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Primordial noble gas isotopes from immoderate crushing of an
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Abstract

Noble gas isotopes carry important information about volatile accretion, mantle differentiation and
the preservation of early formed radiogenic isotope heterogeneities. However, extremely low
abundances and pervasive atmospheric contamination make precise determinations of mantle
source heavy noble gas isotopic compositions challenging. Furthermore, the precision achieved in

ratios of the rarest noble gas isotopes (the primordial isotopes) is typically poor. Here an approach
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that combines heavy crushing of a large quantity of sample along with more traditional temperate
crushing is adopted to analyse noble gases in a basalt glass from Iceland. The method yields high
precision Xe primordial isotope data resolved from the atmospheric composition. 2*Xe/!**Xe—
129X e/13%X e systematics indicate a distinct, low '2Xe/!**Xe in the plume mantle source compared
with that in the upper mantle, demonstrating the survival of an early formed (>4.45 Ga) radiogenic
isotope heterogeneity in the modern mantle. Future sampling efforts may plan to dedicate large
quantities (>20 g) of material for high precision noble gas analysis to leverage the advantages of a

mixed analytical approach.

Introduction

Precise determinations of mantle heavy noble gas (Ne, Ar, Kr and Xe) isotopic compositions have
the power to shed light on the delivery of volatiles to Earth during accretion, and transport of
volatiles among terrestrial reservoirs (e.g., Parai and Mukhopadhyay, 2015; Péron and Moreira,
2018; Bekaert et al., 2019; Broadley et al., 2020; Péron et al., 2021). Two characteristics make the
noble gases sensitive tracers of volatile transport: (1) due to their extremely low abundances in the
solid Earth, production of specific isotopes by radioactive decay generates large radiogenic isotope
signatures, even when the parent nuclide is itself rare, and (2) the noble gases tend to partition into
gas phases when possible — that is, they broadly follow the major volatiles (such as water and
carbon dioxide) and escape from the mantle to melts, and from lavas to the atmosphere, over time.
These characteristics also make noble gases difficult to measure in volcanic rocks, especially in
light of pervasive atmospheric contamination of volcanic rock samples (e.g., Burnard et al., 1997,

Ballentine and Barfod, 2000; Roubinet and Moreira, 2018). Analytical challenges have limited the
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number and type of samples for which magmatic heavy noble gas isotopic ratios have been
resolved from the atmospheric composition.

Various approaches have been adopted to battle atmospheric contamination and constrain
mantle source noble gas isotopic compositions. Step release of gas from samples by crushing or
heating has long been used to generate data arrays trending from the atmospheric isotopic signature
towards a mantle composition (e.g., Sarda ef al., 1988; Marty, 1989); linear or hyperbolic mixing
arrays can be used to determine a model mantle composition by assuming a solar-like mantle
2ONe/*?Ne ratio (see Parai et al., 2019). Step release approaches have been used to determine mantle
source 2'Ne/**Ne, “°Ar/*®Ar, and Xe isotopic compositions in mid-ocean ridge basalt and plume
basalt samples. However, wide coverage of upper mantle and ocean island heterogeneity is yet to
be achieved. Furthermore, mantle compositions for Kr and the rarest Xe isotopes (!?*Xe, '%%Xe,
and '2Xe) are limited to unusually gas-rich basalt samples (Moreira et al., 1998), continental well
gases (Caffee ef al., 1999; Holland and Ballentine, 2006; Caracausi ef al., 2016; Bekaert et al.,
2019) and volcanic gases (Broadley et al., 2020; Bekaert et al., 2023), where large quantities of
gas are available for analysis.

Recent studies have demonstrated the utility of a screening and accumulation method
(Péron and Moreira, 2018) to achieve high precision measurements of rare noble gas isotopes
(Péron et al., 2021). In this approach, gas from crush steps with 2°Ne/>’Ne above a certain threshold
is progressively collected on a cold trap, and a large quantity of gas with a composition close to
the mantle source is accumulated for Ar, Kr and Xe isotopic measurements (Péron and Moreira,
2018; Péron et al., 2021). This approach enables precise analysis of rare isotope ratios in
accumulated gas with a reduced contribution from atmospheric contaminants. However,

atmospheric contaminants may affect Ar, Kr and Xe isotopes in a given release step more strongly
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than Ne isotopes due to high Ar/Ne, Kr/Ne and Xe/Ne ratios in the atmospheric contaminant
compared to mantle gas. Thus, an accumulation approach using screening based on Ne isotopes
may reduce but not eliminate atmospheric contamination in Ar, Kr and Xe. The trade off between
the loss of information (e.g., no mixing array from multiple gas release steps) and the gain in
approaching the mantle composition using screened accumulation techniques must be weighed,
and a hybrid approach may be best.

Another intuitive strategy to pursue precise measurements of rare noble gas isotopes in
typical basalt samples is to crush heavily to release a very large amount of gas from a very large
amount of sample in a single extraction step. However, the net benefit of this approach is unknown:
in practice, the largest gas release steps tend to be close to atmospheric in composition, particularly
in gas-poor basalts (Parai et al., 2012; Parai and Mukhopadhyay, 2015). By repeatedly crushing a
sample in very small steps, one may generate (with less precise data) a well defined mixing array
between atmosphere and the mantle composition, with some steps nearing a pure mantle
composition (Mukhopadhyay, 2012; Parai and Mukhopadhyay, 2021). Very heavy crushing runs
the risk of overwhelming small amounts of mantle gas with larger amounts of atmospheric gas in
a single large gas release step, such that one obtains a very precise measurement of a nearly pure
atmospheric contaminant rather than a good constraint on the mantle composition. However, this
approach has not been tested in detail, potentially due to the risk it poses in making poor use of
precious sample material.

Noble gas geochemistry is currently discussed in terms less specific (“plume mantle” vs.
upper mantle) than the detailed discussions of mantle components in the broader mantle isotope
geochemistry field. Radiogenic Sr, Nd, Pb and Hf isotopic co-variations among ocean island

basalts shed light on multiple distinct compositional components within the plume mantle (e.g.,
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HIMU, EM-I and EM-II; see Weis et al., 2023 for a recent review); the heavy noble gas isotopic
signatures of these components remain to be determined. In order to bring valuable insights from
heavy noble gases to bear on a wider array of mantle samples, it is critical to develop strategies
that enable precise determinations of mantle source noble gas compositions in typical gas-poor
volcanic samples. Here I report results from an experiment in which a hybrid crushing strategy
was applied to a large quantity of Icelandic basalt glass. A few moderate crush steps were used to
roughly calibrate subsequent gas release through several very large crush steps, with ~10-100x% as
much gas released per step than in prior studies that used a small step crush technique
(Mukhopadhyay, 2012; Parai et al., 2012; Petd et al., 2013; Parai and Mukhopadhyay, 2015).
While one cannot control the gas content of a given volcanic rock sample, very large amounts of
sample can be collected for analysis using this heavy crushing method, unlocking new insights

into heterogeneous volatile accretion and differentiation of the Earth’s interior.

Sample and Methods
Subglacial basalt glass was collected in the summer of 2009 from near Midfell, Iceland
(Supplementary Information). A large quantity of basalt glass rich in olivine crystals was collected
from an outcrop of glassy pillow basalts by the eastern shore of bingvallavatn off Route 36, near
the location reported for the DICE sample (Harrison et al., 1999; Mukhopadhyay, 2012) and
DG2017 (Péron et al., 2021).

He, Ne, Ar and Xe abundances and isotopic compositions were measured in the WUSTL
Noble Gas Laboratory. Details of gas processing, mass spectrometry, and preparation of the gas

standards are given in the Supplementary Information (Fig. S-2).
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A mixed-size step crushing strategy was followed. Two small crush steps were used to
roughly calibrate the expected '**Xe signal as a function of the manometer reading. Steps 3—7 were
“mega-crushes” targeting a '>’Xe signal ~50% higher than normally targeted in the laboratory
(10,000 counts per second '**Xe instead of 200 counts per second; see Supplementary Information
for typical sensitivities) to enable precise measurement of the rarest Xe isotopes. None of the mega-
crush steps required more than a single actuation of the hydraulic cylinder, which was slowly
extruded while monitoring manometer pressure (in contrast to vigorous solenoid driven crushing).
Once an audible change in the type of sound generated by crushing was noted (from cracks and
pops to fainter crunches), the smaller crush method was resumed (Steps 8—13) to exhaust the gas
supply in the sample. Xe blanks in the mass spectrometer were monitored after the large crushes

to check for memory effects; no increase in the line blank was observed.

Results and Discussion

He, Ne, Ar and Xe abundances and isotopic compositions from thirteen step crushes are reported
in Supplementary Table S-1. Estimated CO2/°He, “He/*'Ne*, *He/*°Ar* and other elemental
abundance ratios are also given and are discussed in the Supplementary Information (Figs. S-3, S-
4). The weighted average “He/*He for the MidfellRP09 sample is 41,200 + 100 (1c), in good
agreement with prior studies of the DICE and DG2017 samples (Harrison et al., 1999;
Mukhopadhyay, 2012; Péron et al., 2021). Ne, Ar and Xe isotopic compositions are shown in

Figures 1-4.

Mantle-atmosphere mixing systematics. Ne isotope ratio variations among the 13

individual crush steps are shown (Fig. 1) with the “mega-crush” gas release steps highlighted. The
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mantle source 2'Ne/**Ne) calculated for mantle 2°Ne/**Ne of 13.36 (solar nebular gas; Heber et
al., 2012) is 0.0373 + 0.0003 (1o; Fig. 1b), in good agreement with prior studies of Ne in DICE
and DG2017 (Harrison et al., 1999; Mukhopadhyay, 2012; Péron et al., 2021). The first mega-
crush step had the lowest measured 2’Ne/**Ne, corresponding to a large proportion of atmospheric
contaminant in the measured gas, and over the course of five mega-crushes, the 2’Ne/?’Ne steadily

increased (Fig. 1a).

“mega-crush”

large gas release steps

(a) I R ———— (b)
solar nebula
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2 4 6 8 10 12 0.028 0.032 0.036 0.040
crush step 21Ne/2Ne
Figure 1 Ne isotopes in MidfellRP09 step crushes. 2’Ne/*’Ne is shown (a) as a function of

crush step and (b) against 2'Ne/**Ne (error bars 16). Dark circles represent the heavy crush steps,
referred to as “mega-crush” steps. Ne in mega-crush steps starts off close to atmospheric, and
progressively shifts towards mantle compositions. All crush steps taken together define a mixing
line between atmosphere and an extrapolated mantle source 2'Ne/**Ne of 0.0373 + 0.0003 (10)

assuming a solar-like mantle >*°Ne/*’Ne of 13.36.
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Mixing between mantle and atmospheric compositions generates hyperbolic arrays in
20Ne/?>Ne vs. **Ar/*®Ar space, reflecting distinct *°Ar/?*Ne ratios in the mixing end members (Fig.
2). Ar/Ne and Xe/Ne ratios in the atmosphere and in air-saturated seawater are higher than those
in mantle sources (Williams and Mukhopadhyay, 2019), and hyperbolic mixing arrays generated
by step crushing thus have pronounced curvatures: addition of a small amount of atmospheric
contaminant greatly affects Ar and Xe, without strongly affecting Ne (see Ne-Ar in Southwest
Indian Ridge mid-ocean ridge basalt; Parai et al., 2012). The pronounced increase in 2’Ne/?’Ne in
progressive mega-crush steps of the MidfellRP09 sample is thus muted in “°Ar/*6Ar, 12°Xe/'3Xe

and '2°Xe/"3*Xe, though the measured gas is still not totally overwhelmed by atmosphere.

(a) 10000 . , . : (b) 70 T T T T (c) 1.04
© normal crush
8000 | ® ‘mega-crush” 6.9 1.03
“OAr/*°Ar = 9000 o 638 o %
< 6000 k=025 x x
2 2 67 g =
¢ 4000 ] 8
120 a/10Xe _ = 1.00 2Xe/**Xeg, =
6.6 0 ‘521 1032 +0.003
+ ) 4
2000 6.85% 0. 6,55 0.002
6.5 atm
t
o (Bt B . . . . . . : 098 L2, . . .
9 10 11 12 13 14 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
“Ne/*Ne “OAr/SAr “OAr/SAr
Figure 2 Ne-Ar and Ar-Xe mixing systematics in MidfellRP09 step crushes. Data are shown

along with best fit two component mixing hyperbola determined by total least squares (error bars
16). (a) In *°Ar/*SAr vs. 2*Ne/**Ne, comparable fits can be achieved for a range of mantle end
member “’Ar/*SAr ratios with compensating variation in the curvature parameter. Data and best fit

mixing hyperbolae for *°Ar/*®Ar vs. (b) 2*Xe/"*Xe and (c) '*Xe/!**Xe are shown. In Ar-Xe, the
8



168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

mega-crush step data are tightly clustered and constrain the mixing hyperbolae, though they are
more affected by atmospheric contamination than the relatively scattered normal-sized crush step

data.

Best fit mixing hyperbolae (Fig. 2) were determined by error weighted orthogonal least
squares (Parai et al., 2012). The mantle source *’Ar/*Ar was not well resolved given the scatter in
the data in Ne-Ar space (Fig. 2a) — good fits could be achieved with many pairings of mantle
“Ar/SAr and curvature parameters (Fig. S-5). Applying a curvature parameter (k = 0.25)
consistent with the contrast between **Ar/*’Ne in the atmosphere and Iceland mantle source
(Williams and Mukhopadhyay, 2019) yields a best mantle source *°Ar/**Ar of 9,000 (Fig. S-5).
This mantle source *°Ar/*®Ar was used to find best fit mantle source '?Xe/!**Xe and '?Xe/!**Xe
(Fig. 2b,c). Given the concave down curvature of the mixing arrays in Ar-Xe space, the
extrapolated mantle source Xe isotopic compositions are only weakly sensitive to the exact mantle
source “°Ar/*®Ar. Despite having only 13 crush steps, the estimated mantle source Xe isotope
compositions (Table S-2) are in excellent agreement with those determined using the 51 small
crush steps in Mukhopadhyay (2012). However, the inclusion of a mix of small and mega-crush
steps seems critical: the small crush steps provide a spread in compositions ranging towards
mantle-like values, while the mega-crush steps provide precise measurements that are tightly
clustered and define a mixing hyperbola (Fig. 2¢).

The promising '**Xe/!**Xe excesses compared to atmosphere in the mega-crush steps raise
the question of whether '*Xe/"*%Xe, 26Xe/'3%Xe and '*®Xe/!**Xe are also well resolved from

atmosphere. In the small crush steps, the primordial Xe isotope ratios are highly uncertain and
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scattered around the atmospheric composition (Fig. 3). In the mega-crush steps, primordial Xe
isotope ratios are determined with much greater precision. '2Xe/!*Xe is well resolved from
atmosphere, while primordial isotope ratios either are not resolved (Fig. 3d) or show slight
excesses (Fig. 3c,e) compared to atmosphere. The '2°Xe/!3Xe ratios are well resolved from
atmosphere in part due to greater precision (Fig. S-2), but also due to the ~10x greater proportional
difference between mantle source and atmospheric end member compositions in '2Xe/!*Xe
(~6.95 and 6.496, respectively) compared to the primordial isotope ratios (e.g., '2*Xe/!**Xe of

~0.475 and 0.4715 in the mantle source and atmosphere, respectively).

(@) 049 T T T (b) 049 T T
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Figure 3 Xe primordial isotopes and '?*Xe/!3Xe. Data are shown with 16 error bars. Among

the normal crush steps, data are scattered with large error bars around the atmospheric composition.
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The mega-crush step data include steps that are resolved from the atmospheric composition in (a)
124Xe/13%%e and '2!Xe/!*'Xe, though the relationship is not evident in (b) '2*Xe/*Xe vs.
126X /139X e. 129Xe/!3%Xe is plotted against the primordial isotope ratios in panels (c—e) along with

fits through atmosphere and the error weighted averages of mega-crush data.

Early formed mantle heterogeneity in **Xe/"*’Xe. The improved precision and clear
excess compared to atmosphere enable investigation of the nature of '2Xe/!**Xe variations in the
mantle. High 'Xe/!*°Xe in the mantle was generated by decay of short lived '?°I in the first ~100
Myr of Earth history, while high mantle *Xe/!**Xe was generated by a spontaneous fission of
both short lived 2**Pu and extant 2*3U. By plotting '2*Xe/!**Xe against a ratio of two primordial
isotopes, *He/'**Xe, in the DICE sample (Iceland) and a North Atlantic mid-ocean ridge basalt,
Mukhopadhyay (2012) argued for low !*Xe/'*Xe in the mantle sources (corrected for
atmospheric contamination) of plumes compared to the upper mantle, supported by additional data
from mantle-derived samples with unfractionated elemental ratios (Petd et al., 2013; Parai and
Mukhopadhyay, 2021). A similar comparison can be made using a ratio of two primordial Xe
isotopes (e.g., '*¥Xe/!3*Xe) if precise, non-atmospheric data are available. Such a Xe three isotope
plot has the advantage of being insensitive to whether elemental abundance ratios were
fractionated by magmatic degassing (which does not generate resolvable Xe isotopic
fractionation), meaning that Xe data from degassed samples may be included.

The error weighted average of MidfellRP09 mega-crush steps gives a high precision
determination of a trapped magmatic gas composition with clear excesses relative to atmosphere

in 128Xe/1*%Xe—12Xe/!*"Xe space, and shows a distinct, steeper slope for Iceland compared to the

11
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upper mantle (Fig. 4b; see Fig. S-6 for discussion of individual data sources). This translates to
low 2Xe/!*°Xe in the plume mantle after accounting for atmospheric contributions (shallow
contamination or regassing). The precise primordial isotope ratio (12Xe/!*°Xe) determined by
mega-crushing thus confirms that the plume mantle had a low I/Xe ratio in the first 100 Myr of
Earth history, and that early formed Xe heterogeneity from '*’I decay has been preserved

through 4.45 Gyr of mantle convection.
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:6 o 1 ¥V Péron et al. (2021), DG2017- Iceland
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Figure 4 MidfellRP09 and literature Xe isotopic data. Small symbols are individual data,

while larger symbols are averages. (a) Mega-crush and regular crush step '*Xe/*°Xe vs.
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129X /139X e data (16 error bars) are consistent with prior Xe measurements in Iceland samples
(Mukhopadhyay, 2012; Péron et al., 2021) and plume-influenced samples from Rochambeau Rift
(Samoan plume), Galapagos, and Yellowstone (Petd et al., 2013; Broadley ef al., 2020; Bekaert et
al., 2023). (b) The error weighted average of mega-crush step '2*Xe/!3Xe vs. 1Xe/!**Xe data (1o
error bars), along with average or most mantle-like compositions from plume and upper mantle
samples (Péron and Moreira, 2018; Caffee et al., 1999; Holland and Ballentine, 2006; Bekaert et
al., 2023; see Fig. S-6 for details). Fits forced through atmosphere and a mixing line between the
MiodfellRP09 average and atmosphere are shown. The slope of the plume fit is strongly affected
by the precisely determined Yellowstone 4B average, which may reflect some mass dependent
fractionation in the hydrothermal system (Bekaert et al., 2023). While individual measurements
for DG2017 (Péron et al., 2021) are shown, only the average was used to compute the best plume
slope and its uncertainty. Despite a larger uncertainty in the plume fit, the plume and upper mantle
fits have distinct slopes. The MidfellRP09 mega-crush average is precisely determined, shows a
prominent excess relative to atmosphere, and is consistent with data from other plume localities.
The MiodfellRP09 average lies on a steeper slope than the upper mantle fit, indicating a plume

mantle source with a lower '2Xe/!3Xe at a given 2Xe/'3*Xe than the upper mantle.

Conclusions

This study leveraged a new analytical method of heavy crushing of basalt glass to determine mantle
source noble gas isotopic compositions. Precise determination of '2Xe/'*%Xe—2Xe/"*"Xe in
MidfellRP09 indicates that early formed '**Xe/!**Xe heterogeneity persists in the mantle today. A

hybrid analytical approach that leverages the advantages of different techniques may be the
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optimal strategy for future work, but requires large quantities of material: likely >20 g of basalt
glass per sample, perhaps more material for olivines. Future sampling efforts should incorporate
this need in order to shed light on whether noble gas isotopic signatures of volatile origins, early
differentiation and long term mantle outgassing vary among the full range of diverse mantle

components sampled by oceanic basalts.
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Sample Information

The MidfellRP09 sample was collected by RP at 64°10'09.8"N, 21°03'27.5"W. While Harrison et al. (1999)
report collection from a quarry 1 km east of the lake, the sample analysed in this study (Fig. S-1) was
collected by the lake shore and adjacent to a small municipal waste collection area.

-

Figure S-1 Pillow basalt and MiofellRP09 glass. (left) Vesicular, olivine phenocryst-rich basalt, glass
was abundant (1/4” cold chisel for scale). (right) Five pieces of glass over 10 g in mass were analysed in a
single crusher chamber.
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Gas Extraction and Processing

Five pieces of vesicular glass weighing a total of 10.5627 g were cleaned in distilled water and acetone and
then dried. The sample was loaded into a stainless steel cup with ultra-high vacuum aluminium foil liner,
separated into three layers by tungsten carbide discs. The cup was loaded in a single large-geometry crusher
chamber (see schematic of similar, smaller crusher chamber in Parai et al., 2009). Gases were released by
step-crushing driven by a hand-pumped hydraulic cylinder while monitoring the pressure of released gas
using an MKS capacitance manometer. An automated, compact, low-internal-volume gas extraction and
processing line designed and built at WUSTL was used to prepare gases for analysis using the Nu Noblesse
HR 5F5M noble gas mass spectrometer. Noble gases were purified by exposing the gas released by step-
crushing to hot and cold SAES NP10 getters. A small aliquot (<1 % of total gas) was separated and analysed
on a Stanford Research Systems residual gas analyser to estimate expected signals for He and Ar and to
determine how to split the He and Ar prior to inlet to the mass spectrometer. Purified gas was exposed to a
Janis cryotrap with a charcoal sorbent at 32 K, trapping noble gases heavier than He. Ne, Ar and Xe were
sequentially released from the cryotrap and analysed separately.

Mass Spectrometry Methods

Measurements were made using the Nu Noblesse HR 5F5M in the Department of Earth and Planetary
Sciences at Washington University in St. Louis. The source trap current and filament voltage were
optimised for Xe analysis and kept constant throughout all analyses, meaning that source tuning was
suboptimal for He but was sufficient to make useful measurements -- reproducibility of “He/*He in
standards with similar amounts of gas as the sample were routinely <1 %. *He was measured on an electron
multiplier fitted with a slit to enable resolution of *He" from HD".

Ne was measured by multicollection in high mass resolving power mode, with “°Ar"* resolved from
2Ne'. CO," was monitored during the run by peak jumping, and a correction for CO,"" interference with
22Ne was made using a CO,""/CO," was 0.01878 (following Parai et al., 2009). The CO,""/CO," was
determined by repeated calibrations using background CO- in the mass spectrometer at different CO,
pressures, varied by partially closing the valve to the source getter pump. No relationship with total pressure
was observed, consistent with prior studies (e.g., Mukhopadhyay et al., 2012). For mega-crush steps, *’Ne
was measured on a Faraday; for all other analyses, all Ne isotopes were measured on electron multipliers.

Ar was also measured by multicollection in high mass resolving power mode to enable resolution
of hydrocarbon interferences from **Ar*. Chlorine backgrounds were monitored during the run by peak
jumping. HCI'/CI" ratios were calibrated in the same manner as CO,""/CO,", and corrections for H**C1 and
H*’Cl interferences were made using HCI'/CI" ratios of 0.17 and 0.18, respectively.

Xenon was measured in three steps, with masses 126, 128 and 130 on the axial mass in successive
steps. Source tuning optimised sensitivity over mass resolving power as hydrocarbon interferences could
be avoided even with low mass resolving power settings.

Instrument sensitivity, mass discrimination, and reproducibility were determined by repeat analyses
of an in-house gas standard made by mixing a *He-doped helium gas standard and dry air collected in Forest
Park, St. Louis. Fifty-eight bracketing standards were run with 13 sample crush steps. Typical sensitivities
were ~3.5 x 10° V *He per ccSTP, 1.7 x 10" cps *°Ne per ccSTP, ~1.8 x 10" V *Ar per ccSTP, and 2.5 X
10" cps '??Xe per ccSTP. The reproducibility of standards of similar size to crush steps was characterised
to estimate uncertainties on measured values (Fig. S-2).
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Blanks were determined by following the full procedure for a crush without actuating the hydraulic
cylinder that would crush the sample. Blanks were <1 % for He, Ne and Ar for all crush steps. For Xe,
blanks were <0.4 % for mega-crush steps, and <5 % for all other steps.

100% ; :
; 4 2Xe/Xe
* ‘ o o Figure S-2 Reproducibility of standards
g 10% LA ¢ EXelXe as a function of signal size. Signal size is
g ° . A shown as counts per second of '*’Xe at the
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0.1%0 ‘mega-crush’ crush steps) was 1-2 %o in '*Xe/"**Xe, and
0 5,000 10,000 <1 % for the primordial Xe isotope ratios.

cps '#Xe at start of measurement

WUSTL House Gas Standards

Two house gas standards were mixed in the WUSTL Noble Gas Laboratory. A house helium standard was
mixed using a high purity *He isotope spike purchased from Chemgas (Boulogne-Billancourt, France). A
large (8 L) cylinder was prepared along with a helium standard mixing manifold with parts dedicated for
the purpose of mixing a helium standard (Swagelok gasket-sealed bellows valves, standard conflat flange
fittings, a VAT angle valve, two leak valves and two MKS Baratron capacitance manometers). The cylinder
and manifold were rough pumped and all internal volumes were determined using pure nitrogen and MKS
Baratron Absolute Pressure Sensors along with a calibrated volume. The system was baked, pumped for
several days at ultra-high vacuum, sealed off and transported to a hallway. In this hallway, research-grade
ultra-high purity He from Airgas was inlet through one leak valve to fill the 8 L cylinder and portions of
the mixing manifold with He (mostly “He), with the final pressure recorded using a manometer with a 10
torr max range. The *He spike bottle was attached to the other leak valve and a small volume was filled to
a pressure recorded using a manometer with a 0.1 torr max range. Target pressures for both filling steps
were calculated to yield a mixture with mantle-like “He/*He. A valve separating the small volume filled
with *He and the rest of the mixing manifold and cylinder was opened and the system was left to equilibrate
for an hour. A VAT all-metal right angle valve was used to seal off the 8 L cylinder, and the helium standard
was named LHF, with a calculated “He/*He of 59,170. The rest of the manifold was pumped out in the
hallway using a rough pump borrowed from another lab, and then put into storage.

Two 6 L standard tanks made by Achron Helium Systems (Austin, TX, USA) were prepared: they
were pumped out, internal volumes were determined, they were baked and pumped for several days. One 6
L standard tank was attached to a filling manifold along with a ~5 cc volume filled with air collected in
Forest Park, St. Louis during exceedingly dry conditions accompanying a polar vortex event in February
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2021. The ~1 cc pipette volume of this 6 L tank was filled with a dose of polar vortex air, the outer valve
was closed and the inner valve was opened to let the air equilibrate with the cylinder volume.

Both 6 L standard tanks were then attached to a small manifold along with the LHF cylinder. One
aliquot from the LHF cylinder was used to fill the pipette volumes (~1 cc) of the two 6 L standard tanks.
The outer pipette valves were closed, and the inner pipette valves were opened to let the LHF helium
equilibrate with the cylinder volumes. Accordingly, one 6 L standard tank contains an LHF-doped polar
vortex air standard named PVA, with “He/*He of 59,240 and atmospheric Ne, Ar, Kr and Xe isotopic
compositions. The other 6 L standard tanks contains LHF. Both standard tanks were installed on the
WUSTL gas extraction and purification line.

Elemental Ratios

A manometer directly attached to the crusher chamber was used to monitor pressure during gas release.
The manometer records pressure during the crush and after the gas is expanded into a known volume. The
drop in pressure is used to determine crusher volume for each crush step. Assuming the dominant species
in the released gas is CO», moles of CO; can be calculated. The estimated CO,/*He ratio is 1.3 x 10’ (Fig.
S-3), in excellent agreement with the value determined for DG2017 (Péron et al., 2021), and in broad
agreement with measurements of DICE and other mantle samples (Marty and Tolstikhin, 1998; Marty et
al., 2020).

8
CO,/’He = 1.3 x 10°
8~ 6
3
g 4 Figure S-3  CO, vs. *He moles released in individual
N crush steps. CO, moles were estimated based on
% ) manometer readings and are an upper limit estimate
assuming the main volatile species in the released gas
was CO,. There is a good correlation between the
0 manometer pressure and moles of *He. This correlation

o 1 2 3 4 5 6 allowed for reliable targeting of “mega-crush” steps
x 10" moles *He with a roughly predictable Xe signal.

MiofellRP0O9 - Iceland
© normal crush release steps
® “mega-crush” release steps

482

The average “He/**Ar* ratio is 1.6 (Table S-1), on the low end of the range of estimated mantle
production ratio, and the average “He/*'Ne* is 1.7 x 107, low compared to the mantle production ratio
(Yatsevich and Honda, 1997; Graham, 2002). These values are also lower than those measured in the DICE
sample (Mukhopadhyay, 2012), indicating that elemental abundance ratios in the MidfellRP09 sample have
been affected by fractionation.

Plotting elemental ratios against isotopic ratios yields arrays that are rotated compared to DICE
(Mukhopadhyay, 2012) in a systematic fashion consistent with kinetic fractionation driving preferential
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loss of He compared to heavier noble gases. He-Ne and He-Ar systematics are illustrated in Figure S-4;
element ratio-isotope ratio diagrams involving Xe are highly scattered.
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Figure S-4 Elemental ratio vs. isotope ratio plots for MidfellRP09 crush step data. Symbols as in

Figure S-3. Good correlations are evident in (a) *°Ne/*Ne vs. *He/*Ne and (b) “Ar/*°Ar vs. *He/*®Ar.
Extrapolated mantle source elemental ratios are given for a model mantle with *°Ne/**Ne = 13.36 (solar
nebular gas), and “*Ar/*Ar of 9000. The resulting mantle *He/**Ne and *He/*°Ar are low compared to mantle
ratios estimated in studies of the DICE sample (Mukhopadhyay, 2012; *He/**Ne of ~2.5 at the same
2Ne/*Ne and ~0.75 at the same “°Ar/*®Ar as used here). The MidfellRP09 *He/**Ne and *He/*’Ar can be
used to estimate a mantle **Ne/*’Ar of ~0.18, lower than estimated by Mukhopadhyay (2012), but similar
to the value used by Williams and Mukhopadhyay (2019) for Iceland. All of the estimated mantle elemental
ratios are depleted in the light element, consistent with kinetic fractionation effects and low “He/*°Ar* and
*He/*'Ne* ratios.

Supplementary Tables

Table S-1 He, Ne, Ar, Xe and CO; abundances, He, Ne, Ar and Xe isotopic compositions and
elemental abundance ratios in step-crush analyses of MidfellRP09.

Table S-1 (.xIsx) is available for download from the online version of this article at
https://doi.org/10.7185/geochemlet.2331.

Table S-2 Mantle source isotope ratios determined using total least squares fits to air-mantle mixing
models.
ZlNe/ZZNe(E) 40Ar/36Ar(E) 129Xe/130Xe(E) 129Xe/132Xe(E)
MiofellRP0O9 0.0373 9000 6.85 1.032
+lo 0.0003 (n/a) 0.04 +0.003
—0.002
See Figure S-5
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Figure S-5 Best fit mantle “°Ar/*°Ar) as a function
of hyperbolic mixing curvature parameter. Total least
squares hyperbolic fitting using a mantle *’Ne/*Ne of
13.36 did not yield a well-resolved mantle source
“Ar/*SAr due to scatter in the data in Ne-Ar space (Fig.
2a). Fits with similar total scores could be achieved with
many pairings of mantle “°Ar/°Ar and the curvature
parameter k (where k values close to 1 approach linear
mixing). The curve shows best pairings of these two
parameters and illustrates how curvature can be
strengthened to compensate for higher *“Ar/°Ar.
Applying a curvature parameter (kK = 0.25) consistent
with the contrast between *°Ar/**Ne in the atmosphere
and that estimated for the Iceland mantle source
(Williams and Mukhopadhyay, 2019) yields a

DAr/CAr gy of ~9000, which is adopted for the Ar-Xe fits shown in Figure 2.

22



537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556

0.490

a mass-dependent
fractionation
0.485

Q
s 0.480 |
8
=

Q
g< 0475 | lume samples
< : @ this study, MidfellRP09 - Iceland

/\ Péron et al. (2021), D22 - Galapagos
V Péron et al. (2021), DG2017- Iceland

0.470 | . @ Broadley et al. (2020), 4B - Yellowstone
W Bekaert et al. (2023) - Yellowstone
FH atmosphere

0465 L 1 1 L 1 1

6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8
129 0 [130K @
0.490 T T T T T T
b Upper mantle samples
mass-dependent ® Caffee et al. (1999), well gas
0.485 - fractionation = Holland and Ballentine (2006), well gas |
’ B Péron and Moreira (2018), 2IND43 MORB

# Bekaert ef al. (2019), Eifel (E2, E3, E4)

° V Caracausi ét al. (2016), Eifel (Victoriaquelle)
N 0.480 1
2
=
X
g 0475 antle samples

d upper ™
< fit for selecte
total least square
0.470
0 465 1 1 1 L 1 L
6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8

129xel130Xe

Figure S-6 Individual and average '**Xe/"**Xe vs. '¥°Xe/"*"Xe data for (a) plume and (b) upper mantle
samples. For samples with differently sized symbols, the small symbols are individual measurements and
large symbols are averages, except for the Bravo Dome well gas data from Holland and Ballentine (2006),
where the large symbol shows the sample with least atmospheric contamination (BD20-B). The
atmospheric composition and a mass-dependent fractionation trend through atmosphere are shown for
reference. (a) Plume localities include Iceland (this study; Péron et al., 2021), Galapagos (Péron et al.,
2021) and Yellowstone (Broadley et al., 2020; Bekaert et al., 2023). With very fine precision enabled by
dynamic mass spectrometry, Bekaert ef al. (2023) showed that volcanic gases are susceptible to mass-
dependent fractionation due to diffusive transport within the hydrothermal system. Data from Bekaert et al.
(2023) was screened using a plot of '®Xe/'**Xe vs. **Xe/**Xe, which shows a population of samples
dominated by mantle-atmosphere mixing and a population dominated by mass-fractionation. Among the
samples dominated by mantle-atmosphere mixing, two with small §**Kr/**Kr deviations from atmosphere
are shown: Crater Hills 2 and Mud Volcano 1. The Yellowstone volcanic gas 4B average (Broadley et al.,
2020) is offset from the other Yellowstone measurements and may reflect a mass-dependent enrichment in
light isotopes, but is included in the all-plume total least squares fit shown in Figure 4b. Galapagos data
obtained using the screened accumulation technique (Péron et al., 2021) is consistent with the MidfellRP09
data from this study. One of the two individual measurements for Iceland (Péron et al., 2021) agrees well
with the other plume data, but the weighted average for Iceland-DG2017 is offset. (b) Upper mantle samples
include well gases from Eifel (Caracausi et al., 2016; Bekaert et al., 2019), New Mexico, Colorado and
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Australia (Caffee et al., 1999; Holland and Ballentine, 2006), and a measurement of the N. Atlantic popping
rock 2I1D43 made using the screened accumulation technique (Péron and Moreira, 2018). Eifel data show
indications of mass-dependent fractionation and are excluded from the upper mantle total least squares fit.
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