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1. Introduction

A frame for a finite dimensional or infinite dimensional separable Hilbert space H is a sequence of vectors
(xj)é\’:l C H (where N € N or N = oo) for which there exist constants 0 < A < B, called frame bounds,
such that
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N
Allz|? < Z |(z,z;)|* < B|lz|?, for all x € H. (1.1)
i=1

The ratio B/A is called the condition number of (x]) " ;. We say that (.1‘])] 1 is Bessel if it satisfies the
upper bound of (1.1) for some B < oo and call B a Bessel bound. A frame is called tight if it has condition

number 1. The analysis operator of X = (x;)_, is the map Ux : H — (3 given by Ux () = ((x,2;))}

j=1
for all z € H and the frame operator of X = (acj)é-vzl is the positive operator Sx : H — H given by
Sx = UxUx. Note that (xj)é-vzl has Bessel bound B if and only if ||Sx| = ||[Ux]||?> < B. For a thorough

introduction to frame theory, we refer to, e.g., [11].
For a choice of & = (g;)}L, with |g;| = 1 for all 1 < j < N we let Dg : )} — £ be the map
De (b)) = (g5b5)5,. It immediately follows that if X = (2;)}., and F = (f;)}_, are both sequences in

H with Bessel bound B and analysis operators Ux and Up then

|U% DeUpz|| = H Zsj z, f; xJH <Bllz|, forallz € Handall € = (). (1.2)
=1

This idea can be generalized further through the introduction of frame multipliers [2,20,21]. Let X = (x;) §\le
and F = (f;)}_, be sequences in a Hilbert space H, and let m = (m;)_; be a sequence of scalars called
the symbol. The corresponding frame multiplier M,, x 7 : H — H is given by

My xrx = ij<x, fivej, for all x € H. (1.3)
j=1

These operators are closely related to the concept of weighted frames [4], i.e. sequences (d;x;), where (d;)
is a sequence of scalars and (z;) is a sequence of vectors. If (d;)

j=1 is a sequence of non-zero scalars then
we write dX = (djz;)iL,. Note that the frame multipliers M,

mdX.d P and My, x r are equal. However,
the sequences (d;z;)7_, and (d; fj)j:1 may have very different frame bounds from (x;).; and (f;);Z,
The following conjectures that if we are given an unconditionally convergent multiplier, i.e. (1.3) converges
unconditionally for every x € H, then we can shift the weights to get two Bessel sequences.

Conjecture 1.1 (/22]). Let M, x r be an unconditionally convergent multiplier on a separable Hilbert space
H. Then there exists sequences of scalars (cj)32, and (d;)32, such that cjd; = mj for all j € N and both
(cjzj)52q and (d;f;)72, are Bessel.

This idea of shifting weights is also considered in [15] for the case where the multiplier is constant 1 and
the sequences satisfy a reproducing formula. Suppose that (xj) °, and ( f]) . are sequences in a Hilbert
space H such that x = ) (z, f;)x;, and the series converges unconditionally for all x € H. Then there exists
a sequence (d;)52, such that (djz;)32, and (d; fj )72, are both frames of H if and only if the induced
operator valued map 9M* X(a] )]:1 =Y a;f; ®x; is a completely bounded map between the C*-algebra {
and the C*-algebra B(H) (where B(H) is the space of bounded operators on H) [15].

Many problems for infinite-dimensional Hilbert spaces have corresponding quantitative problems for
finite-dimensional Hilbert spaces. Notably, the Kadison-Singer Problem was a famous and long open question
about operators on infinite dimensional Hilbert spaces which was shown to be equivalent to the Feichtinger
Conjecture [9], the Paving Conjecture [1], Weaver’s Conjecture [24], and the Bourgain-Tzafriri Conjecture
[7]. Marcus, Spielman, and Srivastava [18] solved the Kadison-Singer Problem by proving a very strong
quantitative and finite-dimensional theorem which directly implied Weaver’s Conjecture and has since been
applied to solve many other problems in applied harmonic analysis and approximation theory [19][14][16][12].
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In Section 2 we show that Conjecture 1.1 is equivalent to the following quantitative and finite-dimensional
conjecture.

Conjecture 1.2. Let m = (mj)évzl, X = (:cj)j-vzl, and F = (f])j\f:1 There exists a universal constant k > 0
so that the following holds. Let C' > 0 and let My, x.r be a multiplier on a finite dimensional Hilbert space
H such that

N
H Zajmj<x, fj>3:jH < Cllz||, forallz € H and |g;| = 1. (1.4)
j=1

Then there eists sequences of scalars (c;)_, and (d;)_, such that c;d; = my; for all 1 < j < N and both
(cjz;)ily and (d;f;)}L, are Cr-Bessel.

By expressing Conjecture 1.1 in a quantitative and finite dimensional way, we hope to open the problem
to new methods and techniques. Conjecture 1.1 has been solved for a large number of important classes of
sequences [22]. Likewise, we will solve Conjecture 1.2 for certain important cases. Our results are distinctly
different from what has been done in infinite-dimensions, and we will make use of probabilistic methods
which are inherently finite-dimensional. The following theorem solves Conjecture 1.1 in the case where the
largest eigenvalue of the frame operator is proportional to the average of the eigenvalues.

Theorem 1.3. Suppose that (xj)j»v:l and (fj)j»v:l are sequences in an M-dimensional Hilbert space which

satisfy ||x;|| = || f;|| for all1 < j < N and C > 0 is such that
N
H Zsj<az,fj>ij < |zl for allx € 657 and |5 = 1. (1.5)
j=1

If the frame operator for (fj)é-\’:1 has eigenvalues A1 > ... > Ay and B > 0 satisfies \y < % Zj\il Aj then
(f3)iLy has Bessel bound 27>C. The same holds for (x;),.

Note that if ( fj);v:l is a frame of an M-dimensional Hilbert space and Ay > ... > Aj; are the eigenvalues
of the frame operator of (fj)é\]:1 then (fj)é»v:l has condition number A;/Ap;. Thus, if (acj)évzl and (fj)é\]:1
are frames with condition number § and ||z;|| = ||f;|| for all 1 < j < N then (:Ej);v:l and (fj)é\’:l both have
Bessel bound 273%C where C satisfies (1.5). This gives the following corollary for pairs of equi-norm tight

frames.

Corollary 1.4. Let (x;)}., and (f;)}_, be tight frames for a finite dimensional Hilbert space with ||z, = || f;]|
forall1 < j < N. Let C > 0 be the least constant such that

N
H Zsj<x,fj>xjH < Cllz||, for all x € 65" and |e;| = 1.
j=1

Then the tight frames (x;)}_, and (f;)}, have the same frame bound B = M~ Zj\le |zj||* and C < B <
27C.

In Theorem 1.3 we made an assumption about the eigenvalues of the frame operators for (J;j);\[:l and

( fj)é-vzl. In the following theorem we do not assume anything about the frame structure of (x;)Y_; and

j=1
(fj);—vzl but we require a uniform lower bound ||z;||||f;|| > b for all 1 < j < N. This gives a quantitative

version of one direction of Proposition 1.1 in [22].
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Proposition 1.5. Let b,C > 0 and N € NU{oo}. Let (x;)7,, (f;)}, be sequences in a Hilbert space H such
that ||z ||| f;|| = b for all1 < j < N and that

N
H Z£j<x,fj>xjH < C|lz], for allxz € H and |e;| = 1.
j=1

Then, (djz;)}, and (45" f;)}., have Bessel bound b='C? where d; = |[a;||~*/2| f;||*/? for all1 < j < N.

Note that the Bessel bound given in Proposition 1.5 scales as C? instead of C' as in Conjecture 1.2.
Furthermore, we give an example in Section 3 which shows that the scaling of C? is necessary here. However,
this does not contradict Conjecture 1.2 as the choice of (d;) ;vzl specified in Proposition 1.5 is not necessarily
the optimal choice for Conjecture 1.2.

A series Z;\le z;j in a Banach space X is called C-unconditional if || Z;\le g;%i|| < C|| Y #;|| for all scalars
lej| = 1 and is called C's-suppression unconditional if | 37, A 2;[| < Cs| 3_ z;|| for all subsets A C {1, ..., N}.
We are considering C-unconditionality in this paper, but this is equivalent to suppression unconditionality
up to a universal constant. Indeed, for every series Zjvzl zj in a Banach space X over a field F € {R,C},
we have that

: (1.6)

N N N
g ol = e o [ erm] < Be w32 000
with Bg = 2, and B¢ = 4. Although the real case is covered in most textbooks on Banach spaces (e.g. the
discussion after Prop 1.c.6. in [17]), a proof of the complex case is not as easily found. For this reason, we
include a short proof in the appendix.

The paper is organized as follows. In Section 2 we prove that Conjecture 1.1 is equivalent to Conjecture 1.2.
In Section 3 we use the Parallelogram Law to give a short proof of Proposition 1.5. We prove our main
results, including Theorem 1.3, in Section 4.

We sincerely thank the anonymous referee for their very helpful comments which allowed us to improve
the paper.

2. Frame multipliers in finite dimensions

Our goal for this section is to prove that Conjecture 1.1 on unconditionally convergent frame multipliers
for infinite dimensional Hilbert spaces is equivalent to Conjecture 1.2 on uniform quantitative bounds for
frame multipliers on finite dimensional Hilbert spaces.

Theorem 2.1. The following are equivalent.

(1) For every unconditionally convergent frame multiplier My, x p on a separable Hilbert space H there
exists sequences of scalars (¢;)52, and (d;)52, such that c;d; = my for all j € N and both (c;x;)52,
and (d; f;)32, are Bessel.

(2) There exists a universal constant k > 0 so that the following holds. For every multiplier M,, x r on a
finite dimensional Hilbert space H that satisfies

H Zsjmj(:c, fj>:njH < Cllz|], forallz € H and |g;| =1,
j=1

there exists sequences of scalars (c;)'—, and (dj)7—, such that c¢;d; = my for all 1 < j < n and both
(cjzj)j—y and (d;f;)j—, are Cr-Bessel.
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Proof. We first assume that (2) is true and prove that (1) is true. Let M,, x r be an unconditionally
convergent frame multiplier on a separable Hilbert space H. That is,

Zsjmj (z, fj)z; converges for all z € H and |g;| = 1. (2.1)
j=1

For each m,n € N and (g;)}_,, with |¢;| =1 for all m < j < n we let T(.)»_ be the finite rank operator on

H defined by T(o)n_ (2) = > i—m€imy(x, fi)a; for all z € H. Let « € H and for the sake of contradiction
we assume that sup

epr, ey, ()|l = co. By piecing finite sequences together, we can create an infinite
j=m =m

sequence (¢;)52, such that sup,, <, || T(z)r_ (2)|| = oc. This contradicts that > i €imy{x, fj)x; converges.

Hence, for all x € H there exists Cy > 0 so that [|T(.)»_ (2)| < Cyllz|| for all (¢)7_,,. By the Uniform

j=m"

(2)|| < Cllz|| for all (&)

Boundedness Principle there exists a uniform constant C' > 0 so that ||T(.n T=m

and all z € H. Thus, we have for all N € N that =
N
H Zejmj<w,fj>xjH < C|zll,  forall z € span,;yz; and |g;| = 1. (2.2)
j=1

By (2), there exists (cn ;)= and (dn,;)7—; such that enjdn,; = m; for all j € N and both (cNVja:j)é-V:I
and (dNyjfj)évzl are kC-Bessel. Without loss of generality, we assume that m; # 0, x; # 0, and f; # 0 for
all j € N. Thus, we have that |cx ;| < kC|lz;]| 7! and |dy ;| < kC| f;]| 7! for all j € N. As e jdy; = mj,
we have for all j € N that

= O fi]] < lewg| < RClzyl| 7", and [mylw™ O™ lay | < || < &C|1f5] 7 (2.3)

Thus, for each j € N we have positive uniform upper and lower bounds on (cn ;)%_; and (dn ;). After
passing to a subsequence, we may assume that there exists (c;)52; and (d;)52; so that imy o0 cn,j = ¢;
and limy_,oc dn; = d; for all 7 € N. By (2.3) we have that ¢; and d; are non-zero and that c¢;d; = m;
for all j € N. For all n < N we have that (cy ;x;)}_; and (dn,;f;)j—; are kC-Bessel. Thus by taking the
limit, we have for all n € N that (c;z;)}_; and (d; f;)}_, are kC-Bessel. Hence, (c;z;)52, and (d; f;)52, are
kC-Bessel. This proves (1).

We now assume that (2) is false. Thus, for all k¥ € N there exist a multiplier M,,, x, r, on a finite
dimensional Hilbert space Hy and Cj > 0 such that

Nk
H Zsjmk,j<w,fk7j>xk7jH < Ckllzl|, for all z € Hy and |g;| =1,
j=1

Nk
j=1

that either (cjzy,;)7%, or (d;fx;)7%, is not kCy-Bessel. By scaling both (x,;)7%, and (fj,)7%, by Ck_l/2
we have that Mmk

but that for all sequences of scalars (c;)7%, and (d;)7%; such that cjd; = m; for all 1 < j < ny we have

V2 x, ooV, is a multiplier on H}, such that

ng
H Zgjmk7j<1',C;l/ka7j>C;1/2$k’j" < |l=]l, for all z € Hy and |g;| =1,
j=1

but that for all sequences of scalars (c;)7%, and (d;)}%; such that cjd; =m; for all 1 < j < k we have that
either (ch;1/2xk7j)?il or (dek_l/szJ)?; is not k-Bessel.
We now let H = @©p2, Hy and let M_. be the multiplier on H which is the direct sum of the multipliers

o0 . . .
(Mmk’c,k—l/2xk’ck—l/2Fk)k:1. That is, we enumerate by ¢t € N, where, if k € N, and 1 < j < n; are such
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that t = zkﬂl n; + j then my; = myj, Ty = C,;l/zxw and f; = C,;l/zfjk. Let © € H and let (g4)$2, be
a sequence of scalars with e, = £1 for all t € N. For each ¥ € N and 1 < j < ny we let €, ; = ; where
t= Zf 11 n; + j. Thus, we have that

(oo} N 2
Hzatmt z. fi xtH ZHZEk,jmk] Pr,x, O fro) O mk,jH

o0
Z 1P, x> = [l]|*.

Thus, the multiplier MN ~ is unconditionally convergent. However, there does not exist scalars (c;)52,

and (d¢)g2, such that ctdt = my for all t € N and both (¢;7;)2, and (dtﬁ)fil are Bessel. This is because
by assumption for all £ € N there exists hy € Hy, such that either

k

j=1" Nk
Z (s @) P =3 (s e, O P )2 > K2,
S =
or
Z?:l g _ n
ST Whwadef)P = b de, O 2 ) > Bl
TS =

Thus we have that (1) is false. O

Remark 2.2. The splitting of the weight cjd_j = m,; generally depends on the particular given sequence
(m;)j—;. The quantitative condition (2) in Theorem 2.1 however allows to treat certain families of weights
simultaneously. For example, if M,, x r is a finite multiplier that satisfies the assumption in (2), then all
multipliers Mz x g with |m;| < |m;| do so as well.

3. Lower bounds and the parallelogram law

The parallelogram law states that if (xj)j-vzl is a sequence of vectors in a Hilbert space then

N 2 N
2N 3 [ Y| =X (3.1)
gj=%1 j=1 j

Jj=1

That is, if (¢;) ;-Vzl is a sequence of independent zero mean random variables with €; = 1 then we have the
following formula for the expectation.

N 9 N
E| Y e =3 el (3.2)
i=1 j

Note that Conjecture 1.2 concerns pairs of families of vectors ()}, and (f;)}., such that || Z gj(x,
i)zl < Cllz| is satisfied for all vectors  and all |e;| = 1. This inequality naturally lends 1tself to the
parallelogram law. We now prove Proposition 1.5 from the introduction.
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Proof of Proposition 1.5. We first assume that NV € N is finite. Let (EJ) ;1 be a sequence of independent
zero mean random variables with ¢; = +1. Let x € H. We have that,

N 2 N 2
Clall? 2 B|| > ese fi)as | = B|| D eitw, 4 fi)dja |
j=1 j=1

N
Z |{z fj | dQH:c] 12 by the parallelogram law,
J:

N
= >l d; )Pl il = 03 e 5

Jj=

2

—

This gives that (d; fJ) 1 has Bessel bound b~'C?. For all |¢;| = 1, the adjoint of the operator S(z) =
Zjvzl gj(z, fj)z; is the operator S*(f) = Zjvzl g5 (f, ;) f;. Thus, the roles of (f;)}; and (), may be
interchanged. The same argument we used for (d_j71 f3);2, now proves that (d;z;)Y.; has Bessel bound
b-1C2.

For the case N = oo, we have that (d;z;)32, and (dilfj)z>o 1 have Bessel bound b=*C? if and only if
(djz;)7_ and (d; 1f]) _, have Bessel bound b=*C? for all n € N. Thus, the infinite case follows from the
finite case. O

For the infinite case, it was previously known that if (z;)52; and (f;)72; satisfy the hypothesis of
Proposition 1.5 then (d;z;)%_; and ( ;1fj);-‘:1 are both Bessel [22]. The contribution of Proposition 1.5 is
that it provides an explicit Bessel bound.

Note that the Bessel bound given in Proposition 1.5 scales as C? instead of C as in Conjecture 1.2. The
following example shows that this is necessary.

Example 3.1. Let (ej) Y, be the unit vector basis of £5". We let x; = e; and f; = e; for all 1 < j < N. Then
we have that,

N
| S citwenes| < N2l foralwe 6 and J5;] = 1. (3.3)
=1

Note that equality in (3.3) is achieved for = e;. We have the valuesb =1 and C = N'/2 for Proposition 1.5,
which gives that (z; );V_I and (f;)N j=1 must have Bessel bound b~ 1C% = N. Furthermore, N is exactly the
Bessel bound of (fj)j:1 = (el)évzl

We have that the sequence of pairs (e;, el)N ; in Example 3.1 satisfies the unconditionality inequality
with constant N/ and yet (el)j | has Bessel bound N. However, we can shift weights so that (N'/%e ) A
and (N~ 1/461)j:1 each have Bessel bound N'/2. This shows that it may be necessary to shift weights to
minimize the maximum of the Bessel bounds of (djxj);v:l and (d;lfj)jyzl even when |lz;|| = ||f;|| for all
I1<j<N.

4. Pairs of equi-norm frames

The flexibility of choosing a sequence of scalars (d;)Y_; is the most challenging aspect of Conjecture 1.2.

j=1
One reason for the difficulty is that the Bessel bounds for (d;z;), and (clj_1 fi)5, are global properties
that apply to all z € H, whereas modifying the value for dj, for some fixed 1 < k < N makes a local change in

one dimension for the frame operators for (d;x;)_, and (d; ' f;)}_,. Intuitively, a common problem in many
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different areas of mathematics is that it is difficult to optimize a global property through local modifications.
Another difficulty is that the optimal Bessel bound of the sequence (djz;)"_; is a continuous function of
the variables (d; )] 1

is an orthonormal basis, we have that the optimal Bessel bound for (d;z;)
1/2

j=1

but it is not a smooth function of (d;)_,. Indeed, for the simplest case where (z;)_,

;_\/:1 is B = maxi<;<n |d;|. In
Proposition 1.5 we explicitly choose d; = ||x;||~*/?||f;||*/? by using the local hypothesis ||z;|||f;]] > b for
all 1 < j < N. This works well for large b > 0, but (as shown in Example 3.1) this choice of (d;)}, may
yield very large Bessel bound when b is small relative to the unconditionality constant C. Because it is very

difficult to choose the sequence (dj);-vzl in general, we will identify a situation where the optimal choice
isd; = 571 =1. That is, choosing d; = d_71 = 1 will minimize the maximum of the Bessel bounds of

(djz;), and (d; fj) j=1- We will make use of the following simple lemma.

Lemma 4.1. Let (xj)é-V:l be a finite frame for €31 with frame operator Sx, upper frame bound B, and lower
frame bound A. Then the following hold:

(i) trace(Sx) = 3250, a2,
(ii) AM < trace(Sx) < BM,
(iii) If (x;)7_, is B-tight, then trace(Sx) = BM.

(iv) Let Ux be the analysis operator of (;vj)j-vzl which has the following matriz form,

— T —

- oz - | |
UX: . =1|C C2 ... Cpm
’ | | | NxM

- TN TdpNxm

Then, the sequence of columns (cj)jle of Ux is a basis for the column space and has upper frame bound B
and lower frame bound A.

Proof. The operator Sx : £31 — () is defined by Sx(z) = Zjv Sz, z;)x; for all z € (3. Let (ex)L, be an
orthonormal basis for ¢}, Then,

M N N M
trace(Sx) = » Y lew,z)[P =D > (ex,x;)] Z 5112
k=1 j=1 j=1k=1

This gives (i). Conditions (ii) and (iii) follow easily (see [3, Cor. 5.2]).
Note that the upper frame bound B is the largest eigenvalue of the frame operator Sx = UxUx and is
hence the square of the largest singular value of Ux. As Ux and U have the same non-zero singular values,

B is the upper frame bound of (c]) 1 .. Likewise, A is the lower frame bound of (¢;)M a

Jj=r

The following proposition gives a case where the optimal choice for (dj)é-\':1 is constant 1. That is, we

provide a situation where the local optimization of having ||d;z;| = ||dj_1 f;ll gives the global optimization of

minimizing max{Bgx, Bg-1p} where Byx is the Bessel bound of (d; xj)é\' , and By-1p is the Bessel bound

of (dj fJ)N Furthermore, this minimizes the condition numbers for both (djzj)j»v:l and (dj_lfj);\[:1 to be
1 as in the sense of weighted frames [4].

Proposition 4.2. Let (x;)_, and (f;)}L, be finite frames for €5 with ||z;|| = || f;||, for all 1 < j < N. Let
A > 0 be a lower frame bound for ezther (z;)N1 or (f;)}21. Then for all non-zero scalars (d;)j_,, if B is

a Bessel bound for both (djxj)j-v:l and (dljfj)j-v:l then B must be at least A.
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In particular, we have that if (xj)évzl and (fj)é\/:1 are both tight frames then they are both A-tight for
some A >0 and

A= min max{Byx,Bs-1r},
d:(dj)j'vzl { “ ¢ lF}

where Byx is the optimal Bessel bound of (d; xj) ", and By-1p is the optimal Bessel bound of (d; fj)

Proof. Without loss of generality, we assume that A is a lower frame bound for (1:]) . Let (d; )N:1 be a

sequence of non-zero scalars. Let Syx be the frame operator of (d;z ;)Y j=1 and Sg-1f be the frame operator
(ij)é\f 1- We will prove that the trace of Sgx + Sg-1p is at least 2AM. Lemma 4.1 (ii) then gives that

the minimal Bessel bound of either (d;z;).; or (+ fj) ", must be greater than or equal to A.
By Lemma 4.1 (i) we have that

trace(Sqx) = Z EARIER and trace(Sq-1p) Z ;|21 £
By adding these equations together, we get that

trace(Sax + Sg-1p) = ) Id; Pl |1* + 1 21 f511?

- M-

(I * + 1)l 2 as [layll = || for all 1 < j < N,

<.
3
-

v

Z 2|z |2 as t* + ¢ 2 is minimized at t = 1,
=1

= 2trace(Sx) by Lemma 4.1 (i),
> 2AM by Lemma 4.1 (ii).

Thus trace(Sgx + Sq-17) > 2AM and our proof is complete. O

Proposition 4.2 gives a general situation where we know the optimal values for the sequence (d;) ;V:l. That
is, if (xj)év , and (fj)év ; are both tight frames with ||z;|| = || f;||, for all 1 < j < N then choosing d; = 1 for
all 1 < j < N will minimize the maximum of the Bessel bounds of (d;z;)¥ j=1 and (d; f]) . Other than
specific examples, this is the only general situation where the optimal values for (d; )jvzl are known, and
we will solve Conjecture 1.2 completely for this case. In particular, Theorem 1.3 gives that if such frames
(z;)N.; and (f;)IL, satisfy (1.4) for some constant C' > 0 then (z;)7; and (f;)}_, both have Bessel bound
27C. Note that this case includes many important examples of frames, including the finite unit norm tight
frames. A sequence (.’I:]) V., in 637 is called a finite unit norm tight frame or FUNTF if (xj) —, is a tight
frame and ||z;|| = 1 for all 1 < j < N. Finite unit norm tight frames (FUNTFs) were introduced in [5], and
are of particular interest in both theory and applications [6][10][8]. If (x;)}L; is a FUNTF for £3" then its
frame bound is exactly NM 1. An equi-norm tight frame is a tight frame where all the vectors have the
same norm, and in finite dimensions is just a rescaling of a FUNTF. This gives the following corollary for

Proposition 1.5 for the case that (z ) *, and ( fj) ", are frames which are both equi-norm and tight.

Corollary 4.3. Let C > 1 and M, N € N. Suppose that (a:j) Y, and (fj) ", are both equi-norm tight frames
with
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N
H Zsj(x,fj>xjH < C||=|, for allz € 65 and |5 = 1.
j=1

Then (dx;)i, and (d~' f;)"., have Bessel bound NY2M=12C where d = ||z1||~Y/2| f1]|/2.

Proof. As (xj)év ; and (f])gV 1 are both equi-norm tight frames there exists a constant b > 0 so that
llz;]||| f]] = b for all 1 < j < N. We apply Proposition 1.5 to obtain that the sequences (dxj) =1 and
(d='f;)}-, have Bessel bound b=*C? As (b~'/2dx;)}, is a FUNTF, it has frame bound NM~'. By
scaling, (dx;)iL, is a tight frame with frame bound bNM~'. This gives that bNM ' < b~'C?. Hence,
b< N7V2MY20. As (dzj)}, is a tight frame with frame bound bNM ~! we get that (dz;)_; has Bessel
bound N'/2M~1/2C. Likewise, (d 1fJ)N has Bessel bound N'/2M~1/2C. O

One interesting aspect of Corollary 4.3 is that it gives a Bessel bound for the case of equi-norm tight
frames which does not explicitly state the value of ||z;|| and || f;||. The Bessel bound given in Corollary 4.3
depends on both N and M. There exist length N FUNTFs for ¢} for all N > M, and hence the Bessel
bound N'/2M~1/2C can be arbitrarily large. One of our goals for the remainder of this section is to improve
this by giving a uniform Bessel bound which is independent of N and M. Our proof will be probabilistic
and will rely on the following case of Khintchine’s inequality (see for example Lemma 6.29 in [13] for the
general statement and [23] for the optimal constant of 1//2).

Theorem 4.4 (Khintchine’s Inequality). For all M € N and all scalars (aj)éyzl,

1/2

2Ny IZMP ZW

§j=%1 j=1

That is, if (& ) _, is a sequence of independent symmetric random variables with 6; = %1, then we have the
following lower bound for the expectation,

E\Zéaa! S5l

Khintchine’s inequality may be used to compare any pair of ¢, and £,-norms for 1 < p,q < oo (with
a different constant than 1/\/5 which depends on p, q), but we will only need it for comparing the ¢; and
£5 norms. We are now ready to prove the following solution to Conjecture 1.2 for the case of families of
equi-norm vectors. This will be extended to more general sets of vectors in Theorem 1.3.

Lemma 4.5. Let C,D > 0 and N € N. Suppose that (a:j) ", and (f]) ", are both sequences in a finite
dimensional Hilbert space which satisfy ||z;|| = || f;|| = D for each 1 < j < N and

N
H Z€j<x,fj>xjH < |zl for all x € 63 and |e;| = 1.

Let Ay > ... > Ap; be the eigenvalues of the frame operator of (fj)é\’:l and B > 1 be chosen such that
A1 < % Z]Ail Aj. Then (f;)iL, has Bessel bound 273*C.
The same estimate holds for the Bessel bound of (:L“j)é\’:l if the eigenvalues of the frame operator of

M
(xj)év 1 satisfy y1 < Zj:l E
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Proof. Let M € N and assume that (2;)}_; and (f;)}_, are sequences of vectors in £5”. Let 3 > 1 be chosen
such that A\; < M ! Zfil Aj where Ay > ... > Aps are the eigenvalues of the frame operator of (f])j\’:1
Let [a; ;] nx s be the analysis matrix for the frame (fj)é\]:1 and let [b; ;]amrx v be the synthesis matrix for the
frame (x])évzl That is,

- i - a1 ... Q1M big ... bin
- fo = agi ... G2.M | | bo1 ... ban
. = . . . , and 1 Tg ... IN| = ) ) ;
1 L | | Lo
- N - a1 ... OGN,M by .. bun

We now claim that the following two conditions are satisfied.

(i) (ZM a? )1/? = (Zjle bii)lﬂ =Dforall1<i<N,

J=1"]
(ii) The sequence of columns of [a; j]nx s has Bessel bound ANM~1 D2

Note that (i) is simply that ||z;|| = || f;]| = D, for all 1 < j < N. To prove (ii) we note that A, is the
optimal Bessel bound of (fj)é\’:l and hence \; is the optimal Bessel bound of the columns of [a; ;| nxar by
Lemma 4.1. By taking the trace of the frame operator of (f;)7_; we have that SMoN= Z;VZI I fil> = ND2.
As, \ < BM1! ZJM:1 A; we have that A\; < BNM ~'D?. Thus, we have proven that (ii) is true. The rest of
the proof is concerned with bounding SNM~!'D? in terms of C and $.

Let (53‘)]']\11 be a sequence of independent symmetric random variables with 6; = +1. By taking expecta-
tion we calculate,

N M
E Z ’ Z 5ja’i7j

i=1 j=1

N M

= ZE’ Zéjam-
i=1 j=1

1/2

1
> — Z Z |a; ;|? by Khintchine’s Inequality,

M
I, := {z e{l,..,N}: ‘Z(Sjai,j > Da}.
Jj=1

By (ii), the vector (Z]]Vil §ja; )N, is in the column space of [a; ;] xar and has norm at most 3*/2DN'/2.
We will now calculate a lower bound for the cardinality of 1.

1/2

s
I
—
<.
I
—
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1/2
M 2
=D ILTE
i€ly j=1
M
> |I,|7Y? Z ‘Zéjai,j by Cauchy-Schwarz,
i€ly j=1
M
|I | 1/2 Z ’ Z(S Qi,j Z ’Z(Sjai)j
i=1 j=1 ¢l j=1
N M
SIAREEDS ) > 6ja, — |I,])Dax
i=1 j=1

> |Ia|‘1/2(2‘1/2DN (N - |Ia|)Da) by (4.1),

> |I,|7'/?(27"/% — a) DN.

Thus, we have that |I,| > 871(27'/2 — a)?N. We now apply similar estimates to the matrix [b; ;]arxn
restricted to the columns in I, .

Let (’yj)jj\il be a sequence of independent symmetric random variables with v; = £1. By taking the
expectation we calculate,

M M
EY [ vt = DB Y b

i€ly, j=1 i€y j=1
1/2
Z Z |b;, i|? by Khintchine’s Inequality,
'LEI Jj=1
> D by (1),
\/_ i€l

—D\/_|I ol > DBt f(z—l/Q a)’N.

Thus, we may fix a particular realization for (’yJ) 7, such that

> g71D2712 (2712 — o)°N. (4.2)

M
Z ‘Z’iji,j

icl, j=1

We have that z := (M ~'/26; i), and f = (M 1/2’yj)j1‘i1 are unit norm vectors in £3/. For 1 <i < N, we
define

1, otherwise.

. {phaseux, e )71 i (@ fiaa, £) £ 0,

Thus, we have that

N
Cllall 2 || esfa, fi)a
i=1
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> eilwi ), fi) as || fl =1,

i=1
N M M
~ [ ] 3
i=1 j=1 7j=1
M M
>M! ‘ Z 0@, ‘ Y55,
i€ly, j=1 j=1
== 120@)2% ji
i€l

>aD?g712712 (2712 )P NMTY by (4.2),

1
= 2—7D26_1NM_1 for a = /2/6.
Thus, BD?NM~* < 2742C as ||z|| = 1. From (ii) we deduce that (f;)}_, has Bessel bound 275%C. O

In Lemma 4.5 we considered frames (z;)7_; and (f;);Z, such that |lz;]| = ||f;|| = D for all 1 < j < N.
We now prove Theorem 1.3 which considers the case where ||z;|| = || f;|| for all 1 < j < N but we no longer
require that ||z;|| = ||z;|| when ¢ # j. This difference is particularly significant as the infinite dimensional
Conjecture 1.1 is known to be true for the case where M; x r is an unconditional multiplier with constant
1 symbol and the sequences X = ()52, and F' = (f;)52, satisty ||z;| = [|f;|| = D for all j € N. However,
Conjecture 1.1 remains open in the general case that ||z;|| = || f;|| for all j € N but inf ey [|2;]| = 0.

Proof of Theorem 1.3. Let (xj)é-vzl and ( fj)j-v:l be sequences in an M-dimensional Hilbert space H which
satisfy ||z;|| = || f;|| for all 1 < j < N and C > 0 is such that

N
H Z€j<x,fj>xjH < C|l=|l, for all z € H and |g;| = 1. (4.3)
j=1

Let 8 > 0 be such that A; < AM ! 23{1 Aj where A; > ... > A\ are the eigenvalues of the frame operator
of (fj)évzl

We first will assume that the values ||z;]|?> = || f;||* are non-zero and rational for all 1 < j < N. Thus,
there exists K, ki, ..., ky € N such that ||z;||* = ||f;||* = % for all 1 < j < N. We have that

N kj N

ZZ< 1/2f]> 1/2x] :Z<x7fj>mj7 for alleH

j=114=1 j=1

kj \N kj \N
Thus, the systems ((, / kl x]> ’ > and ((, /L, fj) ’ ) are each equi-norm sequences with the same
i=1 i=1/ j=1

i=1
frame operator as (z;)_; and (fJ)N 1 respectively.
We now claim that

for all z € H and |e; ;| = 1. (4.4)

N kj
5wt

j=11i=1
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Assuming the claim, we have by Lemma 4.5 that ((, /klj fj)l 1) . and consequently also ( fj);-vzl have
1= 1=
Bessel bound 2732C.
We now prove the claim that (4.4) is satisfied. Let € H. We will first prove that

N N
Zaj<x,fj)xj :Jaj| <15 Cconv Zzsj(a:,fj)xj Cleil=10, (4.5)
j=1

=1

the convex hull of the vectors Z] L €5{x, fj)z;. To see this, let (a;)}, be a sequence of scalars and assume
without loss of generality that 0 < |a;| < |ag| < ... < |an| < 1. We construct a sequence (b;)?Y™ in [0, 1]
by b1 = |a1|, b2 = b3 = (|a2| — ‘CL1|)/27 b4 = b5 = (|CL3‘ — |a2|)/2,..., ng = b2N+1 = (1 — |aN|)/2 For each
1<j<Nandl1l<i< 2N+1wenowgives”with lej il =1. For 1 <i<2j—1welete;; = phase(a;), and
for 2j <i < 2N +1 we let ¢;,; = (—1)*. The telescoping aspect of the construction gives that ZQNH b, = 1.

Furthermore, ZzNH biej i = aj, for all 1 < j < N. We have that

2N+1 N

N 2N+1
Z Zsﬂ ZZ i€5,i(25 f) xJ:Zaj<$7fj>xg

j=1

This proves (4.5). Moreover, every vector ZZ—LZI b; Zjvzl €ji(x, fj)x; in the convex hull of { Zjvzl ej(z, fi)z;

lejl = 1} has the following bound on its norm.

L N
Zb 2531 z, fi)z; Z Z%,K%fj)%
=1 j= j=1

L
Z iCllz|| = Cll[].

Thus, we have for all sequences (a;)}.; with |a]| <1 that || Z 1a5(z, fj)z;|| < Cllz||. To prove our claim

that (4.4) is satisfied we let a; = Zf 15”16 , forall 1 < j < N. Note that |a;| < 1forall1 <j < N.
Thus we have that

i

k;
H iZ€j,i<l',kj_l/ij>kj_1/2xjH = H i (Zsﬂ ) T fj>xjH

j=11i=1 j=1 i=1
N
=| 3o 2. fi)a; | < Clall.

Thus, we have proven our claim that (4.4) is satisfied and the proof is complete for the case that ||z;|* =
| f;]|? are non-zero and rational for all 1 < j < N.

We now consider the general case where |z;]|* = || f;]|> for all 1 < j < N, but they may not all be
rational. We may throw out any terms which are zero, and thus we assume without loss of generality that
llz;]|? = || f;]|* are non-zero for all 1 < j < N. Let ¢ > 0 and let A\; > ... > Ajs be the eigenvalues for the
frame operator of (f;)"_,. We may choose scalars (a;)"_; which are arbitrarily close to 1 so that |a;| <1
and [|ajz;]|? = ||a; f;]|? is rational for all 1 < j < N. As |a;| <1 for all 1 < j < N we have by (4.3) that

< C|lzl], for all z € H and |g;| = 1.

N
H > eilajfi, v)ajx;
j=1
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Furthermore, we may assume that if v; > ... > ;s are the eigenvalues of the frame operator for (a; fj);”:l
then v; < \; < (1+¢)y; for all 1 < i < M. Hence, by our previous argument, (ajfj);-lzl has Bessel bound

272(1 +£)2C. As the scalars (a; );V 1 may be chosen arbitrarily close to 1 we have that (fj)évzl has Bessel
bound 278%(1 +¢)2C. As € > 0 was arbitrary, (fj) 1 has Bessel bound 2758%C. O

Appendix A

We now prove the following proposition which implies the complex case of (1.6) from the introduction.
Recall that the unconditionality constant of a series Zjvzl zj in a Banach space X is the least value Cy > 0

so that || Zj\;l giz;ll < Cul| Zj\;l x| for all |e;| = 1, and the suppression unconditionality constant of
25‘11 zj is the least value C's > 0 so that [| 3, x €525 < Csl| Z;VZI xj|| for all A C{1,...,N}.

Proposition A.1. Let (zj)j.vzl be a sequence in a Banach space X. Let Cy be the unconditionality constant
of Zjvzl zj and let C's be the suppression unconditionality constant of Zjvzl zj. Then Cg < Cy < 4C5.

Proof. The inequality Cg < Cp is well known, but we give a proof for the sake of completion. Let A C
{1,..., N} and choose f € X* with || f|| =1 so that f(3_,ca ) = [ X-jen 7;5]l- We have that

"Zl'j‘)—z.ij Sg
= f(ﬁ:ijj) fore; = phase(Tl"j))

N
<|Xew|  aslfl=t
j=1

This proves that Cs < Cy. We now prove that Cy < 4Cg. Let (sj) *; be uni-modular scalars and choose
f € X* such that ||f|| =1 and f(zj 165%5) = || ZJ 1€5%;||. We have that

N N

13 em| =3 reim) Z|Re |+ Im(f (=)

Jj=1 j=1
=Y R - S Re(f(=) + () - S Tm(f(z))
Re(f(z))>0 Re(f(z4))<0 Im(f(z5))>0 Im(f(z;))<0

N
<4 max || 5205
<4 ma, | 2 9%
j=1
This proves that Cy < 4Cg. O
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