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POSITIVITY AND NONSTANDARD GRADED BETTI NUMBERS

MICHAEL K. BROWN AND DANIEL ERMAN

Abstract. A foundational principle in the study of modules over standard graded poly-
nomial rings is that geometric positivity conditions imply vanishing of Betti numbers. The
main goal of this paper is to determine the extent to which this principle extends to the
nonstandard Z-graded case. In this setting, the classical arguments break down, and the
results become much more nuanced. We introduce a new notion of Castelnuovo-Mumford
regularity and employ exterior algebra techniques to control the shapes of nonstandard Z-
graded minimal free resolutions. Our main result reveals a unique feature in the nonstandard
Z-graded case: the possible degrees of the syzygies of a graded module in this setting are
controlled not only by its regularity, but also by its depth. As an application of our main
result, we show that, given a simplicial projective toric variety and a module M over its
coordinate ring, the multigraded Betti numbers of M are contained in a particular polytope
when M satisfies an appropriate positivity condition.

1. Introduction

The goal of this paper is to clarify some aspects of the relationship between regularity and
syzygies in the case of a nonstandard Z-grading. We begin with two overarching questions:

Question 1.1. Consider a closed subvariety X of a weighted projective space. How does
knowledge about vanishing of the sheaf cohomology of X translate into bounds on the degrees
of the defining equations of X?

Question 1.2. Consider a module M over a Z-graded polynomial ring. What can we say
about the Betti numbers of high degree truncations M≥r(r) for r ! 0?

In the standard graded case, both questions may be answered via the theory of Castelnuovo-
Mumford regularity. For Question 1.1: if H i(Pn,OX(r − i)) = 0 for all i > 0, then X can
be defined by equations of degree ≤ r + 1. For Question 1.2: if r is at least the regularity
of M , then M≥r has a linear free resolution. For details, one can see [EG84,Laz17,Mum66]
and more. Yet neither question has a satisfying answer in the nonstandard Z-graded case.

Benson introduced an analogue of Castelnuovo-Mumford regularity in the nonstandard Z-
graded case [Ben04], which we will refer to as weighted regularity to emphasize the distinction
with the standard graded theory.1 While that notion has had tremendous applications in
certain areas (see, for example, Symonds’ work [Sym10]), it does not provide sharp answers
to either of the above questions. In short, there are some natural features of regularity in the
standard graded case that are lacking in the weighted case. See, for instance, Remark 2.3.

2020 Mathematics Subject Classification. 13D02, 13D45, 14M25.
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1This is also a special case of the notion of multigraded regularity defined by Maclagan-Smith [MS04].
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We propose an alternate analogue of Castelnuovo-Mumford regularity—Koszul regular-
ity—that provides sharper answers to the above questions. We do not suggest that this
notion should supersede weighted regularity. In fact, a main theme from recent work on
syzygies with nonstandard gradings, e.g. [BC17,BE22a,BE23,BES20,BHS21,BS22,EES15,
HNVT22, MS04, SVT06], is that notions from the standard graded case can have several
distinct nonstandard graded analogues, each of which is useful for different purposes. For
instance, several analogues of linear resolutions in the nonstandard Z-graded setting play a
key role in [BE23]. Our goal in this paper is to demonstrate how an alternate analogue of
regularity—Koszul regularity—can provide sharper information in some contexts.

Let us set up our notation more precisely. Given integers 1 ≤ d0 ≤ · · · ≤ dn, we let
P(d) = P(d0, . . . , dn) denote the associated weighted projective space over a field k. Let
S = k[x0, . . . , xn] denote its Cox ring, where deg(xi) = di, and m the homogeneous maximal
ideal of S. The following definition was introduced by Benson [Ben04, §5]:

Definition 1.3. We say that M is weighted r-regular if H i
m
(M)j = 0 for i ≥ 0 and j > r− i.

The weighted Castelnuovo-Mumford regularity of M is the smallest r such that M is r-regular.

Weighted regularity has had significant applications, for instance to group cohomology and
invariant theory [Ben04,Sym10,Sym11] as well as to our work on Np-conditions in weighted
projective spaces [BE23]. To define Koszul regularity, we need the following notation:

Notation 1.4. Let wi (resp. wi) be the sum of the i largest (resp. smallest) degrees of the
variables: that is, wi :=

∑n
j=n−i+1 dj and wi :=

∑i−1
j=0 dj. By convention, w0 = 0 = w0, and

w−1 = −1 = w−1. If K is the Koszul complex resolving the residue field of S, then wi (resp.
wi) is the maximal (resp. minimal) degree of a generator of Ki.

Definition 1.5. Let M be a graded S-module. We say M is Koszul r-regular if H i
m
(M)d = 0

for all d ≥ r − wi−1. The Koszul regularity of M is the minimal r such that M is Koszul
r-regular.

In the standard graded case, where each di is 1, Definitions 1.3 and 1.5 specialize to the
standard definition of regularity.2 In general, Koszul r-regularity is a stronger condition than
weighted r-regularity. See Example 2.5 for a comparison of these notions in a simple case.

Our main result is the following, which uses the theory of Koszul regularity to convert
cohomological vanishing conditions into vanishing results on Betti numbers.

Theorem 1.6. Let M be a finitely generated, graded S-module with Betti numbers βi,j(M) =
TorSi (M, k)j. If M is Koszul r-regular, then

βi,j(M) = 0 for j ≥ r + wi+depth(M) − wdepth(M)−1.

While weighted regularity provides a bound on the number of rows of the Betti table
[Sym11, Proposition 1.2], Theorem 1.6 is often sharper if one is interested in bounds on
specific Betti numbers: see, for instance, Corollaries 1.7 and 1.8.

One unusual feature of Theorem 1.6 is its implication that the degrees of the syzygies of
a module are governed not only by its regularity, but also by its depth. This is invisible
in the standard graded context, as wi+depth(M) − wdepth(M)−1 is always i + 1 in that case,
irrespective of depth(M). Another consequence of Theorem 1.6 is that the bounds on Betti

2See also [MS19] for yet another distinct notion of regularity in the weighted case.
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numbers shadow the degrees arising in the Koszul complex of the variables. This is in
contrast with [Sym11, Proposition 1.2], which uses regularity to give a bound on the number
of rows of the Betti table, but not a distinct bound for each homological degree.

When S is standard graded, Theorem 1.6 precisely recovers one direction of the well-known
equivalence between the local cohomology and free resolution definitions of regularity as
in [EG84, Theorem 1.2(1)]. But, for a general d, the converse of Theorem 1.6 is simply false;
in fact, one cannot determine Koszul regularity solely from the Betti table (see Example 2.4).
However, a partial converse does hold, where the integers wi are replaced by the integers wi;
see Theorem 3.1(b). The gap between the wi and the wi measures the degree to which the
equivalence between the local cohomology and free resolution definitions of regularity gets
distorted in the nonstandard Z-graded case.

The classical argument of Eisenbud-Goto [EG84, Theorem 1.2(1)] that proves Theorem 1.6
in the standard graded case simply does not extend to the weighted setting. The basic prob-
lem is that there are fewer homogeneous linear forms in the weighted case; see Remark 3.2
for details. Our proof of Theorem 1.6 is therefore totally distinct from that of [EG84]; we use
exterior algebra methods, applying the Tate resolution technology developed in [BE21]. Cu-
riously, this flips a script from Eisenbud-Fløystad-Schreyer’s work [EFS03]: we use Tate res-
olutions on weighted spaces P(d) to understand resolutions of truncations, whereas [EFS03]
uses properties of truncations from [EG84] to define Tate resolutions on Pn.

Finally, Theorem 1.6 enables us to provide sharper answers to our initial Questions 1.1
and 1.2. For Question 1.1, we have:

Corollary 1.7. Let X be a closed subvariety of the weighted projective space Proj(S) with
defining ideal IX ⊆ S. If S/IX has Koszul regularity r, then IX is generated in degrees
< r + w2.

Indeed, we obtain Corollary 1.7 by applying Theorem 1.6 with i = 1 and observing that
w1+depth(M) − wdepth(M)−1 ≤ w2. As for Question 1.2, we prove the following:

Corollary 1.8. Let M be a finitely generated, graded S-module. For any r ! 0, the module
M≥r(r) is Koszul 0-regular, and thus βi,j(M≥r(r)) &= 0 only if wi ≤ j < wi+1.

In the classical setting, Corollary 1.8 implies that M≥r(r) has a linear resolution, as wi =
i = wi for all i. Thus, the conditions in this corollary can be seen as providing a nonstandard
graded analogue of a linear resolution; in fact this notion of a “Koszul linear” complex arises
in [BE23] in relation to Np-conditions on weighted projective space, and it contrasts with
the notion of strong linearity from [BE22a, Definition 1.2].

Example 1.9. A natural question arising from Corollary 1.8 is: where does the homological
shift come from? That is: why is the upper bound for Betti numbers in homological degree
i given by < wi+1, as opposed to ≤ wi? The need for this shift can be seen via a simple
example. Let S = k[x, y], where deg(x) = 1 and deg(y) = 10. The degrees of the generators
of the truncation S≥r(r) depend on the remainder of r divided by 10. For instance, S≥1(1) is
generated by x and y in degrees 0 and 9, whereas S≥7(7) is generated by x7 and y in degree 0
and 3. Thus, the generating degrees of S≥r(r)—i.e. the Betti numbers in homological degree
0—depend on the maximal degree of a variable, i.e. w1. The shift in Theorem 1.6 is even
more dramatic, depending as it does on the depth of the module.
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Benson’s definition of weighted regularity was a source of inspiration for Maclagan-Smith’s
work on multigraded regularity [MS04], as well as many followup results, e.g. [Sym10,Sym11].
It would be interesting to consider whether an analogue of Koszul regularity in the multi-
graded setting might also yield new results like Corollaries 1.7 and 1.8. In §4, we pursue a
related line of inquiry. Specifically, we show how Theorem 1.6 can be applied to the study of
Betti numbers over the Cox rings of more general toric varieties, resulting in Theorem 4.3.

Acknowledgements. We thank Christine Berkesch, Juliette Bruce, David Eisenbud, Lau-
ren Cranton Heller, Mahrud Sayrafi, Gregory G. Smith, and Frank Olaf-Schreyer for valuable
conversations.

2. Background

2.1. Regularity and related notions. In this subsection, we provide background on the
various flavors of regularity that appear in this paper, and we discuss some examples that
clarify the distinctions between them. First, it will be useful to recall the definition of
regularity in the standard graded case:

Definition 2.1 (The standard graded case). Assume that deg(xi) = 1 for all i. Given r ∈ Z,
the following conditions on a finitely generated, graded S-module M are equivalent:

(1) H i
m
(M)j = 0 for i ≥ 0 and j > r − i,

(2) TorSi (M, k)j = 0 for i ≥ 0 and j > r + i.

We say M is r-regular if it satisfies these equivalent conditions. The Castelnuovo-Mumford
regularity of M is the smallest r such that M is r-regular.

Let us now return to the nonstandard Z-graded case and consider some results and ex-
amples to clarify the definitions of weighted regularity and Koszul regularity from the intro-
duction. For weighted regularity, Symonds proved the following:

Proposition 2.2 ([Sym11] Proposition 1.2). Let σ =
∑n

i=0(di − 1), and let M be a finitely
generated, graded S-module. The module M is weighted r-regular if and only if Tori(M, k)j =
0 for all j > r + i+ σ.

Thus, weighted regularity measures the number of rows of the Betti table of M .

Remark 2.3. In the standard graded case, ifM is finite length and r-regular, then it is possible
that TorSi (M, k)r+i &= 0 for any 0 ≤ i ≤ n+1. In other words, the bounds on Tor can be sharp
in every degree. However, for certain choices of d, this can fail in the nonstandard graded
case. To take a simple example, let S = k[x, y] with deg(x) = deg(y) = 3, and consider
a finite length module M of weighted regularity 0. Consider its minimal free resolution:
F0 ← F1 ← F2 ← 0. Proposition 2.2 implies that F1 is generated in degrees < 1 + σ = 5
and that F2 is generated in degrees < 2 + σ = 6. But since F2 is nonzero and the degrees of
the variables are 3, we see that the highest allowable degree of a generator of F1 is actually
6 − 3 = 3. In other words, for certain classes of modules, and intermediate homological
degrees, the bounds from Proposition 2.2 might always fail to be sharp.

Example 2.4. Let S = k[x0, x1] with degrees 1 and 2, and let M = S(−1)/(x1) ⊕ S(−2).
Both m and M have the same Betti table:

β(m) =
0 1

1 : 1 .

2 : 1 1
= β(M)
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Thus, they have the same weighted regularity; because σ = 1 in this case, the weighted
regularity is 1. However, m is Koszul 1-regular, while M is only Koszul 2-regular; one
readily sees this by applying Theorem 3.1 below, or by a direct calculation using Local
Duality. This shows that Koszul regularity cannot be detected solely from the Betti table,
in general; however, Theorem 3.1 below implies that Koszul regularity can be detected from
the Betti table provided that the module is Cohen-Macaulay.

Example 2.5. We provide a quick comparison of weighted and Koszul regularity via a
local cohomology computation. Let S = k[x0, x1, x2, x3] and M = S/(x2, x3). We note that
H i

m
(M)j &= 0 if and only if i = 2 and j ≤ −d0− d1.

3 Using this, we see that M has weighted
regularity 2 − d0 − d1. To compute Koszul regularity, we first note that w1 = d3. So the
Koszul regularity of M is the minimal r such that H2

m
(M)j = 0 for all j ≥ r − d3; that is,

r = d3 − d0 − d1 + 1.

Remark 2.6. One feature of Koszul regularity is that it is homogeneous in the following
sense: if we rescale the degrees of the variables of S by deg(xi) *→ λ deg(xi), and we rescale
the grading of an S-module M by λ as well, then the Koszul regularity of M is also rescaled
by λ. This is not true for weighted regularity.

2.2. The multigraded BGG correspondence. Let E denote the Z⊕ Z-graded exterior
algebra Λk(e0, . . . , en) with deg(ei) = (− deg(xi);−1). We let Com(S) denote the category
of complexes of Z-graded S-modules and DM(E) the category of differential E-modules, i.e.
E-modules D equipped with a degree (0;−1) endomorphism ∂ such that ∂2 = 0. Given an
object D ∈ DM(E), we let H(D) denote its homology.

As proven by [HHW12], there is a multigraded analogue of the Bernstein-Gel’fand-Gel’fand
(BGG) correspondence that gives an adjunction

L : DM(E) ! Com(S) : R.

We refer the reader to [BE21, §2] for a detailed introduction to the multigraded BGG corre-
spondence. We will not be concerned with the functor L in this paper, and we will only need
the formula for R(M) when M is an S-module, which is given as follows. Let ωE denote the
E-module Homk(E, k) ∼= E(−

∑n
i=0 deg(xi);−n − 1). The object R(M) ∈ DM(E) has un-

derlying E-module
⊕

a∈Z Ma⊗kωE(−a; 0) and differential given by m⊗f *→
∑n

i=0 xim⊗eif .
A key point is that Z-graded Betti numbers may be computed via BGG:

Proposition 2.7 ([BE21] Proposition 2.11(a)). Let M be an S-module. We have an iden-
tification H(R(M))(a;j) = TorSj (M, k)a of Z⊕ Z-graded k-vector spaces.

2.3. Tate resolutions on weighted projective stacks. The BGG functor R admits a
geometric refinement: the Tate resolution functor T : coh(X) → DM(E). Tate resolutions
over toric varieties/stacks are introduced in [BE21, §3], and we refer the reader there for a full
introduction to the topic, and to [ABI07,BE22b] for additional background on differential
modules. Here, we briefly discuss Tate resolutions over weighted projective stacks. The
following result summarizes the key features of Tate resolutions we will need:

Theorem 2.8 ([BE21] Theorems 3.3 and 3.7). Let F be a coherent sheaf on the weighted
projective stack X = P(d0, . . . , dn), i.e. the stack quotient of An+1 \ {0} by the action of the
multiplicative group k \ {0} given by λ · (x0, . . . , xn) = (λd0x0, . . . ,λdnxn).

3The generator of H2
m
(M) may be viewed as the monomial 1

x0x1
.
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(1) The Tate resolution T(F) is an exact, minimal differential E-module such that
H i(X,F(j)) = Hom(k,T(F))(j;−i).

(2) Choose an m-saturated S-module M such that M̃ = F . The Tate resolution T(F)
is isomorphic to the mapping cone of a minimal free resolution F

$
−→ R(M) of the

differential E-module R(M).

See [BE21, Appendix B] for background on differential E-modules and [BE21, Examples
3.11 - 3.13] for examples of Tate resolutions over weighted projective stacks.

Remark 2.9. The coherence assumption on F in Theorem 2.8 can be loosened. Indeed, the
general construction of Tate resolutions on projective toric stacks in [BE21, §3.2] makes sense
even for quasi-coherent sheaves, and the proof of [BE21, Theorem 3.3] works verbatim at
this level of generality, so Theorem 2.8(1) holds for any quasi-coherent sheaf. Additionally,
if F is a quasi-coherent sheaf on X satisfying

(1) F = M̃ for some S-module M with H0
m
(M) = 0, and

(2) there exists N ! 0 such that H i
m
(M)d = 0 for all i > 0 and d ≥ N ;

then the proof of [BE21, Theorem 3.7] works essentially verbatim as well, and so Theo-
rem 2.8(2) also holds in this more general setting. We use this in the proof of Theorem 3.1.

3. Proof of Theorem 1.6

We will prove the following strengthened version of Theorem 1.6:

Theorem 3.1. Let k be a field, and let S = k[x0, . . . , xn], Z-graded so that di := deg(xi) ≥ 1
for all i. Let M be a graded S-module.

(a) If M is r-Koszul regular, and H0
m
(M)j = 0 for j . 0, then TorSi (M, k)j = 0 for

j ≥ r + wi+depth(M) − wdepth(M)−1.
(b) Suppose M is finitely generated. If M is Cohen-Macaulay, then the converse of

(a) holds. In general, if TorSi (M, k)j = 0 for j ≥ r + wi+1 (so, for instance, if
TorSi (M, k)j = 0 for j ≥ r + wi+depth(M) − wdepth(M)−1), then H i

m
(M)d = 0 for all

d ≥ r − wi−1.

Let us briefly sketch the ideas that led us to this result. Let M be Koszul 0-regular and
generated in degree 0. Recall that the Tate resolution of the sheaf associated to M is an
exact, bigraded differential module over an exterior algebra: under certain conditions, it is
the cone of a free resolution of the formG

ε
−→ R(M) (see Theorem 2.8 and Remark 2.9). The

Koszul 0-regularity of M constrains the degrees of the generators of G. This also constrains
the degrees of the image of ε; since the homology of R(M) encodes TorS∗ (M, k)∗, this in turn
bounds the Betti numbers of M . The appearance of the integers wi and wi in the Theorem
arise from working over the exterior algebra. Our actual proof is based on this basic idea,
but it requires some rather technical bookkeeping.

Proof of Theorem 3.1. Twisting M appropriately, we may assume r = 0. Let us prove (a).
By the Horseshoe Lemma applied to 0 → H0

m
(M) → M → M/H0

m
(M) → 0, it suffices

to prove the statement for H0
m
(M) and in the case where H0

m
(M) = 0. Our regularity

assumption implies that H0
m
(M) has a maximal degree d such that H0

m
(M)d &= 0; by our

convention w−1 = −1, we have d ≤ 0. We have a short exact sequence 0 → H0
m
(M)d →

H0
m
(M) → N → 0. Since k(−d) is resolved by the Koszul complex twisted by −d, the

6



statement holds for the minimal free resolution of H0
m
(M)d, because βi,j(k) = 0 for j > wi.

We now apply the same argument to N ; since H0
m
(M) has a minimal degree where it is

nonzero, this process eventually terminates. We may therefore assume that H0
m
(M) = 0.

By Lemma 2.7, the Betti numbers of M are encoded by the homology of R(M); it thus
suffices to prove that

H(R(M))(a;j) &= 0 only if a < wj+depth(M) − wdepth(M)−1.

By Theorem 2.8 (and Remark 2.9)4, the Tate resolution of M̃ is isomorphic to the mapping
cone of a minimal free resolution ε : G

$
−→ R(M), and the generators of G are in bijection

with sheaf cohomology groups of M̃ . Observe that ωE(−a; j + 1) is a summand of G only
if Hj+1

m
(M)a &= 0. By the regularity assumption on M , we have a < −wj in this case. The

generator of ωE has degree (w;n + 1), and so the generator of ωE(−a; j + 1) has degree
(w + a;n− j). Applying the inequality a < −wj , we get:

' := w + a < w − wj = wn+1−j.

Setting i = n− j, we arrive at the following key point: every generator τ of G of degree ('; i)
satisfies ' < wi+1. We remark, for use in a moment, that j ≥ depth(M)− 1.

Every class in H(R(M)) may be represented by an element in the image of ε; in particular,
we can write every element in H(R(M)) as a sum of elements of the form f · ε(τ), where
τ is a generator of G, and f ∈ E. Say deg(τ) = ('; i) and deg(f) = (−m;−t). Since
R(M) has no elements of degree (u; v) with v < 0, the same is true for H(R(M)). We
therefore have −i ≤ −t ≤ 0. Since fτ has degree (' − m; i − t), our goal is to show that
'−m < wi−t+depth(M)−wdepth(M)−1. The maximum possible value for −m is −wt. Since τ is
a generator of degree ('; i), the argument in the previous paragraph implies that ' < wi+1.
We now compute:

'−m < wi+1 − wt =
i∑

c=0

dc −
t−1∑

c=0

dc =
i∑

c=t

dc.

Since j ≥ depth(M)− 1, we have i = n− j ≤ n− depth(M) + 1. Moreover, we have:

i∑

c=t

dc ≤
i+1∑

c=t+1

dc ≤ · · · ≤
n−depth(M)+1∑

c=n−(i−t)−depth(M)+1

dc

=
n∑

c=n−(i−t)−depth(M)+1

dc −
n∑

c=n−depth(M)+2

dc

= wi−t+depth(M) − wdepth(M)−1.

Thus, '−m < wi−t+depth(M) − wdepth(M)−1, which is what we wanted to show.
As for (b): by Grothendieck vanishing, we may assume i ≥ depth(M). By Local Duality,

we have H i
m
(M) = Extn+1−i

S (M,S(−w))∗, where w := wn+1. Thus, H i
m
(M)d is a subquotient

of
⊕

j∈Z(S(j−w)
∗)

βn+1−i,j

d =
⊕

j∈Z(Sj−w−d)βn+1−i,j . By hypothesis, the jth summand vanishes

unless j < wn+1−i+depth(M) − wdepth(M)−1, and so we assume this inequality holds.

4Our regularity assumption on M implies that the condition in Remark 2.9(2) is satisfied.
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Now, assume M is Cohen-Macaulay. Again by Grothendieck vanishing, we may assume
i = depth(M), in which case j < w − wdepth(M)−1. Thus, when d ≥ −wdepth(M)−1, we have

j − w − d < 0, and so Hdepth(M)
m (M)d = 0. It follows that M is 0-Koszul regular.

In general, when d ≥ −wi−1, we have

j − w − d < wn+1−i+depth(M) − wdepth(M)−1 − w + wi−1 ≤ wn+2−i − w + wi−1 = 0.

Thus, H i
m
(M)d = 0. "

Remark 3.2. The proof of Theorem 1.6(b) is virtually identical to that of the “only if”
direction of Eisenbud-Goto’s Theorem [EG84, Theorem 1.2(1)]. However, we emphasize
that the proof of the “if” direction of Eisenbud-Goto’s Theorem does not generalize to the
weighted setting, and so our approach to proving Theorem 1.6(a) is radically different from
that of [EG84]. Indeed, the proof of the “if” direction of [EG84, Theorem 1.2(1)] makes
crucial use of the fact that, if M is a finitely generated module over a standard graded
polynomial ring with positive depth, and the ground field is infinite, then there exists a
homogeneous linear form ' such that ' acts as a non-zero-divisor on M . This is false in our
context: for example, say X = P(2, 3, 5), and let M = S/I, where I = (x0, x1) ∩ (x0, x2) ∩
(x1, x2). The non-zero-divisors of S/I are those elements not in (x0, x1) ∪ (x0, x2) ∪ (x1, x2).
For instance, f = x15

0 + x10
1 + x6

2 is such an element, and in fact there is no homogeneous
non-zero-divisor on M of smaller degree than f .

Example 3.3. Let S = k[x0, x1, x2] with degrees 2, 3 and 5. One can check that m is
Koszul 1-regular and has depth 1. Theorem 1.6(a) thus implies that the maximal degree of
a generator of the ith syzygies of m is wi+1; for i = 0, 1, 2 this yields bounds of 5, 8 and 10,
respectively. Each of these bounds is sharp, as the minimal free resolution of m has the form

S(−2)⊕ S(−3)⊕ S(−5)← S(−5)⊕ S(−7)⊕ S(−8)← S(−10)← 0.

Let us now prove Corollaries 1.7 and 1.8.

Proof of Corollary 1.7. Theorem 1.6 implies that β1,j(S/IX) = 0 for

j ≥ r + w1+depth(M) − wdepth(M)−1.

Since S/IX has depth at least 1, and w2 ≥ wi+1−wi−1 = di + di−1 for all i ≥ 1, we conclude
that β1,j(S/IX) = 0 for j ≥ r + w2, i.e. IX is generated in degrees < r + w2. "

Our proof of Corollary 1.8 requires the following lemma.

Lemma 3.4. Let M be a finitely generated, graded S-module. The truncation M≥r is Koszul
r-regular for r ! 0.

Proof. We will showM≥r(r) is Koszul 0-regular for r ! 0. For i > 1, we haveH i
m
(M≥r(r))d =

H i(X, M̃(d + r)). It therefore follows from (the weighted version of) Serre Vanishing that
we can choose r ! 0 so that, for any i > 1, we have H i

m
(M≥r(r))d = 0 for d ≥ −wi−1. Since

H0
m
(M) has finite length, we may also choose r ! 0 such that H0

m
(M≥r(r)) = 0, in which

case H1
m
(M≥r(r)) is supported entirely in negative degrees. "

Proof of Corollary 1.8. Let K denote the Koszul complex on the variables x0, . . . , xn. Since
the minimal degree of a generator ofM is 0, the minimal degree of an element of TorSi (M, k) =
Hi(M ⊗S K) is wi; this yields the lower bound on a. The upper bound follows immediately
from Theorem 1.6(a) and Lemma 3.4. "
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4. An application to Betti numbers over Cox rings of toric varieties

Let X be a simplicial, projective toric variety. In this section, we let S = k[x0, . . . , xn]
denote the Cl(X)-graded Cox ring of X and B ⊆ S the irrelevant ideal of X . Our next
goal is to prove a version of Theorem 1.6 for Cl(X)-graded S-modules; the idea is to use the
theory of primitive collections to reduce to the Z-graded case.

We recall that a primitive collection for X may be described algebraically as a subset of
the variables x0, . . . , xn generating an associated prime of B. Primitive collections were first
studied by Batyrev in [Bat91]; we refer the reader to [CLS11, Definition 5.1.5] for background.
Our assumption that X is simplicial and projective ensures that we may apply the theory of
primitive collections in our setting. If I ⊆ {x0, . . . , xn} is a primitive collection, then we can
use [CLS11, p. 305] to define a homomorphism degI : Cl(X) → Z. More specifically, each
primitive collection I induces, via [CLS11, Definition 6.4.10 and (6.4.8)], a coefficient vector
(b′0, b

′
1, . . . , b

′
n) ∈ Qn+1. By minimally clearing denominators, we obtain (b0, b1 . . . , bn) ∈ Zn+1,

and we define degI(xi) = bi; this gives a well-defined map Cl(X) → Z by the exactness of
the sequence in [CLS11, (6.4.1)]. We have degI(xj) > 0 for xj ∈ I and degI(xj) ≤ 0 for
xj /∈ I. In particular, given a primitive collection I, the map degI makes SI = S/〈xi /∈ I〉
into a positively Z-graded ring.

Example 4.1. Let X be the Hirzebruch surface of type 3. The Cox ring of X is S =
k[x0, . . . , x3], with Z2-grading given by deg(x0) = (1, 0) = deg(x2), deg(x1) = (−3, 1), and
deg(x3) = (0, 1). The irrelevant ideal of X is (x0, x2) ∩ (x1, x3). There are therefore two
primitive collections for X : {x0, x2} and {x1, x3}. The map deg{x0,x2} (resp. deg{x1,x3}) is
projection onto the first (resp. second) coordinate.

We introduce the following notation:

Notation 4.2. Let I be a primitive collection. We set

wj
I =

{
max{

∑
xi∈I′

degI(xi) : I ′ ⊆ I and #I ′ = j}, j < #I;∑
xi∈I

degI(xi), j ≥ #I.

The following toric analogue of Theorem 1.6 is the main result of this section:

Theorem 4.3. Let X be a simplicial, projective toric variety with Cox ring S and irrelevant
ideal B. Let M be a Cl(X)-graded S-module, and assume H0

B(M) = 0. Fix a primitive
collection I, and let PI denote the corresponding minimal prime of B. We have the following5:

If H i
PI
(M)a = 0

for i > 0 and all degrees
a ∈ Cl(X) where degI(a) ≥ −w

i−1
I ,

⇒
then βi,a(M) = 0

for i ≥ 0 and all degrees
a ∈ Cl(X) where degI(a) ≥ wi+1

I .

Put more simply, Theorem 4.3 says that, if M is an S-module satisfying appropriate
positivity conditions, then the multigraded Betti numbers of M must lie within a particular
polytope. Similar ideas have been appeared in [SVTW06] and elsewhere. For instance,
results from [BES20,BHS21,EES15] give analogues of linear resolutions for truncations and
[BC17,CH22] give bounds on Betti numbers, at least in the case where X is a product of
projective spaces. A fairly general result in this direction is [MS04, Theorem 1.5(2)], but

5Just as in Theorem 1.6(a), the bounds on Betti numbers appearing in Theorem 4.3 may be tightened by
considering the depth of MI for each primitive collection I.
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this result addresses the structure of a (potentially infinite) virtual resolution and does not
yield specific results about Betti numbers.

To prove Theorem 4.3, we will need the following technical lemma. Given an S-module
M and a primitive collection I, let MI denote the module M considered as an SI-module.

Lemma 4.4. Let M be a graded S-module, I ⊆ {0, . . . , n} a primitive collection, and J
the complement of I. The Cl(X) ⊕ Z-graded k-vector space TorS∗ (M, k) is a subquotient of
TorSI

∗ (MI , k)⊗k ωEJ
.

Proof. Let K denote the Koszul complex on all the variables in S, KI the Koszul complex
on {xi : i ∈ I}, and KJ the Koszul complex on {xi : i ∈ J}. Think of the tensor product
(M⊗SKI)⊗SKJ as a bicomplex whose totalization is M⊗SK. We have a spectral sequence
E1 = TorS∗ (M,SJ)⊗S KJ ⇒ TorS∗ (M, k). Notice that TorS∗ (M,SJ)⊗S KJ = TorS∗ (M,SJ)⊗k

ωEJ
. Finally, it follows from the change of rings spectral sequence for Tor associated to the

inclusion SI ↪→ S that there is an isomorphism TorS∗ (M,SJ) ∼= TorSI
∗ (MI , k). "

Proof of Theorem 4.3. Consider SI and MI as Z-graded via degI : Cl(X) → Z. Theo-
rem 3.1(a) implies that TorSI

i (MI , k)j &= 0 only if j < wi+1
I . Since ωEJ

is non-positively
graded in the degI-grading, it follows that

(TorSI
∗ (MI , k)⊗k ωEJ

)(a;j) =
⊕

b∈Z

j⊕

#=0

TorSI

# (MI , k)a−b ⊗k (ωEJ
)(b;j−#)

is nonzero only if a ≤ a− b < wj+1
I . Now apply Lemma 4.4. "

Example 4.5. Let X be a Hirzebruch surface of type 3. As discussed in Example 4.1,
there are two primitive collections on X , and the corresponding maps degI : Cl(X) → Z

correspond to projection onto the first/second coordinate. In both cases, wj
I ≤ 2 for all

j. Let M be a Cl(X)-graded S-module that satsifies the hypotheses of Theorem 4.3 with
respect to both primitive collections I. Theorem 4.3 implies that the generators of a minimal
free resolution of M lie in the following degrees:

10



(one should imagine this box extending infinitely down and to the left). IfM is also generated
in degrees ≥ 0, then the Betti numbers of M must lie in the polytope

For instance, set N = S/(x0x1), and let M be the truncated twist M := N≥(2,3)(2, 3). A
direct computation shows that H0

B(M) = 0, and, for either primitive collection I on X , MI

is Koszul 0-regular with respect to the associated Z-grading. The minimal free resolution of
M has the form S6 ← S(3,−1)2 ⊕ S(0,−1)3 ⊕ S(−1, 0)5 ← S(2,−1)⊕ S(−1,−1)3 ← 0.
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