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POSITIVITY AND NONSTANDARD GRADED BETTI NUMBERS

MICHAEL K. BROWN AND DANIEL ERMAN

ABSTRACT. A foundational principle in the study of modules over standard graded poly-
nomial rings is that geometric positivity conditions imply vanishing of Betti numbers. The
main goal of this paper is to determine the extent to which this principle extends to the
nonstandard Z-graded case. In this setting, the classical arguments break down, and the
results become much more nuanced. We introduce a new notion of Castelnuovo-Mumford
regularity and employ exterior algebra techniques to control the shapes of nonstandard Z-
graded minimal free resolutions. Our main result reveals a unique feature in the nonstandard
Z-graded case: the possible degrees of the syzygies of a graded module in this setting are
controlled not only by its regularity, but also by its depth. As an application of our main
result, we show that, given a simplicial projective toric variety and a module M over its
coordinate ring, the multigraded Betti numbers of M are contained in a particular polytope
when M satisfies an appropriate positivity condition.

1. INTRODUCTION

The goal of this paper is to clarify some aspects of the relationship between regularity and
syzygies in the case of a nonstandard Z-grading. We begin with two overarching questions:

Question 1.1. Consider a closed subvariety X of a weighted projective space. How does
knowledge about vanishing of the sheaf cohomology of X translate into bounds on the degrees
of the defining equations of X ?

Question 1.2. Consider a module M over a Z-graded polynomial ring. What can we say
about the Betti numbers of high degree truncations Ms,(r) forr > 07

In the standard graded case, both questions may be answered via the theory of Castelnuovo-
Mumford regularity. For Question [t if H*(P",Ox(r —i)) = 0 for all ¢ > 0, then X can
be defined by equations of degree < r + 1. For Question if r is at least the regularity
of M, then M, has a linear free resolution. For details, one can see [EG84!|[Laz17,[Mum66]
and more. Yet neither question has a satisfying answer in the nonstandard Z-graded case.

Benson introduced an analogue of Castelnuovo-Mumford regularity in the nonstandard Z-
graded case [Ben04], which we will refer to as weighted regularity to emphasize the distinction
with the standard graded theoryE While that notion has had tremendous applications in
certain areas (see, for example, Symonds’ work [Sym10]), it does not provide sharp answers
to either of the above questions. In short, there are some natural features of regularity in the
standard graded case that are lacking in the weighted case. See, for instance, Remark 2.3
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IThis is also a special case of the notion of multigraded regularity defined by Maclagan-Smith IMS04].
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We propose an alternate analogue of Castelnuovo-Mumford regularity—Koszul regular-
ity—that provides sharper answers to the above questions. We do not suggest that this
notion should supersede weighted regularity. In fact, a main theme from recent work on
syzygies with nonstandard gradings, e.g. [BC17,[BE22a,[BE23|[BES20,[BHS21,BS22| [ EES15,
HNVT22,IMS04,ISVTO06], is that notions from the standard graded case can have several
distinct nonstandard graded analogues, each of which is useful for different purposes. For
instance, several analogues of linear resolutions in the nonstandard Z-graded setting play a
key role in [BE23]. Our goal in this paper is to demonstrate how an alternate analogue of
regularity—Koszul regularity—can provide sharper information in some contexts.

Let us set up our notation more precisely. Given integers 1 < dy < --- < d,, we let
P(d) = P(do,...,d,) denote the associated weighted projective space over a field k. Let
S = klzo, ..., x| denote its Cox ring, where deg(z;) = d;, and m the homogeneous maximal
ideal of S. The following definition was introduced by Benson [Ben04, §5]:

Definition 1.3. We say that M is weighted r-regular if H:(M); =0 fori >0 and j > r —i.
The weighted Castelnuovo-Mumford regularity of M is the smallest r such that M is r-regular.

Weighted regularity has had significant applications, for instance to group cohomology and
invariant theory [Ben04,Sym10,/Sym11] as well as to our work on N,-conditions in weighted
projective spaces [BE23|. To define Koszul regularity, we need the following notation:

Notation 1.4. Let w’ (resp. w;) be the sum of the 4 largest (resp. smallest) degrees of the

variables: that is, w' = Y>"_ ,  d; and w; = Z;;B d;. By convention, wy = 0 = wo, and
w_; = —1=w"" If K is the Koszul complex resolving the residue field of S, then w’ (resp.

w;) is the maximal (resp. minimal) degree of a generator of K.

Definition 1.5. Let M be a graded S-module. We say M is Koszul r-regular if H: (M); =0
for all d > r — w''. The Koszul regularity of M is the minimal 7 such that M is Koszul
r-regular.

In the standard graded case, where each d; is 1, Definitions and specialize to the
standard definition of regularity In general, Koszul r-regularity is a stronger condition than
weighted r-regularity. See Example for a comparison of these notions in a simple case.

Our main result is the following, which uses the theory of Koszul regularity to convert
cohomological vanishing conditions into vanishing results on Betti numbers.

Theorem 1.6. Let M be a finitely generated, graded S-module with Betti numbers 3; j(M) =
Tor (M, k);. If M is Koszul r-reqular, then

5@',]’ (M) -0 fOTj >+ wi+depth(M) . wdepth(M)—l.

While weighted regularity provides a bound on the number of rows of the Betti table
[Sym11, Proposition 1.2], Theorem is often sharper if one is interested in bounds on
specific Betti numbers: see, for instance, Corollaries [.7] and [L.8

One unusual feature of Theorem is its implication that the degrees of the syzygies of
a module are governed not only by its regularity, but also by its depth. This is invisible
in the standard graded context, as w!tdPRM) _ 4,depth(M)=1 is always 7 4 1 in that case,
irrespective of depth(M). Another consequence of Theorem [L.6]is that the bounds on Betti

2See also [MS19] for yet another distinct notion of regularity in the weighted case.
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numbers shadow the degrees arising in the Koszul complex of the variables. This is in
contrast with [Sym11, Proposition 1.2], which uses regularity to give a bound on the number
of rows of the Betti table, but not a distinct bound for each homological degree.

When S is standard graded, Theorem [I.6] precisely recovers one direction of the well-known
equivalence between the local cohomology and free resolution definitions of regularity as
in [EG84, Theorem 1.2(1)]. But, for a general d, the converse of Theorem is simply false;
in fact, one cannot determine Koszul regularity solely from the Betti table (see Example 2.4]).
However, a partial converse does hold, where the integers w® are replaced by the integers w;;
see Theorem B.I(b). The gap between the w' and the w; measures the degree to which the
equivalence between the local cohomology and free resolution definitions of regularity gets
distorted in the nonstandard Z-graded case.

The classical argument of Eisenbud-Goto [EG84 Theorem 1.2(1)] that proves Theorem [L.0]
in the standard graded case simply does not extend to the weighted setting. The basic prob-
lem is that there are fewer homogeneous linear forms in the weighted case; see Remark
for details. Our proof of Theorem [L.Glis therefore totally distinct from that of [EG84]; we use
exterior algebra methods, applying the Tate resolution technology developed in [BE21]. Cu-
riously, this flips a script from Eisenbud-Flgystad-Schreyer’s work [EFS03]: we use Tate res-
olutions on weighted spaces P(d) to understand resolutions of truncations, whereas [EFS03]
uses properties of truncations from [EG84] to define Tate resolutions on P".

Finally, Theorem enables us to provide sharper answers to our initial Questions [I.1]
and For Question [L.I], we have:

Corollary 1.7. Let X be a closed subvariety of the weighted projective space Proj(S) with
defining ideal Ix C S. If S/Ix has Koszul reqularity r, then Ix is generated in degrees
<r+w?

Indeed, we obtain Corollary [L.7] by applying Theorem with 7 = 1 and observing that
! Fdepth(M) _pydepth(M)—1 < 4,2~ A5 for Question [[L2, we prove the following:

Corollary 1.8. Let M be a finitely generated, graded S-module. For any r > 0, the module
M, (r) is Koszul 0-regular, and thus B; j(Ms,(r)) # 0 only if w; < j < w',

In the classical setting, Corollary [L.8 implies that M>,(r) has a linear resolution, as w; =
i = w' for all 7. Thus, the conditions in this corollary can be seen as providing a nonstandard
graded analogue of a linear resolution; in fact this notion of a “Koszul linear” complex arises
in [BE23| in relation to N,-conditions on weighted projective space, and it contrasts with
the notion of strong linearity from [BE22al, Definition 1.2].

Example 1.9. A natural question arising from Corollary [[.8is: where does the homological
shift come from? That is: why is the upper bound for Betti numbers in homological degree
i given by < w't!, as opposed to < w?? The need for this shift can be seen via a simple
example. Let S = k[z,y], where deg(x) = 1 and deg(y) = 10. The degrees of the generators
of the truncation S>,(r) depend on the remainder of  divided by 10. For instance, S>1(1) is
generated by x and y in degrees 0 and 9, whereas S-7(7) is generated by 7 and y in degree 0
and 3. Thus, the generating degrees of Ss,.(r)—i.e. the Betti numbers in homological degree
0—depend on the maximal degree of a variable, i.e. w!. The shift in Theorem is even

more dramatic, depending as it does on the depth of the module.
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Benson’s definition of weighted regularity was a source of inspiration for Maclagan-Smith’s
work on multigraded regularity [MS04], as well as many followup results, e.g. [Sym10,Sym11].
It would be interesting to consider whether an analogue of Koszul regularity in the multi-
graded setting might also yield new results like Corollaries and [L.8 In §4, we pursue a
related line of inquiry. Specifically, we show how Theorem can be applied to the study of
Betti numbers over the Cox rings of more general toric varieties, resulting in Theorem
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2. BACKGROUND

2.1. Regularity and related notions. In this subsection, we provide background on the
various flavors of regularity that appear in this paper, and we discuss some examples that
clarify the distinctions between them. First, it will be useful to recall the definition of
regularity in the standard graded case:

Definition 2.1 (The standard graded case). Assume that deg(x;) = 1 for all i. Given r € Z,
the following conditions on a finitely generated, graded S-module M are equivalent:

(1) Hy(M); =0fori >0 and j > r — i,

(2) Tor?(M,k); =0 for i > 0and j > r 4.
We say M is r-regular if it satisfies these equivalent conditions. The Castelnuovo-Mumford
regularity of M is the smallest  such that M is r-regular.

Let us now return to the nonstandard Z-graded case and consider some results and ex-
amples to clarify the definitions of weighted regularity and Koszul regularity from the intro-
duction. For weighted regularity, Symonds proved the following:

Proposition 2.2 ([Syml11] Proposition 1.2). Let 0 =Y ,(d; — 1), and let M be a finitely
generated, graded S-module. The module M is weighted r-regular if and only if Tor;(M, k); =
0 forallj>r+i1+o0.

Thus, weighted regularity measures the number of rows of the Betti table of M.

Remark 2.3. In the standard graded case, if M is finite length and r-regular, then it is possible
that Tor? (M, k),.; # 0 for any 0 < i < n+1. In other words, the bounds on Tor can be sharp
in every degree. However, for certain choices of d, this can fail in the nonstandard graded
case. To take a simple example, let S = k[x,y] with deg(z) = deg(y) = 3, and consider
a finite length module M of weighted regularity 0. Consider its minimal free resolution:
Fy + Fy < F5 < 0. Proposition 2.2] implies that F; is generated in degrees < 1+ 0 =5
and that F; is generated in degrees < 2+ 0 = 6. But since F; is nonzero and the degrees of
the variables are 3, we see that the highest allowable degree of a generator of Fi is actually
6 — 3 = 3. In other words, for certain classes of modules, and intermediate homological
degrees, the bounds from Proposition might always fail to be sharp.

Example 2.4. Let S = k[xg, x1] with degrees 1 and 2, and let M = S(—1)/(x1) & S(—2).
Both m and M have the same Betti table:

Bm) = 1.

2:

1

p(M)

1

o= = O
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Thus, they have the same weighted regularity; because ¢ = 1 in this case, the weighted
regularity is 1. However, m is Koszul 1-regular, while M is only Koszul 2-regular; one
readily sees this by applying Theorem [B.I] below, or by a direct calculation using Local
Duality. This shows that Koszul regularity cannot be detected solely from the Betti table,
in general; however, Theorem [3.1] below implies that Koszul regularity can be detected from
the Betti table provided that the module is Cohen-Macaulay.

Example 2.5. We provide a quick comparison of weighted and Koszul regularity via a
local cohomology computation. Let S = k[xg, 1, 22, 23] and M = S/(x9, x3). We note that
Hi(M); #0if and only if i =2 and j < —dy — d, B Using this, we see that M has weighted
regularity 2 — dy — d;. To compute Koszul regularity, we first note that w! = ds. So the
Koszul regularity of M is the minimal 7 such that HZ(M); = 0 for all j > r — d3; that is,
T:d3—d0—d1+1.

Remark 2.6. One feature of Koszul regularity is that it is homogeneous in the following
sense: if we rescale the degrees of the variables of S by deg(z;) — Adeg(x;), and we rescale
the grading of an S-module M by A as well, then the Koszul regularity of M is also rescaled
by A. This is not true for weighted regularity.

2.2. The multigraded BGG correspondence. Let E denote the Z & Z-graded exterior
algebra Ag(eo, ..., e,) with deg(e;) = (—deg(z;); —1). We let Com(S) denote the category
of complexes of Z-graded S-modules and DM(FE) the category of differential F-modules, i.e.
E-modules D equipped with a degree (0; —1) endomorphism d such that 9*> = 0. Given an
object D € DM(F), we let H(D) denote its homology.

As proven by [HHW12], there is a multigraded analogue of the Bernstein-Gel’fand-Gel'fand
(BGG) correspondence that gives an adjunction

L:DM(F) = Com(S5) : R.

We refer the reader to [BE21) §2] for a detailed introduction to the multigraded BGG corre-

spondence. We will not be concerned with the functor L in this paper, and we will only need

the formula for R(M) when M is an S-module, which is given as follows. Let wg denote the

E-module Homy, (E, k) = E(—) " ,deg(z;); —n — 1). The object R(M) € DM(FE) has un-

derlying E-module ., M, ®;wg(—a;0) and differential given by m® f +— > jz;m®e; f.
A key point is that Z-graded Betti numbers may be computed via BGG:

Proposition 2.7 ([BE21] Proposition 2.11(a)). Let M be an S-module. We have an iden-
tification H(R(M))(ay) = Torf(M, k)o of Z & Z-graded k-vector spaces.

2.3. Tate resolutions on weighted projective stacks. The BGG functor R admits a
geometric refinement: the Tate resolution functor T: coh(X) — DM(F). Tate resolutions
over toric varieties/stacks are introduced in [BE21l §3], and we refer the reader there for a full
introduction to the topic, and to |[ABIO7,[BE22b] for additional background on differential
modules. Here, we briefly discuss Tate resolutions over weighted projective stacks. The
following result summarizes the key features of Tate resolutions we will need:

Theorem 2.8 (|BE21] Theorems 3.3 and 3.7). Let F be a coherent sheaf on the weighted
projective stack X = P(dy, ..., d,), i.e. the stack quotient of A"\ {0} by the action of the
multiplicative group k\ {0} given by X - (zg,...,z,) = (A%zq, ..., Az,).

1
Tox1 "

3The generator of H2 (M) may be viewed as the monomial
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(1) The Tate resolution T(F) is an exact, minimal differential E-module such that
HI(X, F(j)) = Hom(k, T(F)) 5. B
(2) Choose an m-saturated S-module M such that M = F. The Tate resolution T(F)

is isomorphic to the mapping cone of a minimal free resolution F = R(M) of the
differential E-module R(M).

See [BE21, Appendix B] for background on differential E-modules and [BE21l, Examples
3.11 - 3.13] for examples of Tate resolutions over weighted projective stacks.

Remark 2.9. The coherence assumption on F in Theorem 2.8 can be loosened. Indeed, the
general construction of Tate resolutions on projective toric stacks in [BE21l, §3.2] makes sense
even for quasi-coherent sheaves, and the proof of [BE21L Theorem 3.3] works verbatim at
this level of generality, so Theorem 2.8](1) holds for any quasi-coherent sheaf. Additionally,
if F is a quasi-coherent sheaf on X satisfying

(1) F = M for some S-module M with HY(M) =0, and
(2) there exists N > 0 such that H: (M), =0 for alli > 0 and d > N;

then the proof of [BE21, Theorem 3.7] works essentially verbatim as well, and so Theo-
rem [2.§](2) also holds in this more general setting. We use this in the proof of Theorem Bl

3. PROOF OF THEOREM [L.6
We will prove the following strengthened version of Theorem

Theorem 3.1. Let k be a field, and let S = k[zo, ..., x,], Z-graded so that d; = deg(x;) > 1
for allv. Let M be a graded S-module.
(a) If M is r-Koszul regular, and HY(M); = 0 for j < 0, then Tor?(M,k); = 0 for
j >4 ,wi—l—depth(M) _ ,wdepth(M)—ll
(b) Suppose M 1is finitely generated. If M is Cohen-Macaulay, then the converse of
(a) holds. In general, if Tor?(M,k); = 0 for j > v+ w'™™ (so, for instance, if
Tor? (M, k); = 0 for j > r + wiTdepthM) _ 4, depthD=1) ypen Hi(M)y = 0 for all
d Z r—W;—1q.

Let us briefly sketch the ideas that led us to this result. Let M be Koszul 0-regular and
generated in degree 0. Recall that the Tate resolution of the sheaf associated to M is an
exact, bigraded differential module over an exterior algebra: under certain conditions, it is
the cone of a free resolution of the form G —— R(M) (see Theorem 2.8 and Remark2.9). The
Koszul O-regularity of M constrains the degrees of the generators of G. This also constrains
the degrees of the image of ¢; since the homology of R(M) encodes Tor? (M, k),, this in turn
bounds the Betti numbers of M. The appearance of the integers w’ and w; in the Theorem
arise from working over the exterior algebra. Our actual proof is based on this basic idea,
but it requires some rather technical bookkeeping.

Proof of Theorem[3.1. Twisting M appropriately, we may assume r = 0. Let us prove (a).
By the Horseshoe Lemma applied to 0 — H2(M) — M — M/H2(M) — 0, it suffices
to prove the statement for HO(M) and in the case where H)(M) = 0. Our regularity
assumption implies that HY (M) has a maximal degree d such that HY(M)y # 0; by our
convention w™! = —1, we have d < 0. We have a short exact sequence 0 — H2(M); —

HY(M) — N — 0. Since k(—d) is resolved by the Koszul complex twisted by —d, the
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statement holds for the minimal free resolution of HQ(M )4, because f; ;(k) = 0 for j > w'.
We now apply the same argument to N; since HQ (M) has a minimal degree where it is
nonzero, this process eventually terminates. We may therefore assume that HY (M) = 0.

By Lemma 2.7, the Betti numbers of M are encoded by the homology of R(M); it thus
suffices to prove that

H(R(M))(ajy # 0 only if a < w TP _ qdepth(M)=1,

By Theorem 2.8 (and Remark EZI)E, the Tate resolution of M is isomorphic to the mapping
cone of a minimal free resolution ¢: G = R(M), and the generators of G are in bijection
with sheaf cohomology groups of M. Observe that wg(—a;j + 1) is a summand of G only
if HIt1(M), # 0. By the regularity assumption on M, we have a < —w’ in this case. The
generator of wg has degree (w;n + 1), and so the generator of wr(—a;j + 1) has degree
(w+ a;n — 7). Applying the inequality a < —w’, we get:

(=w+a<w—w =wypi-;.

Setting i = n — j, we arrive at the following key point: every generator 7 of G of degree (¢;1)
satisfies £ < w;y1. We remark, for use in a moment, that j > depth(M) — 1.

Every class in H(R(M)) may be represented by an element in the image of €; in particular,
we can write every element in H(R(M)) as a sum of elements of the form f - €(7), where
T is a generator of G, and f € E. Say deg(7) = (¢;i) and deg(f) = (—m;—t). Since
R(M) has no elements of degree (u;v) with v < 0, the same is true for H(R(M)). We
therefore have —i < —t < 0. Since f7 has degree (¢ — m;i — t), our goal is to show that
0 —m < i tHdepth(M) _q,depth(M)=1 " The maximum possible value for —m is —w,. Since 7 is
a generator of degree (¢;4), the argument in the previous paragraph implies that ¢ < w;;.
We now compute:

) t—1 7
C=m<wip —wy =Y de—Y de= d.
c=0 c=0 c=t

Since j > depth(M) — 1, we have i = n — j < n — depth(M) + 1. Moreover, we have:

i+1 n—depth(M)+1

D de< ) de<iS >,
c=t c=t+1 c=n—(i—t)—depth(M)+1
T
c=n—(i—t)—depth(M)+1 c=n—depth(M)+2

,wz—t-i-depth(M) o wdepth(M)—l ]

Thus, £ —m < wi~tHdepth(M) _ 4, depth(M)—=1 "hich is what we wanted to show.

As for (b): by Grothendieck vanishing, we may assume i > depth(M). By Local Duality,
we have H: (M) = ExtZt' (M, S(—w))*, where w = w"*!. Thus, HE (M)4 is a subquotient
of @jEZ(S(j—w)*)g”“’i’j = @jGZ(Sj_w_d)B”“*M. By hypothesis, the j®* summand vanishes

n+1—i+depth(M) __ wdepth(M)—l

unless 7 < w , and so we assume this inequality holds.

40ur regularity assumption on M implies that the condition in Remark [2.9(2) is satisfied.
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Now, assume M is Cohen-Macaulay. Again by Grothendieck vanishing, we may assume
i = depth(M), in which case j < w — wPthM)=1 Thus when d > —wPHPM =1 we have
j—w—d<0,and so Ho*™™ (A1), = 0. Tt follows that M is 0-Koszul regular.

In general, when d > —w;_1, we have

n+1—i+depth(M) wdopth(M)—l n+2—1

j—w—d<w —w+ w1 = 0.

Thus, H: (M)4 = 0. O

Remark 3.2. The proof of Theorem [L.6[b) is virtually identical to that of the “only if”
direction of Eisenbud-Goto’s Theorem [EG84, Theorem 1.2(1)]. However, we emphasize
that the proof of the “if” direction of Eisenbud-Goto’s Theorem does not generalize to the
weighted setting, and so our approach to proving Theorem [[.6](a) is radically different from
that of [EG84]. Indeed, the proof of the “if” direction of [EG84, Theorem 1.2(1)] makes
crucial use of the fact that, if M is a finitely generated module over a standard graded
polynomial ring with positive depth, and the ground field is infinite, then there exists a
homogeneous linear form ¢ such that ¢ acts as a non-zero-divisor on M. This is false in our
context: for example, say X = P(2,3,5), and let M = S/I, where I = (x9,x1) N (xg,x2) N
(1, x2). The non-zero-divisors of S/I are those elements not in (zg, x1) U (29, x2) U (1, x2).
For instance, f = z° + 21° + 2§ is such an element, and in fact there is no homogeneous
non-zero-divisor on M of smaller degree than f.

—w4 w1 < w

Example 3.3. Let S = k[xg, z1, 2] with degrees 2,3 and 5. One can check that m is
Koszul 1-regular and has depth 1. Theorem [[.6(a) thus implies that the maximal degree of
a generator of the i'" syzygies of m is w'*!; for ¢ = 0, 1,2 this yields bounds of 5,8 and 10,
respectively. Each of these bounds is sharp, as the minimal free resolution of m has the form

S(—=2)® S(—=3) @ S(=5b) + S(=5) @ S(—=7) ® S(—8) + S(—10) « 0.
Let us now prove Corollaries .7 and [L.8]

Proof of Corollary|1.7. Theorem implies that £y ;(S/Ix) = 0 for
,j >+ w1+depth(M) . wdepth(M)—l'

Since S/Ix has depth at least 1, and w? > w'™ —w'™! = d; +d;_, for all i > 1, we conclude
that 8 ;(S/Ix) =0 for j > r +w?, i.e. Iy is generated in degrees < r + w?. O

Our proof of Corollary [L.8 requires the following lemma.

Lemma 3.4. Let M be a finitely generated, graded S-module. The truncation M, is Koszul
r-reqular for r > 0.

Proof. We will show M, (r) is Koszul O-regular for r > 0. Fori > 1, we have H, (M>,(r))q =

H (X, M(d+r)). It therefore follows from (the weighted version of) Serre Vanishing that
we can choose 7 > 0 so that, for any ¢ > 1, we have H:(Ms,(r))s = 0 for d > —w~'. Since
HY(M) has finite length, we may also choose r > 0 such that H2(Ms,(r)) = 0, in which
case H}(Ms,(r)) is supported entirely in negative degrees. O

Proof of Corollary[1.8. Let K denote the Koszul complex on the variables xy, ..., x,. Since
the minimal degree of a generator of M is 0, the minimal degree of an element of Toris (M, k) =
H;(M ®g K) is w;; this yields the lower bound on a. The upper bound follows immediately

from Theorem [[.6(a) and Lemma [3.4] O
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4. AN APPLICATION TO BETTI NUMBERS OVER COX RINGS OF TORIC VARIETIES

Let X be a simplicial, projective toric variety. In this section, we let S = k[xo, ..., z,]
denote the Cl(X)-graded Cox ring of X and B C S the irrelevant ideal of X. Our next
goal is to prove a version of Theorem for C1(X)-graded S-modules; the idea is to use the
theory of primitive collections to reduce to the Z-graded case.

We recall that a primitive collection for X may be described algebraically as a subset of
the variables xy, ..., x, generating an associated prime of B. Primitive collections were first
studied by Batyrev in [Bat91]; we refer the reader to [CLS11) Definition 5.1.5] for background.
Our assumption that X is simplicial and projective ensures that we may apply the theory of
primitive collections in our setting. If I C {zo,...,x,} is a primitive collection, then we can
use |CLS11, p. 305] to define a homomorphism deg;: Cl(X) — Z. More specifically, each
primitive collection I induces, via [CLS11, Definition 6.4.10 and (6.4.8)], a coefficient vector
(b, b, ..., b)) € Q. By minimally clearing denominators, we obtain (bg, b; . . ., b,) € Z"*,
and we define deg;(z;) = b;; this gives a well-defined map CI(X) — Z by the exactness of
the sequence in [CLS11) (6.4.1)]. We have deg;(z;) > 0 for z; € I and deg;(z;) < 0 for
x; ¢ I. In particular, given a primitive collection I, the map deg; makes S; = S/(x; ¢ I)
into a positively Z-graded ring.

Example 4.1. Let X be the Hirzebruch surface of type 3. The Cox ring of X is S =
k[zo, ..., x3), with Z3-grading given by deg(zo) = (1,0) = deg(z2), deg(z;) = (=3,1), and
deg(z3) = (0,1). The irrelevant ideal of X is (zg,2) N (21, 23). There are therefore two
primitive collections for X: {z¢, 22} and {z;,z3}. The map degy, .., (resp. degg,, ,.) is
projection onto the first (resp. second) coordinate.

We introduce the following notation:
Notation 4.2. Let I be a primitive collection. We set
e {max{zmiel, deg,(z;) : I' C T and #1I' = j}, j < #I;
e inel deg;(z:), J > F#1.
The following toric analogue of Theorem is the main result of this section:

Theorem 4.3. Let X be a simplicial, projective toric variety with Cox ring S and irrelevant
ideal B. Let M be a C1(X)-graded S-module, and assume H%(M) = 0. Fiz a primitive
collection I, and let P; denote the corresponding minimal prime of B. We have the followz'ngE:

If Hp (M), =0 then B;o(M) =0
for i >0 and all degrees = fori >0 and all degrees
a € CI(X) where deg;(a) > —wi !, a € CI(X) where deg;(a) > wi™.

Put more simply, Theorem [£.3] says that, if M is an S-module satisfying appropriate
positivity conditions, then the multigraded Betti numbers of M must lie within a particular
polytope. Similar ideas have been appeared in [SVIWO06] and elsewhere. For instance,
results from [BES20,[BHS21,[EES15] give analogues of linear resolutions for truncations and
[BC17,ICH22| give bounds on Betti numbers, at least in the case where X is a product of
projective spaces. A fairly general result in this direction is [MS04, Theorem 1.5(2)], but

SJust as in Theorem [L6{(a), the bounds on Betti numbers appearing in Theorem .3/ may be tightened by
considering the depth of M7 for each primitive collection I.
9



this result addresses the structure of a (potentially infinite) virtual resolution and does not
yield specific results about Betti numbers.

To prove Theorem (4.3 we will need the following technical lemma. Given an S-module
M and a primitive collection I, let M; denote the module M considered as an S;-module.

Lemma 4.4. Let M be a graded S-module, I C {0,...,n} a pm’mitive collection, and J
the complement of I. The CI(X) @ Z-graded k-vector space Tor? (M, k) is a subquotient of
Tory! (My, k) @k we, -

Proof. Let K denote the Koszul complex on all the variables in S, K; the Koszul complex
on {x; : i € I}, and K the Koszul complex on {z; : i € J}. Think of the tensor product
(M®s K I) ®Rs K asa bicomplex whose totalization is M ®5’ K. We have a spectral sequence
E' = Tor (M, S;) ®s K; = Tor?(M, k). Notice that Tor? (M, S;) ®g K; = Tor? (M, S;) ®y
wg,. Finally, it follows from the change of rings spectral sequence for Tor associated to the
inclusion S; <+ S that there is an isomorphism Tor? (M, S;) = Tor?! (M, k). O

Proof of Theorem|4.3. Consider S; and M; as Z-graded via deg; : Cl(X) — Z. Theo-
rem [B.Jl(a) implies that ToriS "(Mp,k); # 0 only if j < wi!. Since wg, is non-positively
graded in the deg;-grading, it follows that

(Tor$" (M, k) ®k Wi, ) (as) @@TOY (M1, k)a—b @k (WE,) (vj-0)
beZ (=0

is nonzero only if a < a —b < w) 71 Now apply Lemma F4l O

Example 4.5. Let X be a Hirzebruch surface of type 3. As discussed in Example @1
there are two primitive collections on X, and the corresponding maps deg; : CI(X) — Z
correspond to projection onto the first/second coordinate. In both cases, w} < 2 for all
j. Let M be a Cl(X)-graded S-module that satsifies the hypotheses of Theorem with
respect to both primitive collections /. Theorem [4.3]implies that the generators of a minimal
free resolution of M lie in the following degrees:

10



(one should imagine this box extending infinitely down and to the left). If M is also generated
in degrees > 0, then the Betti numbers of M must lie in the polytope

For instance, set N = S/(xox1), and let M be the truncated twist M = N>23(2,3). A
direct computation shows that H%(M) = 0, and, for either primitive collection I on X, M;
is Koszul 0-regular with respect to the associated Z-grading. The minimal free resolution of

M has the form S® < S(3,-1)?® S(0,—1)* ® S(—1,0)° + S(2,-1) & S(—1,—1)% < 0.
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