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Abstract: Support vector machine (SVM) is a popular classifier known for accuracy, flexibility,

and robustness. However, its intensive computation has hindered its application to large-scale

datasets. In this paper, we propose a new optimal leverage classifier based on linear SVM

under a nonseparable setting. Our classifier aims to select an informative subset of the training

sample to reduce data size, enabling e�cient computation while maintaining high accuracy. We

take a novel view of SVM under the general subsampling framework and rigorously investigate

the statistical properties. We propose a two-step subsampling procedure consisting of a pilot

estimation of the optimal subsampling probabilities and a subsampling step to construct the

classifier. We develop a new Bahadur representation of the SVM coe�cients and derive uncon-

ditional asymptotic distribution and optimal subsampling probabilities without giving the full

sample. Numerical results demonstrate that our classifiers outperform the existing methods in

terms of estimation, computation, and prediction.

Keywords and phrases: Classification; Large-scale dataset; Martingale; Optimal subsampling;

Support vector machine.
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1. Introduction

Consider the binary classification problem for a training sample of size N , DN =

{(Xj, Yj)}Nj=1, where Xj 2 Rp denotes covariates (a.k.a.features), Yj = {1,�1} rep-

resents class labels. The central task is to build a classifier that predicts the label

based on the observed covariates. Numerous literature is available on binary classifi-

cation procedures, including nearest neighbor classifiers, discriminant analysis, logistic

regression, tree-based methods, support vector machine, and ensemble learning. See,

for example, Hastie et al. (2010); Fan et al. (2020) for a comprehensive review.

Support vector machine (SVM) is a theoretically motivated classifier and has gained

significant popularity in various applications (Boser et al., 1992; Cortes and Vapnik,

1995; Vapnik, 2013). As a margin-based approach, SVM aims to find the maximum-

margin hyperplane in either the original or extended kernel feature space. According

to the elegant geometric interpretation, only a subset of the training dataset called

the support vectors, needs to be considered for evaluating the separating hyperplane.

This property is attractive compared to likelihood-based classifiers, such as logistic re-

gression, which depend on all training data to determine the discriminative boundary.

Moreover, logistic regression is typically fitted under the assumption that the response

follows a binomial distribution, whereas SVM does not require any distributional as-

sumption and thus leads to more robust performance (Steinwart and Christmann,

2008).

Despite the advantages mentioned above, constructing an SVM classifier is com-
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putationally intensive as it typically involves solving quadratic programming optimiza-

tion problems. In general, the computational cost of SVM is O(N2
Ns) (Kaufman,

1998), where Ns represents the number of support vectors. In practice, Ns usually

increases linearly with the sample size N of the training data. As a result, the num-

ber of support vectors significantly a↵ects the training time and the evaluation of the

decision boundary. Various methods have been proposed to mitigate the computa-

tional complexity of training SVM classifiers. For example, specialized algorithms for

solving quadratic programming have been suggested, including the sequential minimal

optimization (Platt, 1998) and various decomposition methods used in the LibLin-

ear software library (Hsieh et al., 2008). Other fast computation methods based on

low-rank approximation (Williams and Seeger, 2000), gradient descent (Bordes et al.,

2005; Shalev-Shwartz et al., 2011; Wang et al., 2012), core set (Tsang et al., 2005), and

nearest neighbor (Camelo et al., 2015) have also been developed. However, it is worth

noting that most of these methods still incur a computational cost of at least O(N2)

or lack optimal statistical guarantees. Therefore, when the sample size of the training

data is huge, both time complexity and statistical guarantees become prohibitively

demanding.

Observing that the discriminative boundary of the SVM depends on only a sub-

set of the training data, we take another look at the SVM from the perspective of

data reduction. A crucial insight from the SVM is that a relatively small subset of

the training data is su�cient to build up an e↵ective classifier. Inspired by leverage

score sampling methods developed for least-squares regression (Drineas et al., 2011;
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Ma et al., 2015b) and low-rank matrix approximation (Mahoney and Drineas, 2009),

our strategy is to construct an importance sampling distribution for all the training

data points, which e↵ectively reduces the data size before constructing the classifier.

The nonuniform subsampling strategy we employ is straightforward to design and im-

plement. As long as the reduced dataset remains informative or representative, the

corresponding estimator can provide a satisfactory approximation to the estimator

based on the full sample. For example, the statistical leveraging framework (Drineas

et al., 2012; Ma et al., 2015b, 2022; Li and Meng, 2020) has achieved great success

in large-scale ordinary least squares regression. More recently, optimal subsampling

procedures have been also established for various statistical models, including logistic

regression (Wang et al., 2018), generalized linear models (Ai et al., 2018; Yu et al.,

2022), quantile regression (Wang and Ma, 2021), nonparametric regression (Ma et al.,

2015a; Meng et al., 2020, 2021), and designed for testing problems (Ren et al., 2022;

Han et al., 2023). However, none of the existing can be directly applied to SVM due

to its distinguishing geometric feature. Consequently, our goal is to develop a leverage

classifier that is computationally e�cient for large datasets and theoretically provable

as the SVM.

In this paper, we introduce a novel binary classifier based on linear SVM in a non-

separable setting. To construct the optimal classifier, we propose a two-step optimal

subsampling algorithm that involves a pilot study to estimate the optimal subsampling

probabilities and a subsampling step. Our subsampling procedure significantly reduces

the computational costs without scarfing too much estimation e�ciency. With a novel
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view of the SVM under the general subsampling framework, we rigorously investigate

the statistical properties of the proposed classifier. Specifically, we derive the asymp-

totic distribution and the optimal subsampling probabilities. Our contributions can be

summarized as follows:

(1) Double randomnesses are addressed: one arising from the training data and the

other from the subsampling procedure. Our approach yields an unconditional

asymptotic result regardless of the full sample and thus allows for random sub-

sampling probabilities.

(2) We utilize the martingale technique as observations in the selected samples are

no longer independent. Our theoretical framework builds upon the Bahadur

representation of the linear SVM estimator, which is nonstandard in the context

of the general subsampling strategy.

(3) The nonuniform subsampling probabilities are computed by minimizing specific

criteria derived from the asymptotic variance, leading to optimality within the

experimental design theory. Numerical results also demonstrate that our leverage

classifier is computationally fast, and the identified separating hyperplane is close

to that obtained using the full sample SVM.

The remainder of this paper is organized as follows. Section 2 reviews the lin-

ear SVM for nonseparable binary classification and motivates the leverage classifier

framework. Section 3 investigates the theoretical properties of leverage classifiers

and develops e�cient algorithms for constructing optimal leverage classifiers. Sim-

ulation studies and a real-world example are presented in Sections 4–5. Section 6
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concludes the paper with some potential improvements. All theoretical proofs and

additional numerical results are provided in the Supplementary Material. The imple-

menting codes for this work are available in https://github.com/yuxiaohaihyx0517/

Leverage-Classifier.

2. Support vector machine and leverage classifier

2.1 Support vector machine

Binary linear classification problem aims to find the best separating hyperplane

of the form f(X,�) = �0 + X>�1, with intercept �0 and slope vector �1. Write

� =
�
�0,�>

1

�> 2 Rp+1 and fX =
�
1,X>�> 2 Rp+1 as the augmented parameter and

data vectors, and then f(X,�) = fX>�. When the training data are not linearly

separable, the linear SVM solves the following optimization problem

b� =argmin
�2Rp+1

(
1

N

NX

j=1

[1� Yjf(Xj,�)]+ +
�FULL

2
k�1k2

)
, (2.1)

where [u]+ = max(u, 0) is the hinge loss function, k · k denotes the Euclidean norm of

a vector, and the tuning parameter �FULL > 0 controls the amount of regularization

on model complexity.

From the theoretical perspective, Koo et al. (2008) investigated the asymptotic

behavior of the coe�cient of the linear SVM. Denote the population version of the loss

function in (2.1) without penalty by L(�) = E [1� Y f(X,�)]+ , and its minimizer

�† = argmin� L(�). Define

S(�) = �E
n
I (Y f(X,�)  1)Y fX

o
, H(�) = E

n
 (1� Y f(X,�)) fXfX>

o
,
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where I(·) is the indicator function and  (·) is the Dirac delta function. Provided that

S(�) and H(�) are well-defined (Koo et al., 2008), they are interpreted as the gradient

and Hessian matrix of L(�). Subsequently, under regularity conditions, b� satisfies

p
N(b� � �†)!N

⇣
0,H(�†)�1E{I(Y f(X,�†)  1)fXfX>}H(�†)�1

⌘
. (2.2)

From an optimization perspective, the representer theorem (Kimeldorf and Wahba,

1971; Schölkopf et al., 2001) states that the solution to the quadratic programming in

(2.1) admits a finite-dimensional expression of basis functions. In general, solving

a quadratic programming optimization problem has a computational cost of O(N3)

(Mehrotra, 1992; Chang, 2011), which becomes prohibitively expensive when the train-

ing data size N is large. However, in the case of the linear SVM, a significant fraction

of the basis coe�cients can be zero. The training data associated with the nonzero

basis coe�cients are called support vectors, which play a crucial role in determining the

discriminative boundary. As a result, the computational cost is significantly reduced as

the number of support vectors is much smaller than the training sample size, making

it more feasible for large-scale datasets.

2.2 Leverage classifier

Inspired by the appealing property of support vectors, we revisit the SVM and

develop a new classifier called leverage classifier. Our strategy first selects an informa-

tive subset of the training data with some nonuniform subsampling probabilities and

then constructs the linear SVM classifier based on the reduced dataset. The leverage

classifier integrates leverage score sampling with the margin-based classifier, and its ad-
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vantage is to approximate the discriminative boundary well with significantly reduced

computational cost. In our subsampling framework, we employ the subsampling with

replacement strategy to ensure theoretical convenience. The detailed procedure of the

leverage classifier is described in Algorithm 1.

Algorithm 1 Leverage classifier.

Step 1 Assign subsampling probabilities ⇡ = {⇡j}Nj=1 to all training samples in DN ;

Step 2 Draw a subset of size n ⌧ N from DN according to ⇡ via subsampling with

replacement. Denote the subsample by Sn = {(X⇤
i , Y

⇤
i )}ni=1 and the corresponding

subsampling probabilities by ⇡⇤ = {⇡⇤
i }ni=1;

Step 3 Use Sn to train the linear SVM by minimizing the penalized weighted hinge

loss with a properly tuned parameter �

e� = argmin
�2Rp+1

(
1

n

nX

i=1

[1� Y
⇤
i f(X

⇤
i ,�)]+

N⇡⇤
i

+
�

2
k�1k2

)
.

Step 4 The separating hyperplane is f(X, e�) = fX> e�.

The performance of the leverage classifier relies on the subsampling probability ⇡,

the subsample size n, and the tuning parameter �. First, the reduced dataset Sn is

obtained according to ⇡. A simple choice, ⇡j = N
�1, leads to uniform subsampling.

Although this strategy is useful for exploratory data analysis, it often fails to extract

important information by ignoring the distinctive characteristics of statistical models.

Recent studies on logistic regression (Wang et al., 2018) and quantile regression (Wang

and Ma, 2021) have highlighted the importance of designing nonuniform subsampling
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strategies. Our subsequent analysis reveals that the leverage classifier, with carefully

designed ⇡, can attain a certain level of optimality in terms of experimental design.

Second, Kaufman (1998) pointed out that the number of support vectors typically in-

creases linearly with the training sample size. As a result, the leverage classifier with Sn

of size n o↵ers a more e�cient computational approach compared to the SVM utilizing

the full sample size N . Lastly, training the leverage classifier involves tuning parameter

selection, which di↵ers from the aforementioned literature. We employ the General-

ized Approximate Cross-Validation method (GACV). Specifically, minimize objective

function N
�1

PN
k=1[1�Ykf

[�k]
� (Xk,�)]+, where f

[�k]
� (Xk,�) is the SVM solution with

k-th data point removed. This objective function stems from the penalized likelihood

estimates in SVM and serves as a generalization of the generalized cross-validation.

GACV does not need to train and test every possible hyperparameter combination and

thus is a computationally e�cient method. See Wahba et al. (2003) for its optimal

properties and implementation details.

Before proceeding with theoretical analysis, we provide a toy example to illustrate

the intuition of the leverage classifier. Please refer to Section 4 for the implementa-

tion details. In Figure 1, the right panel showcases the best separating hyperplane

determined solely by the support vectors associated with the full sample SVM. The

left panel displays the leverage classifier with A-optimality (explained in Section 3),

which tends to select data points close to the full sample support vectors, resulting

in a reduced dataset that is informative in identifying the discriminative boundary.

In contrast, the middle panel demonstrates the uniform subsampling strategy, which
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overlooks the characteristics of the full sample support vectors. As a result, the se-

lected subsample is less informative. Unless the subsample size n is relatively large,

the uniform subsampling strategy will be inferior to a carefully designed nonuniform

subsampling strategy used by the leverage classifier.

LC−A LC−UNIF SVM−FULL

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2
−3

−2

−1

0

1

2

3

x1

x 2

class −1 1

Figure 1: Toy example for linear classification. Classifiers are the proposed optimal

leverage classifier with A-optimality (LC-A), the leverage classifier with uniform sub-

sampling (LC-UNIF), and the full sample linear SVM (SVM-FULL). The green �’s

denote the selected subsamples, and the purple ⇥’s denote the support vectors.

3. Theoretical properties and optimal leverage classifier

In this section, we establish theoretical properties and provide an e�cient algorithm

for the proposed leverage classifiers under the subsampling framework.

Statistica Sinica: Newly accepted Paper 
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3.1 Asymptotic normality

Assumption 1. The conditional densities of X given class Y = 1 and Y = �1 with

respect to the Lebesgue measure are continuous and have finite fourth moments.

Assumption 2. The covariates for the two classes have di↵erent mean values in at

least one dimension.

Assumption 3. The nonzero minimizer �†
of L(�) is unique and satisfies that S(�†) =

0. H(�) is positive-defined around �†
in a compact set B with a nonzero radius.

Assumption 4. The subsampling probabilities satisfy that

1

N3

NX

j=1

E
✓

1

⇡2
j

◆
= O(1).

Assumptions 1–3 are commonly imposed to establish the asymptotic normality of

the linear SVM, and they typically hold under the regularity conditions outlined in Koo

et al. (2008). Assumption 4 allows for random subsampling probabilities since the full

dataset is not fixed. Furthermore, Assumption 4 restricts ⇡ from being extremely small,

preventing any training sample from dominating the weighted penalized hinge loss

function in Step 3 of Algorithm 1. When we condition on the full dataset, Assumption

4 is in the similar spirit of the commonly used subsampling schemes, for example, Ai

et al. (2018); Wang et al. (2018).

Theorem 1 (The Bahadur representation). Suppose Assumptions 1–4 hold. For � =

o(n�1/2), we have

p
n(e� � �†) = � 1p

n
H(�†)�1

nX

i=1

1

N⇡⇤
i

⇠
⇤
i Y

⇤
i
fX⇤

i + oP (1) , (3.1)

where ⇠
⇤
i = I

�
Y

⇤
i f(X

⇤
i ,�

†)  1
�
and fX⇤

i =
�
1,X⇤>

i

�>
, i = 1, . . . , n.
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Theorem 1 presents a Bahadur representation of e� for the leverage classifier under

the subsampling framework, which is the building block for establishing the asymp-

totic normality. As discussed in (Koo et al., 2008), the condition � = o(n�1/2) is an

appropriate order for nonseparable SVM, and additional simulation results confirm the

rationality of this condition. The use of subsampling with replacement and the inte-

gration of the subsampling probability makes Theorem 1 a nontrivial extension of Koo

et al. (2008), which only considered SVMs learned from independent and identically

distributed data. The Bahadur representation reveals how the subsampling strategy

and margins of the optimal separating hyperplane determine the statistical behavior

of the estimator.

Next, we establish the unconditional asymptotic normality of e� based on the Ba-

hadur representation. To this end, we define T = n
�1

Pn
i=1(N⇡

⇤
i )

�1
⇠
⇤
i Y

⇤
i
fX⇤

i as a term

on the right hand side of (3.1). As Algorithm 1 conducts subsampling with replace-

ment, the data in the reduced dataset Sn are no longer independent unless conditioned

on the full training sample. Hence, we treat the subsampling procedure as a stochastic

process and employ the martingale technique to study the asymptotic property of T .

Let XN
1 = (X1, . . . ,XN) and Y

N
1 = (Y1, . . . , YN). Step 2 in Algorithm 1 can be viewed

as a n-step sequential sampling procedure: in the i-th step, we select one data point

with replacement from the full training sample and denote it by (X⇤
i , Y

⇤
i ). Let �(⇤i) be

the �-algebra (Durrett, 2019) generated by the i-th sampling step, which is closed un-

der complement, countable unions, and countable intersections. Accordingly, we thus

define a filtration as FN,0 = �
�
XN

1 , Y
N
1

�
and FN,i = �

�
XN

1 , Y
N
1

�
_� (⇤1)_ · · ·_� (⇤i)
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for i = 1, . . . , n. This filtration FN,i be explained as the smallest �-algebra containing

all the information after the i-th sampling step. Based on this filtration, we define

M =
Pn

i=1 Mi, where

Mi =
1

nN⇡⇤
i

⇠
⇤
i Y

⇤
i
fX⇤

i �
1

nN

NX

j=1

⇠jYj
fXj.

We can express T = M +Q with Q = N
�1

PN
j=1 ⇠jYj

fXj, where above decomposition

allows for decoupling the variabilities from the sampling procedure and the full dataset,

which are measured by M and Q, respectively. In the Supplementary Material, we

demonstrate that {Mi, i = 1, . . . , n} forms a martingale di↵erence sequence adapted

to filtration {Fn,i, i = 1, . . . , n}. Using the martingale central limit theorem (Ohlsson,

1989), we establish the unconditional asymptotic normality of e�.

Theorem 2 (Asymptotic normality). Suppose Assumptions 1–4 hold. Then the vari-

ance of T , denoted by VT , can be written as

VT =
1

nN2

NX

j=1

EY |X

✓
1

⇡j
I
�
Yjf(Xj,�

†)  1
� fXj

fX>
j

◆
+C,

where C is a constant matrix that does not depend on ⇡. As N ! 1, n ! 1, we

have

V�1/2(e� � �†)!N (0, Ip+1),

in distribution, where V = H(�†)�1VTH(�†)�1
and Ip+1 is the identity matrix of

dimension p+ 1.

Theorem 2 typically allows for random ⇡ since the subsampling probabilities may

depend on the response. When ⇡ is prespecified or does not depend on Y , the variance
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can be further simplified to VT = (nN2)�1
PN

j=1 ⇡j
�1P

�
Yjf(Xj,�†)  1

� fXj
fX>

j +C.

In this case, the subsampling procedure a↵ects all the data points, making it impossible

to identify the support vectors without any information about Y . Assumptions 4 and

the moment condition in Assumption 1 are utilized to verify the martingale version of

the Lindeberg-Feller conditions. In the proof of Theorem 2, we observe that the first

term in VT is derived from the variance of M , while the second term C comes from

Q and some terms in the variance of M that are independent of ⇡. In particular,

when n/N ! 0, the variability from the full dataset is insignificant. This evokes us to

determine optimal subsampling probabilities by minimizing certain criteria based on

the first term of VT .

3.2 Optimal leverage classifier

The leverage classifier enables fast computation by using a reduced dataset Sn.

Take the uniform subsampling strategy with ⇡UNIF
j = N

�1, j = 1, . . . , N as an exam-

ple. Assumption 4 is satisfied, and thus the corresponding leverage classifier admits

the asymptotic properties described in Theorems 1 and 2. However, the uniform sub-

sampling procedure does not account for any statistical model assumption and may

fail to capture the most informative sample points leading to unsatisfactory estimates;

see Figure 1 for illustration.

We next explore how to determine the subsampling probabilities ⇡ = {⇡j}Nj=1, by

which the leverage classifier attains certain statistical optimality based on the asymp-

totic properties. A key observation is that in Theorem 2 the asymptotic variance

matrix V is a function of the subsampling probabilities. It motivates us to derive
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nonuniform subsampling probabilities by minimizing some criterion associated with

V. To this end, we borrow the concepts from the design of experiments and consider

A- and L-optimality criteria (Atkinson et al., 2007). Note that we expect the subsam-

pling probabilities to satisfy Assumption 4 although it is not required in the following

theorem. We will provide a fix for this issue shortly afterward.

Theorem 3. When minimizing the traces of V and VT , two sets of optimal subsam-

pling probabilities based on A- and L-optimality are

⇡
A
j =

I
�
Yjf(Xj,�†)  1

�
kH(�†)�1fXjk

NP
k=1

I (Ykf(Xk,�†)  1) kH(�†)�1fXkk
,

⇡
L
j =

I
�
Yjf(Xj,�†)  1

�
kfXjk

NP
k=1

I (Ykf(Xk,�†)  1) kfXkk
,

(3.2)

where j = 1, . . . , N . Correspondingly, the traces of V and VT attain their minima.

Theorem 3 takes an optimization approach to deriving the subsampling probabili-

ties by minimizing the traces of V and VT in Theorem 2, respectively. The indicator

functions I(Yjf(Xj,�†)  1) in (3.2) are related to the definition of support vectors,

implying that the leverage classifier inherits the virtue of SVM. Moreover, this result

di↵ers substantially from the literature, e.g., Wang et al. (2018), which focuses on fixed

subsampling probabilities by conditioning on the full dataset. The random response

variable Yj enters into the expressions (3.2) via I
�
Yjf(Xj,�†)  1

�
. Given the full

dataset, our result will degenerate to fix subsampling probabilities.

Two issues arise when applying the subsampling probabilities (3.2) in practice.

First, several population quantities, including the true parameter �†, the Hessian ma-
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trix H(�†), and the indicator function I
�
Yjf(Xj,�†)  1

�
, need to be estimated. Sec-

ond, the appearance of indicator functions in (3.2) may lead to a breakdown of As-

sumption 4. To address them, we propose to conduct a pilot study and substitute the

unknown population quantities with their corresponding pilot estimates; and apply an

additional thresholding to the indicator functions.

Specifically, for the pilot study, we select a pilot sample S0 = {(X⇤
i0, Y

⇤
i0)}n0

i=1 with

some proper probabilities ⇡⇤
0 = {⇡⇤

i0}n0
i=1 from DN , for instance, using a simple uni-

form subsampling procedure. We can then replace the true value of �† with the pilot

estimator e�0. Moreover, the Hessian matrix can be estimated using a nonparametric

method, as suggested by Koo et al. (2008),

eH(e�0) =
1

n0

n0X

i=1

1

N⇡⇤
i0

Kh

⇣
1� Y

⇤
i0f(X

⇤
i0,

e�0)
⌘
fXi0

fX>
i0, (3.3)

whereKh(t) = K(t/h)/h with bandwidth h ! 0 and the kernel functionK(·) satisfying

K(t) � 0 and
R1
�1 K(t) dt = 1. The indicator I(Yjf(Xj,�†)  1) can be replaced by

I(Yjf(Xj,
e�0)  1). For the additional thresholding for the indicator functions, we

work under the level �N > 0 such that

b⇡A
j =

max
n
I
⇣
Yjf(Xj,

e�0)  1
⌘
keH(e�0)�1fXjk, �N

o

NP
k=1

max
n
I
⇣
Ykf(Xk,

e�0)  1
⌘
keH(e�0)�1fXkk, �N

o ,

b⇡L
j =

max
n
I
⇣
Yjf(Xj,

e�0)  1
⌘
kfXjk, �N

o

NP
k=1

max
n
I
⇣
Ykf(Xk,

e�0)  1
⌘
kfXkk, �N

o ,

(3.4)

where e�0 is the pilot estimate of �†, and �N is a user-specified constant. If we choose

�N / N
�1, the estimated subsampling probabilities (3.4) strike a balance between

(3.2) and uniform subsampling probabilities. A simple calculation can verify that
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the estimated subsampling probabilities (3.4) meet Assumption 4, and the asymptotic

results follow with ⇡⇤ replaced by b⇡A and b⇡L. The two-step optimal leverage classifier

is summarized in Algorithm 2.

Algorithm 2 Optimal leverage classifier.
Step 1 Select n0 pilot training samples S0 = {(X⇤

i0, Y
⇤
i0)}n0

i=1 with subsampling prob-

abilities ⇡⇤
0 from DN . Obtain the pilot estimates e�0 and eH(e�0);

Step 2 Calculate the optimal subsampling probabilities b⇡A and b⇡L as in (3.4);

Step 3 Sample n training samples as Sn = {(X⇤
i , Y

⇤
i )}ni=1 with b⇡A and b⇡L from DN ;

Step 4 Implement Algorithm 1 with S0 [ Sn and a proper tuning parameter � to

obtain e� and the separating hyperplane f(X, e�) = fX> e�.

The choice of the pilot sample size n0 involves a trade-o↵ between estimation e�-

ciency and computational complexity. A larger n0 makes a more precise pilot estimate

of �† and the Hessian matrix estimation which is estimated by the nonparametric

method. However, the computational complexity of the pilot study should be neg-

ligible compared to those in Steps 3 and 4. Hence, we prefer a relatively small n0;

Please refer to the Supplementary Martial for a practical recommendation for n0 with

empirical evidence. Moreover, it is worth noting that the combination of S0 and Sn

in Step 4 maximizes the utilization of selected samples for hyperplane estimation. To

obtain the final subsampling estimate in Step 4, we tune � using the weighted version

of GACV, which minimizes n�1
Pn

k=1 (N⇡⇤
k)

�1
h
1� Y

⇤
k f

[�k]
� (X⇤

k ,�)
i

+
.

The overall computational complexity of the optimal leverage classifier comprises

three components. First, the cost of the pilot estimates is O(n3
0). Second, calculat-
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ing the subsampling probabilities b⇡A and b⇡L requires O(N(p+ 1)2) and O(N(p+ 1)),

respectively. Third, constructing the the separating hyperplane e� with S0 [ Sn takes

O ((n+ n0)3). In sum, the computational complexities of optimal leverage classifiers

with b⇡A and b⇡L areO (n3
0 +N(p+ 1)2 + (n+ n0)3) andO (n3

0 +N(p+ 1) + (n+ n0)3),

respectively. For extremely large N , the computational complexity is reduced to

O (N(p+ 1)2) and O (N(p+ 1)), which is linear in N . Compared with O(N3) for

the full sample SVM, the optimal leverage classifier achieves fast computation with

provable optimality.

We conclude with a discussion on the Fisher consistency of the leverage classifier.

Fisher consistency is a desirable property of the loss function used by classifiers, that

is, the population minimizer of the loss function leads to the Bayes optimal rule of

classification (Lin, 2004). Lin et al. (2002) has shown that the hinge loss function

used by the SVM satisfies Fisher consistency for classification. Under the framework

of the leverage classifier as in Algorithms 1, it is clear that E ([1� Y
⇤
f(X⇤

,�)]+) =

E {E ([1� Y
⇤
i f(X

⇤
i ,�)]+|DN)} = E ([1� Y f(X,�)]+), which implies that the leverage

classifier inherits the Fisher consistency from SVM.

4. Simulation Studies

In this section, we conduct extensive simulated experiments to demonstrate the

numerical performance of our optimal leverage classifiers from the perspectives of esti-

mation, prediction, and computation.
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4.1 Settings

We generate a set of data points with covariate dimension p = 8 and randomly

split them into two halves as training and testing datasets. The training dataset DN

is of size N = 105. The testing dataset is used to evaluate the prediction accuracy.

We uniformly sample n0 = 500 pilot samples for the pilot study. All simulation results

are based on 500 replications. Table S1 in our Supplementary Material discusses the

selection of bandwidth for Hessian matrix estimation and shows that the e↵ect of

di↵erent bandwidths can be ignorable. Therefore, we employ Silverman’s rule of thumb

(Silverman, 1986) to determine the appropriate bandwidth. We set the thresholding

constant in (3.4) as �N = 0.01N�1. For a scalar c, write cp = (c, . . . , c) be the p-

dimensional row vector of c’s. Four scenarios are considered:

(I) im-Uniform. The covariate X is independent and identically distributed from

the uniform distribution. The l-coordinate of X is U [0, 1] given Y = 1 and is

U [0.3, 1.3] given Y = �1, l = 1, . . . , p. The proportions of data points for two

classes are 80% and 20%. This is an imbalanced case.

(II) normMIX. The covariate X follows a mixture of three multivariate normal dis-

tributions with the same covariance matrix but di↵erent means. Let X ⇠

0.5N (µ11,⌃)+0.25N (µ12,⌃)+0.25N (µ13,⌃) given Y = 1,X ⇠ 0.5N (µ�11,⌃)+

0.25N (µ�12,⌃) + 0.25N (µ�13,⌃) given Y = �1, where µ11 = (0p/2,3p/2)>,

µ12 = (�3p/2,5p/2)>, µ13 = �3>
p , µ�11 = (0p/2,�3p/2)>, µ�12 = (3p/2,�5p/2)>,

and µ�13 = (3p/2,5p/2)>. The proportions of two classes are equal to 50%.
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(III) T3. The covariateX follows a multivariate t(3) distribution with di↵erent means.

Let X ⇠ t3 (µ1, Ip) /10 given Y = 1 and X ⇠ t3 (µ�1, Ip) /10 given Y = �1 ,

where µ1 = 0.75p, µ�1 = �0.75p. The proportions of two classes are equal to

50%.

(IV) T3MIX. The covariate X follows a mixture of two multivariate t(3) distributions

with di↵erent means. Let X ⇠ 0.3t3 (µ11, Ip) + 0.7t3 (µ12, Ip) given Y = 1 and

X ⇠ 0.4t3 (µ�11, Ip)+0.6t3 (µ�12, Ip) given Y = �1, where µ11 = 2>
p , µ12 = �3>

p ,

µ�11 = �1>
p , µ�12 = 8>

p . The proportions of two classes are equal to 50%.
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Figure 2: Full dataset visualization with principal component analysis under Scenarios

I–IV.

We first project the full datasets of Scenarios I–IV into their first two principal

components in Figure 2 to make an intuitive visualization. Besides the optimal leverage

classifiers, we also consider Algorithm 1 with n + n0 subsamples uniformly sampled

from the training set and the full sample SVM, termed as LC-UNIF and SVM-FULL,

respectively.
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4.2 Results

To assess the estimation performance in approximating the full sample SVM, we

calculate the mean squared error of e� on training set from B = 500 replications as

MSE(e�) = B
�1

PB
b=1 ke�(b) � b�k2, where e�(b) is the estimator obtained from the b-th

replication, and b� is the estimator of the full sample SVM.

Figure 3 investigates the e↵ect of subsample size on the estimation performance.

Across all simulation scenarios, the optimal leverage classifiers outperform those with

uniform subsampling, which aligns with our theoretical analysis in Theorem 3. The

leverage classifier with A-optimal subsampling probabilities performs slightly better

than that with L-optimality since A-optimality captures more sample information via

the Hessian matrix. Moreover, the proposed methods outperform the leverage clas-

sifier with uniform subsampling under Scenario III (T3) and Scenario IV (T3MIX),

where the heavy-tail distribution violates the moment assumption in Theorem 2. As

our method is designed to identify points close to the classification hyperplane, it is

expected to be robust to outliers. Under the imbalanced case in Scenario I, the optimal

leverage classifiers also perform well. Additional simulations in Supplementary Mate-

rial demonstrate that our method is not sensitive to the pilot sample size n0. Then,

we practically recommend the ratio n0/(n+ n0) to be around (0.2, 0.4).

Figure 4 indicates that all methods approach the performance of the full sample

SVM as n increases. Remarkably, our optimal leverage classifier sometimes outperforms

the full sample SVM in terms of prediction accuracy, as observed in Scenario IV. When

n is relatively small, our optimal leverage classifiers exhibit higher prediction accuracy
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Figure 3: Comparison of MSE for approximating the full sample SVM estimator b�

against di↵erent subsample sizes under Scenarios I–IV.
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Figure 4: Comparison of prediction accuracy (%) against di↵erent subsample sizes

under Scenarios I–IV.
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than uniform subsampling, even in scenarios with heavy-tail covariate distribution and

imbalanced classes. In addition, as pointed out by a reviewer, constructing classifiers

using the support vectors from the pilot sample degenerates to the special case with

n = 0 of LC-UNIF, which is typically challenging to outperform our optimal classifiers

due to the larger subsample size n and optimal subsampling probability ⇡ utilized in

our approach.
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Figure 5: Comparison of prediction accuracy (%) and training time for several classifiers

against di↵erent subsample sizes under Scenarios I–IV. The logarithm is taken on time

for a better presentation of the figures.

Next, we compare the leverage classifiers with several benchmark classifiers, includ-

ing logistic regression (LR), linear discriminant analysis (LDA), quadratic discriminant

analysis (QDA), and fast stochastic gradient descent (SGD), in terms of training time

and prediction accuracy. All four competitors are trained based on the full dataset.

Figure 5 elaborates that the optimal leverage classifiers achieve higher prediction ac-

curacy with similar computing time under most scenarios. Compared to the full data

approach, the proposed method yields significant computational time savings without
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sacrificing much accuracy. This aligns with our theoretical results that the conver-

gence rate is only O(
p
N) while the computational cost is O(N3). In particular, lever-

age classifiers are more robust than logistic regression since the SVM only depends

on the support vectors, while logistic regression is related to the likelihood of the full

dataset. Linear discriminant analysis and quadratic discriminant analysis may work

well because they are model-based classifiers requiring Gaussian distribution assump-

tion. Stochastic gradient descent algorithm can significantly reduce computational

resources for large-scale datasets or online datastreams, but each iteration is updated

by random sampling, which may lead to the loss of informative data points, and a↵ect

accuracy, particularly in imbalanced and mixed settings. In Scenario IV, the prediction

accuracy of our classifiers is about 10% higher than others. Overall, it is promising

that the leverage classifiers using a reduced dataset can outperform some classifiers

using the full sample.
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Figure 6: Comparison of CPU time (in seconds) against di↵erent subsample sizes under

Scenarios I–IV. The logarithm is taken on time for a better presentation of the figures.

To validate the computational benefit of the leverage classifiers for large datasets,
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we further record the average computing time for each method during 500 replications.

We use the fast R package LiblineaR to fit the full sample SVM. Figure 6 illustrates

that the computing time of the full sample SVM is significantly larger than all leverage

classifiers, as expected. our optimal leverage classifiers require slightly more time than

uniform subsampling, this is due to the additional pilot study required to determine

subsampling probabilities. Moreover, due to additional calculations with the Hessian

matrix in A-optimality, the L-optimal subsampling probabilities take less computing

time than A-optimality, which is consistent with our computational complexity analysis

in Section 3.2. Figure 3 and Figure 6 both show that increasing n leads to smaller MSE

but also requires more computing time. The trade-o↵ between estimation e�ciency and

computational e�ciency actually a↵ect by the practitioners’ resource constraints and

e�ciency requirements, such as measurement cost, processing time, memory capacity,

and prediction accuracy. We also report the computing time via one replication for

di↵erent full sample sizes under Scenario I in Table 1. The computational advantage

of leverage classifiers becomes significant as N increases.

5. Real Data Analysis

Protein structure prediction is a critical challenge in computational biology (Lesk,

2019), and SVM has been a popular method for this task. However, the high com-

putational cost associated with SVM has limited its widespread applications in this

field. To this end, we examine the performance of our leverage classifier in protein

structure prediction using the “Physicochemical Properties of Protein Tertiary Struc-
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Table 1: Comparison of CPU time (in seconds) under Scenario I when n = 1000.

Method N

103 104 105 106 107

LC-A 1.32 1.33 1.75 1.85 3.82

LC-L 1.32 1.29 1.48 1.56 2.62

LC-UNIF 0.29 0.50 0.53 0.64 0.69

SVM-FULL 0.08 0.65 9.43 240.48 2526.90

ture Dataset”. This dataset is taken from the critical assessment of protein structure

prediction (CASP) experiments and includes 45,730 decoys with nine covariates. More

details are available at the UCI machine learning repository (Dua and Gra↵, 2017).

Root mean squared deviation (RMSD) is widely used as a metric for measuring the

deviation of protein structures from their native protein structures (Iraji and Ameri,

2016). In this analysis, our goal is to construct a classifier and predict whether the root

mean squared deviation is greater than ten or not. This setting leads to the proportions

of two classes about 40% and 60%. Before applying our methods, we standardize each

input variable with mean zero and standard deviation one, and then visualize it shown

in the left panel of Figure 7. We randomly select half of the dataset as the training set

and leave the rest as the testing set for prediction. Uniformly choose n0 = 500 pilot

subsamples from the training set to obtain the subsampling probabilities b⇡A and b⇡L.

In Table 2, our optimal leverage classifiers are significantly faster than the full sam-

ple SVM which is implemented by the fast R package LiblineaR. This phenomenon
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Figure 7: Analysis results for CASP dataset. Left panel: visualization with principal

component analysis. Middle panel: MSE in approximating the full sample SVM esti-

mator b�. Right panel: prediction accuracy (%).

Table 2: Comparison of CPU time (in seconds) for CASP dataset.

Method n

50 100 200 300 400 500 600 700 800

LC-A 0.70 0.76 0.87 1.01 1.18 1.33 1.52 1.75 2.03

LC-L 0.69 0.75 0.85 1.00 1.16 1.33 1.51 1.76 2.03

LC-UNIF 0.39 0.42 0.53 0.66 0.81 0.96 1.11 1.20 1.52

SVM-FULL 11.93
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agrees with numerical studies, and it is a great improvement of the method to approx-

imate the full sample SVM. The middle and right panels of Figure 7 present the mean

squared errors of approximating the full sample SVM estimator and the prediction

performances. The good performance of the optimal leverage classifiers is consistent

with our theory and the numerical studies.

6. Conclusion

Constructing accurate classifiers with informative subsamples from large-scale datasets

is a crucial task in statistical analysis and machine learning. In this paper, we pro-

pose a novel leverage classifier for SVM under the subsampling framework to address

the computational challenge. We construct optimal leverage classifiers by minimiz-

ing the unconditional asymptotic variance with double randomnesses. Our extensive

numerical investigations demonstrate that the proposed methods provide satisfactory

performances in estimation, computation, and prediction.

Subsampling is a fast and e↵ective strategy for processing large-scale datasets and

further research is needed for more delicate statistical models. We conclude this pa-

per with several future topics. First, our binary subsampling leverage classifier may

be extended to multi-classification problems by one-versus-one or one-versus-rest SVM

in a linear nonseparable setting. Second, one limitation in our work is that we only

focus on the linear SVM for nonseparable cases to shed light on the leverage classifiers.

Extensions of the leverage classifiers to more general settings, such as kernel SVM

in reproducing kernel Hilbert spaces, remain challenging because it is unclear how to
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integrate existing asymptotic results (Hable, 2012) with our subsampling framework.

Third, it is worth further exploring the trade-o↵ between estimation e�ciency and

computation complexity under measurement constraints. Finally, investigating other

optimal criteria, such as minimizing the classification error or maximizing the predic-

tion accuracy, also merits further research.
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