	21.8	203	-0.1
6.0	5041	26.1	136	-0.4

377
 378 Table 2: Chebyshev coefficients and nonlinear intensity ratio at $\gamma_0 = 50\%$

Salt concentration, M	e ₁	e ₃	v ₁	v ₃	e ₃ / e ₁	v ₃ / v ₁
0.5	77	13.4	9	-2.8	0.0078	-0.0210
1.0	286	25.6	25	-5.4	0.0038	-0.0094
2.0	3131	119.7	289	-7.0	0.0032	-0.0033
4.0	2049	85.3	159	-3.2	0.0028	-0.00055
6.0	1239	51.8	105	-2.4	0.0052	-0.0025

379
 380 LAOS tests were also performed with increasing frequency and strain amplitude to understand
 381 the effects of frequency on the nonlinear behavior of the PECs. The stress-strain response over a
 382 frequency range of 1-15 rad/s and a strain amplitude range of 1-200% are placed in Pipkin space,
 383 as shown in Figure 7.^{63,69,70} G' and e₃ values are also provided for each curve. For the strain
 384 amplitude of 1%, the response was elliptical with mostly linear elastic contributions. The sample

385 displayed increased plastic behavior with the increase in strain amplitude and frequency, as shown
 386 by the increased hysteresis of the Lissajous curves. For example, comparing Lissajous plots for 1
 387 and 10 rad/s, at 100% strain, the hysteresis increased with frequency.

388
 389 **Figure 7.** Lissajous-Bowditch curves as a function of frequency and strain (%) for the sample with
 390 1.0M NaCl. Red dashed lines represent the elastic response of the sample.

391 **Structural analysis using SAXS.** To investigate the structure of PECs, SAXS data are collected
 392 for samples with different NaCl concentrations and the corresponding $I(q)$ vs. q are shown in
 393 Figure 8a. No correlation peak in the scattering profile (Figure 8a) was observed. A correlation

394 peak for polyelectrolyte samples, including individual alginate and chitosan solutions, has been
395 reported in the literature.^{32,71} The broad peak, referred to as the polyelectrolyte peak, is caused by
396 the repulsive electrostatic interactions of polyelectrolytes in solution.⁷² This peak can shift to
397 higher wave vectors with an increase in polymer concentration,^{72,73} or can disappear with the
398 addition of salt due to the screening of electrostatic interactions.⁷²⁻⁷⁵ Molecular dynamics
399 simulations performed on chondroitin sulfate and hyaluronic acid have shown that the
400 polyelectrolyte peaks can disappear due to the long-range and short-range interchain interactions.⁷⁵

401 SAXS studies on our PECs showed no distinct peaks even when no salt was added. It has been
402 shown in the literature that the polyelectrolyte peak originally present in individual poly(L-lysine
403 hydrochloride) and poly(L-glutamic acid sodium salt) diminished when the complex formed.¹⁷
404 Similarly, we hypothesize that the electrostatic interactions between alginate and chitosan,
405 resulting in the alginate-chitosan complexes, have led to the disappearance of the polyelectrolyte
406 peaks in our system.

407 For the undoped sample, two power law regions with different slopes can be identified (Figure
408 8 and S5). Hence, the scattering data were fit with two power law models in a piecewise fashion
409 as:

$$410 \quad I(q) = \begin{cases} \frac{A}{q^{-m_1}} & \text{for } q \leq q_c \\ \frac{A \cdot \frac{q_c^{-m_1}}{q_c^{-m_2}}}{q^{-m_2}} & \text{for } q \geq q_c \end{cases}$$

411 where q_c captures the cross-over from one slope to another. For the lower q region, scaling A sets
412 the overall intensity and scaling for the second power law region ($A \cdot \frac{q_c^{-m_1}}{q_c^{-m_2}}$) is scaled to match the
413 first. At $q > q_c$ ($\sim 0.0143 \text{ \AA}^{-1}$), complexes exhibited a $I(q) \sim q^{-2.2}$ behavior, which can be attributed
414 to the structure formation upon complexation of alginate and chitosan with mass fractal dimension

415 of 2.2.^{13,17} At $q < q_c$, a $I(q) \sim q^{-4.4}$ behavior was observed, which indicates the formation of larger
416 aggregates of such polyelectrolyte complexes.^{13,17}

417 The scattering profile for the doped sample was different from those obtained for the undoped
418 samples. In doped samples for $c = 0.1$ and 0.5M , upturns were noticed in the $q < 0.015$, followed
419 by broad shoulder-like scattering features in $0.015 < q < 0.1 \text{ \AA}^{-1}$. For samples with a salt
420 concentration between 1.0 to 6.0 M, upturns were noticed in the $q < 0.009 \text{ \AA}^{-1}$, while broad
421 shoulder-like scattering features were seen in $0.009 < q < 0.1 \text{ \AA}^{-1}$, where the scattering profiles were
422 similar and showed only different absolute intensities. If the shoulder-like scattering observed in
423 the high- q region is associated with the conformation of the complexes (assumed to be semirigid
424 worm-like chain conformation), the low- q upturn is with the aggregation of such complexes. On
425 the other hand, the scattering plateaus seen in the $0.1 < q < 0.6 \text{ \AA}^{-1}$ are associated with the
426 incoherent (background) scattering where the scattering intensity increases with increasing salt.

427 The similarity in the shoulder-like scattering indicates that the chain conformations (structure)
428 are not significantly different. An increase in scattering intensity was observed up to $c = 2.0\text{M}$, and
429 a further increase in salt concentration showed a slight decrease in intensity. We hypothesize that
430 PECs for c up to 2.0M have a more defined polymer-rich phase due to the osmotic ejection of
431 water from PECs. The ejection of water increases the polymer concentration and hence electron
432 density contrast between the polymer-rich phase and solvent, leading to the increased intensity.
433 This agrees with the observation from the phase diagram, which displayed a decrease in polymer
434 concentration when the added $c > 2.0\text{M}$. Similarly, rheological tests also displayed an increase in
435 shear modulus when $c < 2.0\text{M}$, and the modulus was decreased with a further increase in salt.

436 A combined power-law and worm-like chain (WLC) model was used to fit the data for the doped
437 samples (Figure 8 and Figure S6).^{76,77} Similar to many biological samples, the application of the

438 WLC model that considers a semiflexible (or semirigid) polymer chain is appropriate here.^{71,78}

439 Power-law model captures the low- q upturn in SAXS curves, and the WLC model captures the
440 subsequent q range associated with the chain conformation of the semirigid (semiflexible)
441 polyelectrolytes.

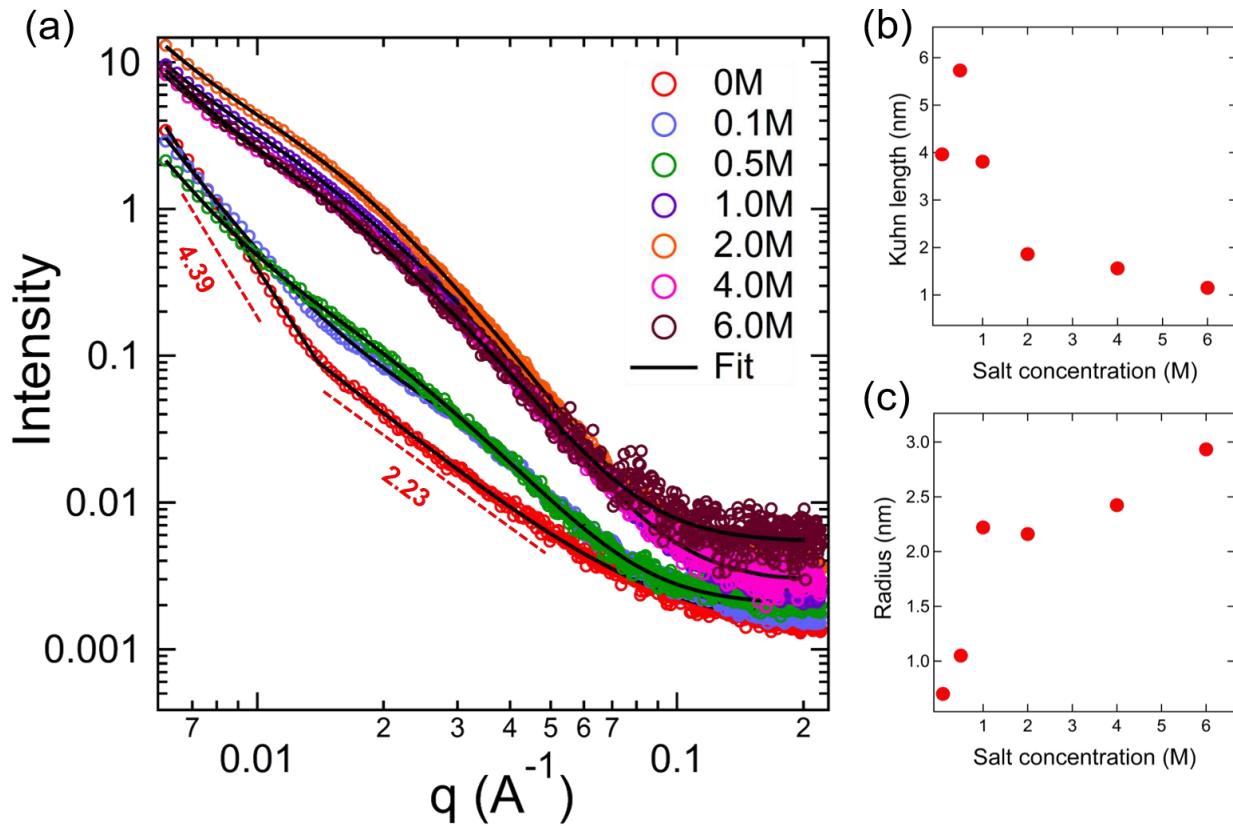
442 The scattering of semiflexible chain with excluded volume effects with Kuhn length (b), contour
443 length (L), and polydisperse radius (R) is given by⁷⁶

444
$$I(q, L, b, R) = f_s S(q, L, b)(P(q, R))$$

445 Where, f_s is a scaling factor, $S(q, L, b)$ is the scattering function of a single semiflexible chain with
446 excluded volume effects and $P(q, R)$ is the scattering function of the rigid rod (alginate and
447 chitosan associated structure) of radius, R .

448
$$P(q, R) = \left[\frac{2J_1(qR)}{qR} \right]^2$$

449 And $S(q, L, b)$ is given by


450
$$S(q, L, b) = S_{exv}(q, L, b) + C \left(\frac{L}{b} \right) \left[\frac{4}{15} + \frac{7}{15u} - \left(\frac{11}{15} + \frac{7}{15u} \right) \exp(-u) \right] \frac{b}{L}$$

451 where

452
$$S_{exv}(q, l, b) = w(qR_g) S_{Debye}(q, L, b) + [W(qR_g)] \left[C_1(qR_g)^{\frac{-1}{\gamma\nu}} \right]$$

453 Kuhn length and radius obtained from WLC model fit (Figure S6) are shown in Figure 8b-c.
454 Beyond $c = 0.5M$, a clear trend of an increase in radius and a decrease in Kuhn length with
455 increasing c can be noticed. These observations further support our hypothesis that doping forms
456 extrinsic ion pairs, which can cause higher local mobility attributing to the increase in chain
457 flexibility, shown by the decrease in Kuhn length; and favor the formation of a "looser ladder"
458 type association between polyelectrolytes causing an increase in radius.

459

460

461 **Figure 8.** Scattering data from SAXS experiment (a) scattering intensity as a function of q .
462 Parameters obtained from the fitting using WLC model (b) Kuhn length and (c) cylinder radius as
463 a function of salt concentration.

464

465 CONCLUSIONS

466 In summary, we have reported the salt-driven phase behavior, microstructure, and rheological
467 properties of PEC prepared from two oppositely charged natural polymers, alginate and chitosan.
468 We attempted to understand the salt-induced phase behavior in natural polyelectrolyte systems.
469 The PECs showed two-phase solid-liquid separation at all salt concentrations studied. This
470 behavior is unique compared to the usually seen salt-driven solid-to-liquid transition in synthetic
471 polyelectrolyte systems. The lack of liquid-liquid phase transition is attributed to the slightly

472 hydrophobic nature of chitosan and resistance to conformational change at high salt concentrations
473 for longer, semiflexible chains. The structure formed by the electrostatic interactions between the
474 oppositely charged alginate and chitosan chains underwent changes due to the addition of salt. The
475 complexes obtained displayed a tunable shear modulus with changing salt concentrations. With
476 increasing salt concentration, the samples displayed a salt-stiffening behavior with an increase in
477 shear modulus, which has been attributed to the loss of water. Beyond a certain limit in the salt
478 concentration, the shear modulus of the complex phase decreased due to the breakage of intrinsic
479 ion pairs formed between the polyelectrolytes. This agrees with the increase in chain flexibility
480 with the addition of salt shown by the value of Kuhn length obtained from SAXS analysis. The
481 results presented here provide insights into the salt-induced complexation phenomenon in natural
482 polyelectrolytes, which can potentially help us elucidate the structure-property relationship of the
483 PECs. Such understanding can be useful for applications of natural PEs in bioprinting, drug
484 delivery, and other applications.

485 ASSOCIATED CONTENT

486 **Supporting Information.**

487 Kraemer plot of inherent viscosity vs. concentration; table showing Mark-Houwink constants
488 and estimated molecular weights for alginate and chitosan; FTIR spectra and % DD estimation for
489 chitosan; images showing phase separation using different salts; $\tan \delta$ for complex phase with
490 different NaCl concentration; SAXS fitting for doped and undoped samples.

491

492

493 AUTHOR INFORMATION

494 Corresponding Author

495 Santanu Kundu – Dave C Swalm School of Chemical Engineering, Mississippi State University,
496 Mississippi State, MS 39762, United States.

497 Email: santanukundu@che.msstate.edu

498

499 Authors

500 Anandavalli Varadarajan – Dave C Swalm School of Chemical Engineering, Mississippi State
501 University, Mississippi State, MS 39762, USA.

502 Logan T Kearney – Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge ,
503 TN 37831 , USA

504 Jong K. Keum – Neutron Scattering Science Division and Center for Nanophase Materials
505 Sciences, Oak Ridge National Laboratory, Oak Ridge , TN 37831 , USA

506 Amit K Naskar – Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge , TN
507 37831 , USA

508 Author Contributions

509 A.V. and S.K. designed the experiments and conducted data analysis and interpretation. A.V.
510 conducted the experiments. S.K. conceptualized and oversaw the research. L.K., J.K., and A.N.
511 performed the SAXS experiments and analyzed the data. The manuscript was written by A.V. and
512 S.K. and included feedback from all authors. All authors have approved the final version of the
513 manuscript.

514 Funding Sources

515 AV and SK would like to acknowledge funding support from National Science Foundation
516 [DMR-2004501]. LTK and AKN acknowledge support from US Department of Energy, Office of
517 Science, Basic Energy Sciences, Materials Sciences and Engineering Division [FWP# ERKCK60]
518 for SAXS data collection with polyelectrolyte gels. The SAXS facility has been developed at Oak
519 Ridge National Laboratory (ORNL) under Laboratory Directed Research and Development
520 program. JKK used the resource of Center for Nanophase Materials Sciences (CNMS), which is a
521 US Department of Energy, Office of Science User Facility at ORNL.

522 Notes

523 Any additional relevant notes should be placed here.

524

525

526

527 **References**

528 (1) Dobrynin, A. V.; Rubinstein, M. Theory of Polyelectrolytes in Solutions and at Surfaces.
529 *Prog. Polym. Sci.* **2005**, *30* (11), 1049–1118. <https://doi.org/10.1016/j.progpolymsci.2005.07.006>.

530 (2) Cazorla-Luna, R.; Martín-Illana, A.; Notario-Pérez, F.; Ruiz-Caro, R.; Veiga, M.-D.
531 Naturally Occurring Polyelectrolytes and Their Use for the Development of Complex-Based
532 Mucoadhesive Drug Delivery Systems: An Overview. *Polymers* **2021**, *13* (14), 2241.
533 <https://doi.org/10.3390/polym13142241>.

534 (3) Schanze, K. S.; Shelton, A. H. Functional Polyelectrolytes. *Langmuir* **2009**, *25* (24),
535 13698–13702. <https://doi.org/10.1021/la903785g>.

536 (4) Meka, V. S.; Sing, M. K. G.; Pichika, M. R.; Nali, S. R.; Kolapalli, V. R. M.; Kesharwani,
537 P. A Comprehensive Review on Polyelectrolyte Complexes. *Drug Discov. Today* **2017**, *22* (11),
538 1697–1706. <https://doi.org/10.1016/j.drudis.2017.06.008>.

539 (5) Moschakis, T.; Biliaderis, C. G. Biopolymer-Based Coacervates: Structures, Functionality
540 and Applications in Food Products. *Curr. Opin. Colloid Interface Sci.* **2017**, *28*, 96–109.
541 <https://doi.org/10.1016/j.cocis.2017.03.006>.

542 (6) Black, K. A.; Priftis, D.; Perry, S. L.; Yip, J.; Byun, W. Y.; Tirrell, M. Protein
543 Encapsulation via Polypeptide Complex Coacervation. *ACS Macro Lett.* **2014**, *3* (10), 1088–1091.
544 <https://doi.org/10.1021/mz500529v>.

545 (7) Liu, Y.; Momani, B.; Winter, H. H.; Perry, S. L. Rheological Characterization of Liquid-
546 to-Solid Transitions in Bulk Polyelectrolyte Complexes. *Soft Matter* **2017**, *13* (40), 7332–7340.
547 <https://doi.org/10.1039/C7SM01285C>.

548 (8) Liu, Y.; Winter, H. H.; Perry, S. L. Linear Viscoelasticity of Complex Coacervates.

549 *Complex Coacervation Princ. Appl.* **2017**, *239*, 46–60. <https://doi.org/10.1016/j.cis.2016.08.010>.

550 (9) Chollakup, R.; Smithipong, W.; Eisenbach, C. D.; Tirrell, M. Phase Behavior and

551 Coacervation of Aqueous Poly(Acrylic Acid)–Poly(Allylamine) Solutions. *Macromolecules* **2010**,

552 *43* (5), 2518–2528. <https://doi.org/10.1021/ma902144k>.

553 (10) Wang, Q.; Schlenoff, J. B. The Polyelectrolyte Complex/Coacervate Continuum.

554 *Macromolecules* **2014**, *47* (9), 3108–3116. <https://doi.org/10.1021/ma500500q>.

555 (11) Jha, P. K.; Desai, P. S.; Li, J.; Larson, R. G. PH and Salt Effects on the Associative Phase

556 Separation of Oppositely Charged Polyelectrolytes. *Polymers* **2014**, *6* (5), 1414–1436.

557 <https://doi.org/10.3390/polym6051414>.

558 (12) Perry, S. L.; Li, Y.; Priftis, D.; Leon, L.; Tirrell, M. The Effect of Salt on the Complex

559 Coacervation of Vinyl Polyelectrolytes. *Polymers* **2014**, *6* (6), 1756–1772.

560 <https://doi.org/10.3390/polym6061756>.

561 (13) Meng, S.; Ting, J. M.; Wu, H.; Tirrell, M. V. Solid-to-Liquid Phase Transition in

562 Polyelectrolyte Complexes. *Macromolecules* **2020**, *53* (18), 7944–7953.

563 <https://doi.org/10.1021/acs.macromol.0c00930>.

564 (14) Nguyen, M.; Sherck, N.; Shen, K.; Edwards, C. E. R.; Yoo, B.; Köhler, S.; Speros, J. C.;

565 Helgeson, M. E.; Delaney, K. T.; Shell, M. S.; Fredrickson, G. H. Predicting Polyelectrolyte

566 Coacervation from a Molecularly Informed Field-Theoretic Model. *Macromolecules* **2022**, *55*

567 (21), 9868–9879. <https://doi.org/10.1021/acs.macromol.2c01759>.

568 (15) Fares, H. M.; Ghoussoub, Y. E.; Delgado, J. D.; Fu, J.; Urban, V. S.; Schlenoff, J. B.

569 Scattering Neutrons along the Polyelectrolyte Complex/Coacervate Continuum. *Macromolecules*

570 **2018**, *51* (13), 4945–4955. <https://doi.org/10.1021/acs.macromol.8b00699>.

571 (16) Spruijt, E.; Leermakers, F. A. M.; Fokkink, R.; Schweins, R.; van Well, A. A.; Cohen

572 Stuart, M. A.; van der Gucht, J. Structure and Dynamics of Polyelectrolyte Complex Coacervates

573 Studied by Scattering of Neutrons, X-Rays, and Light. *Macromolecules* **2013**, *46* (11), 4596–4605.

574 <https://doi.org/10.1021/ma400132s>.

575 (17) B. Marciel, A.; Srivastava, S.; V. Tirrell, M. Structure and Rheology of Polyelectrolyte

576 Complex Coacervates. *Soft Matter* **2018**, *14* (13), 2454–2464.

577 <https://doi.org/10.1039/C7SM02041D>.

578 (18) Schmitt, C.; Turgeon, S. L. Protein/Polysaccharide Complexes and Coacervates in Food

579 Systems. *Polyelectrolyte-Macroion Coacervation* **2011**, *167* (1), 63–70.

580 <https://doi.org/10.1016/j.cis.2010.10.001>.

581 (19) Moss, J. M.; Van Damme, M.-P. I.; Murphy, W. H.; Preston, B. N. Dependence of Salt

582 Concentration on Glycosaminoglycan–Lysozyme Interactions in Cartilage. *Arch. Biochem.*

583 *Biophys.* **1997**, *348* (1), 49–55. <https://doi.org/10.1006/abbi.1997.0365>.

584 (20) Seyrek, E.; Dubin, P. L.; Henriksen, J. Nonspecific electrostatic binding characteristics of

585 the heparin-antithrombin interaction. *Biopolymers* **2007**, *86* (3), 249–259.

586 <https://doi.org/10.1002/bip.20731>.

587 (21) Zhao, H.; Sun, C.; Stewart, R. J.; Waite, J. H. Cement Proteins of the Tube-Building
588 Polychaete *Phragmatopoma californica*. *J. Biol. Chem.* **2005**, *280* (52), 42938–42944.
589 <https://doi.org/10.1074/jbc.M508457200>.

590 (22) Lalevée, G.; David, L.; Montembault, A.; Blanchard, K.; Meadows, J.; Malaise, S.; Crépet,
591 A.; Grillo, I.; Morfin, I.; Delair, T.; Sudre, G. Highly Stretchable Hydrogels from Complex
592 Coacervation of Natural Polyelectrolytes. *Soft Matter* **2017**, *13* (37), 6594–6605.
593 <https://doi.org/10.1039/C7SM01215B>.

594 (23) Shi, X.; Du, Y.; Sun, L.; Zhang, B.; Dou, A. Polyelectrolyte Complex Beads Composed of
595 Water-Soluble Chitosan/Alginate: Characterization and Their Protein Release Behavior. *J. Appl.*
596 *Polym. Sci.* **2006**, *100* (6), 4614–4622. <https://doi.org/10.1002/app.23021>.

597 (24) Afzal, S.; Maswal, M.; Dar, A. A. Rheological Behavior of PH Responsive Composite
598 Hydrogels of Chitosan and Alginate: Characterization and Its Use in Encapsulation of Citral.
599 *Colloids Surf. B Biointerfaces* **2018**, *169*, 99–106. <https://doi.org/10.1016/j.colsurfb.2018.05.002>.

600 (25) Baruch, L.; Machluf, M. Alginate–Chitosan Complex Coacervation for Cell
601 Encapsulation: Effect on Mechanical Properties and on Long-Term Viability. *Biopolymers* **2006**,
602 *82* (6), 570–579. <https://doi.org/10.1002/bip.20509>.

603 (26) Kim, H.-J.; Lee, H.-C.; Oh, J.-S.; Shin, B.-A.; Oh, C.-S.; Park, R.-D.; Yang, K.-S.; Cho,
604 C.-S. Polyelectrolyte Complex Composed of Chitosan and Sodium Alginate for Wound Dressing
605 Application. *J. Biomater. Sci. Polym. Ed.* **1999**, *10* (5), 543–556.
606 <https://doi.org/10.1163/156856299X00478>.

607 (27) Meng, X.; Tian, F.; Yang, J.; He, C.-N.; Xing, N.; Li, F. Chitosan and Alginate
608 Polyelectrolyte Complex Membranes and Their Properties for Wound Dressing Application. *J.*
609 *Mater. Sci. Mater. Med.* **2010**, *21* (5), 1751–1759. <https://doi.org/10.1007/s10856-010-3996-6>.

610 (28) Hashemnejad, S. M.; Kundu, S. Strain Stiffening and Negative Normal Stress in Alginate
611 Hydrogels. *J. Polym. Sci. Part B Polym. Phys.* **2016**, *54* (17), 1767–1775.
612 <https://doi.org/10.1002/polb.24081>.

613 (29) Hashemnejad, S. M.; Kundu, S. Rheological Properties and Failure of Alginate Hydrogels
614 with Ionic and Covalent Crosslinks. *Soft Matter* **2019**, *15* (39), 7852–7862.
615 <https://doi.org/10.1039/C9SM01039D>.

616 (30) Lee, K. Y.; Mooney, D. J. Alginate: Properties and Biomedical Applications. *Prog. Polym.*
617 *Sci.* **2012**, *37* (1), 106–126. <https://doi.org/10.1016/j.progpolymsci.2011.06.003>.

618 (31) Knaul, J. Z.; Kasaai, M. R.; Bui, V. T.; Creber, K. A. M. Characterization of Deacetylated
619 Chitosan and Chitosan Molecular Weight Review. *Can. J. Chem.* **1998**, *76* (11), 1699–1706.
620 <https://doi.org/10.1139/cjc-76-11-1699>.

621 (32) Boucard, N.; David, L.; Rochas, C.; Montembault, A.; Viton, C.; Domard, A.
622 Polyelectrolyte Microstructure in Chitosan Aqueous and Alcohol Solutions. *Biomacromolecules*
623 **2007**, *8* (4), 1209–1217. <https://doi.org/10.1021/bm060911m>.

624 (33) Yilmaz, T.; Maldonado, L.; Turasan, H.; Kokini, J. Thermodynamic Mechanism of
625 Particulation of Sodium Alginate and Chitosan Polyelectrolyte Complexes as a Function of Charge
626 Ratio and Order of Addition. *J. Food Eng.* **2019**, *254*, 42–50.
627 <https://doi.org/10.1016/j.jfoodeng.2019.03.002>.

628 (34) Nalini, T.; Basha, S. K.; Mohamed Sadiq, A. M.; Kumari, V. S.; Kaviyarasu, K.
629 Development and Characterization of Alginate / Chitosan Nanoparticulate System for
630 Hydrophobic Drug Encapsulation. *J. Drug Deliv. Sci. Technol.* **2019**, *52*, 65–72.
631 <https://doi.org/10.1016/j.jddst.2019.04.002>.

632 (35) Phoeung, T.; Spanedda, M. V.; Roger, E.; Heurtault, B.; Fournel, S.; Reisch, A.; Mutschler,
633 A.; Perrin-Schmitt, F.; Hemmerlé, J.; Collin, D.; Rawiso, M.; Boulmedais, F.; Schaaf, P.; Lavalle,
634 P.; Frisch, B. Alginate/Chitosan Compact Polyelectrolyte Complexes: A Cell and Bacterial
635 Repellent Material. *Chem. Mater.* **2017**, *29* (24), 10418–10425.
636 <https://doi.org/10.1021/acs.chemmater.7b03863>.

637 (36) Costa, R. R.; Costa, A. M. S.; Caridade, S. G.; Mano, J. F. Compact Saloplastic Membranes
638 of Natural Polysaccharides for Soft Tissue Engineering. *Chem. Mater.* **2015**, *27* (21), 7490–7502.
639 <https://doi.org/10.1021/acs.chemmater.5b03648>.

640 (37) Costalat, M.; Alcouffe, P.; David, L.; Delair, T. Controlling the Complexation of
641 Polysaccharides into Multi-Functional Colloidal Assemblies for Nanomedicine. *J. Colloid
642 Interface Sci.* **2014**, *430*, 147–156. <https://doi.org/10.1016/j.jcis.2014.05.039>.

643 (38) Costalat, M.; Alcouffe, P.; David, L.; Delair, T. Macro-Hydrogels versus Nanoparticles by
644 the Controlled Assembly of Polysaccharides. *Carbohydr. Polym.* **2015**, *134*, 541–546.
645 <https://doi.org/10.1016/j.carbpol.2015.07.071>.

646 (39) Ewoldt, R. H.; Hosoi, A. E.; McKinley, G. H. New Measures for Characterizing Nonlinear
647 Viscoelasticity in Large Amplitude Oscillatory Shear. *J. Rheol.* **2008**, *52* (6), 1427–1458.
648 <https://doi.org/10.1122/1.2970095>.

649 (40) Rinaudo, M. On the Abnormal Exponents Av and AD in Mark Houwink Type Equations
650 for Worm-like Chain Polysaccharides. *Polym. Bull.* **1992**, *27* (5), 585–589.
651 <https://doi.org/10.1007/BF00300608>.

652 (41) Kasaai, M. R. Calculation of Mark–Houwink–Sakurada (MHS) Equation Viscometric
653 Constants for Chitosan in Any Solvent–Temperature System Using Experimental Reported
654 Viscometric Constants Data. *Carbohydr. Polym.* **2007**, *68* (3), 477–488.
655 <https://doi.org/10.1016/j.carbpol.2006.11.006>.

656 (42) Kasaai, M. R. Determination of the Degree of N-Acetylation for Chitin and Chitosan by
657 Various NMR Spectroscopy Techniques: A Review. *Carbohydr. Polym.* **2010**, *79* (4), 801–810.
658 <https://doi.org/10.1016/j.carbpol.2009.10.051>.

659 (43) Moore, G. K.; Roberts, G. A. F. Determination of the Degree of N-Acetylation of Chitosan.
660 *Int. J. Biol. Macromol.* **1980**, *2* (2), 115–116. [https://doi.org/10.1016/0141-8130\(80\)90040-9](https://doi.org/10.1016/0141-8130(80)90040-9).

661 (44) Kasaai, M. R. A Review of Several Reported Procedures to Determine the Degree of N-
662 Acetylation for Chitin and Chitosan Using Infrared Spectroscopy. *Carbohydr. Polym.* **2008**, *71*
663 (4), 497–508. <https://doi.org/10.1016/j.carbpol.2007.07.009>.

664 (45) Shamoun, R. F.; Reisch, A.; Schlenoff, J. B. Extruded Saloplastic Polyelectrolyte
665 Complexes. *Adv. Funct. Mater.* **2012**, *22* (9), 1923–1931.
666 <https://doi.org/10.1002/adfm.201102787>.

667 (46) Li, L.; Rumyantsev, A. M.; Srivastava, S.; Meng, S.; de Pablo, J. J.; Tirrell, M. V. Effect
668 of Solvent Quality on the Phase Behavior of Polyelectrolyte Complexes. *Macromolecules* **2021**,
669 *54* (1), 105–114. <https://doi.org/10.1021/acs.macromol.0c01000>.

670 (47) Ghasemi, M.; Larson, R. G. Future Directions in Physiochemical Modeling of the
671 Thermodynamics of Polyelectrolyte Coacervates. *AIChE J.* **2022**, *68* (5), e17646.
672 <https://doi.org/10.1002/aic.17646>.

673 (48) Li, L.; Srivastava, S.; Andreev, M.; Marciel, A. B.; de Pablo, J. J.; Tirrell, M. V. Phase
674 Behavior and Salt Partitioning in Polyelectrolyte Complex Coacervates. *Macromolecules* **2018**, *51*
675 (8), 2988–2995. <https://doi.org/10.1021/acs.macromol.8b00238>.

676 (49) Rabelo, R. S.; Tavares, G. M.; Prata, A. S.; Hubinger, M. D. Complexation of Chitosan
677 with Gum Arabic, Sodium Alginate and κ -Carrageenan: Effects of PH, Polymer Ratio and Salt
678 Concentration. *Carbohydr. Polym.* **2019**, *223*, 115120.
679 <https://doi.org/10.1016/j.carbpol.2019.115120>.

680 (50) Carneiro-da-Cunha, M. G.; Cerqueira, M. A.; Souza, B. W. S.; Teixeira, J. A.; Vicente, A.
681 A. Influence of Concentration, Ionic Strength and PH on Zeta Potential and Mean Hydrodynamic
682 Diameter of Edible Polysaccharide Solutions Envisaged for Multinanolayered Films Production.
683 *Carbohydr. Polym.* **2011**, *85* (3), 522–528. <https://doi.org/10.1016/j.carbpol.2011.03.001>.

684 (51) Fu, J.; Fares, H. M.; Schlenoff, J. B. Ion-Pairing Strength in Polyelectrolyte Complexes.
685 *Macromolecules* **2017**, *50* (3), 1066–1074. <https://doi.org/10.1021/acs.macromol.6b02445>.

686 (52) Geoghegan, M. The Swelling of Weak Polyelectrolytes at Low Salt Concentrations in
687 Dilute Solution. *Polymer* **2017**, *112*, 414–417. <https://doi.org/10.1016/j.polymer.2017.02.034>.

688 (53) Zhang, J.; Kou, R.; Liu, G. Effect of Salt Concentration on the PH Responses of Strong
689 and Weak Polyelectrolyte Brushes. *Langmuir* **2017**, *33* (27), 6838–6845.
690 <https://doi.org/10.1021/acs.langmuir.7b01395>.

691 (54) Overbeek, J. T. G.; Voorn, M. J. Phase Separation in Polyelectrolyte Solutions. Theory of
692 Complex Coacervation. *J. Cell. Comp. Physiol.* **1957**, *49* (S1), 7–26.
693 <https://doi.org/10.1002/jcp.1030490404>.

694 (55) Ghostine, R. A.; Shamoun, R. F.; Schlenoff, J. B. Doping and Diffusion in an Extruded
695 Saloplastic Polyelectrolyte Complex. *Macromolecules* **2013**, *46* (10), 4089–4094.
696 <https://doi.org/10.1021/ma4004083>.

697 (56) Dautzenberg, H.; Kriz, J. Response of Polyelectrolyte Complexes to Subsequent Addition
698 of Salts with Different Cations. *Langmuir* **2003**, *19* (13), 5204–5211.
699 <https://doi.org/10.1021/la0209482>.

700 (57) Yang, M.; Digby, Z. A.; Schlenoff, J. B. Precision Doping of Polyelectrolyte Complexes:
701 Insight on the Role of Ions. *Macromolecules* **2020**, *53* (13), 5465–5474.
702 <https://doi.org/10.1021/acs.macromol.0c00965>.

703 (58) Schlenoff, J. B.; Yang, M.; Digby, Z. A.; Wang, Q. Ion Content of Polyelectrolyte Complex
704 Coacervates and the Donnan Equilibrium. *Macromolecules* **2019**, *52* (23), 9149–9159.
705 <https://doi.org/10.1021/acs.macromol.9b01755>.

706 (59) Spruijt, E.; Cohen Stuart, M. A.; van der Gucht, J. Linear Viscoelasticity of Polyelectrolyte
707 Complex Coacervates. *Macromolecules* **2013**, *46* (4), 1633–1641.
708 <https://doi.org/10.1021/ma301730n>.

709 (60) Porcel, C. H.; Schlenoff, J. B. Compact Polyelectrolyte Complexes: "Saloplastic"
710 Candidates for Biomaterials. *Biomacromolecules* **2009**, *10* (11), 2968–2975.
711 <https://doi.org/10.1021/bm900373c>.

712 (61) Zhang, R.; Zhang, Y.; Antila, H. S.; Lutkenhaus, J. L.; Sammalkorpi, M. Role of Salt and
713 Water in the Plasticization of PDAC/PSS Polyelectrolyte Assemblies. *J. Phys. Chem. B* **2017**, *121*
714 (1), 322–333. <https://doi.org/10.1021/acs.jpcb.6b12315>.

715 (62) Hyun, K.; Wilhelm, M.; Klein, C. O.; Cho, K. S.; Nam, J. G.; Ahn, K. H.; Lee, S. J.; Ewoldt,
716 R. H.; McKinley, G. H. A Review of Nonlinear Oscillatory Shear Tests: Analysis and Application
717 of Large Amplitude Oscillatory Shear (LAOS). *Prog. Polym. Sci.* **2011**, *36* (12), 1697–1753.

718 (63) Hashemnejad, S. M.; Kundu, S. Nonlinear Elasticity and Cavitation of a Triblock
719 Copolymer Gel. *Soft Matter* **2015**, *11* (21), 4315–4325. <https://doi.org/10.1039/C5SM00330J>.

720 (64) Kőkuti, Z.; Völker-Pop, L.; Brandstätter, M.; Kokavec, J.; Ailer, P.; Palkovics, L.; Szabó,
721 G.; Czirják, A. Exploring the Nonlinear Viscoelasticity of a High Viscosity Silicone Oil with Laos.
722 *Appl. Rheol.* **2016**, *26* (1), 1–9. <https://doi.org/10.3933/aplrheol-26-14289>.

723 (65) Carmona, J. A.; Ramírez, P.; Calero, N.; Muñoz, J. Large Amplitude Oscillatory Shear of
724 Xanthan Gum Solutions. Effect of Sodium Chloride (NaCl) Concentration. *J. Food Eng.* **2014**,
725 *126*, 165–172. <https://doi.org/10.1016/j.jfoodeng.2013.11.009>.

726 (66) Duvarci, O. C.; Yazar, G.; Kokini, J. L. The Comparison of LAOS Behavior of Structured
727 Food Materials (Suspensions, Emulsions and Elastic Networks). *Trends Food Sci. Technol.* **2017**,
728 *60*, 2–11. <https://doi.org/10.1016/j.tifs.2016.08.014>.

729 (67) Papon, A.; Montes, H.; Lequeux, F.; Guy, L. Nonlinear Rheology of Model Filled
730 Elastomers. *J. Polym. Sci. Part B Polym. Phys.* **2010**, *48* (23), 2490–2496.
731 <https://doi.org/10.1002/polb.22151>.

732 (68) Goudoulas, T. B.; Germann, N. Phase Transition Kinetics and Rheology of Gelatin-
733 Alginate Mixtures. *Food Hydrocoll.* **2017**, *66*, 49–60.
734 <https://doi.org/10.1016/j.foodhyd.2016.12.018>.

735 (69) Mishra, S.; Badani Prado, R. M.; Kundu, S. Concentration-Dependent Mechanical
736 Behavior of Physically Assembled Triblock Copolymer Gels. *ACS Appl. Polym. Mater.* **2020**, *2*
737 (12), 5388–5397. <https://doi.org/10.1021/acsapm.0c00583>.

738 (70) Mishra, S.; Prado, R. M. B.; Lacy, T. E.; Kundu, S. Investigation of Failure Behavior of a
739 Thermoplastic Elastomer Gel. *Soft Matter* **2018**, *14* (39), 7958–7969.
740 <https://doi.org/10.1039/C8SM01397G>.

741 (71) Josef, E.; Bianco-Peled, H. Conformation of a Natural Polyelectrolyte in Semidilute
742 Solutions with No Added Salt. *Soft Matter* **2012**, *8* (35), 9156–9165.
743 <https://doi.org/10.1039/C2SM25733E>.

744 (72) Lalevée, G.; Sudre, G.; Montembault, A.; Meadows, J.; Malaise, S.; Crépet, A.; David, L.;
745 Delair, T. Polyelectrolyte Complexes via Desalting Mixtures of Hyaluronic Acid and Chitosan—
746 Physicochemical Study and Structural Analysis. *Carbohydr. Polym.* **2016**, *154*, 86–95.
747 <https://doi.org/10.1016/j.carbpol.2016.08.007>.

748 (73) Yethiraj, A.; Shew, C.-Y. Structure of Polyelectrolyte Solutions. *Phys. Rev. Lett.* **1996**, *77*
749 (18), 3937–3940. <https://doi.org/10.1103/PhysRevLett.77.3937>.

750 (74) Prabhu, V. M.; Amis, E. J.; Bossev, D. P.; Rosov, N. Counterion Associative Behavior
751 with Flexible Polyelectrolytes. *J. Chem. Phys.* **2004**, *121* (9), 4424–4429.
752 <https://doi.org/10.1063/1.1776556>.

753 (75) Chremos, A.; Horkay, F. Disappearance of the Polyelectrolyte Peak in Salt-Free Solutions.

754 *Phys. Rev. E* **2020**, *102* (1), 012611. <https://doi.org/10.1103/PhysRevE.102.012611>.

755 (76) Shao, M.; Keum, J. K.; Kumar, R.; Chen, J.; Browning, J. F.; Das, S.; Chen, W.; Hou, J.;

756 Do, C.; Littrell, K. C.; Rondinone, A.; Geohegan, D. B.; Sumpter, B. G.; Xiao, K. Understanding

757 How Processing Additives Tune the Nanoscale Morphology of High Efficiency Organic

758 Photovoltaic Blends: From Casting Solution to Spun-Cast Thin Film. *Adv. Funct. Mater.* **2014**, *24*

759 (42), 6647–6657. <https://doi.org/10.1002/adfm.201401547>.

760 (77) Das, S.; Keum, J. K.; Browning, J. F.; Gu, G.; Yang, B.; Dyck, O.; Do, C.; Chen, W.; Chen,

761 J.; Ivanov, I. N.; Hong, K.; Rondinone, A. J.; Joshi, P. C.; Geohegan, D. B.; Duscher, G.; Xiao, K.

762 Correlating High Power Conversion Efficiency of PTB7:PC71BM Inverted Organic Solar Cells

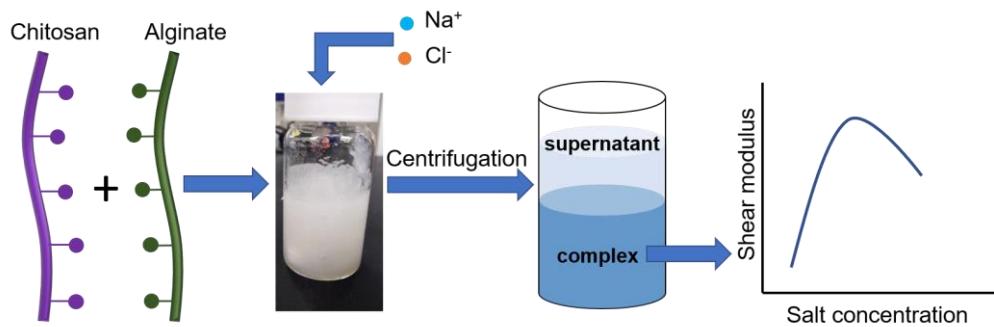
763 with Nanoscale Structures. *Nanoscale* **2015**, *7* (38), 15576–15583.

764 <https://doi.org/10.1039/C5NR03332B>.

765 (78) Kratky, O.; Porod, G. Röntgenuntersuchung Gelöster Fadenmoleküle. *Recl. Trav. Chim.*

766 *Pays-Bas* **1949**, *68* (12), 1106–1122.

767


768

769

770

771

772

Supporting Information

Effects of Salt on Phase Behavior and Rheological Properties of Alginate-Chitosan Polyelectrolyte Complexes

Anandavalli Varadarajan¹, Logan T Kearney², Jong K. Keum³, Amit K Naskar², Santanu

*Kundu¹**

¹Dave C Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762, USA.

²Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

³Neutron Scattering Science Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

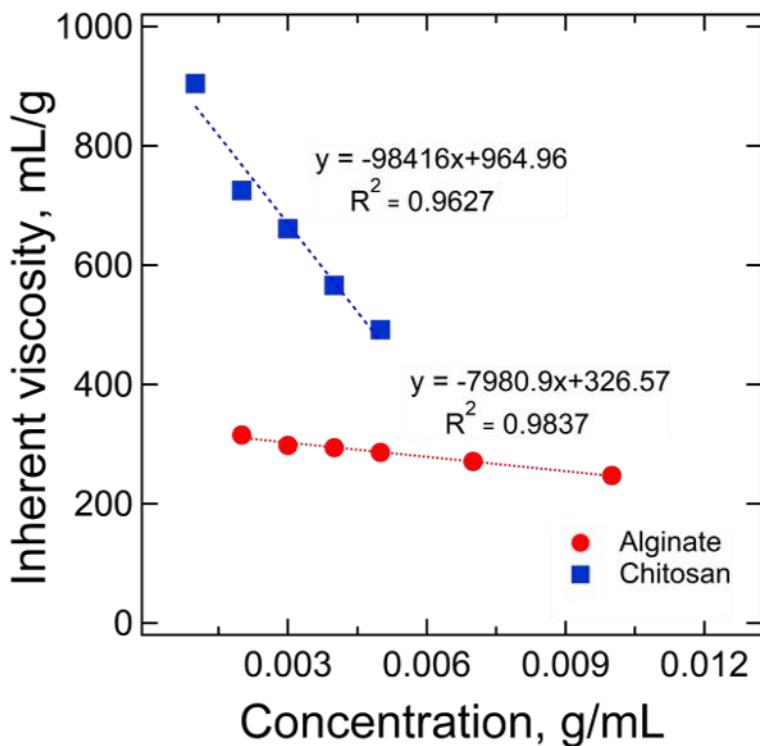


Figure S1. Kraemer plot showing inherent viscosity vs. concentration for alginate and chitosan solutions. Here, the inherent viscosity (η_{inh}) is defined as $\eta_{inh} = \frac{\ln \eta_r}{c}$, and relative viscosity (η_r) is defined as $\eta_r = \frac{\text{efflux time for solution}}{\text{efflux time of solvent}}$. Fitting inherent viscosity provides the intrinsic viscosity (intercept).

Table S1. Molecular weight of alginate and chitosan calculated using Mark-Houwink equation

	$[\eta]$ mL/g	K' (mL/g)	a	M (kg/mol)
Chitosan	964.96	0.074 ^{1,2}	0.76 ^{1,2}	260
Alginate	326.57	0.002 ^{3,4}	0.97 ^{3,4}	237

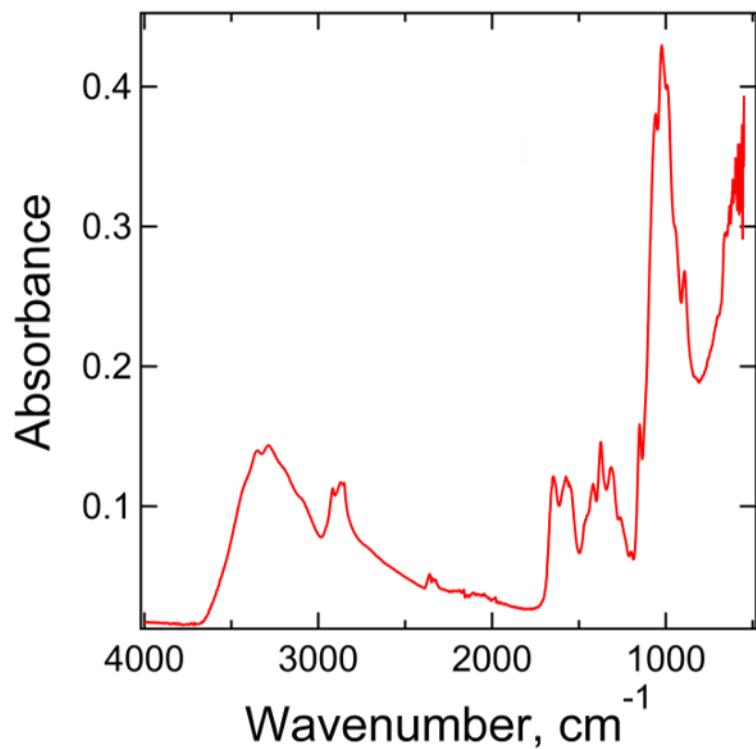


Figure S2. FTIR spectra for chitosan

Degree of Deacetylation of chitosan was estimated by,^{5,6}

$$\text{DD} = \left(\frac{A_{1655}}{A_{3450}} \right) * \left(\frac{100}{1.33} \right)$$

$$\% \text{ DD} = 81.74 \%$$

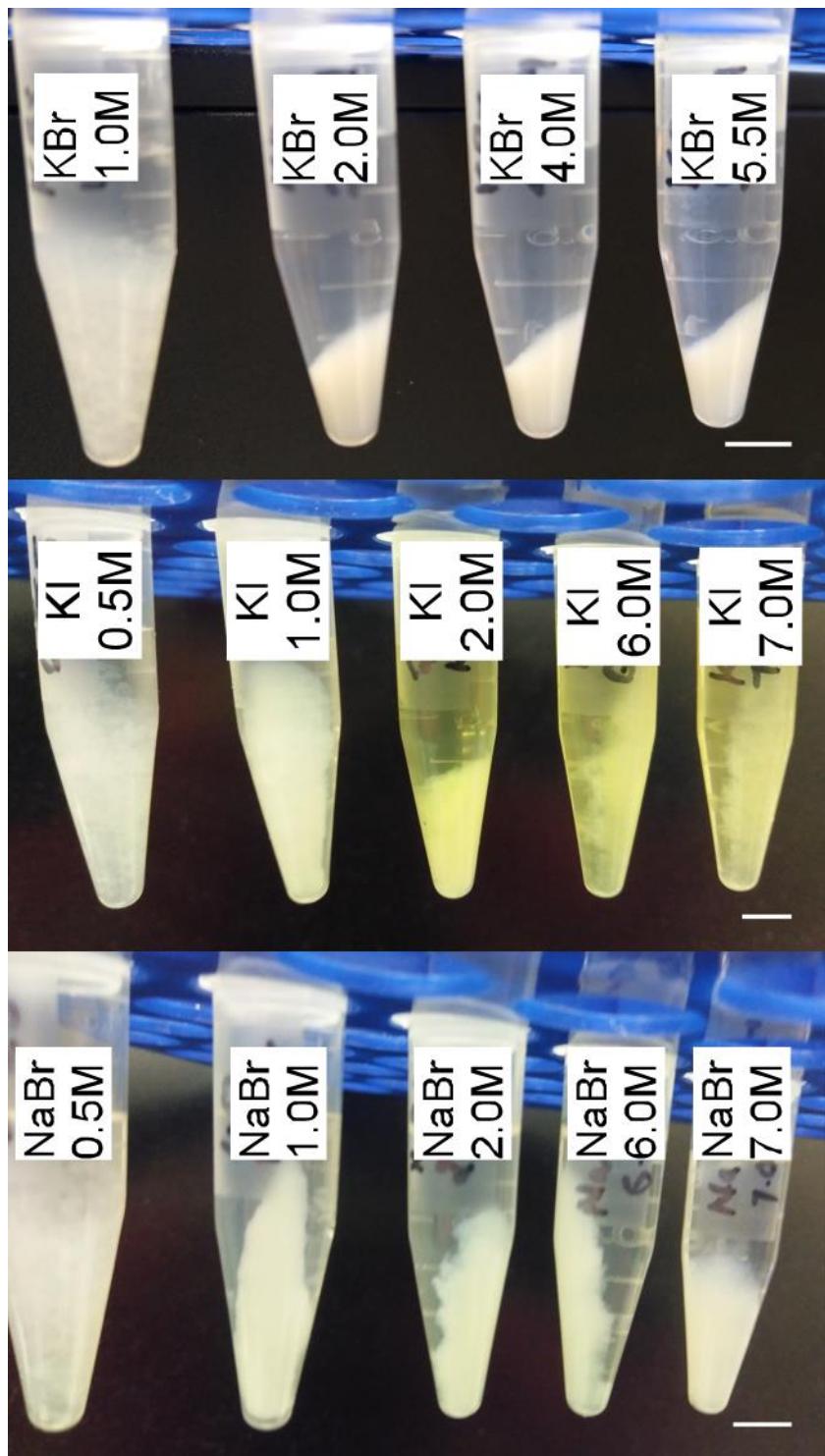


Figure S3. Images showing complex and supernatant phases after centrifugation for different salts doping. Scale bar represents 5 mm.

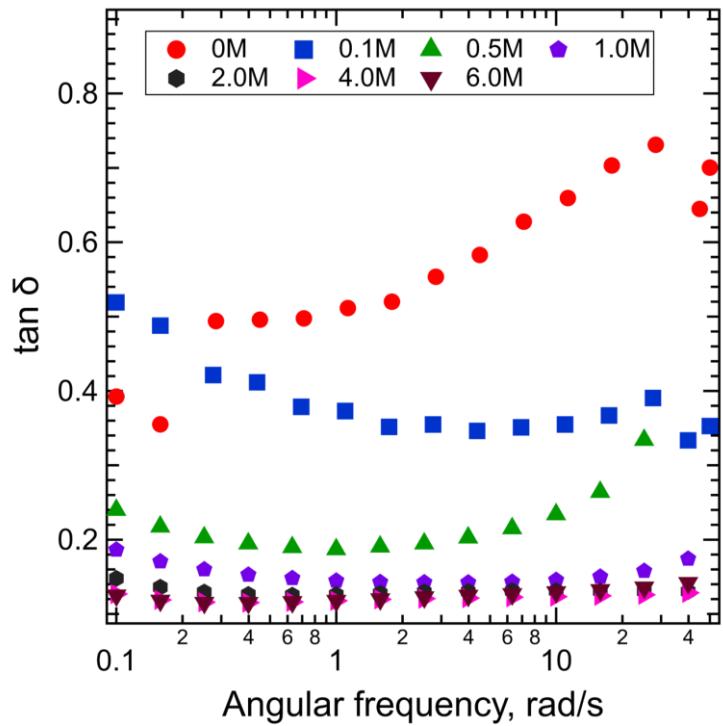


Figure S4. $\tan \delta$ as a function of frequency for complex phase at different NaCl concentrations.

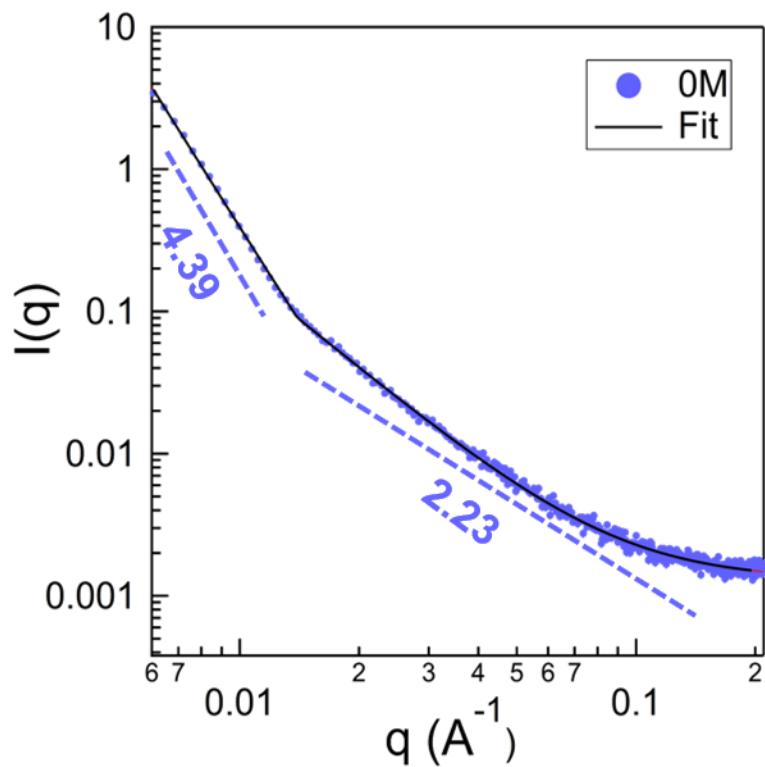


Figure S5. $I(q)$ - q data and fitting using two power law model for undoped sample.

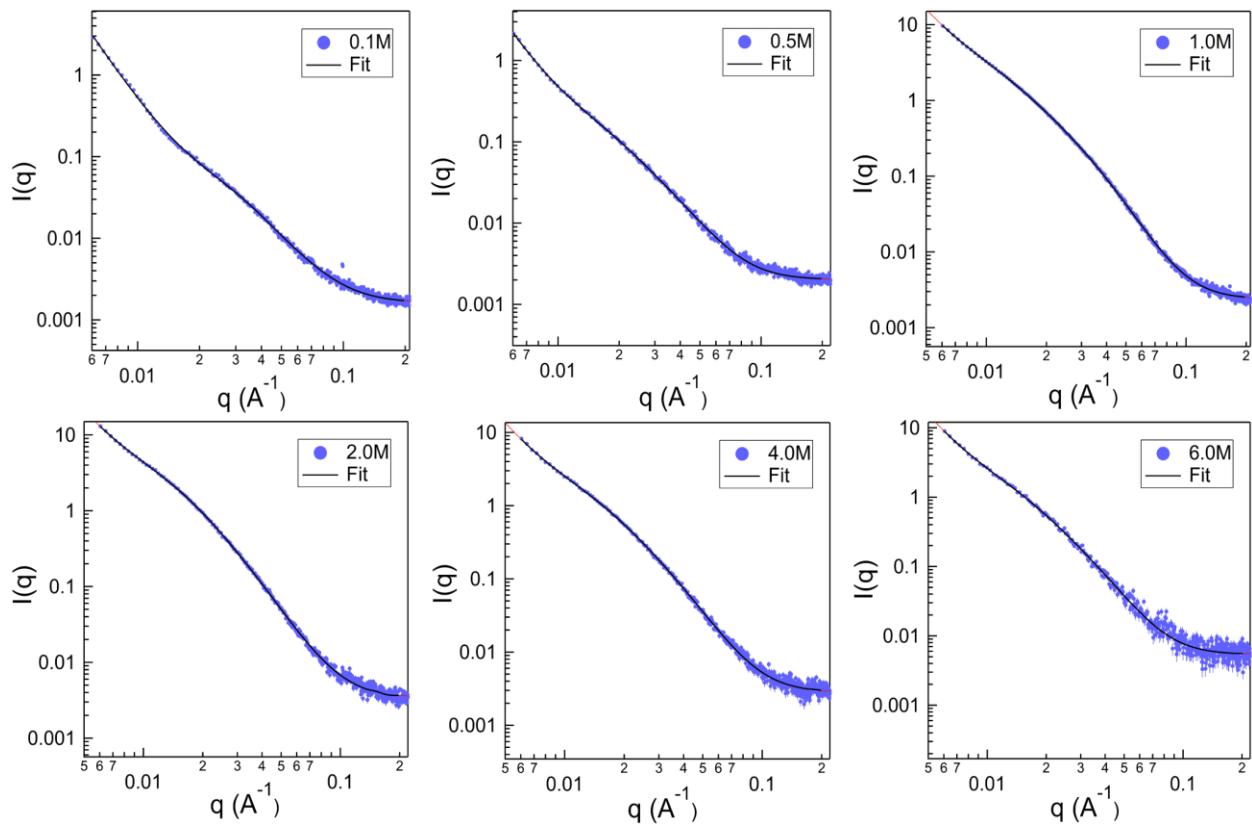


Figure S6. $I(q)$ - q data and fitting using power law model and WLC model for samples doped with 0.1-6.0M NaCl.

References

- (1) Kasaai, M. R. Calculation of Mark–Houwink–Sakurada (MHS) Equation Viscometric Constants for Chitosan in Any Solvent–Temperature System Using Experimental Reported Viscometric Constants Data. *Carbohydr. Polym.* **2007**, *68* (3), 477–488. <https://doi.org/10.1016/j.carbpol.2006.11.006>.
- (2) Knaul, J. Z.; Kasaai, M. R.; Bui, V. T.; Creber, K. A. M. Characterization of Deacetylated Chitosan and Chitosan Molecular Weight Review. *Can. J. Chem.* **1998**, *76* (11), 1699–1706. <https://doi.org/10.1139/cjc-76-11-1699>.
- (3) Lee, K. Y.; Mooney, D. J. Alginate: Properties and Biomedical Applications. *Prog. Polym. Sci.* **2012**, *37* (1), 106–126. <https://doi.org/10.1016/j.progpolymsci.2011.06.003>.
- (4) Rinaudo, M. On the Abnormal Exponents Av and AD in Mark Houwink Type Equations for Wormlike Chain Polysaccharides. *Polym. Bull.* **1992**, *27* (5), 585–589. <https://doi.org/10.1007/BF00300608>.
- (5) Moore, G. K.; GAF, R. Determination of the Degree of N-Acetylation of Chitosan. **1980**.
- (6) Kasaai, M. R. Determination of the Degree of N-Acetylation for Chitin and Chitosan by Various NMR Spectroscopy Techniques: A Review. *Carbohydr. Polym.* **2010**, *79* (4), 801–810. <https://doi.org/10.1016/j.carbpol.2009.10.051>.