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ABSTRACT. We discuss various applications of a uniform vanishing result for the graded
components of the finite length Koszul module associated to a subspace K C A*V,
where V' is a vector space. Previously Koszul modules of finite length have been used
to give a proof of Green’s Conjecture on syzygies of generic canonical curves. We now
give applications to effective stabilization of cohomology of thickenings of algebraic va-
rieties, divisors on moduli spaces of curves, enumerative geometry of curves on K3
surfaces and to skew-symmetric degeneracy loci. We also show that the instability of
sufficiently positive rank 2 vector bundles on curves is governed by resonance and give
a splitting criterion.

1. INTRODUCTION

Given a suitably nice space (for instance a compact Kdhler manifold) X, one can view
its cohomology ring H*(X, C) as a module over its exterior algebra E := A\ H'(X,C).
Multiplication with a class a € H*(X, C) defines a complex on H*(X,C) and the jump
loci for the cohomology of these complexes lead to the definition of the resonance vari-
ety R(X) of X, which turned out to be instrumental in several investigations involving
generic vanishing on varieties, see for instance [8], [15], [22], [26]. This definition has
then been extended by Suciu and Papadima [32] first to the case of finitely generated
groups and then in [33] to an entirely algebraic context. For important applications
of these techniques to Torelli groups we refer to [14] and references therein. Closely
related to the concept of resonance is the definition of a Koszul module, initially intro-
duced in [32] and [33] to explain via the BGG correspondence homological properties of
Alexander invariants (and more generally of quadratic algebras), then further studied
in a purely algebraic context in [1] and [2]. We recall now this set-up.

Suppose V is an n-dimensional complex vector space and let us fix a linear subspace
K C A?V. We denote by K+ = (A*V/K)Y C A*V" the orthogonal of K, viewed as
the space of skew-symmetric bilinear forms on V' vanishing on K. Let S := Sym(V') be
the polynomial algebra over V' and consider the Koszul complex

3 2
s AVeSsS B AVes Bves s —cC—o.
According to [33], [1], [2], the Koszul module associated to (V, K) is the graded S-module

W(V,K) = Coker{/g\ Vs — (/2\ V/K) ® 5},
1
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where the map in question is the projection AV ® S — (A?V/K) ® S composed with
the Koszul differential d3. The grading is inherited from Sym V' under the convention
that A? V/K is placed in degree 0. It is straightforward to see that the graded piece
W, (V, K) of the Koszul module can be identified with the cohomology of the complex

K ® Sym?V ﬁ V ® Sym?tt v 5ﬂ>1 Sym?2V.

It is shown in [33, Lemma 2.4] that the support of the Koszul module W (V, K) in the
affine space V'V, if non-empty, coincides with the resonance variety

R(V,K) = {a € VV : thereexists b € V¥ such thata Ab € K+ \ {O}} u{0}.

In particular, W(V, K) has finite length if and only R(V, K) = {0}. In [2] (see also
[1, Theorem 1.3]), we found an optimal characterization of those subpaces K C /\2 %4
having trivial resonance and established the following equivalence:

1) R(V,K) = {0} <= W,(V,K) =0 for q > dim(V) — 3.

We refer to Theorem 2.2 for a precise formulation of this result. The paper [2] presents
applications of the equivalence (1) to geometric group theory in the case G is a finitely
generated group, V = H;(G,C) and K+ = Ker{Ug: \*H'(G,C) — H*(G,C)}. On
the other hand, we explained in [1] how by specializing to the tangent developable
of a rational normal curve in PY, one can prove Green’s Conjecture [21] on syzygies of
generic canonical curves of genus g by applying the equivalence (1) to the case of the
Weyman module, which is a particular Koszul module corresponding to the choice V' =
Sym™!(U) and K = Sym?"~*(U), with U being a 2-dimensional vector space. This has
led to an alternate approach to Green’s Conjecture (including an essentially optimal
result in positive characteristic) different from the one of Voisin’s [38], [39].

This paper is devoted to the study of other important classes of Koszul modules
with vanishing resonance that appear naturally in algebraic geometry. First, recalling
that V' is an n-dimensional complex vector space, we note that if R(V, K) = {0} then
dim(K') > 2n—3. We provide a refinement involving multiplicities of the equivalence (1)
in the case of (21— 3)-dimensional subspaces K C A\? V' as an equality of two particular
divisor on the Grassmannian G := Grg,_3 ( /\2 V) parametrizing such subspaces, see
Theorem 3.4. Denoting by Dg,.; the divisor consisting of subspaces [K| € G such that
Wy—3(V, K) # 0 (with its natural scheme structure) and by Dg,, the divisor consisting
of those [K] € G with R(V, K) # {0}, we have an equality of divisors

) Dﬁasg = (n - 2) * Dares

on the Grassmannian G. An immediate application of the equality (2) is then the calcu-
lation of what we call the resonance divisor of a morphism of vector bundles

2
¢: \E—F,

where £ and F are vector bundles on a stack X with rk(£) = e and rk(F) = 2e — 3. We
denote by PRes(¢) the locus of points # € X such that the map ¢(z): A\?E(x) — F(zx)
contains a pure tensor 0 # s1 A s in its kernel. A parameter count quickly shows that
when ¢ is sufficiently general, fes(¢) is a divisor on X.
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Theorem 1.1. Given a morphism ¢: N\* £ — F of vector bundles over X with rk(£) = e and
rk(F) = 2e — 3, assuming Res(¢) is a divisor on X, its class is given by the formula

Phes(9)] = _f; _‘(‘f’_ CEAREE

QQQGCH%Q.

Theorem 1.1 has numerous applications in moduli theory, one of them on the Ko-
daira dimension of the moduli space of Prym varieties having been presented in [18].
While referring to Theorem 1.5 for further applications to K3 surfaces, we discuss one
consequence of Theorem 1.1 to the geometry of the moduli space M, ,, of n-pointed
stable curves of genus g. For a smooth curve C, a canonical pencil is the degree 2g — 2
cover C — P! induced by two canonical forms without common zeroes. Since C has
a (29 — 4)-dimensional family of canonical pencils each of them having finitely many
ramification points, imposing the condition that 2g — 3 marked points are ramification
points of such a pencil yields a divisorial condition in moduli.

Theorem 1.2. The class of the divisor €p, of pointed curves C,x1,...,029-3] € ﬂggg,g
such that 1, .. ., xo4—3 are ramification points of a canonical pencil on C'is equal to

(2g —4)! (_2(29 —3)
(g=2)!- (g -1

29—3

A+33 ) € CH (Myay-5).
=1

[Cpy| =

Here ) is the Hodge class, whereas v; denotes the cotangent class on M 2,3 corre-
sponding to the i-th marked point. Theorem 1.2 follows directly from Theorem 1.1 by
letting £ to be the Hodge bundle on M, 5,_3, whereas F is the vector bundle having as
fibre over a point [C, z1, ..., 24—3] € May_3 the vector space H’(C, ‘*%\x1+m+a:2g_3)'
Koszul modules associated to vector bundles. One can naturally associate a Koszul

module to any vector bundle as we shall describe next. Suppose E is a vector bundle
on an algebraic variety X and consider the determinant map

2 2
d: NH'(X,E) - H(X, \ E).

This gives rise to the following Koszul module

2
(B) W(X,E):=W(V,K), where V := H*(X,E)" and K := Ker(d)" C /\ V.

If we let R(X,E) := R(V,K) for V and K as above, then the non-triviality of the
resonance amounts to the vector bundle E carrying a subpencil, that is, a line subbundle
L with h%(X, L) > 2. We show in §4, that the equivalence (1) can be reformulated in
this context as follows:

Theorem 1.3. Let X be a projective variety with H*(X,Ox) = 0 and let E be a globally
generated vector bundle on X. Then one has an isomorphism

Wy(X, E) = H' (X, Sym™? Mg) ",

where M, denotes the kernel of the evaluation morphism H(X, E) ® Ox — E. If moreover
E has no subpencils, then it follows that H' (X, Sym?**Mg) = 0, for ¢ > h°(X, E) — 3.
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Theorem 1.3 is particularly interesting for a polarized K3 surface (X, L), where L is
an ample line bundle on X with L? = 2g — 2. Recall that the Mukai vector of a sheaf
E on X is defined as v(E) := (rk(E),det(E), x(E) — tk(E)) € H*(X) and that My (v)
denotes the moduli space of L-semistable sheaves on X having Mukai vector v, see
§4.1 for further details. A Lazarsfeld-Mukai bundle is a globally generated vector bundle
E on X with HY(X,E) = H?*(X,E) = 0. If E is a Lazarsfeld-Mukai bundle with
Mukai vector v(E) = (r, L, s), then M}, is also a Lazarsfeld-Mukai bundle with vector
v(M}) = (s, L,r). Lazarsfeld-Mukai bundles have been instrumental in Voisin’s proof
of the Generic Green Conjecture [38], [39], Lazarsfeld’s proof of the Petri Theorem [27],
or in the recent proof of the Mercat Conjecture [7]. In the case of K3 surfaces, Theorem
1.3 implies the following result:

Theorem 1.4. Let X be a polarized K 3 surface with Pic(X) = Z- L and let E be a Lazarsfeld-
Mukai bundle on X with v(E) = (r, L, s). Then forall b > r + s — 1 one has

H'(X,S8ym"E) = 0.

In connection with Green’s Conjecture, of particular relevance is the case ¢ = 2r
for r > 2, when E is the unique Lazarsfeld-Mukai bundle on X having Mukai vector
v(E) = (r,L,2). Theorem 1.4 reads in this case

H'(X,Sym"™ E) =0.

Remarkably, an independent geometric proof of the vanishing H' (X, Sym"*' E) = 0
(whose failure is a divisorial condition on the moduli space F, of polarized K3 surfaces
of genus g) would give yet another proof, different from Voisin’s [38], [39] or from those
of [1], [34] of the Generic Green Conjecture. Note that in this case

= ((2) (0 (2)

The Voisin curve of a polarized K3 surface of odd genus.

Assume now that (X, L) is a polarized K3 surface of odd genus g = 2r +1 > 11,
with Pic(X) = Z - L. The moduli space X =M (2, L, ) turns out to be a smooth K3
surface, called the Fourier-Mukai partner of X. Furthermore, as explained in [30], there
is a canonical way to endow X witha genus g polarization h.

We fix a general curve C' € |L|, thus via Lazarsfeld’s result [27], the curve C is Petri
general of genus 2r + 1 and W}, ,(C) is a smooth curve. Voisin [37] associated to any
pencil A € W} ,(C) the Lazarsfeld-Mukai rank 2 bundle Ec 4 € X, whose restriction
Ey = Ec 4 ® Oc to C sits in an extension

0—A—FEs—we®A —0,

such that h°(C, EA) = ho(C, A) + hO(C,we ® AY) = r + 2, see also [4]. This assignment
induces a map W, ,(C) — X. Since for a general [E] € X, the restriction E4 has
canonical determinant and h°(C,wc) = 2h°(X, E) — 3, we observe that the locus of
vector bundles [E] € X whose restriction to C' has non-trivial resonance is a curve on

X, which we call the Voisin curve of the pair (X, C'). We have the following application
of Theorem 1.1 concerning the class of this curve:
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Theorem 1.5. Assume Pic(X) = Z- Land let C € |L| with g(C) = 2r + 1. The Voisin curve
R(X,0) :={[E] € X : R(C, Ec) # 0}
is a curve in the linear system
‘ (2r+1)! A’.
rl-(r+2)!
Furthermore, the map W, ,(C) — R(X, C) is a resolution of singularities of R(X, C).

Gaussian Koszul modules.

Gaussian maps provide another context where Koszul modules appear naturally.
Suppose L is a very ample line bundle on a complex projective variety X and denote
by ¢r: X — P" = P(HY(X,L)") the corresponding embedding. Let Z C Opr be the
ideal sheaf of X. We then consider the Gaussian map

2
v \NHY(X, L) = HO(X,Qy @ L*),  ¢(f Ag) = fdg — gdf.

The cokernel of ¢;, parametrizes deformations of the cone over the embedded variety
X C P"inside P"*!. Wahl showed [40] that for a curve C lying on a K3 surface, the map
. is not surjective. A remarkable converse of this result has been recently established
by Arbarello-Bruno-Sernesi [5].

We fix (X, L) and set V := H°(X, L)Y and K+ := Ker(¢/r,), to obtain a Koszul module
G(X, L) :==W(V,K)

whose resonance is always trivial. We have the following result, indirectly concerning
the Koszul module G(X, L):

Theorem 1.6. Let X C P be a smooth variety satisfying q(X) = 0 and H°(X, Q4 (1)) = 0.
If X, C P" is the b-th infinitesimal neighborhood of X defined by the ideal Z°*1, then the maps

HO (Xb, OXb (a)) — HO (bel, OXb—l (a))
are isomorphisms for all b > a > r.

A more general version of Theorem 1.6, without any assumptions on X, is provided
by Theorem 5.2. To place this result into context, we recall that Hartshorne [23] showed
that for a vector bundle 7 on P" and a closed subvariety X C P7, for all j > 0 the
maps H7(X,, F ® Ox,) — H?(Xy_1,F ® Ox, ,) are isomorphisms if b > 0. A quan-
titative version of these results for 7 = Opr(a) has been recently obtained in [10]: The
restriction maps

HY (X, 0x,(a)) = HY (Xp-1,0x,_, (a))
are isomorphisms for all j > 0 as long as b > dim(X)+a+ 1, see [10, Remark 2.18]. Our
Theorem 1.6 can be viewed as a significant improvement (under certain assumptions)
of this result at the level of global sections.

Concerning the hypothesis of Theorem 1.6, they are satisfied for most Fano varieties
(for instance for all Hermitian Symmetric Spaces of type A, B, C or D, see [36]). Also,
if X is a Fano threefold then always ¢(X) = 0, whereas from the Iskosvskikh-Mukai
classification it follows that the condition H°(X, Q% (1)) # 0 implies that X is of index
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one and has genus 10 or 12, see [25]. The hypothesis of Theorem 1.6 are also satisfied
for many varieties of Kodaira dimension zero. For instance, if (X, L) is a polarized K3
surface of degree L? = 2g — 2, the condition H° (X , Qk ® L) = 0 is equivalent to the
statement that a general curve of genus g lies on a K3 surface and is thus satisfied if
and only g <9 or g = 11, see [9].
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2. BASICS ON KOSzZUL MODULES

We recall the basic definitions of Koszul modules following [1], [2], [33]. For sim-
plicity, we stick to characteristic zero and let V be a complex vector space of dimen-
sion n > 2 and denote by S := Sym V' the symmetric algebra of V. We consider the
standard grading on S, where the elements in V' are of degree 1. We fix a linear sub-
space K C AV of dimension m and denote by v: K — AV the inclusion and let
Kt :=Ker(.Y) € A\’ VY. We introduce the Koszul differentials

p—1

p
5p: N\Ves— A\ves,

p
Sp(r A Avp @ f) =D (=1 oy A AT A Ay @ 5.
j=1

We have a decomposition 6, = P, d,q into graded pieces, where
p—1

p
(4) Opg: \V&Sym?V — A\ V@ Sym™' V.

The Koszul module W(V, K) defined in the Introduction is a graded S-module,
whose degree ¢ component has the following description.

3 2
) W,(V,K) = Coker{ AV ®Sym? 'V — ( A V/K) ® Sym? V}.
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Since the Koszul complex is exact, it is often convenient to realize W, (V, K) as the
middle cohomology of the following complex of vector spaces:

62,Q|K®Squv 1,q+1

1
(6) K ® Sym?V V ® Sym?t v Symi*2V.

As pointed out in [33] and further explained in [1], [2], the construction of Koszul
modules displays good functoriality properties. For instance, if K € K’ C A*V are
linear susbspaces, one has an induced surjective morphism of graded S-modules
@) W(V,K) - W(V,K').

2.1. Resonance varieties. Building on work of Green-Lazarsfeld [22], Dimca-Papadima-
Suciu [15] and others, Papadima and Suciu [33] gave an algebraic definition of the res-
onance variety associated to a pair (V, K') as above, which we now recall.

Definition 2.1. The resonance variety associated to the pair (V, K) is the locus
8 R(V,K):= {a € VY : thereexists b € VV such thata A b € K+ \ {0}} u {0}

The resonance variety R(V, K) is the union of 2-dimensional subspaces of V" param-
eterized by the intersection PK+ N Gro(VV), where Gro(VY) C P(A* V") is the Pliicker
embedding. Setting up the diagram

= T GI‘Q(V\/)

J{pl

PVV
where 2 C PV x Gra(VV) is the incidence variety, we observe that R(V, K) is the affine
cone over the following projective variety

R(V,K) := pi (7 1 (PK* N Gra(VY))),

which we refer to as the projectivized resonance variety of (V, K'). Note that the correspon-
dence p; o ! mapping a point [a A b] € PK+ N Gry(VV) to the line £, in PV passing
through [a] and [b] gives a natural bijection between PK+ N Grz(VY) and the set of lines
contained in R(V, K), whose inverse is £y +— 7(p; *([a]) N py ([0])).

It was showed in [33, Lemma 2.4] that away from 0, the support of the graded S-
module W (V, K) inside V" coincides with the resonance variety R(V, K). In particular,
) PK+NGry(VY) =0 <= R(V,K) = {0} <= dimcW (V, K) < ooc.

In [1] we provide a sharp vanishing result for Koszul modules with vanishing reso-
nance. This is the starting point for many of the geometric applications in this paper.

Theorem 2.2. Let V be a complex n-dimensional vector space and let K C \* V be a subspace

such that R(V, K) = {0}. We have that W, (V, K) = 0 for all ¢ > n — 3. Furthermore, if

R(V, K) = {0}, then the following inequality holds
n—i—q—l) (n—2)(n—q—3)

q q+2

with equality if dim(K) = 2n — 3.

diqu(V,K)§< ,forq=0,...,n—4,
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The connection between resonance and Koszul modules shows that the resonance
carries a natural scheme structure which, in some cases might be non-reduced. In the
forthcoming paper [3] we shall have a close look at this phenomenon.

2.2. Isotropy and separability. (see [3]) In geometric situations (like those when the
resonance variety parametrizes complexes with jumping cohomology in the spirit of
[15]), the resonance variety R(V, K) often enjoys further properties, which we summa-
rize in a definition. Before formulating it, let £ := /\ V" be the exterior algebra on the
vector space V'V, and write (U) g for the ideal in E generated by a subset U C E.

Definition 2.3. We say that a subspace V"' c V'V is
e Isotropic, if \? vV'c Kl
o Separableif K+ (V' )g C N2V,
e Strongly isotropic if it is separable and isotropic, that is, if K- N <VV) r=N\? a8
Similar definitions can be given for the projective subspaces of PV".
Definition 2.4. We say that the resonance variety R(V, K) is
e Linear, if R(V, K) is a union of linear subspaces of V'V, that s,

R(V,K)=V1U---UV,.

e Isotropic, separable, or strongly isotropic if it is linear and each component Viv of
R(V, K) is isotropic, separable, or strongly isotropic, respectively.

For the relevance of these conditions in the case of resonance varieties associated to
hyperplane arrangements we refer to [12]. In the paper [3] we relate separability to the
reduceness of the projectived resonance scheme and establish an optimal effective ver-
sion of Chen’s rank conjecture for Koszul modules with strongly isotropic resonance.

Note that if two lines contained in R(V, K) intersect, then the whole plane they gen-
erate is contained in R(V, K). If [a] € R(V, K), then the projectivization of the subspace

Fla):={be V" :a/\bGKl}
is contained in R(V, K') and is the maximal projective subspace inside R(V, K) that
passes through [a]. Moreover the set {[a A b] : b € F(a)} is contained in G N PK*.
Lemma 2.5. The map PV 3 [a] — dim(F (a)) is upper—semicontinous.

Proof. Consider F the kernel of the composed sheaf morphism on P := PVV

2 2
VY@ O0p(-1) — AVY®0p — AVY/K* @ Op.

Then F(a) as defined above can be identified with the fibre of F at [a| and we apply

g

Grauert’s Theorem.

Proposition 2.6. If [a A b] is an isolated point of PK N Gra(V'V), then the line £y, joining [a]
and [b] is an isotropic connected component of R(V, K).
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Proof. We prove first that the line ¢,, € PV"V is a connected component of R(V, K).
Since [a A b] is an isolated point, and the projectivization of {a AV : V' € F(a)} would
be contained in PK+ N Gry(VY), it follows that F(a) is 2-dimensional, spanned by a
and b. Denote this subspace by VY By semicontinuity, for each o’ in a neighborhood of
[a] in R(V, K), we have dim(F(a’)) = 2. If £, is not a connected component, then we
have a sequence ([a,])n € R(V, K) \ 44 converging to [a]. Without loss of generality, we
assume a,, — a in R(V, K) and dim(F(a,)) = 2 for all n. Hence we obtain a sequence
of lines (¢,,),, contained in R(V, K') and different from ¢,;, converging to the limit ..
This corresponds to a sequence of points in PK N Gry (V") converging to [a A b], which
is impossible. The isotropy of vV is straightforward. Indeed, it is isotropic if and only
if a A b € K+, which is true by hypothesis. O

Proposition 4.10 provides one application of Proposition 2.6 in geometric setting.

3. THE CHOW FORM OF THE GRASSMANNIAN OF LINES AND ALTERNATING
DEGENERACY LOCI

We begin by recording a well-known sufficient conditions for the supports of two
Cartier divisors on an algebraic variety to be equal. Let X be a smooth quasi-projective
variety and A and B vector bundles on X of the same rank r and let ¢: A — Bbea
vector bundle morphism. Assume its degeneracy locus

D(p) := {x € X :tk{p(z) : A(z) — B(z)} <r— 1}.

is a Cartier divisor on X, that is, D(¢) # X and that for any point « in an irreducible
component Z of D(y), we have dim Ker(p(z)) > k. Then Z enters with multiplicity
at least k£ in D(y). We shall use the following well-known fact, presented here for the
convenience of the reader.

Lemma 3.1. Let Y be an irreducible projective variety and U C Y an open subset with
codim(Y \ U,Y) > 2. Assume A and B are vector bundles of the same rank on U, and
we are given a morphism p: A — B, whose degeneracy locus D1 = D(p) is a genuine
divisor. Let Do be a reduced Cartier divisor on U such that Supp(Ds2) C Supp(D;) and
[D1] = k[Ds] € CHY(U) for some positive integer k. If for any x € Supp(Ds) we have
dim Ker(p(x)) > k, then Supp(D1) = Supp(D2) and Dy = k - Dy as divisors.

Proof. The hypotheses imply that the only effective divisor D on U whose rational class
is zero is the zero—divisor itself. Indeed, if D # 0, then its closure D in Y satisfies
D - gim)=1 > 0 for any ample divisor H on Y, a contradiction. We apply this to
the divisor D := D; — kD3, which is effective, for, as explained, D; enters in D; with
multiplicity at least k. O

Throughout this section let V' be an n-dimensional complex vector space and set
G := Groy,_3 ( /\2 V). Theorem 2.2 offers a set-theoretic description of the Koszul divisor

Ditoss = {K €G:Wy_s(V,K) # 0}.

The fact that Dy, is a divisor on G follows once we observe that if / is the universal
rank—(2n — 3) subbundle on G, then Dy, is the degeneracy locus of the morphism
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(10) v: U@ Sym" 3V — Og @ Im(d2,n_3),

which in the fiber over a point [K] € G is given by the Koszul differential d5 ,,—3. Theo-
rem 2.2 implies that v is non-degenerate; for instance if we write V = Sym"~!(U), with
U being a 2-dimensional vector space, then we have established in [2] that the point

2
|:K = Smen_4 U C /\ Symn_l U:| ¢ Dﬁosga

and therefore + is non-degenerate and Dg,; is a genuine divisor on G.

On the other hand, we can consider the Cayley—Chow form of the Grassmannian
Gr2(VY) C P(A\* V). Explicitly, this divisor is the locus

Doses 1= {K € G:P(KL) N Gro(VY) # @}

and comes with an induced scheme structure. Theorem 2.2 (see Theorem 1.3 from [1] for
a version in positive characteristic) can then be formulated as a set-theoretic equality:

(11) Supp(pﬂ‘{es) = Supp(DRosz,)-

The divisor classes of Dy.s and Dagos; are easy to describe in terms of the generator
L = det(U") of the Picard group Pic(G), which is the hyperplane section bundle com-
ing from the Pliicker embedding of G. It follows from (10) that the degree of Dg,;
equals the dimension of Sym"~3(V), which proves that the divisor class of Dg,s; equals

12) [Digos;]) = <2n B 4) £].

n—1
To compute the class of Dy,; we recall that the degree of a Cayley—-Chow form equals
the degree of the variety to which it is associated [13, Corollary 2.1], which in our case
is equal to the Catalan number C,,_o = 1 (2”_4), see [17, Proposition 4.12]. Hence, we

n—1\n—2
have that the divisor classes of Dg,s; and Di, are related by

(13) [,Dﬁoﬁﬂ = (n — 2)[Dares)-
Lemma 3.2. We have a set-theoretical inclusion Supp(Dgpes) C Supp(Dios;)-

Proof. Let [K] € Dpyes. By Theorem 2.2, the Koszul module W (V, K) is of infinite length.
Since it is generated in degree zero, it follows that W,(V, K) # 0 for all ¢ > 0, and in
particular W,,_3(V, K) is also non-zero. O

Lemma 3.3. For any [K] € Dg.s we have dim Wy (V, K) > g+ 1, forall ¢ > 0.

Proof. For [K| € Dy, it follows from (8) and (9) that we may find a basis {vy,...,v,}
of V such that vy Avy € K+. We get that K C K’, where K’ C /\2 V is the codimension
one subspace with basis v;Av; with 1 < i < j < nand (¢,5) # (1,2). A direct calculation
shows that the Hilbert series of W (V, K') equals } (g + 1)t, while (7) proves that
the graded module W (V, K) is a quotient of W (V, K), concluding our proof. O
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The following result is a refinement of Theorem 2.2 and provides an explicit descrip-
tion, including multiplicities, of the Chow form of the Grassmannian Grz(V") in its
Pliicker embedding.

Theorem 3.4. One has the following equality of divisors on G
Dﬁusg = (n - 2) * Dares-

Proof. If n = 3 then m = 3 and therefore K = A\?V, which implies that W (V, K) = 0.
Assume from now on n > 4 and we take D; := Dgos; and Do := Dges, for which
we apply Lemma 3.1: we know by Lemma 3.2 that Supp(D2) C Supp(D;), while (13)
shows that [D1] = (n — 2) - [D2]; by Lemma 3.3 with ¢ = n — 3, it follows that over the
point [K| € Supp(Dz) the fiber of the map (10) has cokernel W,,_3(V, K') of dimension
at least ¢ + 1 = n — 2, so Lemma 3.2 applies with £ = n — 2 showing the equality of
divisors D; = (n — 2) Dy, as desired. O

Remark 3.5. One has two remarkable equalities of divisors, namely Dgos; = (11—2)-Dares
on G, respectively the equality Gy3 = (n — 2) - M, 5, ; on the moduli space Ma, 3
of curves of genus 2n — 3, where M3, 5, is the (n — 1)-gonal locus, whereas

61)3 = {[C] S Mgn_g : Kn_271(0, wc) 75 O}

is the locus of curves with a non-trivial (n — 2)nd syzygy in their canonical embedding.
It would be highly interesting to establish a direct geometric connection between
these equalities and also explain the occurrence of the same multiplicity n — 2.

3.1. The resonance divisor of a skew-symmetric degeneracy locus. We present now
an application of Theorem 3.4 to a situation appearing frequently in moduli theory.
Assume we are given two vector bundles £ and F over a stack X such that rk(€) = e
and rk(F) = 2e — 3 where e > 3, and a generically surjective morphism of vector
bundles

2
¢: \NE—F.

Identifying the Grassmannian Gr2(£(z)) € P(A” £(x)) of lines in the fibre £(z) over
a point x € X with the (projectivization of the) space of rank 2 exterior tensors on £(z),
the numerical conditions at hand imply that the locus

2
Res(¢) = {:z:EX:EIO;ésl/\SQG/\S(x):¢(31A52):0}

is a virtual divisor on X. We assign a divisor structure to this locus as follows.

Let ¥ be the variety consisting of pairs (¢, K'), where ¢ € Hom(A?C¢, C>**~?%), and
K C Ker(y) is a subspace of codimension 2e — 3. For a morphism of vector bundles
¢: \?*E — F as above, over a trivializing open set U C X consider the fibre product

E(¢) =U XHom(/\2 (Ce’(c2673) )Y
endowed with the projections 71 : £(¢) — X and m: £(¢) — Grae_3(A\*(C%)V).

Definition 3.6. We define the virtual divisor SRes(¢) of the morphism ¢: A\*E — F lo-
cally over a trivializing open set U as Res(¢) | := (1)« (W;me) = ;12(771)* (775‘1);3053).
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We can now prove Theorem 1.1, which provides a formula for the class of this locus
in terms of the first Chern classes of £ and F:

Proof of Theorem 1.1. We may assume e > 4 and consider the chain of morphisms

8y 2 i
£ @ Sym"2(€)/ Sym* (&) 25 N\ £ @ Sym 3 (€) “ F @ Syme (&),

and denote by ¥: £ ® Sym®2(£)/Sym® ! (£) — F ® Sym"3(€) the composition. Ap-
plying Theorems 2.2 and 3.4, we infer that (e — 2) - Pes(¢) is equal as a divisor to the
degeneracy locus of the morphism ¢. Using the formula ¢;(Sym" &) = (777 1)¢((€)
valid for all n > 0, we compute

(e~ 2) - [Pes()] = e1(F © Sym®3(€)) — 1 (€ @ Sym®2(€)) + e1 (Sym" ™ &) =
<2€e__ 34> e1(F) + (26 - 3) <2:__ 44> () <2:__23) c(E) — e (2:__33> c1(€)
+<2e - 2)61(5) _ <2:_—34> ()= 2=y,

e—2 e
which immediately leads to the claimed formula. 0

4. KOSZUL MODULES ASSOCIATED TO VECTOR BUNDLES

We now discuss a class of Koszul modules naturally associated to vector bundles.
For a vector bundle E on a projective variety X, we consider the determinant map

2 2
d: NH'(X,E)—» H' (X, \E).

Definition 4.1. The Koszul module associated to the pair (X, E) as above is defined as

2
W(X,E) :=W(V,K), where V := H°(X, E)" and K = Ker(d)*" = Im(d)" C /\V.

The triviality of the resonance variety R(X, E) associated to the Koszul module
W (X, E) has a transparent geometric interpretation.

Proposition 4.2. One has R(X, E) = {0} if and only if E has no locally free subsheaf of rank
one L with h°(X, L) > 2.

Proof. Indeed, via (9), the resonance R(X, E) is non-trivial if and only if we can find
sections s1, so € HY(X, F) with 0 # s; A sy € K+ = Ker(d), which in turn is equivalent
to the fact that s; and s, generate a rank-one subsheaf whose double dual is a locally
free subsheaf of F. O

If the vector bundle F in Definition 4.1 is globally generated, then the corresponding
Koszul module can be given a geometric description in terms of kernel bundles:

Theorem 4.3. Let X be a projective variety and let E be a globally generated vector bundle on
X such that the determinant map

2 2
d: NH'(X,E) - H (X, \ E)
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is not identically zero. If we denote by Mg, the kernel of the evaluation map
(14) HYX,E)® Ox - E,
then we have an isomorphism

W,(X,E)Y = Kerq HY(X, Sym?2 Mg) — Sym?"? H(X, F) @ HY(X, Ox) }.
q

In particular, if H(X, Ox) = 0, then Wy(X, E)¥ = H'(X, Sym?*? Mg).

Proof. Based on (6), we know that W, (X, E) is the middle cohomology of the complex

6 13
K®Sym?V 2% V @ Sym?' v 25" SymIt? v

where V = H°(X,E)Y and K = Ker(d)*. Dualizing this complex and replacing
K" = Im(d) by the ambient space H°(X, \? E) (which does not affect the middle co-
homology), we realize W, (X, E)" as the middle cohomology of a complex

2
Sym?*? HO(X, E) — H°(X, E)@Sym*™! H'(X, E) — H°(X, /\ E)@Sym? H'(X, E),
which arises from an alternative construction as follows. Since Mg is resolved by the
2-term complex (14), Sym?™2 Mg, is resolved by the (¢ + 2)-nd symmetric power of (14)
2
(15) Sym™? H(X, B)® Ox — Sym™! H(X, E)® E — Sym? H'(X, E)® \ E — - -

and the previous description of W, (X, E)¥ shows that it coincides with the first coho-
mology group of the complex obtained from (15) by taking global sections.

Since (15) resolves Sym?™? Mp, its hypercohomology coincides with the sheaf coho-
mology of Sym?"2 My, so we get a spectral sequence

B = H (squ“*' HO(X,E) ® H/(X, |\ E)) — HH (X, Sym?*? Mp).
Since E;J =0for¢ < 0orj <0, it follows that we have an exact sequence

0 — E}® — HY(X,Sym™2 My) — EY! <L> Sym?*2 HO(X, E) ® H'(X, OX))

\/

HY(X,0)

where ¢ denotes the natural inclusion of Sym?*? M, into Sym?"2 H(X, E) ® Ox. Since
E3" is the complex obtained from (15) by taking global sections, we conclude that
Eé’o = Wy(X,E)V is the kernel of H!(X,:), and that it is moreover isomorphic to
HY(X,Sym?"? Mg) when H'(X,Ox) = 0, as desired. O
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4.1. Koszul modules associated to K 3 surfaces. Animportant application of Theorem
4.3 is provided by Lazarfeld-Mukai bundles on K3 surfaces. Let (X, L) be a polarized
K3 surface of genus g > 2, where L is an ample line bundle of degree L? = 2g — 2. We
set H*(X) := H(X,Z) ® H*(X,Z) ® H*(X,Z). Following [29], we define the Mukai
pairing on H*(X) by

(1)0,’[)1,1)2) . (wo,wl,wg) =V W1 — V- Wy — Vg W € H4(X,Z) =~ 7.

For a sheaf E on X, its Mukai vector is defined following [29, Definition 2.1], by setting
W(E) = (rk(E),det(E), X(E) — rk(E)) e H*(X).

Note that we have —x(F, F) = v(F)?. We denote by M, (v) the moduli space of S-
equivalence classes of L-semistable sheaves E on X and having prescribed Mukai vec-
tor v(E) = v. Let M} (v) the open subset of Mp,(v) corresponding to L-stable sheaves.
It is known that M; (v) is pure dimensional and dim M; (v) = v? + 2. Furthermore, if
v? = =2, then M[,(v) = M3 (v) consists of a single point.

Definition 4.4. A globally generated vector bundle E on a polarized K3 surface (X, L)
is said to be a Lazarsfeld-Mukai bundle if det(E) = L and H' (X, FE) = H*(X,E) = 0.

The Lazarsfeld-Mukai bundles were introduced in [27], [28], [29]. They can be con-
structed by choosing a smooth curve C' € |L| and a linear system A € W), "(C) such
that both A and we ® AY are globally generated, where » > 2. The dual Lazarsfeld-
Mukai bundle sits in the following exact sequence on X

0— EY — HY(C,A) ® Ox =5 1.A — 0,
where 1: C' — X is the inclusion. Dualizing, we obtain the short exact sequence
(16) 0— H%C,A)V®0x — E —wc® AV — 0.
Then FE is a globally generated L-stable bundle with det(£) = L and
(X, E)=h'(Ciwc @ AV) + h%(C,A) =g —d+7 —1,
thus v(E) = (r,L,g — d + r — 1). We refer to [27] for all these properties.

To (X, L) and F as above, we consider the Koszul module of the associated Lazarsfeld-
Mukai bundle
W(X,E) =W (HX,E),K),

where K* is the kernel of the determinant map d: A\* H'(X, E) — H°(X, \* E).
Lemma 4.5. If Pic(X) = Z - L, the Koszul module W (X, E') has vanishing resonance.

Proof. Two non-proportional sections s and sy of E such that d(s; A sg) = 0 correspond
to a locally free subsheaf of rank one A’ of E with h°(X, A’) > 2. Since Pic(X) =Z- L,
it follows in particular H°(X, E ® LV) = 0. Tensoring the sequence (16) with L" and
taking cohomology we obtain a contradiction. O

Let E be a Lazarsfeld-Mukai bundle with Mukai vector v(E) = (r, L, s). Since E is
globally generated, we consider the kernel bundle M sitting in the exact sequence

0— Mg — HY(X,E)® Ox — E — 0.
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Then M), has Mukai vector v(M}) = (s,L,r). Then HY(X,M}) = H*(X,M}) = 0,
furthermore M}, is globally generated and H°(X, M}}) & HY(X, E)". In particular, M},
is also a Lazarsfeld-Mukai bundle.
Proof of Theorem 1.4. We start with a Lazarsfeld-Mukai bundle E with Mukai vector
v(E) = (r,L,s). Then M}, is also a Lazarsfeld-Mukai bundle with v(M}) = (s, L,r)
which has vanishing resonance. Since h%(X, M) = h°(X, E) = r + s, the conclusion
follows by applying Theorem 1.3.
U

If v(E) = (r,L,s), a rather lengthy but elementary calculation with Chern classes

shows that the symmetric powers of £/ have Mukai vector

v(Sym B) = ((TJFZ_l)’(rJFi_l)L’

r4+b—1\b*(g—r+s—1)—br?+g—sr—1)+r(r+1)
b r(r+1)

When F is a spherical object, that is v?(E) = —2, in which case the moduli space M, (v)

consists only of E, then g = rs and the above formula becomes more manageable:

17) oSy E) <(T+2_1>’<r+i_l)L’ <r+l;—1>b23—(b—rl)(b—|—r)>.

In particular, Theorem 1.4 shows that a general vector bundle F' € M| (v), where v is
the Mukai vector given by (17), satisfies H'(X, F) = 0. Theorem 1.4 is optimal when
Theorem 2.2 is applied in the divisorial case. We record this result:

Theorem 4.6. Let (X, L) be a K3 surface of genus g = 2r > 4 with Pic(X) =7Z- L. If E'is
the unique Lazarsfeld-Mukai bundle with vector v(E) = (r, L, 2), then H*(X,Sym’E) = 0
forb>r+1and

) e H*(X).

hl(X SymbE) _ <r+b—1)r(r—b+1)

<.
1 b forb<r

Proof. Apply directly Theorem 1.4 coupled with the estimate provided by Theorem 2.2.
O

Remark 4.7. Inside the moduli space 7, of polarized K3 surfaces of genus g, the locus
ML of those polarized K3 surfaces [X, L] for which H!(X, Sym"*! E) # 0 for a vector
bundle £ € Mj(r,L,2) is a divisor of Noether-Lefschetz type. Similarly, for b > 1,

the locus ML, of those [X, L] € Fo, for which hl(X,Sym’ E) > (ij:l) 7"(7%’“) is via
Theorem 4.6 of Noether-Lefschetz type and its class can be computed in terms of the
Hodge classes on F,. Understanding the relative position of the classes 91£;, in partic-
ularly deciding when these loci are empty will thus lead to non-trivial relations among

tautological classes in C H*®(F,) in the spirit of [19] or [31].

Keeping the set-up as above, we fix a general curve C' € |L|, therefore C' is smooth of

genus 2r and W, (C) consists of % reduced points, see [27]. The restriction E¢

of the Lazarsfeld-Mukai bundle E € M (r, L,2) is a stable rank 2 vector bundle with
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det(E¢) = we and h°(C, E¢) = h°(X, E) = r + 2. Since h°(C,w¢) < 2h°(C, E¢) — 3,
the vector bundle E¢ has non—trivial resonance which we describe below.

PutV = H(C,E¢)Y and K := H(C,we)Y viewed as a subset of \? V via the dual
of the map d: A\*> H(C, Ec) — H°(C,wc). Each pure tensor [a A b] € Gra(VY)NPEKL
corresponds to a globally generated subpencil of E-. Without loss of generality, we
may assume that the quotient is locally free. We can prove even more:

Lemma 4.8. If A is a line subbundle of Ec with h®(C, A) > 2, then A € W}, (C).
Proof. The bundle E¢ lies in an extension
0—A—Ec—we®A — 0.

Since E( is globally generated, wc ® AY is also globally generated and hence either
RO (C,we ® AY) > 2 or A = we. Since E¢ is stable and u(E¢) = 2r — 1, the latter
case is ruled out. In particular, A contributes to the Clifford index. On the other hand,
RO(C, A) + h%(C,we ® AY) > h%(C, E¢) = r + 2 which implies that Cliff(A) < r — 1.
Hence either A or its residual we ® AY belong to W', ;(C). However, the latter case
contradicts the stability of £, hence it does not appear. O

Lemma 4.8 shows that Gro(VY) NPK+ = W, | (C) and is finite and moreover
2r)!
Gro(VV)NPKL| = (7
| T2( ) ‘ r!-(’r—l—l)!
Before stating the next result we recall the various properties of the resonance variety
of a Koszul module given in Definition 2.4. In the case of a vector bundle over a curve,

isotropy and separability are related to specific geometric properties. The following
result will be used later:

Lemma 4.9. Let F be a vector bundle of rank 2 over a smooth curve C and let V'CH o°C, F).

G) V' is isotropic if and only if it generates a rank-one subsheaf B inside F.
(ii) Suppose that E is given by an extension of line bundles

0— B—F—B —0,

with B globally generated, and denote W := Im{H°(C,F) — H°(C,B')}. If the
multiplication map

p: HY(C,B) @ W — H°(C, det(F))
is injective, then V'=H 0(C, B) is strongly isotropic.
Proof. (i) If L C F is a rank-one subsheaf, then H°(C, B) C H(C, F) is isotropic, as

the restriction of the determinant map to \? H°(C, B) vanishes identically. Conversely,

let V" be an isotropic subspace of H(C, F). Then any vector 0 # a A b € N*V'
generates a rank-one subsheaf of F. In particular, for a generic point € C' the vectors
a(z),b(z) € F(z) are linearly dependent, hence the span of {a(z) : a € Vv} is one—
dimensional.

(ii) Observe first thatif a € V', b € H(C,F) and b € W is the image of b, then
pla®b') =d(aAb). Assume > a; Ab; € K+ N (VV> avv, with {a;} linearly independent
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in V" and b; € HO(C, F). If b}, is the image of b; in W, we have (3 a; ® b}) = 0. From
the hypothesis, Y a; ®b; = 0 and, since a; are independent, b, = 0, thatis, b; € H°(C, B)
for all <. In particular, " a; A b; € /\2 v, O

We now return to the set-up when C' € |L| is a curve of genus 2r on a K3 surface X.

Proposition 4.10. Fix C € |L| generic as above. The resonance R(C, E¢) is strongly isotropic,
and its projectivisation R(C, E¢) is the union of % disjoint lines.

Proof. From Proposition 2.6 we infer that that R(C, E¢) is a union of r!.((i%!

lines, all isotropic. In order to establish the separability of these components, /,;, be a

component, corresponding to a point [a A b] € Gra(VY) N PK+ and denote by V" the
subspace in VY generated by a and b. If A denotes the subpencil of Ex generated by a
and b, then E¢ is presented as an extension

disjoint

0—A—Ec—we®A —0

Since the Petri map p: H°(C, A) ® H°(C,we ® AY) — H%(C,wc) is injective, we can
apply Lemma 4.9 (ii) to conclude. O

4.2. Koszul modules associated to K3 surfaces of odd genus. Using a variation com-
pared to the even genus case, one can also associate to a general K3 surface of odd genus
a Koszul module W (V, K) in the divisorial case dim(K) = 2 dim(V') — 3 as follows.

Fix a polarized K3 surface [X, L] of odd genus g = 2r + 1 such that Pic(X) =Z - L
and choose a smooth curve C' € |L|. Recall that X:=M (2, X,r) is the Fourier-Mukai
partner of X. Denoting by SU¢(2,w,r + 2) the moduli space of S-equivalence classes
of semistable rank 2 vector bundles E¢ on C with det(E¢) = we and h°(C, E¢) > r+2,
the restriction map induces an isomorphism, see [4],

X 2 SU2,w,r+2), Ew Ec.

Moreover, it can be shown that X as the Fourier-Mukai dual of SU-(2,w,r + 2) is the
only K3 surface containing C' as long as s is odd, see [4], [20].

The Brill-Noether locus W', ,(C) is a smooth curve (recall that C satisfies Petri’s The-
orem [27]) and we have the following formula for its genus [16]:

1 _ T (2r+2
(18) sWae) =1+ 1 (717,
Using [37], one has a map j: W} ,(C) — X which associates to A € W} 12(C) the rank
2 Lazarsfeld-Mukai vector bundle Ec 4 defined by the sequence (16). Its restriction
E4 = Ec A ® Oc to C satisfies hO(S, Eca) = hO(C, Ej)=1r+2.

To a pair (C, E¢), where C € |L| and E¢ € SUc(2,w,r + 2), using Definition 4.1 we
associate the Koszul module W (C, E¢) := W (V, K) and its resonance variety R(C, E¢).
Note that since h°(C,w¢c) = 2h°(C, E) — 3, we are in the divisorial case of Theorem 2.2.
We denote by Mg, the kernel of the evaluation map H°(C, E¢) ® O¢ — Ec.

Theorem 4.11. One has a canonical identification
i(W,s(0)) 2 {Ec € SUc(2,w, 7 +2) : R(C, Ec) # 0}.
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Furthermore, for each Ec € SUc(2,w,r +2) \ j (W, 5(C)) the map
(19) H'(C,Sym™! Mg,,) — Sym"™ H(C, Ec) ® H'(C, O¢)
is injective.
The geometric meaning of the injectivity of the map (19) is mysterious and requires
further study. In what follows we will prove Theorem 1.5.

Recall that [X, L] € Fa,41 with Pic(X) = Z - L and we consider the projections

X xX

/ X
X X,

and denote by P a Poincaré bundle of rank 2 on X x X. ! One writes

c1(P) = ih+ e € mfHA(X) @ m5 H*(X) and &'4(P) € mi H*(X) @ 3 H*(X)
for the first Chern class of P respectively the middle class in the Kiinneth decompo-
sition of c2(P). Following [30] we define the class ¢ € H?(X) characterized by the

property 7th - c2id(P) = [pt]|@ w5 € nf H4(X) @75 H2(X), where [pt] is the fundamen-
tal class of X. It is also shown in [30] that if one sets

(20) hi=1—2r e H}(X),

then h is a polarization on X satisfying h? = h% = 2g — 2 = 4r. We now introduce the
following vector bundles on X having as fibres over a point [E] the spaces H'(X, E)
and H°(C,det(Ec)) = H°(C,wc) respectively, that is,
2
E:=(m)«(P) and F:= (7['2)*(/\ 7)|Cx)?)'

Proposition 4.12. The following formulas hold in H2(X):

_ 3r+2 0

T2 YT

Proof. We apply Grothendieck-Riemann-Roch to the map 7 and the sheaf P using that
(Rima)«(P) = 0fori = 1,2, since H'(X, E) = H?(X, E) = 0, for [E] € X. We thus write

a(F)=2r+ 1) and c(€)

c? — 2c c3 —3c c
(€)= 1 (m):(P)) = (o) [ (24 ea(p) + APL_22P) | lP) = 3ai(PhealP)y,

(1+ﬂ621(2gm)}3 - %(m)*(cl(P)-n{cQ(Qx))%(m)*(ci‘(P))—%(wz)*(cl(P).cz(P)).

LA Poincaré bundle P exists only when g = 3 mod 4, that is, when 7 is odd. When 7 is even, the class
¢ is divisible by two and P does not exist globally. As pointed out in [30], one has to take instead the
universal P*-bundle corresponding to P(P) (which does exist) and carry out the calculation of the class of
the curve R(X, C) at that level. Theorem 1.5 remains valid independent of the parity of r.
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Observe that (m2). (c1(P) - mfca(Qx)) = (m2)« (75 (h) + m5(0)) - miea(Qx)) = 24
Furthermore, one also has

(m2)«(c1(P)) = (m2). (371 (h%) - mh) = 6(g — 1) = 127 - ¢,

whereas using the Kiinneth decomposition (m2). (c1(P) - c2(P)) = (r + 2)¢ + 1. Substi-
tuting, we obtain the claimed formula for ¢;(£). The calculation of ¢;(F) is analogous
by applying Grothendieck-Riemann-Roch to the pushforward of det(P) under . First

we compute that ¢; ((72)«( A’ P)) = (2r +2) - ¢, then from the exact sequence on X

0 — (m2)«(O ) — (m2)«(P) — F — 0,

XxX

since ¢1(72). Oy, 3) = ¢, we obtain ¢ (F) = (2r + 1), as claimed. O

Proof of Theorem 1.5. One has a morphism of vector bundle ¢: A?E — F over X, whose
fibre over a point [E] is precisely the determinant map d: A\?> H(X,E) — H°(C,w¢).
Noting that rk(£) = r + 2 and rk(F) = 2r + 1, via the terminology of Theorem 1.1,
the resonance divisor fes(¢) of the morphism ¢ can be identified with the Voisin curve
R()? , (). Using Theorem 1.1 we thus find

S (@) CAr+2 o (2n)! 2r+1  2r(2r+1)
RE.ON = (P =50 @) = o m (Gt e)
which yields precisely the predicted formula. O

Remark 4.13. It is natural to conjecture that for a general C' € |L|, the singularities of
the curve R ¢ ., are nodal. Proving this seems challenging even for small 7.

5. GAUSSIAN KOSZUL MODULES AND THICKENINGS OF ALGEBRAIC VARIETIES

An important class of Koszul modules where the triviality of resonance is automati-
cally satisfied is given by the Gaussian maps [41] on projective varieties. Let L be a line
bundle on a smooth complex projective variety X. The Gaussian Wahl map

2
v \HOX, L) - H'(X,Qk ® L?),

is locally defined by ¥1,(3", fi A gi) == >_;(fi - dgi — gi - df;), for f;, g; € H*(X, L).

If X is a smooth curve and L = Ox(1), the map ¢y, is given by associating to a
point p € X the projectivized tangent line T, (X) € Gro(H%(X, L)"') under the Pliicker
embedding of the Grassmannian of lines.

Definition 5.1. Set V := H%(X, L)V and K+ := Ker(¢1.). The associated Koszul module
G(X,L) :=W(V,K),
is called the Gaussian module of the pair (X, L).
Since ¥1.(f A g) = 0 if and only if d(g) = 0, it follows that 1/, is injective on decom-
posable tensors, therefore R(V, K) = {0}. In particular, rk(;) > 2h°(X, L) — 3. If X is

a smooth curve, the equality rk(y1) = 2h%(X, L) — 3 holds if and only if the image of X
under the linear system |L| is a rational normal curve, see [11, Theorem 1.3].
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We introduce the vector bundle R, defined by the exact sequence
(21) 0 — R, —— HY(X,L)® Ox - Ji(L) — 0,

where Ji (L) is the first jet bundle of L. The map r in (21) can be defined locally by
r(w) = (dw,w). We consider the exact sequence

(22) 0— QY 9L — Ji(L) 5L —0

and observe that por is the evaluation map H°(X, L) ® Ox — L. In particular, one also
has the following exact sequence on X:

(23) 0— Ry — Mp — QY ®L — 0.

In case L is very ample and we consider the embedding ¢ : X — P(V) defined
by V. = H°(X, L) and write Z for the ideal sheaf of X in this embedding, we have
RL=N/®L=TI/I?® L.

From (22) we obtain an induced exact sequence

2
(24) 00—k ®L* — AA(L) -5 ke L? —0,

and consider the composition
2 2
ao Ar: \NHYX,L)® Ox — Q% ® L%,

The induced map on global sections is the Gaussian map . Our goal is to give a
cohomological interpretation of the graded components of the Koszul module G(V, K).
To that end, we fix ¢ > 0 and consider the composition

(25) s: Sym?™? R; — Sym"' R, ® R, — Sym?™ H*(X,L) ® Ry,
where the first one is the natural inclusion, and the second map is Sym?*! () ® idg, .

Theorem 5.2. For each q > 0, the components of the Gausssian module G(X, L) are given by
Go(X, L)Y = Ker{Hl(X, Sym™2 Rp) —5 Sym™H HO(X, L) @ H'(X, RL)},

where the map t = H(X, s) is induced by (25).

To prove the theorem we first show that K+ is also equal to Ker (H%(X, A’ r)):

Lemma 5.3. The restriction of the map o = H°(X, a) to the image of § = HO(X, \*r) is
injective. In particular we have that Ker (1) = Ker(5).

Proof. Since all the sheaves involved are locally free, it suffices to localize at the generic
point of X and show that « is injective on the image of § there. In particular we may
choose a local generator of L and identify elements of W with rational functions on X.
We have that (w A w') = (dw A dw',w - dw’ — w' - dw) and « is the projection onto the
second component. If z = )", w; - w, € Ker(a o ), then

0=a(B@) =Y _(wi-dw|—wj-dw).
Differentiating this equality shows that ), dw; A dw} = 0, so that (z) = 0, that is, a is
injective on Im(/3), as desired. O
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Using (6) and Lemma 5.3 we get that G,(X, L) is the middle cohomology of

2
(26) Sym?"? H(L) — Sym?"' H°(L) ® H°(L) — Sym? H(L) ® H°(X, /\ J1(L)
The second map takes the differential Sym?*! HO(L)@ HO(L) — Sym? H*(L)®\* H(L)
and composes it with idgy,e fo(r) QHO (X, \* 7).
Proof of Theorem 5.2. 1t follows from (21) that for ¢ > 0 we have an exact sequence
(27)

2
0 — Sym?2 Ry, — Sym?"? H(L)®Ox — Sym*™ H(L)®.J;(L) - Sym? H(L)® /\ J1(L)

Dropping the first term and taking global sections we obtain the middle row of the
commutative diagram

Sym?™2 HO(L) Sym?*t HO(L) ® HO(L)

Sym? H(L) ® HO(A? i (L))

l1d®H0 X,r)
(L)

Sym?*? HO(L) —— Sym?™! H(L) ® H°(J;(L)) — Sym? H°(L) ® H°(\* J1(L))

| - |

00— Sym" HY(X, L) ® H' (X, Ry) 0

where the first row of the diagram is given by (26), and ¢ is the connecting homomor-
phism associated with the long exact sequence in cohomology of (21). Since p o r is the
evaluation map H°(X, L) ® Ox — L, we get that H°(X,r) is injective.

If we write H for the middle homology of the middle row of the above diagram, it
follows from (26) that

Go(X, L)Y = Ker{H s Symt HO(X, L) @ H'(X, RL)},

where the map u is induced by id ® d. Just as in Theorem 2.8, we shall realize H as
28) H= Ker{Hl (X,Sym?2 R) —% Sym®? HO(X, L) ® H'(X, OX)},

so H can be thought of as a subgroup of H' (X, Sym?*2 R). Under this identification,
we claim that u is the restriction of ¢ to H. Moreover, v factors through ¢, therefore
H = Ker(v) 2 Ker(t) and Ker(u) = Ker(t) as desired.

In order to see that v factors through ¢, we consider the diagram

Symdat2(,
Symi*2 Ry, ) Sym#*? HO(X, L) ® O

Symit HO(X, L) ® Ry,

(commutative up to multiplication by a non-zero scalar) where the map o is induced
by ¢ and the multiplication Sym?™! HO(X, L) ® H°(X, L) — Sym?"2 H°(X, L). Since
v=H'(X,Sym?"2(1)) and t = H'(X, ), it follows that v factors through .



22 M. APRODU, G. FARKAS, C. RAICU, AND J. WEYMAN

To prove the assertion (28) and that u = ¢, we split (27) into short exact sequences

0 — Sym‘"? R;, — Sym?? HO(X, L) ® Ox — M — 0, and

2
0 — M - Sym™™ HO(X, L) ® Ji(L) — Sym? H(X, L) ® [\ Ji(L) — 0.

By construction, H is the cokernel of the map Sym?*? H(X, L) — H°(X, M), which is
the same as the kernel of

HY(X,Sym?™ Rp) — Sym?™ HY(X,L) ® H' (X, Ox).

We consider the commutative diagram (where A is the natural inclusion)

Symi*t? Ry, Sym?*t? HO(L) ® Ox M

si g |

Sym*t! H(L) ® Ry, — Sym?*! HO(L) ® H(L) ® Ox — Sym%*t! HO(L)  J;(L)

which gives rise by taking cohomology to a commutative diagram
HO(X, M) H'(X,Sym?"2 Ry)

| |

Sym?t! HO(X, L) @ HO(X, Ji(L)) ““*~ Syme*! HO(X, L) ® H'(X, Ry)

Since u was induced by id ® J, it follows that after identifying H with a subgroup of
H'(X,Sym?" Rp) we get that u is the restriction of ¢, concluding the proof. O

Theorem 5.2 has a more transparent geometric interpretation under suitable assump-
tions.

Corollary 5.4. Let L be a very ample line bundle on a smoooth projective variety X such that
q(X) =0and H*(X,Q% ® L) = 0. Then H*(X,Sym"Ry) = 0 for all b > r(L).

Proof. The hypothesis ¢(X) = 0 implies H'(X, M) = 0. From the exact sequence (23),
we obtain that H(X, Q% ® L) & HY(X, Ry), therefore H'(X, Rr) = 0 as well. The
conclusion now follows by applying Theorem 5.2 coupled with Theorem 2.2. O

One can reformulate these results in terms of stabilization of cohomology on the
successive thickenings of the subvariety X C P". For b > 0, we denote by X;, C P" the
subscheme defined by the ideal I+l C Opr, thus we have a system of subschemes

X=Xo—-X1—> - —=>Xp_ 1> Xp—>---.
Proof of Theorem 1.6. Suppose the projective variety X C P" is embedded by the line
bundle L := Ox(1). Then for each b > 1, one has the short exact sequence
(29) 0 — Sym’N) — Ox, — Ox, , — 0.
Since R, = Nz ® L, tensoring this exact sequence with L and taking cohomology,
we obtain from Corollary 5.4 that the map H?(X,, Ox, (b)) — H°(X,_1,0x, ,(b)) is
surjective for b > r = r(L). The map is also injective, for H°(X,Sym® R;) = 0, because
of the injectivity of the map Sym® H%(X, L) — Sym®~! H(X, L) ® H°(X, J;(L)), where
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we use that our assumptions force the map H'(r) : H(X, J;(L)) — H°(X, L) induced
by the sequence (21) to be an isomorphism.

We assume now that 0 < a < band set c := b—a > 1. To complete the proof we have
to show that H*(X, Sym® R;, ® L=¢) =0, for i = 0,1. To that end, we use the notation
from the proof of Theorem 5.2. By Kodaira vanishing H'(X, L~¢) = 0, thus it follows
that there is a surjection H(X, M ® L=¢) — H'(X,Sym® Ry, ® L°). Furthermore, we
have an injection H(X, M ® L~¢) — Sym* ™' HY(X,L) ® H*(X, J;(L) ® L™°).

In order to show that this last cohomology group vanishes, we use the sequence (22).
Since H°(X, Q%) =0, clearly H°(X, J;(L)® L=¢) = 0, for ¢ > 2. For ¢ = 1, the existence
of anon-zero sectionin H°(X, J;(L)® L") implies that the sequence (22) is split. But this
is impossible, for it is known that the Atiyah class n;, € Ext'(L, Q% ® L) = HY(X,Q%)
expressing J1(L) as an extension in the sequence (22) equals precisely the Chern class
c1(L). Since L is very ample, this class cannot be zero.

Finally, in order to show that i 0(X, Sym®? Ry, ® L=¢) = 0, observe that one has an
injection H°(X,Sym® Ry, ® L™°¢) «— Sym® H*(X, L) ® H(X,L™°).
O

5.1. Ramification divisors of canonical pencils. We now prove Theorem 1.2. We use
throughout the standard notation [6] for the tautological and boundary classes on My .
We consider the universal curve m: Mgy ,+1 — M,, endowed with its n tautological
sections whose images we identify with the boundary divisors Ag.; ,+1 on M, for
i =1,...,n. We consider the Hodge bundle £ := 7, (w,) and the rank n vector bundle

o 3
F o= (wﬂ\Ao:l,n-H+~~~+A0:n,n+1) :

One has a morphism ¢: A*€& — F which fibrewise is given by the composition

2
0— A\ H(C,we) g go(c, we) = H(C,wepy 1oy

Observe that ¢|c 4, .. ,)(51 A s2) = 0 for 0 # s1 A sy € A2 HO(C,wc) if and only if
x1 + - - - + x, lies in the ramification divisor of the cover C' — P! induced by s1 and s».

For our next result, recall that +); denotes the class of the line bundle on Mg,n having
as fibre over a point [C, z1, . .., z,] the cotangent space T;ﬁ (C),fori=1,...,n.

Proposition 5.5. One has ¢ (F) = 3(¢1 + - - - + y,).

Proof. One uses the following exact sequence of sheaves on the universal curve M 1 1:
(30)

00— 7y (wf’r(— i A0;¢7n+1)> — Tx (Wi) —_— F — Rlﬂ'* (wfr(— iAO;i’nJrl)) — 0.
=1 i=1
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On the one hand we use that ¢; (m(w2)) = X + 3k, where k := 7. (c}(w)), see [6], on
the other hand after an easy application of Grothendieck-Riemann-Roch we can write:

n n ) 2
“ (ﬂ! (wi(_ Z 60:i,n+1))> = T |:(1+301 w7r Z 50 ) n+1+ (361 (wﬂ) _ Zi:l 50:z,n+1) )
=1

2
=1

(1 B Cl(;uﬂ') n C%(wﬂ-) ]‘-|_262(Q7T)>:|2 =A+3k— 3zn:”(/1“
=1

where we have used the formulas 7. (80:in+1 - 00:j,n+1) = 0 for i # j, 7T*<5g:i,n+1) = —1;,
as well as the fact that c2(€2;) can be identified with the codimension 2 locus of nodes
inside My .1, hence m, (c2(€2:)) = 6, this being the class of the total boundary of M, ,,.
This leads to the claimed formula by using the sequence (30). O

Proof of Theorem 1.2. We apply Theorem 1.1 to the morphism ¢: A*€ — F on vector
bundles on ﬂgjgg_g, using Proposition 5.5 and that ¢;(£) = A. O

6. RESONANCE, STABILITY AND SPLIT BUNDLES

In this section, we prove that important intrinsic properties of bundles of sufficiently
large degree on a curve, such as instability or being split, can be read off its resonance.
We use the following notation, for a given vector bundle £ on a curve C'and an integer k£

R>k(C, E) := {a € R(C, E)|3L C E line bundle, deg(L) > k, h°(L) > 2,a € H°(L)}

By projectivization, these closed loci provide us with a stratification of the projec-
tivized resonance. Indeed, R>4(C, E) 2 Rx41)(C, E), R>(C, E) = 0 for k > 0, and
R>4(C, E) = R(C, E) if d equals te gonality of the curve. We call this stratification the
degree stratification.

Theorem 6.1. Let E be a globally generated rank 2 vector bundle on a smooth curve C of genus
g > 1. Assume that deg(E) > 4g + 1 and H' (C, E) = 0. Then

(i) Eisnot stable ( respectively unstable) if and only if HY(C, E)" has an isotropic subspace
of dimension at least "-{F) ) ( respectively > & (E) ).

(ii) E splits as a sum oflme bundles E = N & M with P(N@ MV) =h° (M@ NV) =0
if and only if there exist an integer k and isotropic subspaces V}Y,Vy' C H(C, E) of
dimension > 2 such that H*(C, E)" = V)Y © Vo' and R>1(C, E) = V)Y U Vy'.

Proof. (i) Assume FE is not stable, and let L C E be a maximal destabilizing line subbun-
dle. Since deg(L) > deg( ) > 24, the bundle L is non-special and globally generated.

Therefore h%(C, L) > M and H°(C, L) C H°(C, E) is isotropic.

Conversely, let us assume U C H?(C, E) is isotropic of dimension at least ( ). Then
U generates a line bundle N C E. If N is non-special, then it destabilizes E If Nis
special, by Clifford’s Theorem

deg(N) > 2n°(C,N) —2 > h°(C, E) — 2.
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Furthermore, by Riemann-Roch Theorem we obtain h°(E) — 2 = deg(E) — 2g > degT(E).

In conclusion, N destabilizes E. The unstable case goes through similarly, noting that
since deg(E) > 4g + 1, we have h°(C, E) — 2 > deg2(E).

(ii) Assume E = N @& M splits and h%(N @ MV) = h%(M ® NV) = 0. Put k =
min{deg(N), deg(M)}. Assume, for simplicity, k& = deg(XN). Since FE is globally gener-
ated and h!'(C, E) = 0, it follows that both N and M are globally generated and non-
special. Put V4 := H°(C,N) and V» := H%(C, M). These two subspaces are isotropic
and H°(C, E) = Vi @ Va. We prove that R>x(C, E) = VY UVy. Leta € R>x(C, E)\ {0},
then there exists b such that 0 # a A b € K+ and hence a and b span a line bundle L
of degree at least &k inside £ = N @ M. It the induced map L — N is non-zero, then
L = N and, since h°(M ® NV) = 0, it follows that the map L — M is zero, which
implies a € VY. If the map L — N is zero, then a € V,'.

Conversely, assume we are given isotropic subspaces Vi, Vo C H?(C, E) such that
HYC,E)Y = V)Y ® Vy and R>(C, E) = V)Y UV,. Let N and M be the line bundles
of degree at least k contained in F generated by VY and V,)’ respectively. By isotropy, it
follows that NV and M are globally generated with V}Y C H°(C, N) and Vy' C H°(C, M).
Since HY(C, N) and H°(C, M) are also isotropic, and hence contained in the resonance,
the are in fact contained in R>(C, E). The assumption R>;(C, E) = V}¥ UV, implies
V)Y = H°(C,N) and VyY = H°(C, M).

Claim 1. The natural map N @ M — FE is injective. Indeed, otherwise its image is a
line bundle L of degree at least k. Passing to global sections we obtain

V@V = H°(C,L) C H(C, E)

and the composition is the identity. In conclusion the inclusion L C E yields an equal-
ity H°(C, L) = H°(C, E). Since H%(C, L) is isotropic, and hence contained in the reso-
nance, we find R>x(C, E) = H°(C, E)", in contradiction with the hypothesis.

Claim 2. h*(C,N) - hY(C, M) = 0. Assume on the contrary that both N and M are
special. By Clifford’s Theorem we obtain

deg(N) deg(M)

WG N) < — L ho(C, M) < s 1
and hence
hO(C, E) = h%(C, N) + hO(C, M) < deg(N) ;deg(M) Ly
On the other hand, from Claim 1 we have deg(N)+deg(M) < deg(E) which imples that
h’(C,E) < deg2(E> +2.

Since h!(C, E) = 0, by Riemann-Roch deg(E) < 4¢, contradicting the hypothesis.
Claim 3. Suppose h!(C,N) = 0. Then L := E/N is torsion-free. Indeed, if it has
torsion, then we consider the line bundle N’ := Ker{E — L/tors(L)} C E which is also

of degree at least k, and an inclusion N C N’. Since N is non-special, N’ is also non-
special and by Riemann-Roch H°(C, N) ¢ H°(C, N’). Note however that H(C, N’) is
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isotropic, therefore contained in the resonance, contradicting that H 0(C, N) is a com-
ponent of R>;(C, E).

Having proved these claims, we conclude. Denoting by a: M — L the composi-
tion, note that o # 0 for otherwise M C N, contradicting the hypothesis. Since N is
non-special, the equality H°(C, E) = H(C,N) @ H°(C, M) and the long cohomology
sequence of the sequence

0O—-N—-FE—=L—0

shows that H(a): H°(C, M) — HY(C, L) is an isomorphism. Since E is globally gen-
erated, it follows that L is globally generated as well. We have the following situation:
M and L are globally generated line bundles, and a: M — L is a morphism inducing
an isomorphism on global sections. It implies that « is surjective, and hence it is an
isomorphism, providing us with a splitting £ = N & M. To prove that :(M @ N¥) = 0
observe that any non-zero section in H(M ® NV) gives an embedding N C¢ N & M
with torsion—free quotient which yields to elements in R (C, E) that are neither in ;"
nor in V. O

Remark 6.2. For (ii), the bound deg(E) > 4g + 1 in the assumption of Theorem 6.1
can be improved to 4g if C is non-hyperelliptic. Indeed, in Claim 2, the inequalities
resulting from Clifford’s Theorem are strict.

Remark 6.3. The resonance of split bundles is in general much more complicated than
the union of two subspaces. The easiest example is obtained on the projective line for
the bundle O(1) ¢ O(1) whose resonance is a smooth quadric in the three-dimensional
projective space. In this case, the stratification consists of only one stratum, the maximal
one.

A more elaborate example is the following. Suppose C is an elliptic curve, p # ¢
are two points on C, and £ = O¢(3p) & Oc(3q). Then the projectivized resonance
R(C, F) has three connected components, all of dimension two, namely, the planes
PH'(C,0c(3p)), PH’(C,0c(3q)), and a ruled surface over the curve Pic*(C) = C.
This description follows directly from [3], Proposition 6.1, observing that for any L €
Pic?(C) we have h°(C,E(—L)) = 1. Note that, in this case, we have R>3(C, E) =
PHO(C,0¢(3p)) UPH?(C,Oc(3q)) which shows that the bound in the theorem above
is not sharp.
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