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We formulate a quantitative finite-dimensional conjecture about frame multipliers 
and prove that it is equivalent to Conjecture 1 in [22]. We then present solutions to 
the conjecture for certain classes of frame multipliers. In particular, we prove that 
for all C > 0 and N ∈ N the following is true: Let (xj)Nj=1 and (fj)Nj=1 be sequences 
in a finite dimensional Hilbert space which satisfy ∥xj∥ = ∥fj∥ for all 1 ≤ j ≤ N
and

∥∥∥
N∑

j=1
εj⟨x, fj⟩xj

∥∥∥ ≤ C∥x∥, for all x ∈ ℓM2 and |εj | = 1.

If the frame operator for (fj)Nj=1 has eigenvalues λ1 ≥ ... ≥ λM and β > 0 is such 
that λ1 ≤ βM−1 ∑M

j=1 λj then (fj)Nj=1 has Bessel bound 27β2C. The same holds 
for (xj)Nj=1.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

A frame for a finite dimensional or infinite dimensional separable Hilbert space H is a sequence of vectors 
(xj)Nj=1 ⊂ H (where N ∈ N or N = ∞) for which there exist constants 0 < A ≤ B, called frame bounds, 
such that
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A∥x∥2 ≤
N∑

i=1
|⟨x, xj⟩|2 ≤ B∥x∥2, for all x ∈ H. (1.1)

The ratio B/A is called the condition number of (xj)Nj=1. We say that (xj)Nj=1 is Bessel if it satisfies the 
upper bound of (1.1) for some B < ∞ and call B a Bessel bound. A frame is called tight if it has condition 
number 1. The analysis operator of X = (xj)Nj=1 is the map UX : H → ℓN2 given by UX(x) = (⟨x, xj⟩)Nj=1
for all x ∈ H and the frame operator of X = (xj)Nj=1 is the positive operator SX : H → H given by 
SX = U∗

XUX . Note that (xj)Nj=1 has Bessel bound B if and only if ∥SX∥ = ∥UX∥2 ≤ B. For a thorough 
introduction to frame theory, we refer to, e.g., [11].

For a choice of E = (εj)Nj=1 with |εj | = 1 for all 1 ≤ j ≤ N we let DE : ℓN2 → ℓN2 be the map 
DE(bj)Nj=1 = (εjbj)Nj=1. It immediately follows that if X = (xj)Nj=1 and F = (fj)Nj=1 are both sequences in 
H with Bessel bound B and analysis operators UX and UF then

∥U∗
XDEUFx∥ =

∥∥∥
N∑

j=1
εj⟨x, fj⟩xj

∥∥∥ ≤ B∥x∥, for all x ∈ H and all E = (εj)Nj=1. (1.2)

This idea can be generalized further through the introduction of frame multipliers [2,20,21]. Let X = (xj)Nj=1
and F = (fj)Nj=1 be sequences in a Hilbert space H, and let m = (mj)Nj=1 be a sequence of scalars called 
the symbol. The corresponding frame multiplier Mm,X,F : H → H is given by

Mm,X,Fx =
N∑

j=1
mj⟨x, fj⟩xj , for all x ∈ H. (1.3)

These operators are closely related to the concept of weighted frames [4], i.e. sequences (djxj), where (dj)
is a sequence of scalars and (xj) is a sequence of vectors. If (dj)Nj=1 is a sequence of non-zero scalars then 
we write dX = (djxj)Nj=1. Note that the frame multipliers Mm,dX,d

−1
F and Mm,X,F are equal. However, 

the sequences (djxj)nj=1 and 
(
d
−1
j fj

)N
j=1 may have very different frame bounds from (xj)Nj=1 and (fj)Nj=1. 

The following conjectures that if we are given an unconditionally convergent multiplier, i.e. (1.3) converges 
unconditionally for every x ∈ H, then we can shift the weights to get two Bessel sequences.

Conjecture 1.1 ([22]). Let Mm,X,F be an unconditionally convergent multiplier on a separable Hilbert space 
H. Then there exists sequences of scalars (cj)∞j=1 and (dj)∞j=1 such that cjdj = mj for all j ∈ N and both 
(cjxj)∞j=1 and (djfj)∞j=1 are Bessel.

This idea of shifting weights is also considered in [15] for the case where the multiplier is constant 1 and 
the sequences satisfy a reproducing formula. Suppose that (xj)∞j=1 and (fj)∞j=1 are sequences in a Hilbert 
space H such that x =

∑
⟨x, fj⟩xj , and the series converges unconditionally for all x ∈ H. Then there exists 

a sequence (dj)∞j=1 such that (djxj)∞j=1 and (dj
−1

fj)∞j=1 are both frames of H if and only if the induced 
operator valued map MF,X(aj)∞j=1 =

∑
ajfj ⊗xj is a completely bounded map between the C∗-algebra ℓ∞

and the C∗-algebra B(H) (where B(H) is the space of bounded operators on H) [15].
Many problems for infinite-dimensional Hilbert spaces have corresponding quantitative problems for 

finite-dimensional Hilbert spaces. Notably, the Kadison-Singer Problem was a famous and long open question 
about operators on infinite dimensional Hilbert spaces which was shown to be equivalent to the Feichtinger 
Conjecture [9], the Paving Conjecture [1], Weaver’s Conjecture [24], and the Bourgain-Tzafriri Conjecture 
[7]. Marcus, Spielman, and Srivastava [18] solved the Kadison-Singer Problem by proving a very strong 
quantitative and finite-dimensional theorem which directly implied Weaver’s Conjecture and has since been 
applied to solve many other problems in applied harmonic analysis and approximation theory [19][14][16][12]. 
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In Section 2 we show that Conjecture 1.1 is equivalent to the following quantitative and finite-dimensional 
conjecture.

Conjecture 1.2. Let m = (mj)Nj=1, X = (xj)Nj=1, and F = (fj)Nj=1. There exists a universal constant κ > 0
so that the following holds. Let C > 0 and let Mm,X,F be a multiplier on a finite dimensional Hilbert space 
H such that

∥∥∥
N∑

j=1
εjmj⟨x, fj⟩xj

∥∥∥ ≤ C∥x∥, for all x ∈ H and |εj | = 1. (1.4)

Then there exists sequences of scalars (cj)Nj=1 and (dj)Nj=1 such that cjdj = mj for all 1 ≤ j ≤ N and both 
(cjxj)Nj=1 and (djfj)Nj=1 are Cκ-Bessel.

By expressing Conjecture 1.1 in a quantitative and finite dimensional way, we hope to open the problem 
to new methods and techniques. Conjecture 1.1 has been solved for a large number of important classes of 
sequences [22]. Likewise, we will solve Conjecture 1.2 for certain important cases. Our results are distinctly 
different from what has been done in infinite-dimensions, and we will make use of probabilistic methods 
which are inherently finite-dimensional. The following theorem solves Conjecture 1.1 in the case where the 
largest eigenvalue of the frame operator is proportional to the average of the eigenvalues.

Theorem 1.3. Suppose that (xj)Nj=1 and (fj)Nj=1 are sequences in an M -dimensional Hilbert space which 
satisfy ∥xj∥ = ∥fj∥ for all 1 ≤ j ≤ N and C > 0 is such that

∥∥∥
N∑

j=1
εj⟨x, fj⟩xj

∥∥∥ ≤ C∥x∥, for all x ∈ ℓM2 and |εj | = 1. (1.5)

If the frame operator for (fj)Nj=1 has eigenvalues λ1 ≥ ... ≥ λM and β > 0 satisfies λ1 ≤ β
M

∑M
j=1 λj then 

(fj)Nj=1 has Bessel bound 27β2C. The same holds for (xj)Nj=1.

Note that if (fj)Nj=1 is a frame of an M -dimensional Hilbert space and λ1 ≥ ... ≥ λM are the eigenvalues 
of the frame operator of (fj)Nj=1 then (fj)Nj=1 has condition number λ1/λM . Thus, if (xj)Nj=1 and (fj)Nj=1
are frames with condition number β and ∥xj∥ = ∥fj∥ for all 1 ≤ j ≤ N then (xj)Nj=1 and (fj)Nj=1 both have 
Bessel bound 27β2C where C satisfies (1.5). This gives the following corollary for pairs of equi-norm tight 
frames.

Corollary 1.4. Let (xj)Nj=1 and (fj)Nj=1 be tight frames for a finite dimensional Hilbert space with ∥xj∥ = ∥fj∥
for all 1 ≤ j ≤ N . Let C > 0 be the least constant such that

∥∥∥
N∑

j=1
εj⟨x, fj⟩xj

∥∥∥ ≤ C∥x∥, for all x ∈ ℓM2 and |εj | = 1.

Then the tight frames (xj)Nj=1 and (fj)Nj=1 have the same frame bound B = M−1 ∑N
j=1 ∥xj∥2 and C ≤ B ≤

27C.

In Theorem 1.3 we made an assumption about the eigenvalues of the frame operators for (xj)Nj=1 and 
(fj)Nj=1. In the following theorem we do not assume anything about the frame structure of (xj)Nj=1 and 
(fj)Nj=1 but we require a uniform lower bound ∥xj∥∥fj∥ ≥ b for all 1 ≤ j ≤ N . This gives a quantitative 
version of one direction of Proposition 1.1 in [22].
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Proposition 1.5. Let b, C > 0 and N ∈ N ∪{∞}. Let (xj)Nj=1, (fj)Nj=1 be sequences in a Hilbert space H such 
that ∥xj∥∥fj∥ ≥ b for all 1 ≤ j ≤ N and that

∥∥∥
N∑

j=1
εj⟨x, fj⟩xj

∥∥∥ ≤ C∥x∥, for all x ∈ H and |εj | = 1.

Then (djxj)Nj=1 and (d−1
j fj)Nj=1 have Bessel bound b−1C2 where dj = ∥xj∥−1/2∥fj∥1/2 for all 1 ≤ j ≤ N .

Note that the Bessel bound given in Proposition 1.5 scales as C2 instead of C as in Conjecture 1.2. 
Furthermore, we give an example in Section 3 which shows that the scaling of C2 is necessary here. However, 
this does not contradict Conjecture 1.2 as the choice of (dj)Nj=1 specified in Proposition 1.5 is not necessarily 
the optimal choice for Conjecture 1.2.

A series 
∑N

j=1 zj in a Banach space X is called C-unconditional if ∥ 
∑N

j=1 εjzj∥ ≤ C∥ 
∑

zj∥ for all scalars 
|εj | = 1 and is called CS-suppression unconditional if ∥ 

∑
j∈∆ zj∥ ≤ CS∥ 

∑
zj∥ for all subsets ∆ ⊆ {1, ..., N}. 

We are considering C-unconditionality in this paper, but this is equivalent to suppression unconditionality 
up to a universal constant. Indeed, for every series 

∑N
j=1 zj in a Banach space X over a field F ∈ {R, C}, 

we have that

max
δj∈{0,1}

∥∥∥
N∑

j=1
δjzj

∥∥∥ ≤ max
|εj |=1, εj∈F

∥∥∥
N∑

j=1
εjzj

∥∥∥ ≤ BF max
δj∈{0,1}

∥∥∥
N∑

j=1
δjzj

∥∥∥, (1.6)

with BR = 2, and BC = 4. Although the real case is covered in most textbooks on Banach spaces (e.g. the 
discussion after Prop 1.c.6. in [17]), a proof of the complex case is not as easily found. For this reason, we 
include a short proof in the appendix.

The paper is organized as follows. In Section 2 we prove that Conjecture 1.1 is equivalent to Conjecture 1.2. 
In Section 3 we use the Parallelogram Law to give a short proof of Proposition 1.5. We prove our main 
results, including Theorem 1.3, in Section 4.

We sincerely thank the anonymous referee for their very helpful comments which allowed us to improve 
the paper.

2. Frame multipliers in finite dimensions

Our goal for this section is to prove that Conjecture 1.1 on unconditionally convergent frame multipliers 
for infinite dimensional Hilbert spaces is equivalent to Conjecture 1.2 on uniform quantitative bounds for 
frame multipliers on finite dimensional Hilbert spaces.

Theorem 2.1. The following are equivalent.

(1) For every unconditionally convergent frame multiplier Mm,X,F on a separable Hilbert space H there 
exists sequences of scalars (cj)∞j=1 and (dj)∞j=1 such that cjdj = mj for all j ∈ N and both (cjxj)∞j=1
and (djfj)∞j=1 are Bessel.

(2) There exists a universal constant κ > 0 so that the following holds. For every multiplier Mm,X,F on a 
finite dimensional Hilbert space H that satisfies

∥∥∥
n∑

j=1
εjmj⟨x, fj⟩xj

∥∥∥ ≤ C∥x∥, for all x ∈ H and |εj | = 1,

there exists sequences of scalars (cj)nj=1 and (dj)nj=1 such that cjdj = mj for all 1 ≤ j ≤ n and both 
(cjxj)nj=1 and (djfj)nj=1 are Cκ-Bessel.
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Proof. We first assume that (2) is true and prove that (1) is true. Let Mm,X,F be an unconditionally 
convergent frame multiplier on a separable Hilbert space H. That is,

∞∑

j=1
εjmj⟨x, fj⟩xj converges for all x ∈ H and |εj | = 1. (2.1)

For each m, n ∈ N and (εj)nj=m with |εj | = 1 for all m ≤ j ≤ n we let T(ε)nj=m
be the finite rank operator on 

H defined by T(ε)nj=m
(x) =

∑n
j=m εjmj⟨x, fj⟩xj for all x ∈ H. Let x ∈ H and for the sake of contradiction 

we assume that sup(εj)nj=m
∥T(ε)nj=m

(x)∥ = ∞. By piecing finite sequences together, we can create an infinite 
sequence (εj)∞j=1 such that supm≤n ∥T(ε)nj=m

(x)∥ = ∞. This contradicts that 
∑∞

j=1 εjmj⟨x, fj⟩xj converges. 
Hence, for all x ∈ H there exists Cx > 0 so that ∥T(ε)nj=m

(x)∥ ≤ Cx∥x∥ for all (ε)nj=m. By the Uniform 
Boundedness Principle there exists a uniform constant C > 0 so that ∥T(ε)nj=m

(x)∥ ≤ C∥x∥ for all (ε)nj=m

and all x ∈ H. Thus, we have for all N ∈ N that

∥∥∥
N∑

j=1
εjmj⟨x, fj⟩xj

∥∥∥ ≤ C∥x∥, for all x ∈ span1≤j≤Nxj and |εj | = 1. (2.2)

By (2), there exists (cN,j)nj=1 and (dN,j)nj=1 such that cN,jdN,j = mj for all j ∈ N and both (cN,jxj)Nj=1
and (dN,jfj)Nj=1 are κC-Bessel. Without loss of generality, we assume that mj ̸= 0, xj ̸= 0, and fj ̸= 0 for 
all j ∈ N. Thus, we have that |cN,j| ≤ κC∥xj∥−1 and |dN,j | ≤ κC∥fj∥−1 for all j ∈ N. As cN,jdN,j = mj , 
we have for all j ∈ N that

|mj |κ−1C−1∥fj∥ ≤ |cN,j | ≤ κC∥xj∥−1, and |mj |κ−1C−1∥xj∥ ≤ |dN,j | ≤ κC∥fj∥−1. (2.3)

Thus, for each j ∈ N we have positive uniform upper and lower bounds on (cN,j)∞N=1 and (dN,j)∞N=1. After 
passing to a subsequence, we may assume that there exists (cj)∞j=1 and (dj)∞j=1 so that limN→∞ cN,j = cj
and limN→∞ dN,j = dj for all j ∈ N. By (2.3) we have that cj and dj are non-zero and that cjdj = mj

for all j ∈ N. For all n ≤ N we have that (cN,jxj)nj=1 and (dN,jfj)nj=1 are κC-Bessel. Thus by taking the 
limit, we have for all n ∈ N that (cjxj)nj=1 and (djfj)nj=1 are κC-Bessel. Hence, (cjxj)∞j=1 and (djfj)∞j=1 are 
κC-Bessel. This proves (1).

We now assume that (2) is false. Thus, for all k ∈ N there exist a multiplier Mmk,Xk,Fk on a finite 
dimensional Hilbert space Hk and Ck > 0 such that

∥∥∥
nk∑

j=1
εjmk,j⟨x, fk,j⟩xk,j

∥∥∥ ≤ Ck∥x∥, for all x ∈ Hk and |εj | = 1,

but that for all sequences of scalars (cj)nk
j=1 and (dj)nk

j=1 such that cjdj = mj for all 1 ≤ j ≤ nk we have 

that either (cjxk,j)nk
j=1 or (djfk,j)nk

j=1 is not kCk-Bessel. By scaling both (xk,j)nk
j=1 and (fjk)nk

j=1 by C−1/2
k

we have that M
mk,C

−1/2
k Xk,C

−1/2
k Fk

is a multiplier on Hk such that

∥∥∥
nk∑

j=1
εjmk,j⟨x,C−1/2

k fk,j⟩C−1/2
k xk,j

∥∥∥ ≤ ∥x∥, for all x ∈ Hk and |εj | = 1,

but that for all sequences of scalars (cj)nk
j=1 and (dj)nk

j=1 such that cjdj = mj for all 1 ≤ j ≤ k we have that 
either 

(
cjC

−1/2
k xk,j

)nk

j=1 or 
(
djC

−1/2
k fk,j

)nk

j=1 is not k-Bessel.
We now let H = ⊕∞

k=1Hk and let Mm̃,X̃,F̃ be the multiplier on H which is the direct sum of the multipliers (
M

mk,C
−1/2
k Xk,C

−1/2
k Fk

)∞
k=1. That is, we enumerate by t ∈ N, where, if k ∈ N, and 1 ≤ j ≤ nk are such 
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that t =
∑k−1

i=1 ni + j then m̃t = mk,j , x̃t = C−1/2
k xk,j and f̃t = C−1/2

k fjk . Let x ∈ H and let (εt)∞t=1 be 
a sequence of scalars with εt = ±1 for all t ∈ N. For each k ∈ N and 1 ≤ j ≤ nk we let εk,j = εt where 
t =

∑k−1
i=1 ni + j. Thus, we have that

∥∥∥
∞∑

t=1
εtm̃t⟨x, f̃t⟩x̃t

∥∥∥
2

=
∞∑

k=1

∥∥∥
nk∑

j=1
εk,jmk,j⟨PHkx,C

−1/2
k fk,j⟩C−1/2

k xk,j

∥∥∥
2

≤
∞∑

k=1
∥PHkx∥2 = ∥x∥2.

Thus, the multiplier Mm̃,X̃,F̃ is unconditionally convergent. However, there does not exist scalars (ct)∞t=1

and (dt)∞t=1 such that ctdt = m̃t for all t ∈ N and both (ctx̃t)∞t=1 and (dtf̃t)∞t=1 are Bessel. This is because 
by assumption for all k ∈ N there exists hk ∈ Hk, such that either

∑k
j=1 nj∑

t=1+
∑k−1

j=1 nj

|⟨hk, ctx̃t⟩|2 =
nk∑

j=1
|⟨hk, ctjC

−1/2
k xk,j⟩|2 > k∥hk∥2,

or
∑k

j=1 nj∑

t=1+
∑k−1

j=1 nj

|⟨hk, dtf̃t⟩|2 =
nk∑

j=1
|⟨hk, dtjC

−1/2
k fk,j⟩|2 > k∥hk∥2.

Thus we have that (1) is false. !

Remark 2.2. The splitting of the weight cjdj = mj generally depends on the particular given sequence 
(mj)nj=1. The quantitative condition (2) in Theorem 2.1 however allows to treat certain families of weights 
simultaneously. For example, if Mm,X,F is a finite multiplier that satisfies the assumption in (2), then all 
multipliers Mm̃,X,F with |m̃j | ≤ |mj | do so as well.

3. Lower bounds and the parallelogram law

The parallelogram law states that if (xj)Nj=1 is a sequence of vectors in a Hilbert space then

2−N
∑

εj=±1

∥∥∥
N∑

j=1
εjxj

∥∥∥
2

=
N∑

j=1
∥xj∥2. (3.1)

That is, if (εj)Nj=1 is a sequence of independent zero mean random variables with εj = ±1 then we have the 
following formula for the expectation.

E
∥∥∥

N∑

j=1
εjxj

∥∥∥
2

=
N∑

j=1
∥xj∥2. (3.2)

Note that Conjecture 1.2 concerns pairs of families of vectors (xj)Nj=1 and (fj)Nj=1 such that ∥ 
∑N

j=1 εj⟨x,
fj⟩xj∥ ≤ C∥x∥ is satisfied for all vectors x and all |εj | = 1. This inequality naturally lends itself to the 
parallelogram law. We now prove Proposition 1.5 from the introduction.
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Proof of Proposition 1.5. We first assume that N ∈ N is finite. Let (εj)Nj=1 be a sequence of independent 
zero mean random variables with εj = ±1. Let x ∈ H. We have that,

C2∥x∥2 ≥ E
∥∥∥

N∑

j=1
εj⟨x, fj⟩xj

∥∥∥
2

= E
∥∥∥

N∑

j=1
εj⟨x, d−1

j fj⟩djxj

∥∥∥
2

=
N∑

j=1
|⟨x, d−1

j fj⟩|2d2
j∥xj∥2 by the parallelogram law,

=
N∑

j=1
|⟨x, d−1

j fj⟩|2∥xj∥∥fj∥ ≥ b
N∑

j=1
|⟨x, d−1

j fj⟩|2.

This gives that (d−1
j fj)Nj=1 has Bessel bound b−1C2. For all |εj | = 1, the adjoint of the operator S(x) =

∑N
j=1 εj⟨x, fj⟩xj is the operator S∗(f) =

∑N
j=1 εj⟨f, xj⟩fj . Thus, the roles of (fj)Nj=1 and (xj)Nj=1 may be 

interchanged. The same argument we used for (dj
−1

fj)Nj=1 now proves that (djxj)Nj=1 has Bessel bound 
b−1C2.

For the case N = ∞, we have that (djxj)∞j=1 and (d−1
j fj)∞j=1 have Bessel bound b−1C2 if and only if 

(djxj)nj=1 and (d−1
j fj)nj=1 have Bessel bound b−1C2 for all n ∈ N. Thus, the infinite case follows from the 

finite case. !

For the infinite case, it was previously known that if (xj)∞j=1 and (fj)∞j=1 satisfy the hypothesis of 
Proposition 1.5 then (djxj)nj=1 and (d−1

j fj)nj=1 are both Bessel [22]. The contribution of Proposition 1.5 is 
that it provides an explicit Bessel bound.

Note that the Bessel bound given in Proposition 1.5 scales as C2 instead of C as in Conjecture 1.2. The 
following example shows that this is necessary.

Example 3.1. Let (ej)Nj=1 be the unit vector basis of ℓN2 . We let xj = ej and fj = e1 for all 1 ≤ j ≤ N . Then 
we have that,

∥∥∥
N∑

j=1
εj⟨x, e1⟩ej

∥∥∥ ≤ N1/2∥x∥, for all x ∈ ℓN2 and |εj | = 1. (3.3)

Note that equality in (3.3) is achieved for x = e1. We have the values b = 1 and C = N1/2 for Proposition 1.5, 
which gives that (xj)Nj=1 and (fj)Nj=1 must have Bessel bound b−1C2 = N . Furthermore, N is exactly the 
Bessel bound of (fj)Nj=1 = (e1)Nj=1.

We have that the sequence of pairs (ej, e1)Nj=1 in Example 3.1 satisfies the unconditionality inequality 
with constant N1/2 and yet (e1)Nj=1 has Bessel bound N . However, we can shift weights so that (N1/4ej)Nj=1
and (N−1/4e1)Nj=1 each have Bessel bound N1/2. This shows that it may be necessary to shift weights to 
minimize the maximum of the Bessel bounds of (djxj)Nj=1 and (d−1

j fj)Nj=1 even when ∥xj∥ = ∥fj∥ for all 
1 ≤ j ≤ N .

4. Pairs of equi-norm frames

The flexibility of choosing a sequence of scalars (dj)Nj=1 is the most challenging aspect of Conjecture 1.2. 
One reason for the difficulty is that the Bessel bounds for (djxj)Nj=1 and (d−1

j fj)Nj=1 are global properties 
that apply to all x ∈ H, whereas modifying the value for dk for some fixed 1 ≤ k ≤ N makes a local change in 
one dimension for the frame operators for (djxj)Nj=1 and (d−1

j fj)Nj=1. Intuitively, a common problem in many 
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different areas of mathematics is that it is difficult to optimize a global property through local modifications. 
Another difficulty is that the optimal Bessel bound of the sequence (djxj)Nj=1 is a continuous function of 
the variables (dj)Nj=1, but it is not a smooth function of (dj)Nj=1. Indeed, for the simplest case where (xj)Nj=1
is an orthonormal basis, we have that the optimal Bessel bound for (djxj)Nj=1 is B = max1≤j≤N |dj |. In 
Proposition 1.5 we explicitly choose dj = ∥xj∥−1/2∥fj∥1/2 by using the local hypothesis ∥xj∥∥fj∥ ≥ b for 
all 1 ≤ j ≤ N . This works well for large b > 0, but (as shown in Example 3.1) this choice of (dj)Nj=1 may 
yield very large Bessel bound when b is small relative to the unconditionality constant C. Because it is very 
difficult to choose the sequence (dj)Nj=1 in general, we will identify a situation where the optimal choice 

is dj = dj
−1 = 1. That is, choosing dj = dj

−1 = 1 will minimize the maximum of the Bessel bounds of 
(djxj)Nj=1 and (dj

−1
fj)Nj=1. We will make use of the following simple lemma.

Lemma 4.1. Let (xj)Nj=1 be a finite frame for ℓM2 with frame operator SX , upper frame bound B, and lower 
frame bound A. Then the following hold:

(i) trace(SX) =
∑N

j=1 ∥xj∥2,
(ii) AM ≤ trace(SX) ≤ BM ,
(iii) If (xj)Nj=1 is B-tight, then trace(SX) = BM .
(iv) Let UX be the analysis operator of (xj)Nj=1 which has the following matrix form,

UX =

⎡

⎢⎢⎣

− x1 −
− x2 −

...
− xN −

⎤

⎥⎥⎦

N×M

=
[ | | |
c1 c2 . . . cM
| | |

]

N×M

Then, the sequence of columns (cj)Mj=1 of UX is a basis for the column space and has upper frame bound B
and lower frame bound A.

Proof. The operator SX : ℓM2 → ℓM2 is defined by SX(x) =
∑N

j=1⟨x, xj⟩xj for all x ∈ ℓM2 . Let (ek)Mk=1 be an 
orthonormal basis for ℓM2 . Then,

trace(SX) =
M∑

k=1

N∑

j=1
|⟨ek, xj⟩|2 =

N∑

j=1

M∑

k=1
|⟨ek, xj⟩|2 =

N∑

j=1
∥xj∥2.

This gives (i). Conditions (ii) and (iii) follow easily (see [3, Cor. 5.2]).
Note that the upper frame bound B is the largest eigenvalue of the frame operator SX = U∗

XUX and is 
hence the square of the largest singular value of UX . As UX and U∗

X have the same non-zero singular values, 
B is the upper frame bound of (cj)Mj=1. Likewise, A is the lower frame bound of (cj)Mj=1. !

The following proposition gives a case where the optimal choice for (dj)Nj=1 is constant 1. That is, we 
provide a situation where the local optimization of having ∥djxj∥ = ∥d−1

j fj∥ gives the global optimization of 
minimizing max{BdX , Bd−1F } where BdX is the Bessel bound of (djxj)Nj=1 and Bd−1F is the Bessel bound 
of (d−1

j fj)Nj=1. Furthermore, this minimizes the condition numbers for both (djxj)Nj=1 and (d−1
j fj)Nj=1 to be 

1 as in the sense of weighted frames [4].

Proposition 4.2. Let (xj)Nj=1 and (fj)Nj=1 be finite frames for ℓM2 with ∥xj∥ = ∥fj∥, for all 1 ≤ j ≤ N . Let 
A > 0 be a lower frame bound for either (xj)Nj=1 or (fj)Nj=1. Then for all non-zero scalars (dj)Nj=1, if B is 
a Bessel bound for both (djxj)Nj=1 and ( 1

dj
fj)Nj=1 then B must be at least A.
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In particular, we have that if (xj)Nj=1 and (fj)Nj=1 are both tight frames then they are both A-tight for 
some A > 0 and

A = min
d=(dj)Nj=1

max{BdX , Bd−1F },

where BdX is the optimal Bessel bound of (djxj)Nj=1 and Bd−1F is the optimal Bessel bound of (d−1
j fj)Nj=1.

Proof. Without loss of generality, we assume that A is a lower frame bound for (xj)Nj=1. Let (dj)Nj=1 be a 
sequence of non-zero scalars. Let SdX be the frame operator of (djxj)Nj=1 and Sd−1F be the frame operator 
of ( 1

dj
fj)Nj=1. We will prove that the trace of SdX + Sd−1F is at least 2AM . Lemma 4.1 (ii) then gives that 

the minimal Bessel bound of either (djxj)Nj=1 or ( 1
dj
fj)Nj=1 must be greater than or equal to A.

By Lemma 4.1 (i) we have that

trace(SdX) =
n∑

j=1
|dj |2∥xj∥2, and trace(Sd−1F ) =

n∑

j=1
|dj |−2∥fj∥2.

By adding these equations together, we get that

trace(SdX + Sd−1F ) =
N∑

j=1
|dj |2∥xj∥2 + |dj |−2∥fj∥2

=
N∑

j=1
(|dj |2 + |dj |−2)∥xj∥2 as ∥xj∥ = ∥fj∥ for all 1 ≤ j ≤ N,

≥
n∑

j=1
2∥xj∥2 as t2 + t−2 is minimized at t = 1,

= 2 trace(SX) by Lemma 4.1 (i),
≥ 2AM by Lemma 4.1 (ii).

Thus trace(SdX + Sd−1F ) ≥ 2AM and our proof is complete. !

Proposition 4.2 gives a general situation where we know the optimal values for the sequence (dj)Nj=1. That 
is, if (xj)Nj=1 and (fj)Nj=1 are both tight frames with ∥xj∥ = ∥fj∥, for all 1 ≤ j ≤ N then choosing dj = 1 for 
all 1 ≤ j ≤ N will minimize the maximum of the Bessel bounds of (djxj)Nj=1 and (d−1

j fj)Nj=1. Other than 
specific examples, this is the only general situation where the optimal values for (dj)Nj=1 are known, and 
we will solve Conjecture 1.2 completely for this case. In particular, Theorem 1.3 gives that if such frames 
(xj)Nj=1 and (fj)Nj=1 satisfy (1.4) for some constant C > 0 then (xj)Nj=1 and (fj)Nj=1 both have Bessel bound 
27C. Note that this case includes many important examples of frames, including the finite unit norm tight 
frames. A sequence (xj)Nj=1 in ℓM2 is called a finite unit norm tight frame or FUNTF if (xj)Nj=1 is a tight 
frame and ∥xj∥ = 1 for all 1 ≤ j ≤ N . Finite unit norm tight frames (FUNTFs) were introduced in [5], and 
are of particular interest in both theory and applications [6][10][8]. If (xj)Nj=1 is a FUNTF for ℓM2 then its 
frame bound is exactly NM−1. An equi-norm tight frame is a tight frame where all the vectors have the 
same norm, and in finite dimensions is just a rescaling of a FUNTF. This gives the following corollary for 
Proposition 1.5 for the case that (xj)Nj=1 and (fj)Nj=1 are frames which are both equi-norm and tight.

Corollary 4.3. Let C ≥ 1 and M, N ∈ N. Suppose that (xj)Nj=1 and (fj)Nj=1 are both equi-norm tight frames 
with
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∥∥∥
N∑

j=1
εj⟨x, fj⟩xj

∥∥∥ ≤ C∥x∥, for all x ∈ ℓM2 and |εj | = 1.

Then (dxj)Nj=1 and (d−1fj)Nj=1 have Bessel bound N1/2M−1/2C where d = ∥x1∥−1/2∥f1∥1/2.

Proof. As (xj)Nj=1 and (fj)Nj=1 are both equi-norm tight frames there exists a constant b > 0 so that 
∥xj∥∥fj∥ = b for all 1 ≤ j ≤ N . We apply Proposition 1.5 to obtain that the sequences (dxj)Nj=1 and 
(d−1fj)Nj=1 have Bessel bound b−1C2. As (b−1/2dxj)Nj=1 is a FUNTF, it has frame bound NM−1. By 
scaling, (dxj)Nj=1 is a tight frame with frame bound bNM−1. This gives that bNM−1 ≤ b−1C2. Hence, 
b ≤ N−1/2M1/2C. As (dxj)Nj=1 is a tight frame with frame bound bNM−1 we get that (dxj)Nj=1 has Bessel 
bound N1/2M−1/2C. Likewise, (d−1fj)Nj=1 has Bessel bound N1/2M−1/2C. !

One interesting aspect of Corollary 4.3 is that it gives a Bessel bound for the case of equi-norm tight 
frames which does not explicitly state the value of ∥xj∥ and ∥fj∥. The Bessel bound given in Corollary 4.3
depends on both N and M . There exist length N FUNTFs for ℓM2 for all N ≥ M , and hence the Bessel 
bound N1/2M−1/2C can be arbitrarily large. One of our goals for the remainder of this section is to improve 
this by giving a uniform Bessel bound which is independent of N and M . Our proof will be probabilistic 
and will rely on the following case of Khintchine’s inequality (see for example Lemma 6.29 in [13] for the 
general statement and [23] for the optimal constant of 1 / 

√
2).

Theorem 4.4 (Khintchine’s Inequality). For all M ∈ N and all scalars (aj)Nj=1,

2−N
∑

δj=±1

∣∣∣
N∑

j=1
δjaj

∣∣∣ ≥
1√
2

⎛

⎝
N∑

j=1
|aj |2

⎞

⎠
1/2

.

That is, if (δj)Nj=1 is a sequence of independent symmetric random variables with δj = ±1, then we have the 
following lower bound for the expectation,

E
∣∣∣

N∑

j=1
δjaj

∣∣∣ ≥
1√
2
∥∥(aj)Nj=1

∥∥
ℓN2

.

Khintchine’s inequality may be used to compare any pair of ℓp and ℓq-norms for 1 ≤ p, q < ∞ (with 
a different constant than 1 / 

√
2 which depends on p, q), but we will only need it for comparing the ℓ1 and 

ℓ2 norms. We are now ready to prove the following solution to Conjecture 1.2 for the case of families of 
equi-norm vectors. This will be extended to more general sets of vectors in Theorem 1.3.

Lemma 4.5. Let C, D > 0 and N ∈ N. Suppose that (xj)Nj=1 and (fj)Nj=1 are both sequences in a finite 
dimensional Hilbert space which satisfy ∥xj∥ = ∥fj∥ = D for each 1 ≤ j ≤ N and

∥∥∥
N∑

j=1
εj⟨x, fj⟩xj

∥∥∥ ≤ C∥x∥, for all x ∈ ℓM2 and |εj | = 1.

Let λ1 ≥ ... ≥ λM be the eigenvalues of the frame operator of (fj)Nj=1 and β ≥ 1 be chosen such that 
λ1 ≤ β

M

∑M
j=1 λj. Then (fj)Nj=1 has Bessel bound 27β2C.

The same estimate holds for the Bessel bound of (xj)Nj=1 if the eigenvalues of the frame operator of 
(xj)Nj=1 satisfy γ1 ≤ β

M

∑M
j=1 γj.
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Proof. Let M ∈ N and assume that (xj)Nj=1 and (fj)Nj=1 are sequences of vectors in ℓM2 . Let β ≥ 1 be chosen 
such that λ1 ≤ βM−1 ∑M

j=1 λj where λ1 ≥ ... ≥ λM are the eigenvalues of the frame operator of (fj)Nj=1. 
Let [ai,j ]N×M be the analysis matrix for the frame (fj)Nj=1 and let [bj,i]M×N be the synthesis matrix for the 
frame (xj)Nj=1. That is,

⎡

⎢⎢⎣

− f1 −
− f2 −

...
− fN −

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

a1,1 . . . a1,M
a2,1 . . . a2,M

... . . . ...
aN,1 . . . aN,M

⎤

⎥⎥⎦ , and
[ | | |
x1 x2 . . . xN
| | |

]
=

⎡

⎢⎢⎣

b1,1 . . . b1,N
b2,1 . . . b2,N
... . . . ...

bM,1 . . . bM,N

⎤

⎥⎥⎦

We now claim that the following two conditions are satisfied.

(i) (
∑M

j=1 a
2
i,j)1/2 = (

∑M
j=1 b

2
j,i)1/2 = D for all 1 ≤ i ≤ N ,

(ii) The sequence of columns of [ai,j ]N×M has Bessel bound βNM−1D2.

Note that (i) is simply that ∥xj∥ = ∥fj∥ = D, for all 1 ≤ j ≤ N . To prove (ii) we note that λ1 is the 
optimal Bessel bound of (fj)Nj=1 and hence λ1 is the optimal Bessel bound of the columns of [ai,j ]N×M by 
Lemma 4.1. By taking the trace of the frame operator of (fj)Nj=1 we have that 

∑M
i=1 λi =

∑N
j=1 ∥fj∥2 = ND2. 

As, λ1 ≤ βM−1 ∑M
j=1 λj we have that λ1 ≤ βNM−1D2. Thus, we have proven that (ii) is true. The rest of 

the proof is concerned with bounding βNM−1D2 in terms of C and β.
Let (δj)Mj=1 be a sequence of independent symmetric random variables with δj = ±1. By taking expecta-

tion we calculate,

E
N∑

i=1

∣∣∣
M∑

j=1
δjai,j

∣∣∣ =
N∑

i=1
E
∣∣∣

M∑

j=1
δjai,j

∣∣∣

≥ 1√
2

N∑

i=1

⎛

⎝
M∑

j=1
|ai,j |2

⎞

⎠
1/2

by Khintchine’s Inequality,

= 1√
2

N∑

i=1
D = K1DN by (i).

Thus, we may fix a particular realization for (δj)Mj=1 such that

N∑

i=1

∣∣∣
M∑

j=1
δjai,j

∣∣∣ ≥
1√
2
DN. (4.1)

For each α > 0, we define a subset Iα ⊆ {1, 2, ..., N} by,

Iα :=
{
i ∈ {1, ..., N} :

∣∣∣
M∑

j=1
δjai,j

∣∣∣ ≥ Dα
}
.

By (ii), the vector (
∑M

j=1 δjai,j)Ni=1 is in the column space of [ai,j]N×M and has norm at most β1/2DN1/2. 
We will now calculate a lower bound for the cardinality of Iα.

β1/2DN1/2 ≥

⎛

⎝
N∑

i=1

∣∣∣
M∑

j=1
δjai,j

∣∣∣
2
⎞

⎠
1/2
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≥

⎛

⎝
∑

i∈Iα

∣∣∣
M∑

j=1
δjai,j

∣∣∣
2
⎞

⎠
1/2

≥ |Iα|−1/2
∑

i∈Iα

∣∣∣
M∑

j=1
δjai,j

∣∣∣ by Cauchy-Schwarz,

= |Iα|−1/2

⎛

⎝
N∑

i=1

∣∣∣
M∑

j=1
δjai,j

∣∣∣−
∑

i/∈Iα

∣∣∣
M∑

j=1
δjai,j

∣∣∣

⎞

⎠

≥ |Iα|−1/2

⎛

⎝
N∑

i=1

∣∣∣
M∑

j=1
δjai,j

∣∣∣− (N − |Iα|)Dα

⎞

⎠

≥ |Iα|−1/2
(
2−1/2DN − (N − |Iα|)Dα

)
by (4.1),

≥ |Iα|−1/2(2−1/2 − α
)
DN.

Thus, we have that |Iα| ≥ β−1(2−1/2 − α)2N . We now apply similar estimates to the matrix [bj,i]M×N

restricted to the columns in Iα.
Let (γj)Mj=1 be a sequence of independent symmetric random variables with γj = ±1. By taking the 

expectation we calculate,

E
∑

i∈Iα

∣∣∣
M∑

j=1
γjbj,i

∣∣∣ =
∑

i∈Iα

E
∣∣∣

M∑

j=1
γjbj,i

∣∣∣

≥ 1√
2
∑

i∈Iα

⎛

⎝
M∑

j=1
|bj,i|2

⎞

⎠
1/2

by Khintchine’s Inequality,

= 1√
2
∑

i∈Iα

D by (1),

= D
1√
2
|Iα| ≥ Dβ−1 1√

2
(
2−1/2 − α

)2
N.

Thus, we may fix a particular realization for (γj)Mj=1 such that

∑

i∈Iα

∣∣∣
M∑

j=1
γjbi,j

∣∣∣ ≥ β−1D2−1/2(2−1/2 − α
)2
N. (4.2)

We have that x := (M−1/2δj)Mj=1 and f := (M−1/2γj)Mj=1 are unit norm vectors in ℓM2 . For 1 ≤ i ≤ N , we 
define

εi :=
{

phase(⟨x, fi⟩⟨xi, f⟩)−1, if ⟨x, fi⟩⟨xi, f⟩ ̸= 0,
1, otherwise.

Thus, we have that

C∥x∥ ≥
∥∥∥

N∑

i=1
εi⟨x, fi⟩xi

∥∥∥
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≥
N∑

i=1
εi⟨xi, f⟩⟨x, fi⟩ as ∥f∥ = 1,

=
N∑

i=1
|⟨xi, f⟩⟨x, fi⟩|

= M−1
N∑

i=1

∣∣∣
M∑

j=1
δjai,j

∣∣∣ ·
∣∣∣

M∑

j=1
γjbj,i

∣∣∣

≥ M−1
∑

i∈Iα

∣∣∣
M∑

j=1
δjai,j

∣∣∣ ·
∣∣∣

M∑

j=1
γjbj,i

∣∣∣

≥ M−1
∑

i∈Iα

αD
∣∣∣

M∑

j=1
γjbj,i

∣∣∣

≥ αD2β−12−1/2(2−1/2 − α
)2
NM−1 by (4.2),

= 1
27D

2β−1NM−1 for α =
√

2/6.

Thus, βD2NM−1 ≤ 27β2C as ∥x∥ = 1. From (ii) we deduce that (fj)Nj=1 has Bessel bound 27β2C. !

In Lemma 4.5 we considered frames (xj)Nj=1 and (fj)Nj=1 such that ∥xj∥ = ∥fj∥ = D for all 1 ≤ j ≤ N . 
We now prove Theorem 1.3 which considers the case where ∥xj∥ = ∥fj∥ for all 1 ≤ j ≤ N but we no longer 
require that ∥xj∥ = ∥xi∥ when i ̸= j. This difference is particularly significant as the infinite dimensional 
Conjecture 1.1 is known to be true for the case where M1,X,F is an unconditional multiplier with constant 
1 symbol and the sequences X = (xj)∞j=1 and F = (fj)∞j=1 satisfy ∥xj∥ = ∥fj∥ = D for all j ∈ N. However, 
Conjecture 1.1 remains open in the general case that ∥xj∥ = ∥fj∥ for all j ∈ N but infj∈N ∥xj∥ = 0.

Proof of Theorem 1.3. Let (xj)Nj=1 and (fj)Nj=1 be sequences in an M -dimensional Hilbert space H which 
satisfy ∥xj∥ = ∥fj∥ for all 1 ≤ j ≤ N and C > 0 is such that

∥∥∥
N∑

j=1
εj⟨x, fj⟩xj

∥∥∥ ≤ C∥x∥, for all x ∈ H and |εj | = 1. (4.3)

Let β > 0 be such that λ1 ≤ βM−1 ∑M
j=1 λj where λ1 ≥ ... ≥ λM are the eigenvalues of the frame operator 

of (fj)Nj=1.
We first will assume that the values ∥xj∥2 = ∥fj∥2 are non-zero and rational for all 1 ≤ j ≤ N . Thus, 

there exists K, k1, ..., kN ∈ N such that ∥xj∥2 = ∥fj∥2 = kj

K for all 1 ≤ j ≤ N . We have that

N∑

j=1

kj∑

i=1
⟨x, k−1/2

j fj⟩k−1/2
j xj =

N∑

j=1
⟨x, fj⟩xj , for all x ∈ H.

Thus, the systems 
((√

1
kj
xj

)kj

i=1

)N

j=1
and 

((√
1
kj
fj
)kj

i=1

)N

j=1
are each equi-norm sequences with the same 

frame operator as (xj)Nj=1 and (fj)Nj=1 respectively.
We now claim that

∥∥∥
N∑

j=1

kj∑

i=1
εi,j⟨x, k−1/2

j fj⟩k−1/2
j xj

∥∥∥ ≤ C∥x∥, for all x ∈ H and |εi,j | = 1. (4.4)
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Assuming the claim, we have by Lemma 4.5 that 
((√

1
kj
fj
)kj

i=1

)N

j=1
and consequently also (fj)Nj=1 have 

Bessel bound 27β2C.
We now prove the claim that (4.4) is satisfied. Let x ∈ H. We will first prove that

⎧
⎨

⎩

N∑

j=1
aj⟨x, fj⟩xj : |aj | ≤ 1

⎫
⎬

⎭ ⊆ conv

⎧
⎨

⎩

N∑

j=1
εj⟨x, fj⟩xj : |εj | = 1

⎫
⎬

⎭ , (4.5)

the convex hull of the vectors 
∑N

j=1 εj⟨x, fj⟩xj . To see this, let (aj)Nj=1 be a sequence of scalars and assume 
without loss of generality that 0 ≤ |a1| ≤ |a2| ≤ ... ≤ |aN | ≤ 1. We construct a sequence (bi)2N+1

i=1 in [0, 1]
by b1 = |a1|, b2 = b3 = (|a2| − |a1|)/2, b4 = b5 = (|a3| − |a2|)/2,..., b2N = b2N+1 = (1 − |aN |)/2. For each 
1 ≤ j ≤ N and 1 ≤ i ≤ 2N+1 we now give εj,i with |εj,i| = 1. For 1 ≤ i ≤ 2j−1 we let εj,i = phase(aj), and 
for 2j ≤ i ≤ 2N +1 we let εj,i = (−1)i. The telescoping aspect of the construction gives that 

∑2N+1
i=1 bi = 1. 

Furthermore, 
∑2N+1

i=1 biϵj,i = aj , for all 1 ≤ j ≤ N . We have that

2N+1∑

i=1
bi

N∑

j=1
εj,i⟨x, fj⟩xj =

N∑

j=1

2N+1∑

i=1
biεj,i⟨x, fj⟩xj =

N∑

j=1
aj⟨x, fj⟩xj .

This proves (4.5). Moreover, every vector 
∑L

i=1 bi
∑N

j=1 εj,i⟨x, fj⟩xj in the convex hull of 
{∑N

j=1 εj⟨x, fj⟩xj :

|εj | = 1
}

has the following bound on its norm.

∥∥∥∥∥∥

L∑

i=1
bi

N∑

j=1
εj,i⟨x, fj⟩xj

∥∥∥∥∥∥
≤

L∑

i=1
bi

∥∥∥∥∥∥

N∑

j=1
εj,i⟨x, fj⟩xj

∥∥∥∥∥∥

≤
L∑

i=1
biC∥x∥ = C∥x∥.

Thus, we have for all sequences (aj)Nj=1 with |aj | ≤ 1 that ∥ 
∑N

j=1 aj⟨x, fj⟩xj∥ ≤ C∥x∥. To prove our claim 

that (4.4) is satisfied we let aj =
∑kj

i=1 εj,ik
−1
j , for all 1 ≤ j ≤ N . Note that |aj | ≤ 1 for all 1 ≤ j ≤ N . 

Thus we have that

∥∥∥
N∑

j=1

kj∑

i=1
εj,i⟨x, k−1/2

j fj⟩k−1/2
j xj

∥∥∥ =
∥∥∥

N∑

j=1

( kj∑

i=1
εj,ik

−1
j

)
⟨x, fj⟩xj

∥∥∥

=
∥∥∥

N∑

j=1
aj⟨x, fj⟩xj

∥∥∥ ≤ C∥x∥.

Thus, we have proven our claim that (4.4) is satisfied and the proof is complete for the case that ∥xj∥2 =
∥fj∥2 are non-zero and rational for all 1 ≤ j ≤ N .

We now consider the general case where ∥xj∥2 = ∥fj∥2 for all 1 ≤ j ≤ N , but they may not all be 
rational. We may throw out any terms which are zero, and thus we assume without loss of generality that 
∥xj∥2 = ∥fj∥2 are non-zero for all 1 ≤ j ≤ N . Let ε > 0 and let λ1 ≥ ... ≥ λM be the eigenvalues for the 
frame operator of (fj)Nj=1. We may choose scalars (αj)Nj=1 which are arbitrarily close to 1 so that |αj | ≤ 1
and ∥αjxj∥2 = ∥αjfj∥2 is rational for all 1 ≤ j ≤ N . As |αj | ≤ 1 for all 1 ≤ j ≤ N we have by (4.3) that

∥∥∥
N∑

j=1
εj⟨αjfj , x⟩αjxj

∥∥∥ ≤ C∥x∥, for all x ∈ H and |εj | = 1.
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Furthermore, we may assume that if γ1 ≥ ... ≥ γM are the eigenvalues of the frame operator for (αjfj)nj=1
then γi ≤ λi ≤ (1 + ε)γi for all 1 ≤ i ≤ M . Hence, by our previous argument, (αjfj)nj=1 has Bessel bound 
27
β

2(1 + ε)2C. As the scalars (αj)Nj=1 may be chosen arbitrarily close to 1 we have that (fj)Nj=1 has Bessel 
bound 27β2(1 + ε)2C. As ε > 0 was arbitrary, (fj)Nj=1 has Bessel bound 27β2C. !

Appendix A

We now prove the following proposition which implies the complex case of (1.6) from the introduction. 
Recall that the unconditionality constant of a series 

∑N
j=1 zj in a Banach space X is the least value CU > 0

so that ∥ 
∑N

j=1 εjxj∥ ≤ CU∥ 
∑N

j=1 xj∥ for all |εj | = 1, and the suppression unconditionality constant of 
∑N

j=1 zj is the least value CS > 0 so that ∥ 
∑

j∈∆ εjxj∥ ≤ CS∥ 
∑N

j=1 xj∥ for all ∆ ⊆ {1, ..., N}.

Proposition A.1. Let (zj)Nj=1 be a sequence in a Banach space X. Let CU be the unconditionality constant 
of 

∑N
j=1 zj and let CS be the suppression unconditionality constant of 

∑N
j=1 zj. Then CS ≤ CU ≤ 4CS.

Proof. The inequality CS ≤ CU is well known, but we give a proof for the sake of completion. Let ∆ ⊆
{1, ..., N} and choose f ∈ X∗ with ∥f∥ = 1 so that f(

∑
j∈∆ xj) = ∥ 

∑
j∈∆ xj∥. We have that

∥∥∥
∑

j∈∆
xj

∥∥∥ =
∑

j∈∆
f(xj) ≤

N∑

j=1
|f(xj)|

= f
( N∑

j=1
εjxj

)
for εj = phase

(
f(xj)

)

≤
∥∥∥

N∑

j=1
εjxj

∥∥∥ as ∥f∥ = 1.

This proves that CS ≤ CU . We now prove that CU ≤ 4CS . Let (εj)Nj=1 be uni-modular scalars and choose 
f ∈ X∗ such that ∥f∥ = 1 and f(

∑N
j=1 εjzj) = ∥ 

∑N
j=1 εjzj∥. We have that

∥∥∥
N∑

j=1
εjzj

∥∥∥ =
N∑

j=1
f(εjzj) ≤

N∑

j=1
|Re(f(zj))| + |Im(f(zj))|

=
∑

Re(f(zj))>0
Re(f(zj)) −

∑

Re(f(zj))<0
Re(f(zj)) +

∑

Im(f(zj))>0
Im(f(zj)) −

∑

Im(f(zj))<0
Im(f(zj))

≤ 4 max
δj∈{0,1}

∥∥∥
N∑

j=1
δjzj

∥∥∥

This proves that CU ≤ 4CS . !
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