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ABSTRACT. We discuss various applications of a uniform vanishing result for the graded
components of the finite length Koszul module associated to a subspace K ⊆

∧2 V ,
where V is a vector space. Previously Koszul modules of finite length have been used
to give a proof of Green’s Conjecture on syzygies of generic canonical curves. We now
give applications to effective stabilization of cohomology of thickenings of algebraic va-
rieties, divisors on moduli spaces of curves, enumerative geometry of curves on K3
surfaces and to skew-symmetric degeneracy loci. We also show that the instability of
sufficiently positive rank 2 vector bundles on curves is governed by resonance and give
a splitting criterion.

1. INTRODUCTION

Given a suitably nice space (for instance a compact Kähler manifold)X , one can view
its cohomology ring H•(X,C) as a module over its exterior algebra E :=

∧
H1(X,C).

Multiplication with a class a ∈ H1(X,C) defines a complex on H•(X,C) and the jump
loci for the cohomology of these complexes lead to the definition of the resonance vari-
etyR(X) of X , which turned out to be instrumental in several investigations involving
generic vanishing on varieties, see for instance [8], [15], [22], [26]. This definition has
then been extended by Suciu and Papadima [32] first to the case of finitely generated
groups and then in [33] to an entirely algebraic context. For important applications
of these techniques to Torelli groups we refer to [14] and references therein. Closely
related to the concept of resonance is the definition of a Koszul module, initially intro-
duced in [32] and [33] to explain via the BGG correspondence homological properties of
Alexander invariants (and more generally of quadratic algebras), then further studied
in a purely algebraic context in [1] and [2]. We recall now this set-up.

Suppose V is an n-dimensional complex vector space and let us fix a linear subspace
K ⊆

∧2 V . We denote by K⊥ = (
∧2 V/K)∨ ⊆

∧2 V ∨ the orthogonal of K, viewed as
the space of skew-symmetric bilinear forms on V vanishing on K. Let S := Sym(V ) be
the polynomial algebra over V and consider the Koszul complex

· · · −→
3∧
V ⊗ S δ3−→

2∧
V ⊗ S δ2−→ V ⊗ S δ1−→ S −→ C −→ 0.

According to [33], [1], [2], the Koszul module associated to (V,K) is the graded S-module

W (V,K) := Coker
{ 3∧

V ⊗ S −→
( 2∧

V/K
)
⊗ S

}
,
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where the map in question is the projection
∧2 V ⊗ S → (

∧2 V/K)⊗ S composed with
the Koszul differential δ3. The grading is inherited from SymV under the convention
that

∧2 V/K is placed in degree 0. It is straightforward to see that the graded piece
Wq(V,K) of the Koszul module can be identified with the cohomology of the complex

K ⊗ SymqV
δ2,q−→ V ⊗ Symq+1 V

δ1,q+1−→ Symq+2 V.

It is shown in [33, Lemma 2.4] that the support of the Koszul module W (V,K) in the
affine space V ∨, if non-empty, coincides with the resonance variety

R(V,K) :=
{
a ∈ V ∨ : there exists b ∈ V ∨ such that a ∧ b ∈ K⊥ \ {0}

}
∪ {0}.

In particular, W (V,K) has finite length if and only R(V,K) = {0}. In [2] (see also
[1, Theorem 1.3]), we found an optimal characterization of those subpaces K ⊆

∧2 V
having trivial resonance and established the following equivalence:

(1) R(V,K) = {0} ⇐⇒Wq(V,K) = 0 for q ≥ dim(V )− 3.

We refer to Theorem 2.2 for a precise formulation of this result. The paper [2] presents
applications of the equivalence (1) to geometric group theory in the case G is a finitely
generated group, V = H1(G,C) and K⊥ = Ker

{
∪G :

∧2H1(G,C) → H2(G,C)
}

. On
the other hand, we explained in [1] how by specializing to the tangent developable
of a rational normal curve in Pg, one can prove Green’s Conjecture [21] on syzygies of
generic canonical curves of genus g by applying the equivalence (1) to the case of the
Weyman module, which is a particular Koszul module corresponding to the choice V =
Symn−1(U) and K = Sym2n−4(U), with U being a 2-dimensional vector space. This has
led to an alternate approach to Green’s Conjecture (including an essentially optimal
result in positive characteristic) different from the one of Voisin’s [38], [39].

This paper is devoted to the study of other important classes of Koszul modules
with vanishing resonance that appear naturally in algebraic geometry. First, recalling
that V is an n-dimensional complex vector space, we note that if R(V,K) = {0} then
dim(K) ≥ 2n−3. We provide a refinement involving multiplicities of the equivalence (1)
in the case of (2n−3)-dimensional subspacesK ⊆

∧2 V as an equality of two particular
divisor on the Grassmannian G := Gr2n−3

(∧2 V
)

parametrizing such subspaces, see
Theorem 3.4. Denoting by DKosz the divisor consisting of subspaces [K] ∈ G such that
Wn−3(V,K) 6= 0 (with its natural scheme structure) and by DRes the divisor consisting
of those [K] ∈ G withR(V,K) 6= {0}, we have an equality of divisors

(2) DKosz = (n− 2) · DRes

on the Grassmannian G. An immediate application of the equality (2) is then the calcu-
lation of what we call the resonance divisor of a morphism of vector bundles

φ :

2∧
E → F ,

where E and F are vector bundles on a stack X with rk(E) = e and rk(F) = 2e− 3. We
denote by Res(φ) the locus of points x ∈ X such that the map φ(x) :

∧2 E(x) → F(x)
contains a pure tensor 0 6= s1 ∧ s2 in its kernel. A parameter count quickly shows that
when φ is sufficiently general, Res(φ) is a divisor on X .
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Theorem 1.1. Given a morphism φ :
∧2 E → F of vector bundles over X with rk(E) = e and

rk(F) = 2e− 3, assuming Res(φ) is a divisor on X , its class is given by the formula

[Res(φ)] =
(2e− 4)!

(e− 2)! · (e− 1)!

(
c1(F)− 4e− 6

e
c1(E)

)
∈ CH1(X).

Theorem 1.1 has numerous applications in moduli theory, one of them on the Ko-
daira dimension of the moduli space of Prym varieties having been presented in [18].
While referring to Theorem 1.5 for further applications to K3 surfaces, we discuss one
consequence of Theorem 1.1 to the geometry of the moduli space Mg,n of n-pointed
stable curves of genus g. For a smooth curve C, a canonical pencil is the degree 2g − 2
cover C → P1 induced by two canonical forms without common zeroes. Since C has
a (2g − 4)-dimensional family of canonical pencils each of them having finitely many
ramification points, imposing the condition that 2g − 3 marked points are ramification
points of such a pencil yields a divisorial condition in moduli.

Theorem 1.2. The class of the divisor Cpg of pointed curves [C, x1, . . . , x2g−3] ∈ Mg,2g−3

such that x1, . . . , x2g−3 are ramification points of a canonical pencil on C is equal to

[Cpg] =
(2g − 4)!

(g − 2)! · (g − 1)!

(
−2(2g − 3)

g
λ+ 3

2g−3∑
i=1

ψi

)
∈ CH1(Mg,2g−3).

Here λ is the Hodge class, whereas ψi denotes the cotangent class onMg,2g−3 corre-
sponding to the i-th marked point. Theorem 1.2 follows directly from Theorem 1.1 by
letting E to be the Hodge bundle onMg,2g−3, whereas F is the vector bundle having as
fibre over a point [C, x1, . . . , x2g−3] ∈M2g−3 the vector space H0

(
C,ω3

C|x1+···+x2g−3

)
.

Koszul modules associated to vector bundles. One can naturally associate a Koszul
module to any vector bundle as we shall describe next. Suppose E is a vector bundle
on an algebraic variety X and consider the determinant map

d :

2∧
H0(X,E)→ H0(X,

2∧
E).

This gives rise to the following Koszul module

(3) W (X,E) := W (V,K), where V := H0(X,E)∨ and K := Ker(d)⊥ ⊆
2∧
V.

If we let R(X,E) := R(V,K) for V and K as above, then the non-triviality of the
resonance amounts to the vector bundle E carrying a subpencil, that is, a line subbundle
L with h0(X,L) ≥ 2. We show in §4, that the equivalence (1) can be reformulated in
this context as follows:

Theorem 1.3. Let X be a projective variety with H1(X,OX) = 0 and let E be a globally
generated vector bundle on X . Then one has an isomorphism

Wq(X,E) ∼= H1
(
X, Symq+2ME

)∨
,

where ME denotes the kernel of the evaluation morphism H0(X,E) ⊗ OX → E. If moreover
E has no subpencils, then it follows that H1

(
X, Symq+2ME

)
= 0, for q ≥ h0(X,E)− 3.
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Theorem 1.3 is particularly interesting for a polarized K3 surface (X,L), where L is
an ample line bundle on X with L2 = 2g − 2. Recall that the Mukai vector of a sheaf
E on X is defined as v(E) :=

(
rk(E),det(E), χ(E) − rk(E)

)
∈ H•(X) and that ML(v)

denotes the moduli space of L-semistable sheaves on X having Mukai vector v, see
§4.1 for further details. A Lazarsfeld-Mukai bundle is a globally generated vector bundle
E on X with H1(X,E) = H2(X,E) = 0. If E is a Lazarsfeld-Mukai bundle with
Mukai vector v(E) = (r, L, s), then M∨E is also a Lazarsfeld-Mukai bundle with vector
v(M∨E) = (s, L, r). Lazarsfeld-Mukai bundles have been instrumental in Voisin’s proof
of the Generic Green Conjecture [38], [39], Lazarsfeld’s proof of the Petri Theorem [27],
or in the recent proof of the Mercat Conjecture [7]. In the case of K3 surfaces, Theorem
1.3 implies the following result:

Theorem 1.4. Let X be a polarized K3 surface with Pic(X) = Z ·L and let E be a Lazarsfeld-
Mukai bundle on X with v(E) = (r, L, s). Then for all b ≥ r + s− 1 one has

H1
(
X, SymbE

)
= 0.

In connection with Green’s Conjecture, of particular relevance is the case g = 2r
for r ≥ 2, when E is the unique Lazarsfeld-Mukai bundle on X having Mukai vector
v(E) = (r, L, 2). Theorem 1.4 reads in this case

H1
(
X, Symr+1E

)
= 0.

Remarkably, an independent geometric proof of the vanishing H1
(
X, Symr+1E

)
= 0

(whose failure is a divisorial condition on the moduli space Fg of polarizedK3 surfaces
of genus g) would give yet another proof, different from Voisin’s [38], [39] or from those
of [1], [34] of the Generic Green Conjecture. Note that in this case

v
(
Symr+1E

)
=

((
2r

r + 1

)
,

(
2r

r

)
L,

3r + 2

r

(
2r

r + 1

))
.

The Voisin curve of a polarized K3 surface of odd genus.
Assume now that (X,L) is a polarized K3 surface of odd genus g = 2r + 1 ≥ 11,

with Pic(X) = Z · L. The moduli space X̂ := ML(2, L, r) turns out to be a smooth K3
surface, called the Fourier-Mukai partner of X . Furthermore, as explained in [30], there
is a canonical way to endow X̂ with a genus g polarization ĥ.

We fix a general curve C ∈ |L|, thus via Lazarsfeld’s result [27], the curve C is Petri
general of genus 2r + 1 and W 1

r+2(C) is a smooth curve. Voisin [37] associated to any
pencil A ∈ W 1

r+2(C) the Lazarsfeld-Mukai rank 2 bundle EC,A ∈ X̂ , whose restriction
EA := EC,A ⊗OC to C sits in an extension

0 −→ A −→ EA −→ ωC ⊗A∨ −→ 0,

such that h0(C,EA) = h0(C,A) + h0(C,ωC ⊗A∨) = r + 2, see also [4]. This assignment
induces a map W 1

r+2(C) → X̂ . Since for a general [E] ∈ X̂ , the restriction EA has
canonical determinant and h0(C,ωC) = 2h0(X,E) − 3, we observe that the locus of
vector bundles [E] ∈ X̂ whose restriction to C has non-trivial resonance is a curve on
X̂ , which we call the Voisin curve of the pair (X,C). We have the following application
of Theorem 1.1 concerning the class of this curve:
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Theorem 1.5. Assume Pic(X) = Z ·L and let C ∈ |L| with g(C) = 2r+ 1. The Voisin curve

R(X̂, C) :=
{

[E] ∈ X̂ : R(C,EC) 6= 0
}

is a curve in the linear system ∣∣∣ (2r + 1)!

r! · (r + 2)!
ĥ
∣∣∣.

Furthermore, the map W 1
r+2(C)→ R(X̂, C) is a resolution of singularities ofR(X̂, C).

Gaussian Koszul modules.
Gaussian maps provide another context where Koszul modules appear naturally.

Suppose L is a very ample line bundle on a complex projective variety X and denote
by ϕL : X ↪→ Pr = P

(
H0(X,L)∨

)
the corresponding embedding. Let I ⊆ OPr be the

ideal sheaf of X . We then consider the Gaussian map

ψL :
2∧
H0(X,L)→ H0(X,Ω1

X ⊗ L2), ψL(f ∧ g) = fdg − gdf.

The cokernel of ψL parametrizes deformations of the cone over the embedded variety
X ⊆ Pr inside Pr+1. Wahl showed [40] that for a curveC lying on aK3 surface, the map
ψωC is not surjective. A remarkable converse of this result has been recently established
by Arbarello-Bruno-Sernesi [5].

We fix (X,L) and set V := H0(X,L)∨ andK⊥ := Ker(ψL), to obtain a Koszul module

G(X,L) := W (V,K)

whose resonance is always trivial. We have the following result, indirectly concerning
the Koszul module G(X,L):

Theorem 1.6. Let X ⊆ Pr be a smooth variety satisfying q(X) = 0 and H0
(
X,Ω1

X(1)
)

= 0.
If Xb ⊆ Pr is the b-th infinitesimal neighborhood of X defined by the ideal Ib+1, then the maps

H0
(
Xb,OXb

(a)
)
→ H0

(
Xb−1,OXb−1

(a)
)

are isomorphisms for all b ≥ a ≥ r.

A more general version of Theorem 1.6, without any assumptions on X , is provided
by Theorem 5.2. To place this result into context, we recall that Hartshorne [23] showed
that for a vector bundle F on Pr and a closed subvariety X ⊆ Pr, for all j ≥ 0 the
maps Hj

(
Xb,F ⊗ OXb

)
→ Hj

(
Xb−1,F ⊗ OXb−1

)
are isomorphisms if b � 0. A quan-

titative version of these results for F = OPr(a) has been recently obtained in [10]: The
restriction maps

Hj
(
Xb,OXb

(a)
)
→ Hj

(
Xb−1,OXb−1

(a)
)

are isomorphisms for all j ≥ 0 as long as b ≥ dim(X)+a+1, see [10, Remark 2.18]. Our
Theorem 1.6 can be viewed as a significant improvement (under certain assumptions)
of this result at the level of global sections.

Concerning the hypothesis of Theorem 1.6, they are satisfied for most Fano varieties
(for instance for all Hermitian Symmetric Spaces of type A, B, C or D, see [36]). Also,
if X is a Fano threefold then always q(X) = 0, whereas from the Iskosvskikh-Mukai
classification it follows that the condition H0(X,Ω1

X(1)) 6= 0 implies that X is of index
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one and has genus 10 or 12, see [25]. The hypothesis of Theorem 1.6 are also satisfied
for many varieties of Kodaira dimension zero. For instance, if (X,L) is a polarized K3
surface of degree L2 = 2g − 2, the condition H0

(
X,Ω1

X ⊗ L
)

= 0 is equivalent to the
statement that a general curve of genus g lies on a K3 surface and is thus satisfied if
and only g ≤ 9 or g = 11, see [9].
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2. BASICS ON KOSZUL MODULES

We recall the basic definitions of Koszul modules following [1], [2], [33]. For sim-
plicity, we stick to characteristic zero and let V be a complex vector space of dimen-
sion n ≥ 2 and denote by S := SymV the symmetric algebra of V . We consider the
standard grading on S, where the elements in V are of degree 1. We fix a linear sub-
space K ⊆

∧2 V of dimension m and denote by ι : K →
∧2 V the inclusion and let

K⊥ := Ker(ι∨) ⊆
∧2 V ∨. We introduce the Koszul differentials

δp :

p∧
V ⊗ S →

p−1∧
V ⊗ S,

δp(v1 ∧ · · · ∧ vp ⊗ f) =

p∑
j=1

(−1)j−1v1 ∧ · · · ∧ v̂j ∧ · · · ∧ vp ⊗ vjf.

We have a decomposition δp =
⊕

q δp,q into graded pieces, where

(4) δp,q :

p∧
V ⊗ Symq V →

p−1∧
V ⊗ Symq+1 V.

The Koszul module W (V,K) defined in the Introduction is a graded S-module,
whose degree q component has the following description.

(5) Wq(V,K) = Coker
{ 3∧

V ⊗ Symq−1 V −→
( 2∧

V/K
)
⊗ Symq V

}
.



KOSZUL MODULES WITH VANISHING RESONANCE IN ALGEBRAIC GEOMETRY 7

Since the Koszul complex is exact, it is often convenient to realize Wq(V,K) as the
middle cohomology of the following complex of vector spaces:

(6) K ⊗ Symq V
δ2,q |K⊗Symq V // V ⊗ Symq+1 V

δ1,q+1 // Symq+2 V.

As pointed out in [33] and further explained in [1], [2], the construction of Koszul
modules displays good functoriality properties. For instance, if K ⊆ K ′ ⊆

∧2 V are
linear susbspaces, one has an induced surjective morphism of graded S-modules

(7) W (V,K) �W (V,K ′).

2.1. Resonance varieties. Building on work of Green-Lazarsfeld [22], Dimca-Papadima-
Suciu [15] and others, Papadima and Suciu [33] gave an algebraic definition of the res-
onance variety associated to a pair (V,K) as above, which we now recall.

Definition 2.1. The resonance variety associated to the pair (V,K) is the locus

(8) R(V,K) :=
{
a ∈ V ∨ : there exists b ∈ V ∨ such that a ∧ b ∈ K⊥ \ {0}

}
∪ {0}

The resonance varietyR(V,K) is the union of 2-dimensional subspaces of V ∨ param-
eterized by the intersection PK⊥ ∩Gr2(V ∨), where Gr2(V ∨) ⊆ P

(∧2 V ∨
)

is the Plücker
embedding. Setting up the diagram

Ξ
π //

p1
��

Gr2(V ∨)

PV ∨

where Ξ ⊆ PV ∨×Gr2(V ∨) is the incidence variety, we observe thatR(V,K) is the affine
cone over the following projective variety

R(V,K) := p1

(
π−1(PK⊥ ∩Gr2(V ∨))

)
,

which we refer to as the projectivized resonance variety of (V,K). Note that the correspon-
dence p1 ◦ π−1 mapping a point [a ∧ b] ∈ PK⊥ ∩Gr2(V ∨) to the line `ab in PV ∨ passing
through [a] and [b] gives a natural bijection between PK⊥∩Gr2(V ∨) and the set of lines
contained in R(V,K), whose inverse is `ab 7→ π(p−1

1 ([a]) ∩ p−1
1 ([b])).

It was showed in [33, Lemma 2.4] that away from 0, the support of the graded S-
moduleW (V,K) inside V ∨ coincides with the resonance varietyR(V,K). In particular,

(9) PK⊥ ∩Gr2(V ∨) = ∅ ⇐⇒ R(V,K) = {0} ⇐⇒ dimCW (V,K) <∞.
In [1] we provide a sharp vanishing result for Koszul modules with vanishing reso-

nance. This is the starting point for many of the geometric applications in this paper.

Theorem 2.2. Let V be a complex n-dimensional vector space and let K ⊆
∧2 V be a subspace

such that R(V,K) = {0}. We have that Wq(V,K) = 0 for all q ≥ n − 3. Furthermore, if
R(V,K) = {0}, then the following inequality holds

dimWq(V,K) ≤
(
n+ q − 1

q

)
(n− 2)(n− q − 3)

q + 2
, for q = 0, . . . , n− 4,

with equality if dim(K) = 2n− 3.
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The connection between resonance and Koszul modules shows that the resonance
carries a natural scheme structure which, in some cases might be non–reduced. In the
forthcoming paper [3] we shall have a close look at this phenomenon.

2.2. Isotropy and separability. (see [3]) In geometric situations (like those when the
resonance variety parametrizes complexes with jumping cohomology in the spirit of
[15]), the resonance varietyR(V,K) often enjoys further properties, which we summa-
rize in a definition. Before formulating it, let E :=

∧
V ∨ be the exterior algebra on the

vector space V ∨, and write 〈U〉E for the ideal in E generated by a subset U ⊆ E.

Definition 2.3. We say that a subspace V ∨ ⊂ V ∨ is

• Isotropic, if
∧2 V

∨ ⊆ K⊥.
• Separable if K⊥ ∩ 〈V ∨〉E ⊆

∧2 V
∨.

• Strongly isotropic if it is separable and isotropic, that is, if K⊥ ∩ 〈V ∨〉E =
∧2 V

∨.

Similar definitions can be given for the projective subspaces of PV ∨.

Definition 2.4. We say that the resonance varietyR(V,K) is
• Linear, ifR(V,K) is a union of linear subspaces of V ∨, that is,

R(V,K) = V 1 ∪ · · · ∪ V s.

• Isotropic, separable, or strongly isotropic if it is linear and each component V ∨i of
R(V,K) is isotropic, separable, or strongly isotropic, respectively.

For the relevance of these conditions in the case of resonance varieties associated to
hyperplane arrangements we refer to [12]. In the paper [3] we relate separability to the
reduceness of the projectived resonance scheme and establish an optimal effective ver-
sion of Chen’s rank conjecture for Koszul modules with strongly isotropic resonance.

Note that if two lines contained in R(V,K) intersect, then the whole plane they gen-
erate is contained in R(V,K). If [a] ∈ R(V,K), then the projectivization of the subspace

F(a) :=
{
b ∈ V ∨ : a ∧ b ∈ K⊥

}
is contained in R(V,K) and is the maximal projective subspace inside R(V,K) that
passes through [a]. Moreover the set

{
[a ∧ b] : b ∈ F(a)

}
is contained in G ∩PK⊥.

Lemma 2.5. The map PV ∨ 3 [a] 7→ dim(F(a)) is upper–semicontinous.

Proof. Consider F the kernel of the composed sheaf morphism on P := PV ∨

V ∨ ⊗OP(−1) −→
2∧
V ∨ ⊗OP −→

2∧
V ∨/K⊥ ⊗OP.

Then F(a) as defined above can be identified with the fibre of F at [a] and we apply
Grauert’s Theorem. �

Proposition 2.6. If [a∧ b] is an isolated point of PK⊥ ∩Gr2(V ∨), then the line `ab joining [a]
and [b] is an isotropic connected component of R(V,K).
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Proof. We prove first that the line `ab ⊆ PV ∨ is a connected component of R(V,K).
Since [a ∧ b] is an isolated point, and the projectivization of

{
a ∧ b′ : b′ ∈ F(a)

}
would

be contained in PK⊥ ∩ Gr2(V ∨), it follows that F(a) is 2-dimensional, spanned by a

and b. Denote this subspace by V ∨. By semicontinuity, for each a′ in a neighborhood of
[a] in R(V,K), we have dim(F(a′)) = 2. If `ab is not a connected component, then we
have a sequence ([an])n ∈ R(V,K)\`ab converging to [a]. Without loss of generality, we
assume an → a in R(V,K) and dim(F(an)) = 2 for all n. Hence we obtain a sequence
of lines (`n)n contained in R(V,K) and different from `ab, converging to the limit `ab.
This corresponds to a sequence of points in PK⊥∩Gr2(V ∨) converging to [a∧ b], which
is impossible. The isotropy of V ∨ is straightforward. Indeed, it is isotropic if and only
if a ∧ b ∈ K⊥, which is true by hypothesis. �

Proposition 4.10 provides one application of Proposition 2.6 in geometric setting.

3. THE CHOW FORM OF THE GRASSMANNIAN OF LINES AND ALTERNATING
DEGENERACY LOCI

We begin by recording a well-known sufficient conditions for the supports of two
Cartier divisors on an algebraic variety to be equal. Let X be a smooth quasi-projective
variety and A and B vector bundles on X of the same rank r and let ϕ : A → B be a
vector bundle morphism. Assume its degeneracy locus

D(ϕ) :=
{
x ∈ X : rk

{
ϕ(x) : A(x) −→ B(x)

}
≤ r − 1

}
.

is a Cartier divisor on X , that is, D(ϕ) 6= X and that for any point x in an irreducible
component Z of D(ϕ), we have dim Ker(ϕ(x)) ≥ k. Then Z enters with multiplicity
at least k in D(ϕ). We shall use the following well-known fact, presented here for the
convenience of the reader.

Lemma 3.1. Let Y be an irreducible projective variety and U ⊆ Y an open subset with
codim(Y \ U, Y ) ≥ 2. Assume A and B are vector bundles of the same rank on U , and
we are given a morphism ϕ : A → B, whose degeneracy locus D1 = D(ϕ) is a genuine
divisor. Let D2 be a reduced Cartier divisor on U such that Supp(D2) ⊆ Supp(D1) and
[D1] = k[D2] ∈ CH1(U) for some positive integer k. If for any x ∈ Supp(D2) we have
dim Ker(ϕ(x)) ≥ k, then Supp(D1) = Supp(D2) and D1 = k ·D2 as divisors.

Proof. The hypotheses imply that the only effective divisor D on U whose rational class
is zero is the zero–divisor itself. Indeed, if D 6= 0, then its closure D in Y satisfies
D · Hdim(Y )−1 > 0 for any ample divisor H on Y , a contradiction. We apply this to
the divisor D := D1 − kD2, which is effective, for, as explained, D2 enters in D1 with
multiplicity at least k. �

Throughout this section let V be an n-dimensional complex vector space and set
G := Gr2n−3

(∧2 V
)
. Theorem 2.2 offers a set-theoretic description of the Koszul divisor

DKosz :=
{
K ∈ G : Wn−3(V,K) 6= 0

}
.

The fact that DKosz is a divisor on G follows once we observe that if U is the universal
rank–(2n− 3) subbundle on G, then DKosz is the degeneracy locus of the morphism
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(10) γ : U ⊗ Symn−3 V → OG ⊗ Im(δ2,n−3),

which in the fiber over a point [K] ∈ G is given by the Koszul differential δ2,n−3. Theo-
rem 2.2 implies that γ is non-degenerate; for instance if we write V = Symn−1(U), with
U being a 2-dimensional vector space, then we have established in [2] that the point[

K := Sym2n−4 U ⊆
2∧

Symn−1 U
]
/∈ DKosz,

and therefore γ is non-degenerate and DKosz is a genuine divisor on G.
On the other hand, we can consider the Cayley–Chow form of the Grassmannian

Gr2(V ∨) ⊆ P
(∧2 V ∨

)
. Explicitly, this divisor is the locus

DRes :=
{
K ∈ G : P(K⊥) ∩Gr2(V ∨) 6= ∅

}
and comes with an induced scheme structure. Theorem 2.2 (see Theorem 1.3 from [1] for
a version in positive characteristic) can then be formulated as a set-theoretic equality:

(11) Supp(DRes) = Supp(DKosz).

The divisor classes of DRes and DKosz are easy to describe in terms of the generator
L = det(U∨) of the Picard group Pic(G), which is the hyperplane section bundle com-
ing from the Plücker embedding of G. It follows from (10) that the degree of DKosz

equals the dimension of Symn−3(V ), which proves that the divisor class of DKosz equals

(12) [DKosz] =

(
2n− 4

n− 1

)
[L].

To compute the class ofDRes we recall that the degree of a Cayley–Chow form equals
the degree of the variety to which it is associated [13, Corollary 2.1], which in our case
is equal to the Catalan number Cn−2 = 1

n−1

(
2n−4
n−2

)
, see [17, Proposition 4.12]. Hence, we

have that the divisor classes of DKosz and DRes are related by

(13) [DKosz] = (n− 2)[DRes].

Lemma 3.2. We have a set-theoretical inclusion Supp(DRes) ⊆ Supp(DKosz).

Proof. Let [K] ∈ DRes. By Theorem 2.2, the Koszul moduleW (V,K) is of infinite length.
Since it is generated in degree zero, it follows that Wq(V,K) 6= 0 for all q ≥ 0, and in
particular Wn−3(V,K) is also non-zero. �

Lemma 3.3. For any [K] ∈ DRes we have dim Wq(V,K) ≥ q + 1, for all q ≥ 0.

Proof. For [K] ∈ DRes, it follows from (8) and (9) that we may find a basis {v1, . . . , vn}
of V such that v∨1 ∧ v∨2 ∈ K⊥. We get that K ⊆ K ′, where K ′ ⊆

∧2 V is the codimension
one subspace with basis vi∧vj with 1 ≤ i < j ≤ n and (i, j) 6= (1, 2). A direct calculation
shows that the Hilbert series of W (V,K ′) equals

∑
q≥0(q + 1)tq, while (7) proves that

the graded module W (V,K ′) is a quotient of W (V,K), concluding our proof. �
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The following result is a refinement of Theorem 2.2 and provides an explicit descrip-
tion, including multiplicities, of the Chow form of the Grassmannian Gr2(V ∨) in its
Plücker embedding.

Theorem 3.4. One has the following equality of divisors on G

DKosz = (n− 2) · DRes.

Proof. If n = 3 then m = 3 and therefore K =
∧2 V , which implies that W (V,K) = 0.

Assume from now on n ≥ 4 and we take D1 := DKosz and D2 := DRes, for which
we apply Lemma 3.1: we know by Lemma 3.2 that Supp(D2) ⊆ Supp(D1), while (13)
shows that [D1] = (n − 2) · [D2]; by Lemma 3.3 with q = n − 3, it follows that over the
point [K] ∈ Supp(D2) the fiber of the map (10) has cokernel Wn−3(V,K) of dimension
at least q + 1 = n − 2, so Lemma 3.2 applies with k = n − 2 showing the equality of
divisors D1 = (n− 2)D2, as desired. �

Remark 3.5. One has two remarkable equalities of divisors, namelyDKosz = (n−2)·DRes

on G, respectively the equality Syz = (n − 2) · M1
2n−3,n−1 on the moduli spaceM2n−3

of curves of genus 2n− 3, whereM1
2n−3,n−1 is the (n− 1)-gonal locus, whereas

Syz :=
{

[C] ∈M2n−3 : Kn−2,1(C,ωC) 6= 0
}

is the locus of curves with a non-trivial (n− 2)nd syzygy in their canonical embedding.
It would be highly interesting to establish a direct geometric connection between

these equalities and also explain the occurrence of the same multiplicity n− 2.

3.1. The resonance divisor of a skew-symmetric degeneracy locus. We present now
an application of Theorem 3.4 to a situation appearing frequently in moduli theory.
Assume we are given two vector bundles E and F over a stack X such that rk(E) = e
and rk(F) = 2e − 3 where e ≥ 3, and a generically surjective morphism of vector
bundles

φ :
2∧
E → F .

Identifying the Grassmannian Gr2

(
E(x)

)
⊆ P

(∧2 E(x)
)

of lines in the fibre E(x) over
a point x ∈ X with the (projectivization of the) space of rank 2 exterior tensors on E(x),
the numerical conditions at hand imply that the locus

Res(φ) :=
{
x ∈ X : ∃ 0 6= s1 ∧ s2 ∈

2∧
E(x) : φ(s1 ∧ s2) = 0

}
is a virtual divisor on X . We assign a divisor structure to this locus as follows.

Let Σ be the variety consisting of pairs (ϕ,K), where ϕ ∈ Hom
(∧2 Ce,C2e−3

)
, and

K ⊆ Ker(ϕ) is a subspace of codimension 2e − 3. For a morphism of vector bundles
φ :
∧2 E → F as above, over a trivializing open set U ⊆ X consider the fibre product

Σ(φ) := U ×
Hom

(∧2 Ce,C2e−3
) Σ

endowed with the projections π1 : Σ(φ)→ X and π2 : Σ(φ)→ Gr2e−3

(∧2(Ce)∨
)
.

Definition 3.6. We define the virtual divisor Res(φ) of the morphism φ :
∧2 E → F lo-

cally over a trivializing open set U as Res(φ)|U := (π1)∗
(
π∗2DRes

)
= 1

e−2(π1)∗
(
π∗2DKosz

)
.
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We can now prove Theorem 1.1, which provides a formula for the class of this locus
in terms of the first Chern classes of E and F :

Proof of Theorem 1.1. We may assume e ≥ 4 and consider the chain of morphisms

E ⊗ Syme−2(E)/ Syme−1(E)
δ∨2,e−3−→

2∧
E ⊗ Syme−3(E)

φ⊗id−→ F ⊗ Syme−3(E),

and denote by ϑ : E ⊗ Syme−2(E)/ Syme−1(E) → F ⊗ Symn−3(E) the composition. Ap-
plying Theorems 2.2 and 3.4, we infer that (e − 2) · Res(φ) is equal as a divisor to the
degeneracy locus of the morphism ϑ. Using the formula c1(Symn E) =

(
e+n−1

e

)
c1(E)

valid for all n ≥ 0, we compute

(e− 2) · [Res(φ)] = c1

(
F ⊗ Syme−3(E)

)
− c1

(
E ⊗ Syme−2(E)) + c1

(
Syme−1 E) =(

2e− 4

e− 3

)
c1(F) + (2e− 3)

(
2e− 4

e− 4

)
c1(E)−

(
2e− 3

e− 2

)
c1(E)− e

(
2e− 3

e− 3

)
c1(E)

+

(
2e− 2

e− 2

)
c1(E) =

(
2e− 4

e− 3

)(
c1(F)− 4e− 6

e
c1(E)

)
,

which immediately leads to the claimed formula. �

4. KOSZUL MODULES ASSOCIATED TO VECTOR BUNDLES

We now discuss a class of Koszul modules naturally associated to vector bundles.
For a vector bundle E on a projective variety X , we consider the determinant map

d :
2∧
H0(X,E)→ H0

(
X,

2∧
E
)
.

Definition 4.1. The Koszul module associated to the pair (X,E) as above is defined as

W (X,E) := W (V,K), where V := H0(X,E)∨ and K = Ker(d)⊥ = Im(d)∨ ⊆
2∧
V.

The triviality of the resonance variety R(X,E) associated to the Koszul module
W (X,E) has a transparent geometric interpretation.

Proposition 4.2. One hasR(X,E) = {0} if and only if E has no locally free subsheaf of rank
one L with h0(X,L) ≥ 2.

Proof. Indeed, via (9), the resonance R(X,E) is non-trivial if and only if we can find
sections s1, s2 ∈ H0(X,E) with 0 6= s1 ∧ s2 ∈ K⊥ = Ker(d), which in turn is equivalent
to the fact that s1 and s2 generate a rank-one subsheaf whose double dual is a locally
free subsheaf of E. �

If the vector bundle E in Definition 4.1 is globally generated, then the corresponding
Koszul module can be given a geometric description in terms of kernel bundles:

Theorem 4.3. Let X be a projective variety and let E be a globally generated vector bundle on
X such that the determinant map

d :
2∧
H0(X,E)→ H0

(
X,

2∧
E
)
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is not identically zero. If we denote by ME the kernel of the evaluation map

(14) H0(X,E)⊗OX → E,

then we have an isomorphism

Wq(X,E)∨ ∼= Ker
{
H1(X, Symq+2ME)→ Symq+2H0(X,E)⊗H1(X,OX)

}
.

In particular, if H1(X,OX) = 0, then Wq(X,E)∨ ∼= H1
(
X, Symq+2ME

)
.

Proof. Based on (6), we know that Wq(X,E) is the middle cohomology of the complex

K ⊗ Symq V
δ2,q−→ V ⊗ Symq+1 V

δ1,q+1−→ Symq+2 V

where V = H0(X,E)∨ and K = Ker(d)⊥. Dualizing this complex and replacing
K∨ = Im(d) by the ambient space H0(X,

∧2E) (which does not affect the middle co-
homology), we realize Wq(X,E)∨ as the middle cohomology of a complex

Symq+2H0(X,E) −→ H0(X,E)⊗Symq+1H0(X,E) −→ H0
(
X,

2∧
E
)
⊗SymqH0(X,E),

which arises from an alternative construction as follows. Since ME is resolved by the
2-term complex (14), Symq+2ME is resolved by the (q + 2)-nd symmetric power of (14)

(15) Symq+2H0(X,E)⊗OX → Symq+1H0(X,E)⊗E → SymqH0(X,E)⊗
2∧
E → · · ·

and the previous description of Wq(X,E)∨ shows that it coincides with the first coho-
mology group of the complex obtained from (15) by taking global sections.

Since (15) resolves Symq+2ME , its hypercohomology coincides with the sheaf coho-
mology of Symq+2ME , so we get a spectral sequence

Ei,j2 = H i
(

Symq+2−•H0(X,E)⊗Hj(X,
•∧
E)
)

=⇒ H i+j(X, Symq+2ME).

Since Ei,j2 = 0 for i < 0 or j < 0, it follows that we have an exact sequence

0 // E1,0
2

// H1(X, Symq+2ME) //

H1(X,ι)

44
E0,1

2

(
� � // Symq+2H0(X,E)⊗H1(X,OX)

)

where ι denotes the natural inclusion of Symq+2ME into Symq+2H0(X,E)⊗OX . Since
E•,02 is the complex obtained from (15) by taking global sections, we conclude that
E1,0

2 = Wq(X,E)∨ is the kernel of H1(X, ι), and that it is moreover isomorphic to
H1(X, Symq+2ME) when H1(X,OX) = 0, as desired. �
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4.1. Koszul modules associated toK3 surfaces. An important application of Theorem
4.3 is provided by Lazarfeld-Mukai bundles on K3 surfaces. Let (X,L) be a polarized
K3 surface of genus g ≥ 2, where L is an ample line bundle of degree L2 = 2g − 2. We
set H•(X) := H0(X,Z) ⊕ H2(X,Z) ⊕ H4(X,Z). Following [29], we define the Mukai
pairing on H•(X) by

(v0, v1, v2) · (w0, w1, w2) := v1 · w1 − v2 · w0 − v0 · w2 ∈ H4(X,Z) ∼= Z.
For a sheaf E on X , its Mukai vector is defined following [29, Definition 2.1], by setting

v(E) :=
(

rk(E), det(E), χ(E)− rk(E)
)
∈ H•(X).

Note that we have −χ(F, F ) = v(F )2. We denote by ML(v) the moduli space of S-
equivalence classes of L-semistable sheaves E on X and having prescribed Mukai vec-
tor v(E) = v. Let M s

L(v) the open subset of ML(v) corresponding to L-stable sheaves.
It is known that M s

L(v) is pure dimensional and dim M s
L(v) = v2 + 2. Furthermore, if

v2 = −2, then ML(v) = M s
L(v) consists of a single point.

Definition 4.4. A globally generated vector bundle E on a polarized K3 surface (X,L)
is said to be a Lazarsfeld-Mukai bundle if det(E) ∼= L and H1(X,E) = H2(X,E) = 0.

The Lazarsfeld-Mukai bundles were introduced in [27], [28], [29]. They can be con-
structed by choosing a smooth curve C ∈ |L| and a linear system A ∈ W r−1

d (C) such
that both A and ωC ⊗ A∨ are globally generated, where r ≥ 2. The dual Lazarsfeld-
Mukai bundle sits in the following exact sequence on X

0 −→ E∨ −→ H0(C,A)⊗OX
ev−→ ι∗A −→ 0,

where ι : C ↪→ X is the inclusion. Dualizing, we obtain the short exact sequence

(16) 0 −→ H0(C,A)∨ ⊗OX −→ E −→ ωC ⊗A∨ −→ 0.

Then E is a globally generated L-stable bundle with det(E) ∼= L and

h0(X,E) = h0(C,ωC ⊗A∨) + h0(C,A) = g − d+ r − 1,

thus v(E) = (r, L, g − d+ r − 1). We refer to [27] for all these properties.
To (X,L) andE as above, we consider the Koszul module of the associated Lazarsfeld-

Mukai bundle
W (X,E) := W

(
H0(X,E)∨,K

)
,

where K⊥ is the kernel of the determinant map d :
∧2H0(X,E)→ H0

(
X,
∧2E

)
.

Lemma 4.5. If Pic(X) = Z · L, the Koszul module W (X,E) has vanishing resonance.

Proof. Two non-proportional sections s1 and s2 of E such that d(s1∧s2) = 0 correspond
to a locally free subsheaf of rank one A′ of E with h0(X,A′) ≥ 2. Since Pic(X) = Z · L,
it follows in particular H0(X,E ⊗ L∨) = 0. Tensoring the sequence (16) with L∨ and
taking cohomology we obtain a contradiction. �

Let E be a Lazarsfeld-Mukai bundle with Mukai vector v(E) = (r, L, s). Since E is
globally generated, we consider the kernel bundle ME sitting in the exact sequence

0 −→ME −→ H0(X,E)⊗OX −→ E −→ 0.
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Then M∨E has Mukai vector v(M∨E) = (s, L, r). Then H1(X,M∨E) = H2(X,M∨E) = 0,
furthermore M∨E is globally generated and H0(X,M∨E) ∼= H0(X,E)∨. In particular, M∨E
is also a Lazarsfeld-Mukai bundle.

Proof of Theorem 1.4. We start with a Lazarsfeld-Mukai bundle E with Mukai vector
v(E) = (r, L, s). Then M∨E is also a Lazarsfeld-Mukai bundle with v(M∨E) = (s, L, r)
which has vanishing resonance. Since h0(X,M∨E) = h0(X,E) = r + s, the conclusion
follows by applying Theorem 1.3.

�
If v(E) = (r, L, s), a rather lengthy but elementary calculation with Chern classes

shows that the symmetric powers of E have Mukai vector

v
(
SymbE

)
=
((r + b− 1

b

)
,

(
r + b− 1

r

)
L,

(
r + b− 1

b

)
b2(g − r + s− 1)− b(r2 + g − sr − 1) + r(r + 1)

r(r + 1)

)
∈ H•(X).

When E is a spherical object, that is v2(E) = −2, in which case the moduli space ML(v)
consists only of E, then g = rs and the above formula becomes more manageable:

(17) v
(
SymbE

)
=

((
r + b− 1

b

)
,

(
r + b− 1

r

)
L,

(
r + b− 1

b

)
b2s− (b− 1)(b+ r)

r

)
.

In particular, Theorem 1.4 shows that a general vector bundle F ∈ ML(v), where v is
the Mukai vector given by (17), satisfies H1(X,F ) = 0. Theorem 1.4 is optimal when
Theorem 2.2 is applied in the divisorial case. We record this result:

Theorem 4.6. Let (X,L) be a K3 surface of genus g = 2r ≥ 4 with Pic(X) = Z · L. If E is
the unique Lazarsfeld-Mukai bundle with vector v(E) = (r, L, 2), then H1

(
X, SymbE

)
= 0

for b ≥ r + 1 and

h1
(
X, SymbE

)
=

(
r + b− 1

r + 1

)
r(r − b+ 1)

b
for b ≤ r.

Proof. Apply directly Theorem 1.4 coupled with the estimate provided by Theorem 2.2.
�

Remark 4.7. Inside the moduli space Fg of polarized K3 surfaces of genus g, the locus
NL1 of those polarized K3 surfaces [X,L] for which H1(X, Symr+1E) 6= 0 for a vector
bundle E ∈ M s

L(r, L, 2) is a divisor of Noether-Lefschetz type. Similarly, for b ≥ 1,
the locus NLb of those [X,L] ∈ F2r for which h1

(
X, SymbE) >

(
r+b−1
r+1

) r(r−b+1)
b is via

Theorem 4.6 of Noether-Lefschetz type and its class can be computed in terms of the
Hodge classes on Fg. Understanding the relative position of the classes NLb, in partic-
ularly deciding when these loci are empty will thus lead to non-trivial relations among
tautological classes in CH•(Fg) in the spirit of [19] or [31].

Keeping the set-up as above, we fix a general curve C ∈ |L|, therefore C is smooth of
genus 2r and W 1

r+1(C) consists of (2r)!
r!·(r+1)! reduced points, see [27]. The restriction EC

of the Lazarsfeld-Mukai bundle E ∈ ML(r, L, 2) is a stable rank 2 vector bundle with
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det(EC) ∼= ωC and h0(C,EC) = h0(X,E) = r + 2. Since h0(C,ωC) < 2h0(C,EC) − 3,
the vector bundle EC has non–trivial resonance which we describe below.

Put V = H0(C,EC)∨ and K := H0(C,ωC)∨ viewed as a subset of
∧2 V via the dual

of the map d :
∧2H0(C,EC)→ H0(C,ωC). Each pure tensor [a ∧ b] ∈ Gr2(V ∨) ∩PK⊥

corresponds to a globally generated subpencil of EC . Without loss of generality, we
may assume that the quotient is locally free. We can prove even more:

Lemma 4.8. If A is a line subbundle of EC with h0(C,A) ≥ 2, then A ∈W 1
r+1(C).

Proof. The bundle EC lies in an extension

0 −→ A −→ EC −→ ωC ⊗A∨ −→ 0.

Since EC is globally generated, ωC ⊗ A∨ is also globally generated and hence either
h0(C,ωC ⊗ A∨) ≥ 2 or A ∼= ωC . Since EC is stable and µ(EC) = 2r − 1, the latter
case is ruled out. In particular, A contributes to the Clifford index. On the other hand,
h0(C,A) + h0(C,ωC ⊗ A∨) ≥ h0(C,EC) = r + 2 which implies that Cliff(A) ≤ r − 1.
Hence either A or its residual ωC ⊗ A∨ belong to W 1

r+1(C). However, the latter case
contradicts the stability of EC , hence it does not appear. �

Lemma 4.8 shows that Gr2(V ∨) ∩PK⊥ ∼= W 1
r+1(C) and is finite and moreover∣∣Gr2(V ∨) ∩PK⊥

∣∣ =
(2r)!

r! · (r + 1)!
.

Before stating the next result we recall the various properties of the resonance variety
of a Koszul module given in Definition 2.4. In the case of a vector bundle over a curve,
isotropy and separability are related to specific geometric properties. The following
result will be used later:

Lemma 4.9. Let F be a vector bundle of rank 2 over a smooth curve C and let V ∨ ⊆ H0(C,F ).

(i) V ∨ is isotropic if and only if it generates a rank-one subsheaf B inside F .
(ii) Suppose that E is given by an extension of line bundles

0 −→ B −→ F −→ B′ −→ 0,

with B globally generated, and denote W := Im
{
H0(C,F ) → H0(C,B′)

}
. If the

multiplication map

µ : H0(C,B)⊗W → H0
(
C, det(F )

)
is injective, then V ∨ = H0(C,B) is strongly isotropic.

Proof. (i) If L ⊆ F is a rank-one subsheaf, then H0(C,B) ⊆ H0(C,F ) is isotropic, as
the restriction of the determinant map to

∧2H0(C,B) vanishes identically. Conversely,
let V ∨ be an isotropic subspace of H0(C,F ). Then any vector 0 6= a ∧ b ∈

∧2 V
∨

generates a rank-one subsheaf of F . In particular, for a generic point x ∈ C the vectors
a(x), b(x) ∈ F (x) are linearly dependent, hence the span of

{
a(x) : a ∈ V

∨} is one–
dimensional.

(ii) Observe first that if a ∈ V
∨, b ∈ H0(C,F ) and b′ ∈ W is the image of b, then

µ(a⊗ b′) = d(a∧ b). Assume
∑
ai ∧ bi ∈ K⊥ ∩ 〈V

∨〉∧V ∨ , with {ai} linearly independent
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in V ∨ and bi ∈ H0(C,F ). If b′i is the image of bi in W , we have µ(
∑
ai ⊗ b′i) = 0. From

the hypothesis,
∑
ai⊗b′i = 0 and, since ai are independent, b′i = 0, that is, bi ∈ H0(C,B)

for all i. In particular,
∑
ai ∧ bi ∈

∧2 V
∨. �

We now return to the set-up when C ∈ |L| is a curve of genus 2r on a K3 surface X .

Proposition 4.10. FixC ∈ |L| generic as above. The resonanceR(C,EC) is strongly isotropic,
and its projectivisation R(C,EC) is the union of (2r)!

r!·(r+1)! disjoint lines.

Proof. From Proposition 2.6 we infer that that R(C,EC) is a union of (2r)!
r!·(r+1)! disjoint

lines, all isotropic. In order to establish the separability of these components, `ab be a
component, corresponding to a point [a ∧ b] ∈ Gr2(V ∨) ∩ PK⊥ and denote by V ∨ the
subspace in V ∨ generated by a and b. If A denotes the subpencil of EC generated by a
and b, then EC is presented as an extension

0 −→ A −→ EC −→ ωC ⊗A∨ −→ 0

Since the Petri map µ : H0(C,A) ⊗ H0(C,ωC ⊗ A∨) → H0(C,ωC) is injective, we can
apply Lemma 4.9 (ii) to conclude. �

4.2. Koszul modules associated to K3 surfaces of odd genus. Using a variation com-
pared to the even genus case, one can also associate to a generalK3 surface of odd genus
a Koszul module W (V,K) in the divisorial case dim(K) = 2 dim(V )− 3 as follows.

Fix a polarized K3 surface [X,L] of odd genus g = 2r + 1 such that Pic(X) = Z · L
and choose a smooth curve C ∈ |L|. Recall that X̂ := ML(2, X, r) is the Fourier-Mukai
partner of X . Denoting by SUC(2, ω, r + 2) the moduli space of S-equivalence classes
of semistable rank 2 vector bundles EC on C with det(EC) ∼= ωC and h0(C,EC) ≥ r+2,
the restriction map induces an isomorphism, see [4],

X̂ ∼= SUC(2, ω, r + 2), E 7→ EC .

Moreover, it can be shown that X as the Fourier-Mukai dual of SUC(2, ω, r + 2) is the
only K3 surface containing C as long as s is odd, see [4], [20].

The Brill-Noether locusW 1
r+2(C) is a smooth curve (recall that C satisfies Petri’s The-

orem [27]) and we have the following formula for its genus [16]:

(18) g
(
W 1
r+2(C)

)
= 1 +

r

r + 1

(
2r + 2

r

)
.

Using [37], one has a map j : W 1
r+2(C)→ X̂ which associates to A ∈ W 1

r+2(C) the rank
2 Lazarsfeld-Mukai vector bundle EC,A defined by the sequence (16). Its restriction
EA := EC,A ⊗OC to C satisfies h0(S,EC,A) = h0(C,EA) = r + 2.

To a pair (C,EC), where C ∈ |L| and EC ∈ SUC(2, ω, r + 2), using Definition 4.1 we
associate the Koszul moduleW (C,EC) := W (V,K) and its resonance varietyR(C,EC).
Note that since h0(C,ωC) = 2h0(C,E)− 3, we are in the divisorial case of Theorem 2.2.
We denote by MEC

the kernel of the evaluation map H0(C,EC)⊗OC → EC .

Theorem 4.11. One has a canonical identification

j
(
W 1
r+2(C)

) ∼= {EC ∈ SUC(2, ω, r + 2) : R(C,EC) 6= 0
}
.
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Furthermore, for each EC ∈ SUC(2, ω, r + 2) \ j
(
W 1
r+2(C)

)
the map

(19) H1
(
C, Symr+1MEC

)
→ Symr+1H0(C,EC)⊗H1(C,OC)

is injective.

The geometric meaning of the injectivity of the map (19) is mysterious and requires
further study. In what follows we will prove Theorem 1.5.

Recall that [X,L] ∈ F2r+1 with Pic(X) = Z · L and we consider the projections

X × X̂
π1

||

π2

""
X X̂,

and denote by P a Poincaré bundle of rank 2 on X × X̂ . 1 One writes

c1(P) = π∗1h+ π∗2ϕ ∈ π∗1H2(X)⊕ π∗2H2(X̂) and cmid
2 (P) ∈ π∗1H2(X)⊗ π∗2H2(X̂)

for the first Chern class of P respectively the middle class in the Künneth decompo-
sition of c2(P). Following [30] we define the class ψ ∈ H2(X̂) characterized by the
property π∗1h ·cmid

2 (P) = [pt]⊗π∗2ψ ∈ π∗1H4(X)⊕π∗2H2(X̂), where [pt] is the fundamen-
tal class of X . It is also shown in [30] that if one sets

(20) ĥ := ψ − 2r · ϕ ∈ H2(X̂),

then ĥ is a polarization on X̂ satisfying ĥ2 = h2 = 2g − 2 = 4r. We now introduce the
following vector bundles on X̂ having as fibres over a point [E] the spaces H0(X,E)
and H0

(
C,det(EC)

) ∼= H0(C,ωC) respectively, that is,

E := (π2)∗
(
P
)

and F := (π2)∗
( 2∧
P|C×X̂

)
.

Proposition 4.12. The following formulas hold in H2(X̂):

c1(F) = (2r + 1)ϕ and c1(E) =
3r + 2

2
ϕ− ψ

2
.

Proof. We apply Grothendieck-Riemann-Roch to the map π2 and the sheaf P using that(
Riπ2)∗(P) = 0 for i = 1, 2, sinceH1(X,E) = H2(X,E) = 0, for [E] ∈ X̂ . We thus write

c1(E) = c1

(
(π2)∗(P)

)
= (π2)∗

[(
2 + c1(P) +

c2
1(P)− 2c2(P)

2
+
c3

1(P)− 3c1(P)c2(P)

6

)
·(

1+
π∗1c2(ΩX)

12

)]
3

=
1

12
(π2)∗

(
c1(P)·π∗1c2(ΩX)

)
+

1

6
(π2)∗

(
c3

1(P)
)
−1

2
(π2)∗

(
c1(P)·c2(P)

)
.

1A Poincaré bundle P exists only when g ≡ 3 mod 4, that is, when r is odd. When r is even, the class
φ is divisible by two and P does not exist globally. As pointed out in [30], one has to take instead the
universal P1-bundle corresponding to P(P) (which does exist) and carry out the calculation of the class of
the curveR(X̂, C) at that level. Theorem 1.5 remains valid independent of the parity of r.
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Observe that (π2)∗
(
c1(P) · π∗1c2(ΩX)

)
= (π2)∗

(
(π∗1(h) + π∗2(ϕ)) · π∗1c2(ΩX)

)
= 24ϕ.

Furthermore, one also has

(π2)∗
(
c3

1(P)
)

= (π2)∗
(
3π∗1(h2) · π∗2ϕ

)
= 6(g − 1) = 12r · ϕ,

whereas using the Künneth decomposition (π2)∗
(
c1(P) · c2(P)) = (r+ 2)ϕ+ ψ. Substi-

tuting, we obtain the claimed formula for c1(E). The calculation of c1(F) is analogous
by applying Grothendieck-Riemann-Roch to the pushforward of det(P) under π2. First
we compute that c1

(
(π2)∗(

∧2 P)) = (2r + 2) · ϕ, then from the exact sequence on X̂

0 −→ (π2)∗(OX×X̂) −→ (π2)∗(P) −→ F −→ 0,

since c1

(
π2)∗OX×X̂

)
= ϕ, we obtain c1(F) = (2r + 1)ϕ, as claimed. �

Proof of Theorem 1.5. One has a morphism of vector bundle φ :
∧2 E → F over X̂ , whose

fibre over a point [E] is precisely the determinant map d :
∧2H0(X,E) → H0(C,ωC).

Noting that rk(E) = r + 2 and rk(F) = 2r + 1, via the terminology of Theorem 1.1,
the resonance divisor Res(φ) of the morphism φ can be identified with the Voisin curve
R(X̂, C). Using Theorem 1.1 we thus find

[R(X̂, C)] =
(2r)!

r! · (r + 1)!

(
c1(F)− 4r + 2

r + 2
c1(E)

)
=

(2r)!

r! · (r + 1)!

(2r + 1

r + 2
ψ− 2r(2r + 1)

r + 2
ϕ
)
,

which yields precisely the predicted formula. �

Remark 4.13. It is natural to conjecture that for a general C ∈ |L|, the singularities of
the curveR

X̂,C
are nodal. Proving this seems challenging even for small r.

5. GAUSSIAN KOSZUL MODULES AND THICKENINGS OF ALGEBRAIC VARIETIES

An important class of Koszul modules where the triviality of resonance is automati-
cally satisfied is given by the Gaussian maps [41] on projective varieties. Let L be a line
bundle on a smooth complex projective variety X . The Gaussian Wahl map

ψL :
2∧
H0(X,L)→ H0(X,Ω1

X ⊗ L2),

is locally defined by ψL(
∑

i fi ∧ gi) :=
∑

i(fi · dgi − gi · dfi), for fi, gi ∈ H0(X,L).
If X is a smooth curve and L = OX(1), the map ψL is given by associating to a

point p ∈ X the projectivized tangent line Tp(X) ∈ Gr2

(
H0(X,L)∨

)
under the Plücker

embedding of the Grassmannian of lines.

Definition 5.1. Set V := H0(X,L)∨ andK⊥ := Ker(ψL). The associated Koszul module

G(X,L) := W (V,K),

is called the Gaussian module of the pair (X,L).

Since ψL(f ∧ g) = 0 if and only if d
(f
g

)
= 0, it follows that ψL is injective on decom-

posable tensors, thereforeR(V,K) = {0}. In particular, rk(ψL) ≥ 2h0(X,L)− 3. If X is
a smooth curve, the equality rk(ψL) = 2h0(X,L)− 3 holds if and only if the image of X
under the linear system |L| is a rational normal curve, see [11, Theorem 1.3].
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We introduce the vector bundle RL defined by the exact sequence

(21) 0 −→ RL
ι−→ H0(X,L)⊗OX

r−→ J1(L) −→ 0,

where J1(L) is the first jet bundle of L. The map r in (21) can be defined locally by
r(w) = (dw,w). We consider the exact sequence

(22) 0 −→ Ω1
X ⊗ L −→ J1(L)

p−→ L −→ 0

and observe that p◦ r is the evaluation map H0(X,L)⊗OX → L. In particular, one also
has the following exact sequence on X :

(23) 0 −→ RL −→ML −→ Ω1
X ⊗ L −→ 0.

In case L is very ample and we consider the embedding ϕL : X ↪→ P(V ) defined
by V = H0(X,L) and write I for the ideal sheaf of X in this embedding, we have
RL = N∨L ⊗ L = I/I2 ⊗ L.

From (22) we obtain an induced exact sequence

(24) 0 −→ Ω2
X ⊗ L2 −→

2∧
J1(L)

a−→ Ω1
X ⊗ L2 −→ 0,

and consider the composition

a ◦
2∧
r :

2∧
H0(X,L)⊗OX −→ Ω1

X ⊗ L2.

The induced map on global sections is the Gaussian map ψL. Our goal is to give a
cohomological interpretation of the graded components of the Koszul module G(V,K).
To that end, we fix q ≥ 0 and consider the composition

(25) s : Symq+2RL −→ Symq+1RL ⊗RL −→ Symq+1H0(X,L)⊗RL,
where the first one is the natural inclusion, and the second map is Symq+1(ι)⊗ idRL

.

Theorem 5.2. For each q ≥ 0, the components of the Gausssian module G(X,L) are given by

Gq(X,L)∨ = Ker
{
H1
(
X, Symq+2 RL

) t−→ Symq+1H0(X,L)⊗H1(X,RL)
}
,

where the map t = H1(X, s) is induced by (25).

To prove the theorem we first show that K⊥ is also equal to Ker
(
H0(X,

∧2 r)
)
:

Lemma 5.3. The restriction of the map α = H0(X, a) to the image of β = H0(X,
∧2 r) is

injective. In particular we have that Ker(ψL) = Ker(β).

Proof. Since all the sheaves involved are locally free, it suffices to localize at the generic
point of X and show that α is injective on the image of β there. In particular we may
choose a local generator of L and identify elements of W with rational functions on X .
We have that β(w ∧ w′) = (dw ∧ dw′, w · dw′ − w′ · dw) and α is the projection onto the
second component. If x =

∑
iwi · w′i ∈ Ker(α ◦ β), then

0 = α(β(x)) =
∑
i

(wi · dw′i − w′i · dwi).

Differentiating this equality shows that
∑

i dwi ∧ dw′i = 0, so that β(x) = 0, that is, α is
injective on Im(β), as desired. �
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Using (6) and Lemma 5.3 we get that Gq(X,L)∨ is the middle cohomology of

(26) Symq+2H0(L) −→ Symq+1H0(L)⊗H0(L) −→ SymqH0(L)⊗H0
(
X,

2∧
J1(L)

)
.

The second map takes the differential Symq+1H0(L)⊗H0(L)→ SymqH0(L)⊗
∧2H0(L)

and composes it with idSymq H0(L)⊗H0(X,
∧2 r).

Proof of Theorem 5.2. It follows from (21) that for q ≥ 0 we have an exact sequence
(27)

0→ Symq+2RL → Symq+2H0(L)⊗OX → Symq+1H0(L)⊗J1(L) � SymqH0(L)⊗
2∧
J1(L).

Dropping the first term and taking global sections we obtain the middle row of the
commutative diagram

Symq+2H0(L) // Symq+1H0(L)⊗H0(L) //

id⊗H0(X,r)
��

SymqH0(L)⊗H0
(∧2 J1(L)

)

Symq+2H0(L) //

��

Symq+1H0(L)⊗H0(J1(L)) //

id⊗ δ
��

SymqH0(L)⊗H0
(∧2 J1(L)

)
��

0 // Symq+1H0(X,L)⊗H1(X,RL) // 0

where the first row of the diagram is given by (26), and δ is the connecting homomor-
phism associated with the long exact sequence in cohomology of (21). Since p ◦ r is the
evaluation map H0(X,L)⊗OX → L, we get that H0(X, r) is injective.

If we write H for the middle homology of the middle row of the above diagram, it
follows from (26) that

Gq(X,L)∨ = Ker
{
H

u−→ Symq+1H0(X,L)⊗H1(X,RL)
}
,

where the map u is induced by id⊗ δ. Just as in Theorem 2.8, we shall realize H as

(28) H = Ker
{
H1
(
X, Symq+2RL

) v−→ Symq+2H0(X,L)⊗H1(X,OX)
}
,

so H can be thought of as a subgroup of H1
(
X, Symq+2RL

)
. Under this identification,

we claim that u is the restriction of t to H . Moreover, v factors through t, therefore
H = Ker(v) ⊇ Ker(t) and Ker(u) = Ker(t) as desired.

In order to see that v factors through t, we consider the diagram

Symq+2RL
Symq+2(ι) //

s ))

Symq+2H0(X,L)⊗OX

Symq+1H0(X,L)⊗RL

o

44

(commutative up to multiplication by a non-zero scalar) where the map o is induced
by ι and the multiplication Symq+1H0(X,L) ⊗ H0(X,L) −→ Symq+2H0(X,L). Since
v = H1(X, Symq+2(ι)) and t = H1(X, s), it follows that v factors through t.
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To prove the assertion (28) and that u = t|H , we split (27) into short exact sequences

0 −→ Symq+2RL −→ Symq+2H0(X,L)⊗OX −→M −→ 0, and

0 −→M
j−→ Symq+1H0(X,L)⊗ J1(L) −→ SymqH0(X,L)⊗

2∧
J1(L) −→ 0.

By construction, H is the cokernel of the map Symq+2H0(X,L)→ H0(X,M), which is
the same as the kernel of

H1(X, Symq+2RL) −→ Symq+2H0(X,L)⊗H1(X,OX).

We consider the commutative diagram (where ∆ is the natural inclusion)

Symq+2RL //

s
��

Symq+2H0(L)⊗OX //

∆
��

M

j
��

Symq+1H0(L)⊗RL // Symq+1H0(L)⊗H0(L)⊗OX // Symq+1H0(L)⊗ J1(L)

which gives rise by taking cohomology to a commutative diagram

H0(X,M)

��

// H1(X, Symq+2RL)

t
��

Symq+1H0(X,L)⊗H0(X, J1(L))
id⊗ δ // Symq+1H0(X,L)⊗H1(X,RL)

Since u was induced by id⊗ δ, it follows that after identifying H with a subgroup of
H1(X, Symq+2RL) we get that u is the restriction of t, concluding the proof. �

Theorem 5.2 has a more transparent geometric interpretation under suitable assump-
tions.

Corollary 5.4. Let L be a very ample line bundle on a smoooth projective variety X such that
q(X) = 0 and H0(X,Ω1

X ⊗ L) = 0. Then H1
(
X, SymbRL

)
= 0 for all b ≥ r(L).

Proof. The hypothesis q(X) = 0 implies H1(X,ML) = 0. From the exact sequence (23),
we obtain that H0(X,Ω1

X ⊗ L) ∼= H1(X,RL), therefore H1(X,RL) = 0 as well. The
conclusion now follows by applying Theorem 5.2 coupled with Theorem 2.2. �

One can reformulate these results in terms of stabilization of cohomology on the
successive thickenings of the subvariety X ⊆ Pr. For b ≥ 0, we denote by Xb ⊆ Pr the
subscheme defined by the ideal Ib+1 ⊆ OPr , thus we have a system of subschemes

X = X0 → X1 → · · · → Xb−1 → Xb → · · · .
Proof of Theorem 1.6. Suppose the projective variety X ⊆ Pr is embedded by the line
bundle L := OX(1). Then for each b ≥ 1, one has the short exact sequence

(29) 0 −→ SymbN∨L −→ OXb
−→ OXb−1

−→ 0.

Since RL = N∨L ⊗ L, tensoring this exact sequence with Lb and taking cohomology,
we obtain from Corollary 5.4 that the map H0

(
Xb,OXb

(b)
)
→ H0

(
Xb−1,OXb−1

(b)
)

is
surjective for b ≥ r = r(L). The map is also injective, for H0(X, SymbRL) = 0, because
of the injectivity of the map SymbH0(X,L)→ Symb−1H0(X,L)⊗H0(X, J1(L)), where
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we use that our assumptions force the map H0(r) : H0(X, J1(L))→ H0(X,L) induced
by the sequence (21) to be an isomorphism.

We assume now that 0 ≤ a < b and set c := b− a ≥ 1. To complete the proof we have
to show that H i(X, SymbRL ⊗ L−c) = 0, for i = 0, 1. To that end, we use the notation
from the proof of Theorem 5.2. By Kodaira vanishing H1(X,L−c) = 0, thus it follows
that there is a surjection H0(X,M ⊗ L−c) � H1(X, SymbRL ⊗ L−c). Furthermore, we
have an injection H0(X,M ⊗ L−c) ↪→ Symb−1H0(X,L)⊗H0

(
X, J1(L)⊗ L−c

)
.

In order to show that this last cohomology group vanishes, we use the sequence (22).
SinceH0(X,Ω1

X) = 0, clearlyH0(X, J1(L)⊗L−c) = 0, for c ≥ 2. For c = 1, the existence
of a non-zero section inH0(X, J1(L)⊗L∨) implies that the sequence (22) is split. But this
is impossible, for it is known that the Atiyah class ηL ∈ Ext1(L,Ω1

X ⊗ L) ∼= H1(X,Ω1
X)

expressing J1(L) as an extension in the sequence (22) equals precisely the Chern class
c1(L). Since L is very ample, this class cannot be zero.

Finally, in order to show that H0(X, SymbRL ⊗ L−c) = 0, observe that one has an
injection H0(X, SymbRL ⊗ L−c) ↪→ SymbH0(X,L)⊗H0(X,L−c).

�

5.1. Ramification divisors of canonical pencils. We now prove Theorem 1.2. We use
throughout the standard notation [6] for the tautological and boundary classes onMg,n.
We consider the universal curve π : Mg,n+1 → Mg,n endowed with its n tautological
sections whose images we identify with the boundary divisors ∆0:i,n+1 on Mg,n for
i = 1, . . . , n. We consider the Hodge bundle E := π∗(ωπ) and the rank n vector bundle

F := π∗
(
ω3
π|∆0:1,n+1+···+∆0:n,n+1

)
.

One has a morphism φ :
∧2 E → F which fibrewise is given by the composition

0 −→
2∧
H0(C,ωC)

ψωC−→ H0(C,ω3
C)

res−→ H0
(
C,ω3

C|x1+···+xn
)
.

Observe that φ[C,x1,...,xn](s1 ∧ s2) = 0 for 0 6= s1 ∧ s2 ∈
∧2H0(C,ωC) if and only if

x1 + · · ·+ xn lies in the ramification divisor of the cover C → P1 induced by s1 and s2.
For our next result, recall that ψi denotes the class of the line bundle onMg,n having

as fibre over a point [C, x1, . . . , xn] the cotangent space T∨xi(C), for i = 1, . . . , n.

Proposition 5.5. One has c1(F) = 3(ψ1 + · · ·+ ψn).

Proof. One uses the following exact sequence of sheaves on the universal curveMg,n+1:
(30)

0 −→ π∗

(
ω3
π(−

n∑
i=1

∆0:i,n+1)
)
−→ π∗

(
ω3
π

)
−→ F −→ R1π∗

(
ω3
π(−

n∑
i=1

∆0:i,n+1)
)
−→ 0.
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On the one hand we use that c1

(
π∗(ω

3
π)
)

= λ + 3κ, where κ := π∗
(
c2

1(ωπ)
)
, see [6], on

the other hand after an easy application of Grothendieck-Riemann-Roch we can write:

c1

(
π!

(
ω3
π(−

n∑
i=1

δ0:i,n+1)
))

= π∗

[
(1+3c1(ωπ)−

n∑
i=1

δ0:i,n+1+

(
3c1(ωπ)−

∑n
i=1 δ0:i,n+1

)2
2

)
·

(
1− c1(ωπ)

2
+
c2

1(ωπ) + c2(Ωπ)

12

)]
2

= λ+ 3κ− 3

n∑
i=1

ψi,

where we have used the formulas π∗(δ0:i,n+1 · δ0:j,n+1) = 0 for i 6= j, π∗(δ2
0:i,n+1) = −ψi,

as well as the fact that c2(Ωπ) can be identified with the codimension 2 locus of nodes
insideMg,n+1, hence π∗

(
c2(Ωπ)

)
= δ, this being the class of the total boundary ofMg,n.

This leads to the claimed formula by using the sequence (30). �

Proof of Theorem 1.2. We apply Theorem 1.1 to the morphism φ :
∧2 E → F on vector

bundles onMg,2g−3, using Proposition 5.5 and that c1(E) = λ. �

6. RESONANCE, STABILITY AND SPLIT BUNDLES

In this section, we prove that important intrinsic properties of bundles of sufficiently
large degree on a curve, such as instability or being split, can be read off its resonance.
We use the following notation, for a given vector bundleE on a curveC and an integer k

R≥k(C,E) := {a ∈ R(C,E)|∃L ⊂ E line bundle, deg(L) ≥ k, h0(L) ≥ 2, a ∈ H0(L)}

By projectivization, these closed loci provide us with a stratification of the projec-
tivized resonance. Indeed, R≥k(C,E) ⊇ R≥(k+1)(C,E), R≥k(C,E) = ∅ for k � 0, and
R≥d(C,E) = R(C,E) if d equals te gonality of the curve. We call this stratification the
degree stratification.

Theorem 6.1. LetE be a globally generated rank 2 vector bundle on a smooth curve C of genus
g ≥ 1. Assume that deg(E) ≥ 4g + 1 and H1(C,E) = 0. Then

(i) E is not stable (respectively unstable) if and only ifH0(C,E)∨ has an isotropic subspace
of dimension at least h

0(E)
2 (respectively > h0(E)

2 ).
(ii) E splits as a sum of line bundles E = N ⊕M with h0(N ⊗M∨) = h0(M ⊗N∨) = 0

if and only if there exist an integer k and isotropic subspaces V ∨1 , V
∨

2 ⊆ H0(C,E)∨ of
dimension ≥ 2 such that H0(C,E)∨ = V ∨1 ⊕ V ∨2 andR≥k(C,E) = V ∨1 ∪ V ∨2 .

Proof. (i) AssumeE is not stable, and let L ⊆ E be a maximal destabilizing line subbun-
dle. Since deg(L) ≥ deg(E)

2 ≥ 2g, the bundle L is non–special and globally generated.

Therefore h0(C,L) ≥ h0(C,E)
2 and H0(C,L) ⊆ H0(C,E) is isotropic.

Conversely, let us assumeU ⊆ H0(C,E) is isotropic of dimension at least h
0(E)
2 . Then

U generates a line bundle N ⊆ E. If N is non-special, then it destabilizes E. If N is
special, by Clifford’s Theorem

deg(N) ≥ 2h0(C,N)− 2 ≥ h0(C,E)− 2.
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Furthermore, by Riemann-Roch Theorem we obtain h0(E)− 2 = deg(E)− 2g ≥ deg(E)
2 .

In conclusion, N destabilizes E. The unstable case goes through similarly, noting that
since deg(E) ≥ 4g + 1, we have h0(C,E)− 2 > deg(E)

2 .

(ii) Assume E = N ⊕ M splits and h0(N ⊗ M∨) = h0(M ⊗ N∨) = 0. Put k =
min{deg(N), deg(M)}. Assume, for simplicity, k = deg(N). Since E is globally gener-
ated and h1(C,E) = 0, it follows that both N and M are globally generated and non-
special. Put V1 := H0(C,N) and V2 := H0(C,M). These two subspaces are isotropic
and H0(C,E) = V1⊕V2. We prove thatR≥k(C,E) = V ∨1 ∪V ∨2 . Let a ∈ R≥k(C,E)\{0},
then there exists b such that 0 6= a ∧ b ∈ K⊥ and hence a and b span a line bundle L
of degree at least k inside E = N ⊕M . It the induced map L → N is non-zero, then
L = N and, since h0(M ⊗ N∨) = 0, it follows that the map L → M is zero, which
implies a ∈ V ∨1 . If the map L→ N is zero, then a ∈ V ∨2 .

Conversely, assume we are given isotropic subspaces V1, V2 ⊆ H0(C,E) such that
H0(C,E)∨ = V ∨1 ⊕ V ∨2 and R≥k(C,E) = V ∨1 ∪ V ∨2 . Let N and M be the line bundles
of degree at least k contained in E generated by V ∨1 and V ∨2 respectively. By isotropy, it
follows thatN andM are globally generated with V ∨1 ⊆ H0(C,N) and V ∨2 ⊆ H0(C,M).
Since H0(C,N) and H0(C,M) are also isotropic, and hence contained in the resonance,
the are in fact contained in R≥k(C,E). The assumption R≥k(C,E) = V ∨1 ∪ V ∨2 implies
V ∨1 = H0(C,N) and V ∨2 = H0(C,M).

Claim 1. The natural map N ⊕M → E is injective. Indeed, otherwise its image is a
line bundle L of degree at least k. Passing to global sections we obtain

V ∨1 ⊕ V ∨2 → H0(C,L) ⊆ H0(C,E)

and the composition is the identity. In conclusion the inclusion L ⊆ E yields an equal-
ity H0(C,L) = H0(C,E). Since H0(C,L) is isotropic, and hence contained in the reso-
nance, we findR≥k(C,E) = H0(C,E)∨, in contradiction with the hypothesis.

Claim 2. h1(C,N) · h1(C,M) = 0. Assume on the contrary that both N and M are
special. By Clifford’s Theorem we obtain

h0(C,N) ≤ deg(N)

2
+ 1, h0(C,M) ≤ deg(M)

2
+ 1

and hence

h0(C,E) = h0(C,N) + h0(C,M) ≤ deg(N) + deg(M)

2
+ 2.

On the other hand, from Claim 1 we have deg(N)+deg(M) ≤ deg(E) which imples that

h0(C,E) ≤ deg(E)

2
+ 2.

Since h1(C,E) = 0, by Riemann–Roch deg(E) ≤ 4g, contradicting the hypothesis.

Claim 3. Suppose h1(C,N) = 0. Then L := E/N is torsion-free. Indeed, if it has
torsion, then we consider the line bundleN ′ := Ker{E → L/tors(L)} ⊆ E which is also
of degree at least k, and an inclusion N ( N ′. Since N is non-special, N ′ is also non-
special and by Riemann-Roch H0(C,N) ( H0(C,N ′). Note however that H0(C,N ′) is
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isotropic, therefore contained in the resonance, contradicting that H0(C,N) is a com-
ponent ofR≥k(C,E).

Having proved these claims, we conclude. Denoting by α : M → L the composi-
tion, note that α 6= 0 for otherwise M ⊆ N , contradicting the hypothesis. Since N is
non–special, the equality H0(C,E) = H0(C,N) ⊕H0(C,M) and the long cohomology
sequence of the sequence

0→ N → E → L→ 0

shows that H0(α) : H0(C,M) → H0(C,L) is an isomorphism. Since E is globally gen-
erated, it follows that L is globally generated as well. We have the following situation:
M and L are globally generated line bundles, and α : M → L is a morphism inducing
an isomorphism on global sections. It implies that α is surjective, and hence it is an
isomorphism, providing us with a splitting E ∼= N ⊕M . To prove that h0(M ⊗N∨) = 0
observe that any non-zero section in H0(M ⊗ N∨) gives an embedding N ⊂ N ⊕M
with torsion–free quotient which yields to elements inR≥k(C,E) that are neither in V ∨1
nor in V ∨2 . �

Remark 6.2. For (ii), the bound deg(E) ≥ 4g + 1 in the assumption of Theorem 6.1
can be improved to 4g if C is non-hyperelliptic. Indeed, in Claim 2, the inequalities
resulting from Clifford’s Theorem are strict.

Remark 6.3. The resonance of split bundles is in general much more complicated than
the union of two subspaces. The easiest example is obtained on the projective line for
the bundle O(1)⊕O(1) whose resonance is a smooth quadric in the three–dimensional
projective space. In this case, the stratification consists of only one stratum, the maximal
one.

A more elaborate example is the following. Suppose C is an elliptic curve, p 6= q
are two points on C, and E = OC(3p) ⊕ OC(3q). Then the projectivized resonance
R(C,E) has three connected components, all of dimension two, namely, the planes
PH0(C,OC(3p)), PH0(C,OC(3q)), and a ruled surface over the curve Pic2(C) = C.
This description follows directly from [3], Proposition 6.1, observing that for any L ∈
Pic2(C) we have h0(C,E(−L)) = 1. Note that, in this case, we have R≥3(C,E) =
PH0(C,OC(3p)) ∪PH0(C,OC(3q)) which shows that the bound in the theorem above
is not sharp.
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Email address: jerzy.weyman@uj.edu.pl


	1. Introduction
	2. Basics on Koszul modules
	3. The Chow form of the Grassmannian of lines and alternating degeneracy loci
	4. Koszul modules associated to vector bundles
	5. Gaussian Koszul modules and thickenings of algebraic varieties
	6. Resonance, stability and split bundles
	References

