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Abstract

We give a short new proof of a recent result of Hanlon-Hicks-Lazarev about toric varieties. As in their work, this
leads to a proof of a conjecture of Berkesch-Erman-Smith on virtual resolutions and to a resolution of the diagonal
in the simplicial case.

1. Main result

We give a short new proof of a recent result of Hanlon-Hicks-Lazarev about toric varieties and their
multigraded Cox rings. Throughout, we let X be a simplicial, projective toric variety over an algebraically
closed field k with C1(X)-graded Cox ring S. Our main result (Theorem 1.2) was first proven in [HHL],
but our proof is independent from their methods. Our approach is more algebraic and simpler, while
their approach is more explicit and connects to a wider range of topics, including symplectic geometry
and homological mirror symmetry. See also the work of Favero-Huang [FH], which was completed
simultaneously with [HHL] and whose main results coincide with some of Hanlon-Hicks-Lazarev’s.

Our interest in these topics begins with a program to extend results on syzygies to multigraded or
toric settings. The basic perspective, introduced by Berkesch-Erman-Smith in [BES20], is that many
classical results about minimal free resolutions will have strong analogues in the toric setting, as long
as one replaces minimal free resolutions with the more flexible notion of a virtual resolution.

Definition 1.1. Let M be a finitely generated Cl(X)-graded S-module. A virtual resolution of M is
a free complex F, of S-modules such that there is a quasi-isomorphism F. > M of complexes of
Ox-modules.!

The following is a consequence of Hanlon-Hicks-Lazarev’s main result [HHL, Theorem A].

Theorem 1.2. Let Y be a normal toric variety and Y — X a closed immersion that is a toric morphism
[CLS, Definition 3.3.3]. Denote by I the defining ideal of Y — X (Definition 2.1). The S-module S|I
admits a virtual resolution of length codim(Y C X).

1If X is smooth, then E consists of sums of line bundles and is sometimes called a line bundle resolution. See Remark 3.4
regarding the simplicial case.
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And here is our short proof of Theorem 1.2. The proof relies on some elementary facts about toric
varieties that we recall in Lemma 2.2 below.

Proof of Theorem 1.2. The Cox ring S of X is positively Cl(X)-graded [BE21, Definition A.1, Exam-
ple A.2], and so we may consider Cl(X)-graded minimal free resolutions of CI(X)-graded S-modules.
Let R be the normalization of S/I and F. the minimal free resolution of R as an S-module. Since Y
is normal, R = Oy as a sheaf on X, and so F, is a virtual resolution of S/Iy. By Lemma 2.2(1) and
[CLS, Theorem 1.1.17 and Proposition 1.3.8], the ring R is a product of affine semigroup rings of the
same dimension. Hochster’s Theorem therefore implies that each component of R is a Cohen-Macaulay
ring [Hoc72, Theorem 1]. It follows that R is also a Cohen-Macaulay S//-module: indeed, we have
dim(R) = dim(S/I), and since R is a finitely generated S/I-module [Eis, Theorem 4.14], any system
of parameters on S// is a system of parameters on each component of R and hence a regular sequence.
The length of F, is the projective dimension of R, which, by the Auslander-Buchsbaum formula [Eis,
Theorem 19.9], is equal to depthg(S) — depthg(R) = dim(S) — dim(S//) (while the version of the
Auslander-Buchsbaum formula we cite pertains to local rings, the desired result for the polynomial ring
S follows by [BH, Proposition 1.5.15]). Lemma 2.2(2) therefore implies that the length of F is equal to
codim(Y C X). O

We now describe applications of Theorem 1.2 and their history. For a fuller discussion, see [HHL,
§1]. We start with a special case, first proven by Hanlon-Hicks-Lazarev:

Theorem 1.3 ([HHL] Corollary B). The coordinate ring of the diagonal embedding X C X X X admits
a virtual resolution of length dim X.

Special cases of Theorem 1.3 were studied in [BE21, BS22, Can03], and [BPSO1, And] study closely
related questions. It was known that this result would immediately yield proofs of two conjectures that
also had received independent interest. The first conjecture is due to Berkesch-Erman-Smith [BES20,
Question 1.3] and was proven by Hanlon-Hicks-Lazarev:

Theorem 1.4 ((HHL] Corollary C). Any module M as in Definition 1.1 has a virtual resolution of length
< dim X.

Hilbert’s Syzygy Theorem gives a bound of dim S = dim X + rank C1(X); Theorem 1.4 implies that
the added flexibility of virtual resolutions allows for significantly shorter resolutions, especially when
rank C1(X) is large. See [BES20, HNVT22, BKLY21] and elsewhere for many examples of this phe-
nomenon. Prior to [HHL], Theorem 1.4 had been proven in several special cases: when rank Pic(X) =1,
it essentially follows from Hilbert’s Syzygy Theorem; for products of projective spaces, it was shown
in [BES20, Theorem 1.2] (see also [EES 15, Corollary 1.14]); Yang proved it for any monomial ideal in
the Cox ring of a smooth toric variety [ Yan21]; and Brown-Sayrafi proved it for smooth projective toric
varieties of Picard rank 2 [BS22].

The second conjecture, due to Orlov, is the special case of [Orl09, Conjecture 10] for toric vari-
eties. This was first proven by Favero-Huang in [FH, Theorem 1.2], and independently and essentially
simultaneously in [HHL, Corollary E].

Theorem 1.5. The Rouquier dimension of D (X) equals dim X.

Special cases of Theorem 1.5 had been established in [BC23, BF12, BDM 19, BFK 19] before Favero-
Huang and Hanlon-Hicks-Lazarev proved it in general. The full version of Orlov’s Conjecture states
that Theorem 1.5 extends to any smooth quasi-projective variety; see [BC23, §1.2] for a list of known
cases of this conjecture.

Theorem 1.2 easily implies Theorems 1.3, 1.4 and 1.5. To prove Theorem 1.3, observe that the
diagonal X C X X X satisfies the conditions of Theorem 1.2. To prove Theorem 1.4, one can simply
follow the method of [BES20, Proof of Theorem 1.2]. For Theorem 1.5, one can use standard techniques
on derived categories; see, for example, the proof of [HHL, Corollary E].
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Our proof of Theorem 1.2 is quite simple, perhaps embarrassingly so given the prior partial results
on these questions cited above. It is not yet clear how to compare our resolutions to those obtained in
[HHL], but we believe that the two constructions agree in the case of Theorem 1.3. Their work gives
a creative perspective on building these resolutions, drawing motivation from the symplectic side of
the mirror symmetry functor and involving a wide array of ideas.? The resolutions they obtain are
quite explicit; indeed, their resolution of the diagonal yields a canonical generating set for the derived
category of any normal toric variety, proving a claim of Bondal [HHL, Corollary D]. However, some
algebraic aspects of their constructions are harder to determine. For instance, if F, is the free complex
of S-modules corresponding to one of their resolutions, their work implies that the modules H;(F,)
correspond to the zero sheaf on X for all i > 0, but it is not clear whether H;(F,.) equals the zero
module on the nose (i.e., it is not clear if F, is acyclic as a complex of S-modules). The S-module
that arises as Hy(F.) is also unclear. By comparison, the complexes that arise in our construction
are always acyclic, and they resolve normalizations of coordinate rings. However, we are not able to
give as explicit of a description of the terms. It would be very interesting to better compare these
complexes, and to compare them with those in [BE21, BS22]. Favero-Huang’s approach [FH] can
almost certainly yield all of the above results as well, and it would be interesting to compare to those
resolutions too.

Remark 1.6. As our resolutions from Theorem 1.2 rely only on standard algebraic constructions, they
can be directly computed in Macaulay2 [M2]. The constructions in [HHL] are explicit, but due to their
novelty, computing them in practice requires more effort. Of course, if one could show that the two
constructions coincide, this would shed more light on both.

2. Some elementary facts about toric varieties

Definition 2.1. Let X, Y and S be as in Theorem 1.2, B C S the irrelevant ideal of X, and Z the closure
in Spec(S) of the inverse image of ¥ under the canonical surjection 7: Spec(S) \ V(B) — X. The
defining ideal of Y in X is the radical ideal I C S corresponding to the closed subset Z C Spec(S).

Lemma 2.2. Let Z and I be as in Definition 2. 1.

1. The irreducible components of Z are affine toric varieties of the same dimension. Furthermore, if the
divisor class group C1(X) is torsion-free, then Z is irreducible.
2. We have dim(S) — dim(S/I) = codim(Y C X).

Proof. Since Y < X is a toric morphism, it induces an embedding 7y < Tx on tori and hence a
surjection p: Mx —» My of lattices. Taking the pushout of the surjection p and the canonical map
My — Z9™S yields the morphism

0 Mx 74imS Cl(X) —=0 (2.3)
F k)
0 My M’ Cl(X) —=0

of exact sequences. The abelian group M’ is isomorphic to Z" @ A, where r is defined to be dim(S) —
dim(X) + dim(Y), and A is some finite abelian group. We observe that I coincides with the radical of
J = ker(S — k[z4mS] 4 k[M’]); note that k[ M’] need not be reduced when char(k) # 0, since M’
may have torsion, and so J need not be radical. Let us verify that / = rad(J): since p is surjective, the
Snake Lemma implies that g is surjective, and so J is the defining ideal of the closure of Spec(k[M’]) in

2In a different direction, we refer to Borisov’s work [Bor0O0] for an alternative proof of Hochster’s Theorem [Hoc72, Theorem 1]
— the main ingredient of our proof of Theorem 1.2 — and an explanation of how the techniques used there relate to mirror symmetry.
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Spec(S). Diagram (2.3) induces the following morphism of short exact sequences of algebraic groups:

0 <—— Tx <=— Spec(k[Z9™S]) <—— ker(a) <—— 0

|, ] )

0~ Ty <2 Spec(k[M']) ~— ker(B) <—— 0.

It follows that o~ !(Ty) is equal to the image of Spec(k[M’]) in Spec(k[Z4™5]). Since Z is equal to
the closure of @~ ! (Ty) in Spec(S), we conclude that I = rad(J).
Writing R = k[Z"] and A = €P);_, Z/(n;), we have

KM= Rlzeozl /& = 1z = 1),

The quotient of k[ M’] by its nilradical is therefore a product of copies of R, and so / is a finite intersection
of prime ideals arising as kernels of ring homomorphisms S — R. It therefore follows from [CLS,
Proposition 1.1.8] that the irreducible components of Z are affine toric varieties of dimension r. If CI(X)
is torsion-free, then the bottom row of Diagram (2.3) splits, and so A = 0, which means [ is prime. This
proves (1). As for (2), we have shown that dim(Z) = r, which is precisely dim(S) —codim(¥Y € X). O

3. Examples

Example 3.1. Let X =P" and T = k[xg,...,Xn, Y0,---»>Yn], the Cox ring of X X X. Let Ix C T be the
defining ideal (Definition 2.1) of the diagonal X C X X X (i.e., the ideal corresponding to the closure
of the set of points in Spec(T) of the form (xo, .. .,x,, txg, . . . , 1X,), where t € k*). One easily checks
that I is the kernel of the map S — k[xo,...,Xu, Y0, - .-, Yn,t] given by x; — x; and y; > tx;, and so
T /1, is isomorphic to the normal semigroup ring k[xo, . . ., Xn, £X0, . . . , £X,]. The ideal I, is generated

X0 X s X . . .
0 " |. More specifically, these minors vanish on A, and
Yo Y1 = " Yn

since this is a generic matrix, the ideal of 2 X 2 minors is prime of codimension n. As T/, is already
normal, the virtual resolution of T'/I, arising from Theorem 1.2 is just the minimal free resolution of
T /I, which is given by the Eagon-Northcott complex on this matrix.

by the 2 X 2 minors of the matrix

Example 3.2. Let X be the weighted projective space P(1, 1, 2) and T the Cox ring k [xg, X1, X2, Y0, Y1, ¥2]
of X X X. By a calculation similar to Example 3.1, the ring T'/I, is isomorphic to the semigroup ring
k[xo,x1,x2, tx0, tX1, t2x2], which is not normal because tx; lies in the fraction field and satisfies the
integral equation (7x2)% — x5 - (t?x) = 0. Let R be the normalization of T/I,. A presentation matrix for
R as a T-module is given as follows, where the rows correspond to the generators 1 and #x;:

1 X1y0 —X0y1 X2Yo X2y1 XoY2 X1Y2
X2 0 —Xo —X1 —Yo —Y1

The free resolution of R as a T-module is given by

-x3 0 —312
T(-1,-1) |Z% 5 o | T(=3,-1)
T [leoaxoyl X2y0 X2y1 X0Y2 xlyz] o) 8 =X =Y @
® 2R (2,1 — 2 T(-2,-2) < 0. (33)
T(-1,-1) ® ®
T(_l’ _2)2 T(_l, _3)

Additionally, we have the short exact sequence 0—>T/In >R — Q — 0,and Q = txy - k[x2,y2].
One can directly compute that the sheaf Q corresponding to Q is the zero sheaf on X x X. In fact, since
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Q is annihilated by xg, x1, yo and Y1, We can reduce to checking that Q is also zero  on the affine patch
D(x2y2). The global sections of Q on this patch are Q[x; L y;l](o’o) =0, and thus Q = 0, as desired.

Remark 3.4. Since O(-1) and O(-3) are not vector bundles on P(1, 1,2), the resolution (3.3) does
not induce a locally free resolution of the diagonal. Indeed, virtual resolutions are not guaranteed to
induce locally free resolutions of Ox-modules unless X is smooth. Alternatively, as in [HHL], one could
consider the corresponding toric stack.

Remark 3.5. In many of the prior known cases of Theorem 1.4, a slightly stronger result was proven.
Namely, it was shown that for any such M, there exists another module M’ satisfying M = M’ and
pdim(M’) < dim X; see [EES15, BHS, Yan21]. It would be interesting to determine if this was true in
general.
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