Accepted for publication in IEEE-EMBS BHI'23, Pittsburgh, PA, USA, Oct 15-18, 2023.

Robust Nonlinear State Space Model Identification for Hemorrhage
Resuscitation

Elham Estiri, Student Member, IEEE and Hossein Mirinejad, Senior Member, IEEE

Abstract— This paper presents a novel method for predicting
hemodynamic responses in hemorrhage resuscitation. The
proposed approach, namely, robust nonlinear state space
modeling (RNSSM), aims to overcome challenges of identifying
reliable models using limited and noisy critical care data by
innovatively integrating autoencoder learning and variational
Gaussian inference in a unified framework. Simulation results
demonstrate the initial feasibility and performance evidence of
the RNSSM approach as a digital twin of an animal study in
hemorrhage resuscitation scenarios.

Clinical Relevance— Enabling reliable, personalized
hemodynamic models amenable to the closed-loop control
design can potentially lead to development of efficient model-
informed precision dosing strategies, promoting patient safety
and outcomes in critical care.

I. INTRODUCTION

Fluid resuscitation is a medical intervention commonly
used in hypovolemic scenarios to compensate for the lost
blood volume and stabilize critically ill patients. Fluid
management is currently ad-hoc and dependent on the
physician’s style and expertise [1-5]. These ad-hoc protocols
lack the capability to accurately adjust fluid infusion dosages
due to their empiric nature, especially in the presence of
clinical disturbances [6], posing a significant risk of adverse
effects such as under- and over-dosing. Consequently,
treatment performance is compromised due to the absence of
appropriate dosage adjustment tools.

A few studies have considered the modeling of
hemodynamic responses in fluid resuscitation therapies [1-3].
In [1], a simplified lumped-parameter model replicating
blood volume responses in different physiological states
following fluid infusion was presented. In [2], a control-
theoretic, physic-based model of hemodynamic variables,
including blood volume, cardiac output, and blood pressure
response, in hemorrhage resuscitation was presented. In [3], a
cyber-physical fluid resuscitation test bed that included
hemodynamic responses to blood volume perturbations was
developed.

Automated modeling and control methodologies have
recently received great attention in physiological modeling
and dosage adjustment [7-12]. To design a model-informed
dose adjustment tool, an appropriate dose-response model is
needed, and the success of the control approach is highly
dependent on the availability of a reliable model. Such a
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model must (i) be simple enough to be amenable to the
design of the controller using limited clinical data and (ii)
make use of limited, noise-distorted, patient-specific clinical
data with unknown baseline conditions. Development of a
reliable, personalized hemodynamic model amenable to the
closed-loop control design remains challenging due to the
limited, distorted clinical data, large inter- and intra- patient
variability, and the complexity of modeling physiological
variables, and this work intends to address it in the context of
fluid resuscitation.

Machine learning algorithms have been recently used for
dose-response modeling [13-15]. In [13], a machine learning
algorithm was wused to predict the dose-adjusted
concentrations of lamotrigine based on noninvasive clinical
parameters. In [14], a method that combines model predictive
control and reinforcement learning (RL) was presented to
address the challenge of drug administration variability in the
treatment of renal anemia. A complete literature review
exploring the use of data mining and machine learning
techniques for disease prediction using complete blood count
data was presented in [15]. Most of these models
predominantly rely on population-based data, limiting their
applicability to individual subjects. In our previous study
[16], we designed an individual-based fluid dosing algorithm
using a model-free RL. While this approach showed
promising results in fluid management, it required a
substantial amount of data for training and provided an
inferior performance in the presence of clinical disturbances.

To address the aforementioned challenges, this paper
presents a novel modeling framework namely, robust
nonlinear state space modeling (RNSSM), for predicting
hemodynamic responses in hemorrhage resuscitation. The
proposed approach integrates autoencoder learning and
variational Gaussian inference (VGI) into a unified
framework to develop nonlinear state space models that are
highly amenable to the closed-loop control design from
limited, noisy critical care data. The goal is to develop
subject-specific models that can reliably predict mean arterial
pressure (MAP) responses to fluid infusion in hemorrhage
scenarios. The RNSSM approach improves (1) model
accuracy by considering subject-specific characteristics and
drug attributes and (2) model reliability by accounting for
uncertainties inherently present in clinical data.

The rest of the paper is organized as follows: Section II
describes the proposed methodology leveraging autoencoder
learning and Gaussian inference for developing RNSSM
models. Section III presents the results and discussions, and
Section IV draws the conclusions.



II. MATERIAL AND METHODS

We derive a new methodology to predict robust,
individualized MAP responses to fluid infusion in
hemorrhage scenarios. The proposed methodology focuses on
identifying reliable nonlinear state space models from
limited, noisy clinical data using machine learning
algorithms.  Consider a  multiple-input/multiple-output
nonlinear state space model (NSSM) in a general form:

X1 = f O, ug, 0) + vy
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where x; represents the hidden state variable in R™, u,; €
R™ denotes the observed input, and y, € R™ represents the
measured output. The functions f(.) and g(.) capture the
state transition and output measurement, respectively, while
6 € R™ represents a vector of unknown parameters. The
terms v, and wj, account for disturbance and measurement
noise, respectively, both described by Gaussian probability
density functions.

We aim to enable reliable, individualized prediction of
hemodynamics by amalgamating autoencoder learning with
VGI techniques.

A. Autoencoder Learning of Nonlinear State Space Models

Autoencoder is a type of artificial neural network (ANN)
used for representation learning [17]. It learns how to
efficiently compress and encode data then learns how to
reconstruct the data back from the reduced representation to a
representation that is as close to the original input as possible.
This is accomplished through a bottleneck in the ANN
forcing a compressed knowledge representation of the
original input. The use of autoencoders for learning state
space models has received great attention recently [18-20]
due to their capability to impose regular geometry on the
learned latent space— an abstract space that positions similar
samples close to each other. Here, we aim to capture the
intricate dynamics of MAP responses to fluid infusion
changes using autoencoder learning. The structure was
adopted from [20] where the autoencoder learns a nonlinear
state space representation from a given subject-specific
input/output dataset. Suppose we are given a dataset of
input/output I, = {uy, Uy, ..., Uy, ¥1, Y2, -, Yn}, Where u; €
R™ is the vector of inputs (fluid dosages) and y, € R™ is
the vector of measured outputs (MAP responses). The
objective is to find optimal values for functions e: R™ —
R™, f:R™ x R™ - R™, and ¢g:R™ - R™ by
minimizing the following fitting criterion:

min L(e, f,g,Z) = min X¥_, L, ¥i) ()
ef.g ef.g

where e, f, g, are the functions describing the encoder,
bridge, and decoder models, Z describes the training dataset,
L:R*™ — R is the loss function, and y and y, are the
measured and predicted outputs, respectively.

To determine the appropriate nonlinear state space model
that yields an acceptable mismatch between the predicted
value, ¥, and the measured value, y,, we need to design a
suitable ANN architecture for training these functions.

The autoencoder model, used in this work, consists of
three main components: (1) A multilayer ANN encoder for

predicting x;, from I,_;; (2) A multilayer ANN decoder for
predicting y, from xj; and (3) A bridge network, also a
multilayer ANN model, for modeling the function f that
maps Xj to Xj,. Since direct access to the internal dynamics
of the system to obtain Xx,,; is unavailable, a second
autoencoder is defined that simultaneously maps I} to Xj4q
and Y., using the same weights as the first autoencoder.
The following criterion was chosen to train the model:

renfig ke LiGio i) + LiFiesr, Yierr)
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where yi = [y1, Y2, -, ¥kl and Yiy1 = [¥2,¥5, o, Viera] are
the vectors of measured outputs, and ¥, = [91, V2, -, Vil
Virr = [92, 93, ) Dira], and Yiyy = [§2, 95, o, Fqa] are
the predicted outputs. L; and L, are the loss functions for
training the autoencoders and the bridge network,
respectively. Lj is introduced to prevent the error introduced
by the bridge network f from being amplified by the
decoder.

B. Variational Gaussian Inference (VGI)

State space models based purely on autoencoders, as
identified in part A, fail to account for external uncertainties
(e.g., measurement noise), as well as internal sources (e.g.,
unmodeled dynamics) [21]. This becomes particularly
problematic in fields where data is inherently distorted. For
instance, clinical data is often tainted by various factors,
including measurement noises. To tackle this challenge, we
are integrating VGI techniques into autoencoder learning,
aiming to enhance the robustness of the identified models.
This integration enables us to determine underlying model
parameters, factoring in the uncertainties inherent in training
data—referred to as aleatoric uncertainty [22]. Specifically,
in this context, it relates to the uncertainties observed in fluid
infusion doses and their corresponding hemodynamic
responses. Such variability can arise from physiological
factors, measurement inaccuracies, and other stochastic
elements [9].

VGI enhances the performance of a standard autoencoder
by introducing a probabilistic interpretation. Instead of
encoding input data into a fixed latent space representation,
the encoder maps the data onto a probability distribution over
the latent space, typically assumed to be a multivariate
Gaussian function. The decoder reconstructs the data by
sampling from this latent distribution. This integrated system,
often referred to as a variational autoencoder (VAE),
leverages the benefits of a generative model. The enforced
probability distribution in the VAE's latent space allows for
efficient sampling and data point generation. Such a
generative feature is especially valuable for dynamic state
space modeling in time-series data. As the model produces
results based on ever-changing inputs, this methodology
becomes versatile for tasks demanding accurate
reconstruction and generation within a dynamic data
landscape.

In the VAE, the focus is on approximating the true
posterior distribution pgy(x|y), where x denotes latent
variables and y is the observed data. Computing the true
posterior pg(x|y) is analytically intractable, prompting the
introduction of a variational inference that approximates the



posterior using a simpler variational distribution qg(x|y),
parameterized by ¢ = (u, o). Here, u and o denote the mean
and standard deviation of the distribution, respectively. Their
values are typically set to establish the prior distribution as a
standard normal distribution, i.e., 4 =0 and o = 1. The
training goal for a VAE is to determine model parameters
making the variational distribution g4 (x|y) closely match
the true posterior distribution pg(x|y). This is achieved by
minimizing the Kullback-Leibler (KL) divergence between
the two distributions, defined as [23]:

KLpivergence = Dir (@ (xIy)|pe(xly)) = =3 2R (1 +
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The model’s total loss function is derived as:
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with L, (x, %) = ||x — X]||,, and L, defined as:
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Here, L, comprises two parts: a reconstruction term and a
KL divergence term. The former measures the quality of
reconstructed data, while the latter ensures the learned latent
space aligns with the assumed prior distribution.

The resulting algorithm, integrating VGI and autoencoder
learning for hemodynamics prediction, is named the
RNSSM framework, as detailed in Fig. 1.

III. RESULTS & DISCUSSION

The proposed RNSSM approach leverages autoencoder
learning and VGI within a unified framework to develop
robust nonlinear state space models that are highly amenable
to closed-loop control design. The dataset was sourced from
an animal study conducted at the Resuscitation Research
Laboratory, University of Texas Medical Branch [24], where
different sheep underwent high and medium hemorrhage
procedures accompanied by fluid infusion. The data
collection process followed the study protocol approved by
the Institutional Animal Care and Use Committee [24].

In the animal study, a hemorrhage rate of 25 ml/kg was
administered to the subjects within the first 15 minutes, after
which it was halted. At times t = 52 and t = 72 minutes, two
smaller hemorrhage rates of 5 ml/kg were applied to each
subject for a duration of 2 minutes. Fluid resuscitation using
Lactated Ringer’s solution began 30 minutes after the start of
study. MAP measurements were recorded every 5 minutes
for a duration of 180 minutes. The input data for the model
consisted of fluid infusion and hemorrhage rates, and the
output data was the corresponding MAP values.

The RNSSM training dataset consisted of N=1441
samples. An early-stopping strategy was employed using
10% of the training dataset to verify the stopping criterion.
The dataset used for cross-validation comprised 131 samples.
All three modules of the model (encoder, decoder, and
bridge) were designed with two hidden layers, each
consisting of 30 neurons. The ANNs consisted of 3651
weights, evenly distributed among the modules. Simulations
were conducted on data from six animal subjects.
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Figure 1. Robust nonlinear state space modeling (RNSSM) framework
integrating autoencoder learning and variational Gaussian inference for
identification of hemodynamics from limited, noise-distorted clinical data.
The framework leverages two distinct VAEs: The first VAE is focused on
estimating y;, and the second VAE is dedicated to approximating x4
through the state space transition function f. The estimation of f is routed
through the same decoder as the first VAE, ensuring that the inferred x;.,
results in reliable reconstructions. Furthermore, the reconstructed X1 is
also processed through the same decoder to mitigate the error amplification
when data navigate through the f neural network.

Fig. 2a displays the fluid and hemorrhage rates (inputs)
during the animal study, while Fig. 2b illustrates the
predicted MAP responses from the RNSSM model alongside
the measured MAP for a sample subject. Fig. 2 demonstrates
the model’s capability to track the real trend of time-series
data and effectively capture MAP fluctuations caused by
hemorrhage, highlighting the model’s robustness against
external disturbances.

Additionally, Table I presents the performance metrics,
including root mean square error (RMSE), mean absolute
error (MAE), and median absolute percentage error
(MDAPE) for all subjects. These metrics provide quantitative
insights into the model's accuracy. The outcomes highlight
the model's capability to robustly and accurately capture
MAP responses throughout the hemorrhage resuscitation,
bolstering the case for continued exploration and
enhancement of the RNSSM framework. The presented
method addresses several key challenges in the field. It
effectively tackles the issues caused by the noise and external
disturbances, as well as the limited data availability. Also, the
proposed method has border applicability in other fields such
as robotics and manufacturing, where data availability is
limited, and measurements are prone to noise.

It's essential, moving forward, to present a comparison
study against other resuscitation models. Additionally, a
deeper probe into the robustness of the RNSSM model,
especially in the face of uncertainties, is needed in the near
future. The formulation of a closed-loop controller for fluid
management, leveraging the RNSSM models, also presents
an intriguing avenue for future research.

TABLE 1. PERFORMANCE METRICS FOR ALL SUBJECTS
RMSE (%) MAE (%) MDAPE (%)
MEAN 0.37 0.28 0.29
STD 0.013 0.011 0.1
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Figure 2. (a) Fluid infusion and hemorrhage rates during the animal study,

and (b) measuered and predicted MAP responses from the RNSSM method.

IV. CONCLUSION

RNSSM, a novel modeling framework for predicting
hemodynamic responses in hemorrhage resuscitation was
presented. The approach combined autoencoder learning and
VGI to overcome the challenges of identifying reliable
models using limited and noisy critical care data. Simulation
results were highly promising, encouraging further
investigation of the RNSSM approach against state-of-the-art
digital twin models in the near future.
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