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Abstract: Support vector machine (SVM) is a popular classifier known for accuracy, flexibility,
and robustness. However, its intensive computation has hindered its application to large-scale
datasets. In this paper, we propose a new optimal leverage classifier based on linear SVM
under a nonseparable setting. Our classifier aims to select an informative subset of the training
sample to reduce data size, enabling efficient computation while maintaining high accuracy. We
take a novel view of SVM under the general subsampling framework and rigorously investigate
the statistical properties. We propose a two-step subsampling procedure consisting of a pilot
estimation of the optimal subsampling probabilities and a subsampling step to construct the
classifier. We develop a new Bahadur representation of the SVM coefficients and derive uncon-
ditional asymptotic distribution and optimal subsampling probabilities without giving the full
sample. Numerical results demonstrate that our classifiers outperform the existing methods in

terms of estimation, computation, and prediction.

Keywords and phrases: Classification; Large-scale dataset; Martingale; Optimal subsampling;

Support vector machine.
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1. Introduction

Consider the binary classification problem for a training sample of size N, Dy =
{(X;,Y;)})L,, where X; € R” denotes covariates (a.k.a.features), Y; = {1, =1} rep-
resents class labels. The central task is to build a classifier that predicts the label
based on the observed covariates. Numerous literature is available on binary classifi-
cation procedures, including nearest neighbor classifiers, discriminant analysis, logistic
regression, tree-based methods, support vector machine, and ensemble learning. See,
for example, Hastie et al. (2010); Fan et al. (2020) for a comprehensive review.

Support vector machine (SVM) is a theoretically motivated classifier and has gained
significant popularity in various applications (Boser et al., [1992; Cortes and Vapnik,
1995; Vapnik, 2013). As a margin-based approach, SVM aims to find the maximum-
margin hyperplane in either the original or extended kernel feature space. According
to the elegant geometric interpretation, only a subset of the training dataset called
the support vectors, needs to be considered for evaluating the separating hyperplane.
This property is attractive compared to likelihood-based classifiers, such as logistic re-
gression, which depend on all training data to determine the discriminative boundary.
Moreover, logistic regression is typically fitted under the assumption that the response
follows a binomial distribution, whereas SVM does not require any distributional as-
sumption and thus leads to more robust performance (Steinwart and Christmann)

2008).

Despite the advantages mentioned above, constructing an SVM classifier is com-

Corresponding author: pingma@uga.edu (Ping Ma)
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putationally intensive as it typically involves solving quadratic programming optimiza-
tion problems. In general, the computational cost of SVM is O(N?Nj) (Kaufman,
1998), where N represents the number of support vectors. In practice, Vs usually
increases linearly with the sample size N of the training data. As a result, the num-
ber of support vectors significantly affects the training time and the evaluation of the
decision boundary. Various methods have been proposed to mitigate the computa-
tional complexity of training SVM classifiers. For example, specialized algorithms for
solving quadratic programming have been suggested, including the sequential minimal
optimization (Platt, 1998) and various decomposition methods used in the LibLin-
ear software library (Hsieh et al., 2008). Other fast computation methods based on
low-rank approximation (Williams and Seeger, [2000), gradient descent (Bordes et al.
2005; |[Shalev-Shwartz et al., 2011; Wang et al., 2012), core set (Tsang et al.,[2005), and
nearest neighbor (Camelo et al., |[2015) have also been developed. However, it is worth
noting that most of these methods still incur a computational cost of at least O(N?)
or lack optimal statistical guarantees. Therefore, when the sample size of the training
data is huge, both time complexity and statistical guarantees become prohibitively
demanding.

Observing that the discriminative boundary of the SVM depends on only a sub-
set of the training data, we take another look at the SVM from the perspective of
data reduction. A crucial insight from the SVM is that a relatively small subset of
the training data is sufficient to build up an effective classifier. Inspired by leverage

score sampling methods developed for least-squares regression (Drineas et al., [2011;
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Ma et al., 2015b)) and low-rank matrix approximation (Mahoney and Drineas, 2009),
our strategy is to construct an importance sampling distribution for all the training
data points, which effectively reduces the data size before constructing the classifier.
The nonuniform subsampling strategy we employ is straightforward to design and im-
plement. As long as the reduced dataset remains informative or representative, the
corresponding estimator can provide a satisfactory approximation to the estimator
based on the full sample. For example, the statistical leveraging framework (Drineas
et al., 2012; Ma et al., 2015b, [2022; Li and Meng| 2020) has achieved great success
in large-scale ordinary least squares regression. More recently, optimal subsampling
procedures have been also established for various statistical models, including logistic
regression (Wang et al., |2018), generalized linear models (Ai et al., [2018; Yu et al.,
2022), quantile regression (Wang and Ma, 2021), nonparametric regression (Ma et al.,
2015a; Meng et al., 2020, 2021), and designed for testing problems (Ren et al., 2022;
Han et al., 2023). However, none of the existing can be directly applied to SVM due
to its distinguishing geometric feature. Consequently, our goal is to develop a leverage
classifier that is computationally efficient for large datasets and theoretically provable
as the SVM.

In this paper, we introduce a novel binary classifier based on linear SVM in a non-
separable setting. To construct the optimal classifier, we propose a two-step optimal
subsampling algorithm that involves a pilot study to estimate the optimal subsampling
probabilities and a subsampling step. Our subsampling procedure significantly reduces

the computational costs without scarfing too much estimation efficiency. With a novel
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view of the SVM under the general subsampling framework, we rigorously investigate

the statistical properties of the proposed classifier. Specifically, we derive the asymp-

totic distribution and the optimal subsampling probabilities. Our contributions can be

summarized as follows:

(1)

Double randomnesses are addressed: one arising from the training data and the
other from the subsampling procedure. Our approach yields an unconditional
asymptotic result regardless of the full sample and thus allows for random sub-

sampling probabilities.

We utilize the martingale technique as observations in the selected samples are
no longer independent. Our theoretical framework builds upon the Bahadur
representation of the linear SVM estimator, which is nonstandard in the context

of the general subsampling strategy.

The nonuniform subsampling probabilities are computed by minimizing specific
criteria derived from the asymptotic variance, leading to optimality within the
experimental design theory. Numerical results also demonstrate that our leverage
classifier is computationally fast, and the identified separating hyperplane is close

to that obtained using the full sample SVM.

The remainder of this paper is organized as follows. Section [2| reviews the lin-

ear SVM for nonseparable binary classification and motivates the leverage classifier

framework. Section |3| investigates the theoretical properties of leverage classifiers

and develops efficient algorithms for constructing optimal leverage classifiers. Sim-

ulation studies and a real-world example are presented in Sections [4H5l Section [6]
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concludes the paper with some potential improvements. All theoretical proofs and
additional numerical results are provided in the Supplementary Material. The imple-
menting codes for this work are available in https://github. com/yuxiaohaihyx0517/

Leverage-Classifier.

2. Support vector machine and leverage classifier

2.1 Support vector machine

Binary linear classification problem aims to find the best separating hyperplane
of the form f(X,8) = By + X '3;, with intercept 3y and slope vector B;. Write
B = (ﬁo,ﬁf)T € R+ and X = (1,XT)T € RP! as the augmented parameter and
data vectors, and then f(X,8) = X TB. When the training data are not linearly

separable, the linear SVM solves the following optimization problem

N
~ ) 1 AFULL 2
=argmin ¢ — 1-Y, f(X;, + , 2.1
B g {N ;:1[ if (X5 B)], + —— 1Bl (2.1)
where [u], = max(u,0) is the hinge loss function, || - || denotes the Euclidean norm of

a vector, and the tuning parameter A\pyrr, > 0 controls the amount of regularization
on model complexity.

From the theoretical perspective, Koo et al. (2008) investigated the asymptotic
behavior of the coefficient of the linear SVM. Denote the population version of the loss
function in without penalty by L(8) = E[1 -Y f(X,8)], , and its minimizer

BT = argming L(B3). Define

S =-E{IVf(X.8)<DYX}, H(@)=E{v(1-Y/(X.8)XX},


https://github.com/yuxiaohaihyx0517/Leverage-Classifier
https://github.com/yuxiaohaihyx0517/Leverage-Classifier
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where I(+) is the indicator function and () is the Dirac delta function. Provided that
S(B) and H(3) are well-defined (Koo et al., 2008), they are interpreted as the gradient

and Hessian matrix of L(3). Subsequently, under regularity conditions, ,3 satisfies
VN(B - B)=N (0,H(B)E(IY f(X,8) < DXXTIHE) ). (22)

From an optimization perspective, the representer theorem (Kimeldorf and Wahba,
1971; Scholkopf et al., 2001) states that the solution to the quadratic programming in
(2.1) admits a finite-dimensional expression of basis functions. In general, solving
a quadratic programming optimization problem has a computational cost of O(N?)
(Mehrotra, [1992; Chang, 2011), which becomes prohibitively expensive when the train-
ing data size N is large. However, in the case of the linear SVM, a significant fraction
of the basis coefficients can be zero. The training data associated with the nonzero
basis coefficients are called support vectors, which play a crucial role in determining the
discriminative boundary. As a result, the computational cost is significantly reduced as
the number of support vectors is much smaller than the training sample size, making

it more feasible for large-scale datasets.

2.2 Leverage classifier

Inspired by the appealing property of support vectors, we revisit the SVM and
develop a new classifier called leverage classifier. Our strategy first selects an informa-
tive subset of the training data with some nonuniform subsampling probabilities and
then constructs the linear SVM classifier based on the reduced dataset. The leverage

classifier integrates leverage score sampling with the margin-based classifier, and its ad-
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vantage is to approximate the discriminative boundary well with significantly reduced
computational cost. In our subsampling framework, we employ the subsampling with
replacement strategy to ensure theoretical convenience. The detailed procedure of the

leverage classifier is described in Algorithm

Algorithm 1 Leverage classifier.

Step 1 Assign subsampling probabilities 7 = {7, }ﬁvzl to all training samples in Dy;
Step 2 Draw a subset of size n < N from Dy according to 7 via subsampling with
replacement. Denote the subsample by S, = {(X},Y;*)}!; and the corresponding
subsampling probabilities by 7* = {m}}_|;

Step 3 Use &, to train the linear SVM by minimizing the penalized weighted hinge

loss with a properly tuned parameter A

~ n —Y*f(XF
ﬂ:argmin{lz[l zf( “ﬁ)]—i—"’gH:Bl”Q}-

BeRP+1 n i1 ]\[’71':<

Step 4 The separating hyperplane is f(X, 5) = X/TB

The performance of the leverage classifier relies on the subsampling probability 7,
the subsample size n, and the tuning parameter A. First, the reduced dataset S, is
obtained according to . A simple choice, m; = N1, leads to uniform subsampling.
Although this strategy is useful for exploratory data analysis, it often fails to extract
important information by ignoring the distinctive characteristics of statistical models.
Recent studies on logistic regression (Wang et al., 2018) and quantile regression (Wang

and Ma, 2021) have highlighted the importance of designing nonuniform subsampling
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strategies. Our subsequent analysis reveals that the leverage classifier, with carefully
designed 7r, can attain a certain level of optimality in terms of experimental design.
Second, |[Kaufman (1998) pointed out that the number of support vectors typically in-
creases linearly with the training sample size. As a result, the leverage classifier with S,
of size n offers a more efficient computational approach compared to the SVM utilizing
the full sample size N. Lastly, training the leverage classifier involves tuning parameter
selection, which differs from the aforementioned literature. We employ the General-
ized Approximate Cross-Validation method (GACV). Specifically, minimize objective
function N~ SOV [1— kaA[_k](Xk, B)]+, where fi_k](Xk, () is the SVM solution with
k-th data point removed. This objective function stems from the penalized likelihood
estimates in SVM and serves as a generalization of the generalized cross-validation.
GACV does not need to train and test every possible hyperparameter combination and
thus is a computationally efficient method. See [Wahba et al. (2003) for its optimal
properties and implementation details.

Before proceeding with theoretical analysis, we provide a toy example to illustrate
the intuition of the leverage classifier. Please refer to Section {4 for the implementa-
tion details. In Figure |1, the right panel showcases the best separating hyperplane
determined solely by the support vectors associated with the full sample SVM. The
left panel displays the leverage classifier with A-optimality (explained in Section ,
which tends to select data points close to the full sample support vectors, resulting
in a reduced dataset that is informative in identifying the discriminative boundary.

In contrast, the middle panel demonstrates the uniform subsampling strategy, which
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overlooks the characteristics of the full sample support vectors. As a result, the se-
lected subsample is less informative. Unless the subsample size n is relatively large,
the uniform subsampling strategy will be inferior to a carefully designed nonuniform

subsampling strategy used by the leverage classifier.

class -1 1

LC-A LC-UNIF SVM-FULL

Figure 1: Toy example for linear classification. Classifiers are the proposed optimal
leverage classifier with A-optimality (LC-A), the leverage classifier with uniform sub-
sampling (LC-UNIF), and the full sample linear SVM (SVM-FULL). The green a’s

denote the selected subsamples, and the purple x’s denote the support vectors.

3. Theoretical properties and optimal leverage classifier

In this section, we establish theoretical properties and provide an efficient algorithm

for the proposed leverage classifiers under the subsampling framework.
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3.1 Asymptotic normality

Assumption 1. The conditional densities of X given classY =1 and Y = —1 with

respect to the Lebesque measure are continuous and have finite fourth moments.

Assumption 2. The covariates for the two classes have different mean values in at

least one dimension.

Assumption 3. The nonzero minimizer 3" of L(3) is unique and satisfies that S(3') =

0. H(B) is positive-defined around B' in a compact set B with a nonzero radius.

Assumption 4. The subsampling probabilities satisfy that

Ly E L) = O
w2 E(z) =00
=1 J
Assumptions are commonly imposed to establish the asymptotic normality of
the linear SVM, and they typically hold under the regularity conditions outlined in |Koo
et al.| (2008). Assumption {4 allows for random subsampling probabilities since the full
dataset is not fixed. Furthermore, Assumption[drestricts 7 from being extremely small,
preventing any training sample from dominating the weighted penalized hinge loss
function in Step 3 of Algorithm [I} When we condition on the full dataset, Assumption
is in the similar spirit of the commonly used subsampling schemes, for example, |Ai

et al. (2018); Wang et al. (2018)).

Theorem 1 (The Bahadur representation). Suppose Assumptions hold. For \ =

o(n='?), we have

n

~ 1 1 —~
Vil = B1) = ——=H(B") ™! Z Nt Y X op (1) (3.1)

where & =1(Y; f(X7,B8") < 1) and X = (1,XZ-*T)T, i=1,...,n.
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Theorem |l| presents a Bahadur representation of B for the leverage classifier under
the subsampling framework, which is the building block for establishing the asymp-
totic normality. As discussed in (Koo et al., 2008), the condition A = o(n~/?) is an
appropriate order for nonseparable SVM, and additional simulation results confirm the
rationality of this condition. The use of subsampling with replacement and the inte-
gration of the subsampling probability makes Theorem |1| a nontrivial extension of Koo
et al.| (2008), which only considered SVMs learned from independent and identically
distributed data. The Bahadur representation reveals how the subsampling strategy
and margins of the optimal separating hyperplane determine the statistical behavior
of the estimator.

Next, we establish the unconditional asymptotic normality of ,[; based on the Ba-
hadur representation. To this end, we define T =n"'>" (N W;‘)_liji*)/Z;" as a term
on the right hand side of . As Algorithm [1| conducts subsampling with replace-
ment, the data in the reduced dataset S,, are no longer independent unless conditioned
on the full training sample. Hence, we treat the subsampling procedure as a stochastic
process and employ the martingale technique to study the asymptotic property of T'.
Let X{¥ = (X1,..., Xy) and YN = (Y3,...,Yy). Step 2 in Algorithm [1]can be viewed
as a n-step sequential sampling procedure: in the i-th step, we select one data point
with replacement from the full training sample and denote it by (X7, Y;*). Let o(x;) be
the o-algebra (Durrett, [2019) generated by the i-th sampling step, which is closed un-
der complement, countable unions, and countable intersections. Accordingly, we thus

define a filtration as Fyo = o (X7, Y{¥) and Fy,; = o (X{, YV ) Vo (x1) V- Vo (%)
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for i =1,...,n. This filtration Fy; be explained as the smallest o-algebra containing
all the information after the i-th sampling step. Based on this filtration, we define
M =3%"" | M;, where

N
1 =~ 1 -~

= VX - ) VX
’I’LN?T:gZ % A TLN — 5] J J

M;

We can express T = M + Q with Q = N~} Zjvzl §ij)/Zj, where above decomposition
allows for decoupling the variabilities from the sampling procedure and the full dataset,
which are measured by M and Q, respectively. In the Supplementary Material, we
demonstrate that {M;,i =1,...,n} forms a martingale difference sequence adapted
to filtration {F,;,i =1,...,n}. Using the martingale central limit theorem (Ohlsson,

1989), we establish the unconditional asymptotic normality of 5

Theorem 2 (Asymptotic normality). Suppose Assumptions hold. Then the vari-

ance of T, denoted by Vr, can be written as

Vr = ! ZEY|X (7%]1 (Y f(X;,87) <1) )/Z])A(/JT) + C,

where C is a constant matrixz that does not depend on w. As N — oo, n — oo, we

have
V(B — BN —N(0,1,4),

in distribution, where V.= H(BN)'V,H(B8")™! and 1, is the identity matriz of

dimension p + 1.

Theorem [2| typically allows for random 7 since the subsampling probabilities may

depend on the response. When 7 is prespecified or does not depend on Y, the variance
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can be further simplified to Vo = (nN?)™! Zjvzl P (Y f(X;,87) <1) 3@3{; +C.
In this case, the subsampling procedure affects all the data points, making it impossible
to identify the support vectors without any information about Y. Assumptions [4] and
the moment condition in Assumption [1] are utilized to verify the martingale version of
the Lindeberg-Feller conditions. In the proof of Theorem [2| we observe that the first
term in Vg is derived from the variance of M, while the second term C comes from
Q and some terms in the variance of M that are independent of 7. In particular,
when n/N — 0, the variability from the full dataset is insignificant. This evokes us to

determine optimal subsampling probabilities by minimizing certain criteria based on

the first term of V.

3.2 Optimal leverage classifier

The leverage classifier enables fast computation by using a reduced dataset S,,.
Take the uniform subsampling strategy with 7/"'" = N~', j =1,..., N as an exam-
ple. Assumption 4] is satisfied, and thus the corresponding leverage classifier admits
the asymptotic properties described in Theorems |1| and 2l However, the uniform sub-
sampling procedure does not account for any statistical model assumption and may
fail to capture the most informative sample points leading to unsatisfactory estimates;
see Figure [I] for illustration.

We next explore how to determine the subsampling probabilities 7w = {ﬂ'j};»\[: 1, by
which the leverage classifier attains certain statistical optimality based on the asymp-

totic properties. A key observation is that in Theorem [2| the asymptotic variance

matrix V is a function of the subsampling probabilities. It motivates us to derive
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nonuniform subsampling probabilities by minimizing some criterion associated with
V. To this end, we borrow the concepts from the design of experiments and consider
A- and L-optimality criteria (Atkinson et al., [2007). Note that we expect the subsam-
pling probabilities to satisfy Assumption [4] although it is not required in the following

theorem. We will provide a fix for this issue shortly afterward.

Theorem 3. When minimizing the traces of V and Vr, two sets of optimal subsam-

pling probabilities based on A- and L-optimality are

A I(VA(X;,8Y) < 1) [H(BH X

m. =

J N — !
> T(Yif (X, B7) < 1) [H(BT) ' X |
k=1
N (3.2)
L ITWA(X5, 81 < 1) [1X]
T = — —
kz T(Yf (X, BY) < 1) || Xl
=1
where j = 1,..., N. Correspondingly, the traces of V. and Vr attain their minima.

Theorem [3| takes an optimization approach to deriving the subsampling probabili-
ties by minimizing the traces of V and V¢ in Theorem [2 respectively. The indicator
functions I(Y; f(X;,8") < 1) in are related to the definition of support vectors,
implying that the leverage classifier inherits the virtue of SVM. Moreover, this result
differs substantially from the literature, e.g., Wang et al.| (2018)), which focuses on fixed
subsampling probabilities by conditioning on the full dataset. The random response
variable Y enters into the expressions via I (Y]f(X],,BT) < 1). Given the full
dataset, our result will degenerate to fix subsampling probabilities.

Two issues arise when applying the subsampling probabilities in practice.

First, several population quantities, including the true parameter 37, the Hessian ma-
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trix H(B"), and the indicator function I (ij(Xj, B < 1), need to be estimated. Sec-
ond, the appearance of indicator functions in (3.2]) may lead to a breakdown of As-
sumption 4l To address them, we propose to conduct a pilot study and substitute the
unknown population quantities with their corresponding pilot estimates; and apply an
additional thresholding to the indicator functions.

Specifically, for the pilot study, we select a pilot sample Sy = {(X}, Yi5) } 2, with
some proper probabilities 7§ = {7}, from Dy, for instance, using a simple uni-
form subsampling procedure. We can then replace the true value of 87 with the pilot
estimator BO. Moreover, the Hessian matrix can be estimated using a nonparametric
method, as suggested by |[Koo et al. (2008),

HE) = >

*
N i1 NT('Z-O

K (1= Yif (X5, 87)) Xio X, (3.3)

where K,(t) = K(t/h)/h with bandwidth h — 0 and the kernel function K (-) satisfying

K(t) > 0 and [* K (t)dt = 1. The indicator I(Y;f(X;,8") < 1) can be replaced by

I(Y; f (X, B°) < 1). For the additional thresholding for the indicator functions, we

work under the level o5 > 0 such that

 max {1 (X, 8 1) [H(B) X, 0w |
g:lmax {11 (ka(Xk,ﬁo) < 1) ||ﬁ(50)—1)?k|y,5N}

~

J

Y

~

J

- max {1 (¥A(X. 8% < 1) IX ] on }

E imax {11 (ka<xk,§0> < 1) ||X:kH75N}’

where ,@0 is the pilot estimate of 3%, and dy is a user-specified constant. If we choose
dy o N7! the estimated subsampling probabilities ([3.4)) strike a balance between

(3-2) and uniform subsampling probabilities. A simple calculation can verify that
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the estimated subsampling probabilities (3.4) meet Assumption [4 and the asymptotic
results follow with 7* replaced by 74 and 7%. The two-step optimal leverage classifier

is summarized in Algorithm

Algorithm 2 Optimal leverage classifier.
Step 1 Select ng pilot training samples Sy = {( X7, Yi5)}12, with subsampling prob-

abilities 7§ from Dy. Obtain the pilot estimates 50 and ﬁ(ﬁo);

Step 2 Calculate the optimal subsampling probabilities 74 and 7 as in (3.4);
Step 3 Sample n training samples as S, = {(X}, Y;*)}, with #* and ¥ from Dy;
Step 4 Implement Algorithm [1| with Sy U S,, and a proper tuning parameter A to

obtain 3 and the separating hyperplane f(X,8) = X 3.

The choice of the pilot sample size ngy involves a trade-off between estimation effi-
ciency and computational complexity. A larger ng makes a more precise pilot estimate
of B and the Hessian matrix estimation which is estimated by the nonparametric
method. However, the computational complexity of the pilot study should be neg-
ligible compared to those in Steps 3 and 4. Hence, we prefer a relatively small ng;
Please refer to the Supplementary Martial for a practical recommendation for ny with
empirical evidence. Moreover, it is worth noting that the combination of Sy and S,
in Step 4 maximizes the utilization of selected samples for hyperplane estimation. To
obtain the final subsampling estimate in Step 4, we tune A using the weighted version
of GACV, which minimizes n=' Y r_, (N7;)~" |1 — Yk*fifk](X,j, B) N

The overall computational complexity of the optimal leverage classifier comprises

three components. First, the cost of the pilot estimates is O(nj). Second, calculat-
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ing the subsampling probabilities 74 and 7~ requires O(N(p + 1)2) and O(N(p + 1)),
respectively. Third, constructing the the separating hyperplane 5 with Sy U S, takes
O ((n +ng)?). In sum, the computational complexities of optimal leverage classifiers
with 7#4 and 7T are O (nd + N(p + 1)2 + (n +ng)?) and O (n3 + N(p + 1) + (n + ng)?),
respectively. For extremely large N, the computational complexity is reduced to
O(N(p+1)?) and O (N(p+ 1)), which is linear in N. Compared with O(N?) for
the full sample SVM, the optimal leverage classifier achieves fast computation with
provable optimality.

We conclude with a discussion on the Fisher consistency of the leverage classifier.
Fisher consistency is a desirable property of the loss function used by classifiers, that
is, the population minimizer of the loss function leads to the Bayes optimal rule of
classification (Lin, 2004). |Lin et al. (2002) has shown that the hinge loss function
used by the SVM satisfies Fisher consistency for classification. Under the framework
of the leverage classifier as in Algorithms [I} it is clear that E ([1 — Y*f(X*,8)];) =
E{E([1 -Y*f(X0)]:|Dy)} =E([1 = Y f(X,B)]:), which implies that the leverage

classifier inherits the Fisher consistency from SVM.

4. Simulation Studies

In this section, we conduct extensive simulated experiments to demonstrate the
numerical performance of our optimal leverage classifiers from the perspectives of esti-

mation, prediction, and computation.
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4.1 Settings

We generate a set of data points with covariate dimension p = 8 and randomly
split them into two halves as training and testing datasets. The training dataset Dy
is of size N = 10°. The testing dataset is used to evaluate the prediction accuracy.
We uniformly sample ng = 500 pilot samples for the pilot study. All simulation results
are based on 500 replications. Table [S1 in our Supplementary Material discusses the
selection of bandwidth for Hessian matrix estimation and shows that the effect of
different bandwidths can be ignorable. Therefore, we employ Silverman’s rule of thumb
(Silverman)|, |1986) to determine the appropriate bandwidth. We set the thresholding
constant in as Oy = 0.0LN~'. For a scalar ¢, write ¢, = (c,...,c) be the p-

dimensional row vector of ¢’s. Four scenarios are considered:

(I) im-Uniform. The covariate X is independent and identically distributed from
the uniform distribution. The [-coordinate of X is UJ0,1] given Y = 1 and is
U[0.3,1.3] given Y = —1, [ = 1,...,p. The proportions of data points for two

classes are 80% and 20%. This is an imbalanced case.

(IT) normMIX. The covariate X follows a mixture of three multivariate normal dis-
tributions with the same covariance matrix but different means. Let X ~
0.5N (pe11, X)+0.25N (12, £)+0.25N (13, ) given Y = 1, X ~ 0.5N (p_11, 3)+
0.25N (p—12,X) + 0.25N (p_13,X) given Y = —1, where p11 = (0y/2,3,/2) ",
Hi2 = (—3p/2’5p/2)T> M1z = —3; H-11 = (Op/2> _3p/2)T> H—12 = (3p/2’ _5p/2)T>

and p_13 = (3,2, 5p/2)T. The proportions of two classes are equal to 50%.
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(IIT) T3. The covariate X follows a multivariate ¢(3) distribution with different means.
Let X ~ t3(p1,1,) /10 given Y = 1 and X ~ t3(p—1,1,) /10 given ¥ = —1 |
where p; = 0.75,, p_; = —0.75,. The proportions of two classes are equal to

50%.

(IV) T3MIX. The covariate X follows a mixture of two multivariate ¢(3) distributions
with different means. Let X ~ 0.3t5 (p11,1,) + 0.7¢5 (pt12,1,) given Y = 1 and
X ~ 0.4t3 (p-11,1,)+0.6t3 (_12,1,) given Y = —1, where pq; = 2;, Mo = —3;,

H_11 = —1;, H_19 = 8;. The proportions of two classes are equal to 50%.

im-Uniform normMIX T3 T3MIX

200 -

' ' ' ' ' ' ' ' ' [l -100- ' ' ' ]
-1 0 1 -3 0 3 -2 0 2 4 -50 0 50 100
compl compl compl compl

Figure 2: Full dataset visualization with principal component analysis under Scenarios

[-IV.

We first project the full datasets of Scenarios -1V into their first two principal
components in Figure [2|to make an intuitive visualization. Besides the optimal leverage
classifiers, we also consider Algorithm [1] with n 4+ ny subsamples uniformly sampled
from the training set and the full sample SVM, termed as LC-UNIF and SVM-FULL,

respectively.
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4.2 Results

To assess the estimation performance in approximating the full sample SVM, we
calculate the mean squared error of ,5 on training set from B = 500 replications as
MSE(B) = B 322 |8® — B]|2, where B® is the estimator obtained from the b-th
replication, and B is the estimator of the full sample SVM.

Figure [3| investigates the effect of subsample size on the estimation performance.
Across all simulation scenarios, the optimal leverage classifiers outperform those with
uniform subsampling, which aligns with our theoretical analysis in Theorem [3| The
leverage classifier with A-optimal subsampling probabilities performs slightly better
than that with L-optimality since A-optimality captures more sample information via
the Hessian matrix. Moreover, the proposed methods outperform the leverage clas-
sifier with uniform subsampling under Scenario III (T3) and Scenario IV (T3MIX),
where the heavy-tail distribution violates the moment assumption in Theorem [2| As
our method is designed to identify points close to the classification hyperplane, it is
expected to be robust to outliers. Under the imbalanced case in Scenario I, the optimal
leverage classifiers also perform well. Additional simulations in Supplementary Mate-
rial demonstrate that our method is not sensitive to the pilot sample size ng. Then,
we practically recommend the ratio ng/(n + ng) to be around (0.2,0.4).

Figure [4| indicates that all methods approach the performance of the full sample
SVM as n increases. Remarkably, our optimal leverage classifier sometimes outperforms
the full sample SVM in terms of prediction accuracy, as observed in Scenario IV. When

n is relatively small, our optimal leverage classifiers exhibit higher prediction accuracy
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method —+ LC-A -+ LC-L -= LC-UNIF
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Figure 3: Comparison of MSE for approximating the full sample SVM estimator B

against different subsample sizes under Scenarios [-1V.
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Figure 4: Comparison of prediction accuracy (%) against different subsample sizes

under Scenarios I-1V.
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than uniform subsampling, even in scenarios with heavy-tail covariate distribution and
imbalanced classes. In addition, as pointed out by a reviewer, constructing classifiers
using the support vectors from the pilot sample degenerates to the special case with
n = 0 of LC-UNIF, which is typically challenging to outperform our optimal classifiers
due to the larger subsample size n and optimal subsampling probability 7r utilized in

our approach.

hod LC-A50 LC-L50 ® LC-UNIF50 e SVM-FULL QDA-FULL SGD-FULL
metho
LC-A100 ® LC-L100 ® LC-UNIF100 ® LDA-FULL LR-FULL
im-Uniform normMIX T3 T3MIX
95- 93.80 = o
Bporiin-ruLL svm-Ful® QRSB Rer 17U svu-rul® QoaruiL @ BipSimsaon svm-Ful®
U2 Ht Va-FuLL sw-ru®
95-

9375 b
P = > T @bopige > g,
£ 90- 8 g Dcsso g Ui-Fu

-uNiF
8 3 39370~ A g
= = = @C-UNiFs0 =
2 285 e 2
3 3 3 3 .-
3 g5 3 g 93.65- B
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80
93.60 404
80- goD-FuLL 75 - §OD-FULL Q0A-FULL §GD-FULL
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Figure 5: Comparison of prediction accuracy (%) and training time for several classifiers
against different subsample sizes under Scenarios I-1V. The logarithm is taken on time

for a better presentation of the figures.

Next, we compare the leverage classifiers with several benchmark classifiers, includ-
ing logistic regression (LR), linear discriminant analysis (LDA), quadratic discriminant
analysis (QDA), and fast stochastic gradient descent (SGD), in terms of training time
and prediction accuracy. All four competitors are trained based on the full dataset.
Figure [5| elaborates that the optimal leverage classifiers achieve higher prediction ac-
curacy with similar computing time under most scenarios. Compared to the full data

approach, the proposed method yields significant computational time savings without
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sacrificing much accuracy. This aligns with our theoretical results that the conver-

gence rate is only O(v/N) while the computational cost is O(N?). In particular, lever-
age classifiers are more robust than logistic regression since the SVM only depends
on the support vectors, while logistic regression is related to the likelihood of the full
dataset. Linear discriminant analysis and quadratic discriminant analysis may work
well because they are model-based classifiers requiring Gaussian distribution assump-
tion. Stochastic gradient descent algorithm can significantly reduce computational
resources for large-scale datasets or online datastreams, but each iteration is updated
by random sampling, which may lead to the loss of informative data points, and affect
accuracy, particularly in imbalanced and mixed settings. In Scenario IV, the prediction
accuracy of our classifiers is about 10% higher than others. Overall, it is promising

that the leverage classifiers using a reduced dataset can outperform some classifiers

using the full sample.

method —+ LC-A -+- LC-L -=- SVM-FULL LC-UNIF
T3MIX

T3

normMIX

im—Uniform
L LE L E B S R

L e e L

logm(Time)
logjo(Time)
loglO(Time)

L

logm(Time)
1

0- P L
S(lill 7%[' llil()U

P S

' ' ' ' ' ' ' ' ' ' ' '
500 750 1000 250 500 750 1000 250 500 750 1000 250
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Figure 6: Comparison of CPU time (in seconds) against different subsample sizes under

Scenarios [-IV. The logarithm is taken on time for a better presentation of the figures.

To validate the computational benefit of the leverage classifiers for large datasets,
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we further record the average computing time for each method during 500 replications.
We use the fast R package LiblineaR to fit the full sample SVM. Figure [6 illustrates
that the computing time of the full sample SVM is significantly larger than all leverage
classifiers, as expected. our optimal leverage classifiers require slightly more time than
uniform subsampling, this is due to the additional pilot study required to determine
subsampling probabilities. Moreover, due to additional calculations with the Hessian
matrix in A-optimality, the L-optimal subsampling probabilities take less computing
time than A-optimality, which is consistent with our computational complexity analysis
in Section 3.2. Figure [3|and Figure [6|both show that increasing n leads to smaller MSE
but also requires more computing time. The trade-off between estimation efficiency and
computational efficiency actually affect by the practitioners’ resource constraints and
efficiency requirements, such as measurement cost, processing time, memory capacity,
and prediction accuracy. We also report the computing time via one replication for
different full sample sizes under Scenario I in Table [Il The computational advantage

of leverage classifiers becomes significant as N increases.

5. Real Data Analysis

Protein structure prediction is a critical challenge in computational biology (Lesk,
2019), and SVM has been a popular method for this task. However, the high com-
putational cost associated with SVM has limited its widespread applications in this
field. To this end, we examine the performance of our leverage classifier in protein

structure prediction using the “Physicochemical Properties of Protein Tertiary Struc-
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Table 1: Comparison of CPU time (in seconds) under Scenario I when n = 1000.

Method N

103 104 10° 106 107
LC-A 1.32 1.33 1.75 1.85 3.82
LC-L 1.32 1.29 1.48 1.56 2.62
LC-UNIF 0.29 0.50 0.53 0.64 0.69

SVM-FULL 0.08 0.65 9.43 240.48 2526.90

ture Dataset”. This dataset is taken from the critical assessment of protein structure
prediction (CASP) experiments and includes 45,730 decoys with nine covariates. More
details are available at the UCI machine learning repository (Dua and Graff, 2017).
Root mean squared deviation (RMSD) is widely used as a metric for measuring the
deviation of protein structures from their native protein structures (Iraji and Ameri,
2016). In this analysis, our goal is to construct a classifier and predict whether the root
mean squared deviation is greater than ten or not. This setting leads to the proportions
of two classes about 40% and 60%. Before applying our methods, we standardize each
input variable with mean zero and standard deviation one, and then visualize it shown
in the left panel of Figure |7l We randomly select half of the dataset as the training set
and leave the rest as the testing set for prediction. Uniformly choose ng = 500 pilot
subsamples from the training set to obtain the subsampling probabilities 7#* and 7".
In Table[2] our optimal leverage classifiers are significantly faster than the full sam-

ple SVM which is implemented by the fast R package LiblineaR. This phenomenon
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comp2

5
compl

Figure 7: Analysis results for CASP dataset. Left panel: visualization with principal
component analysis. Middle panel: MSE in approximating the full sample SVM esti-

mator 3. Right panel: prediction accuracy (%).

Table 2: Comparison of CPU time (in seconds) for CASP dataset.

Method n

50 100 200 300 400 500 600 700 800

LC-A 0.70 0.76 087 1.01 1.18 1.33 1.52 1.75 2.03

LC-L 0.69 0.75 085 1.00 1.16 1.33 1.51 1.76 2.03

LC-UNIF 0.39 042 053 0.66 081 096 1.11 1.20 1.52

SVM-FULL 11.93
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agrees with numerical studies, and it is a great improvement of the method to approx-
imate the full sample SVM. The middle and right panels of Figure [7| present the mean
squared errors of approximating the full sample SVM estimator and the prediction
performances. The good performance of the optimal leverage classifiers is consistent

with our theory and the numerical studies.

6. Conclusion

Constructing accurate classifiers with informative subsamples from large-scale datasets
is a crucial task in statistical analysis and machine learning. In this paper, we pro-
pose a novel leverage classifier for SVM under the subsampling framework to address
the computational challenge. We construct optimal leverage classifiers by minimiz-
ing the unconditional asymptotic variance with double randomnesses. Our extensive
numerical investigations demonstrate that the proposed methods provide satisfactory
performances in estimation, computation, and prediction.

Subsampling is a fast and effective strategy for processing large-scale datasets and
further research is needed for more delicate statistical models. We conclude this pa-
per with several future topics. First, our binary subsampling leverage classifier may
be extended to multi-classification problems by one-versus-one or one-versus-rest SVM
in a linear nonseparable setting. Second, one limitation in our work is that we only
focus on the linear SVM for nonseparable cases to shed light on the leverage classifiers.
Extensions of the leverage classifiers to more general settings, such as kernel SVM

in reproducing kernel Hilbert spaces, remain challenging because it is unclear how to
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integrate existing asymptotic results (Hable, 2012) with our subsampling framework.
Third, it is worth further exploring the trade-off between estimation efficiency and
computation complexity under measurement constraints. Finally, investigating other
optimal criteria, such as minimizing the classification error or maximizing the predic-

tion accuracy, also merits further research.
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