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Synthesizing relational queries from data is challenging in the presence of recursion and invented predicates.

We propose a fully automated approach to synthesize such queries. Our approach comprises of two steps: it

�rst synthesizes a non-recursive query consistent with the given data, and then identi�es recursion schemes in

it and thereby generalizes to arbitrary data. This generalization is achieved by an iterative predicate uni�cation

procedure which exploits the notion of data provenance to accelerate convergence. In each iteration of the

procedure, a constraint solver proposes a candidate query, and a query evaluator checks if the proposed

program is consistent with the given data. The data provenance for a failed query allows us to construct

additional constraints for the constraint solver and re�ne the search. We have implemented our approach

in a tool namedMöbius. On a suite of 21 challenging recursive query synthesis tasks,Möbius outperforms

three state-of-the-art baselines GenSynth, ILASP, and Popper, both in terms of runtime and accuracy. We

also demonstrate that the synthesized queries generalize well to unseen data.
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1 INTRODUCTION

The synthesis of relational queries from input-output examples is a challenging and foundational

problem in program synthesis. Ideally, we would like a technique that is simultaneously: (a) scalable

enough to be applicable to real-world instances, (b) expressive in terms of the kinds of queries

that it can synthesize, and (c) fully automatic, so it requires minimal guidance from non-expert

users. Signi�cant progress has been made on this problem in recent years [Cropper et al. 2020],
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and a variety of algorithms have been proposed, including algorithms based on evolutionary

search [Mendelson et al. 2021], numerical relaxation [Si et al. 2019], constraint solving [Cropper

and Morel 2021; Law et al. 2020], and counterexample-guided search [Raghothaman et al. 2020].

Despite these strides, one particularly di�cult class of queries consists of those that simultane-

ously require recursion and invented predicates, i.e., intermediate concepts which are not explicitly

provided as part of the training data. Such queries are useful in many application domains, such as

bioinformatics, knowledge discovery, program analysis, and software-de�ned networking. Complex

queries in these domains often involve a recursive core followed by additional qualifying rules.

For example, contact tracing in an epidemic might involve following the chain of exposures and

subsequently accounting for the subset of asymptomatic and vulnerable populations.

To further illustrate the challenge with synthesizing such queries, consider the task of learning

the concept of strongly connected components (SCC) in directed graphs. In this case, the user

would provide examples of graphs via their adjacency relations, edge(G,~), and identify pairs of

vertices in the same SCC. We may express the target relation scc using the following relational

query, &scc, in Datalog syntax:

scc(G,~) :- path(G,~), path(~, G).

path(G, I) :- path(G,~), path(~, I).

path(G,~) :- edge(G,~).

Here, the relation path corresponds to the transitive closure of edge, and scc is de�ned as the

conjunction of path and its inverse. The query is recursive and the tuples of the invented relation

path are not speci�ed by the user either in the input or output data. Although several existing

tools, including GenSynth [Mendelson et al. 2021], ILASP [Law et al. 2020], and Popper [Cropper

and Morel 2021] can synthesize &scc, they typically require additional instance-speci�c guidance

in the form of candidate rules, signatures of the invented predicates, or bounds on the size of the

search space. In this paper, we study the fully automatic synthesis of such queries.

We begin by observing that existing techniques such as the enumerative search-based tool

Scythe [Wang et al. 2017c] and example-guided synthesis (EGS) [Thakkar et al. 2021] can synthesize

arbitrarily complex non-recursive queries without any instance-speci�c guidance from the user.

Furthermore, although these non-recursive query synthesis algorithms are successful in inferring

patterns in data of �nite size, they have limited ability to generalize these patterns to perform

computation on arbitrarily large datasets. In contrast, techniques to synthesize recursive queries

are successful in generalizing patterns once the user constrains the space of candidate programs.

Our key insight is to combine the strengths of both paradigms in a synthesis tool that is scalable,

targets an expressive fragment of queries, and o�ers end-to-end automation.

Our approach is a two-phase synthesis engine called Möbius which we show in Figure 1. In the

�rst phase, we synthesize a non-recursive query& using a template-free technique, example-guided

synthesis (EGS) [Thakkar et al. 2021]. In the second phase, we use this non-recursive query to

constrain the hypothesis space to queries that generalize it. This procedure uses provenance-guided

reasoning to unify invented predicates. Since these invented predicates may not directly manifest in

& itself, we propose a normalization procedure that exposes them by rewriting& into a semantically

equivalent query & . Then, generalization proceeds in an iterative fashion that involves synergistic

interaction between a constraint solver and a query evaluator. In each iteration, the former selects

a candidate uni�cation `, and the latter checks whether the resulting query ` (&) is consistent with
the given input-output data. If so, the process terminates; otherwise, the constraints are updated to

avoid the ill-fated uni�cation choice and the process is repeated.
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Fig. 1. The architecture of theMöbius synthesis engine. We start by using a pa�ern enumerator (such as EGS)

to generate a non-recursive query that is consistent with the input-output examples, and then generalize it

into a recursive query using a provenance-guided generalization algorithm. This procedure repeatedly uses a

constraint solver to generate candidate solutions whose consistency it determines using a query evaluator.

Analysis of failed candidate solutions result in additional constraints that are fed back to the constraint solver

thereby pruning the search space in subsequent iterations.

A naive constraint formulation su�ers from prohibitively slow convergence in practice due to an

exponential number of uni�cation choices. To accelerate convergence, a standard technique is to

use con�ict-driven learning which iteratively prunes the search space [Feng et al. 2018a]. Motivated

by it, in the second phase, we develop a novel provenance-guided technique that leverages data

provenance [Cheney et al. 2009; Zhao et al. 2020]—a derivation tree that serves as a witness of a

given spurious tuple—to identify a minimal incorrect core of the ill-fated uni�cation choice. We

thereby eliminate from future consideration all other uni�cation choices that are similarly destined

to derive the spurious tuple.

We evaluateMöbius on 21 tasks from the literature with a diverse range of recursion schemes,

including queries with transitive closure, and linear, non-linear, and mutually recursive predicates.

The tool successfully discharges all problem instances within a total of 128 seconds. We also

compare with three state-of-the-art tools GenSynth, ILASP, and Popper that employ evolutionary

search and constraint solving techniques. Given su�cient parallelization, GenSynth can solve

all benchmarks in 796 seconds, while ILASP and Popper solve only 13 and 8 tasks, in 1057 and

59 seconds respectively.

In summary, our work makes the following contributions:

(1) We propose a fully automated approach to synthesize relational queries with both recursion

and invented predicates.

(2) We propose a novel uni�cation procedure to identify recursion schemes in non-recursive pro-

grams, thereby generalizing them beyond the training data. The procedure e�ciently identi�es

uni�cation constraints by leveraging data provenance in relational queries.

(3) We have implementedMöbius, an end-to-end synthesis tool and demonstrate that it outperforms

state-of-the-art approaches on a variety of challenging tasks in terms of synthesis time as well

as the generalizability of the synthesized programs.
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(a) Graph � .

Input �

edge(a,b), edge(b,c),

edge(c,a), edge(c,d),

edge(c,e), edge(e,f),

edge(f,a)

(b) Input edge relation.

Positive labels $+:

scc(a,a), scc(a,b), scc(a,c),

scc(c,b), scc(e,f), scc(f,e),

Negative labels $− :

scc(a,d), scc(c,d), scc(c,e),

scc(d,e), scc(c,f), scc(e,c)

(c) Positive and negative labels for scc.

Fig. 2. The synthesis task is specified as a search for a relational query % that takes the graph � as an input

and returns a set of pairs of vertices $ such that $ is a superset of $+ and disjoint from $− . We call such a

query consistent with the input-output examples.

2 OVERVIEW

We begin with a high-level overview of our end-to-end synthesis framework. As a running example,

we consider the task of synthesizing a query that computes the relation induced by the strongly

connected components (SCCs) in a directed graph.

2.1 Problem Se�ing

Figure 2a shows a directed graph and Figure 2b describes its adjacency relation edge. A user can

provide this relation as an input � to a synthesis engine with the intent to synthesize a query that

computes a relation scc representing SCCs in the graph. In order to express this intent, they label

some pairs of vertices as positive tuples $+ and some as negative tuples $− such that the tuples in

$+ must be present in relation scc while those in $− must be absent. Figure 2c shows an example

of the positive and negative labelled output tuples. The synthesis task is to �nd a query % consistent

with (� ,$+,$−), that is, a query that takes � , the edge relation, as an input and generates all tuples

in $+ but none in $− .

Example 2.1. The following relational query %≤3
scc is consistent with (� ,$+,$−):

A1 : scc(G, G) :- edge(G,~), edge(~, G).

A2 : scc(G,~) :- edge(G,~), edge(~, G).

A3 : scc(G, G) :- edge(G,~), edge(~, I), edge(I, G).

A4 : scc(G,~) :- edge(G,~), edge(~, I), edge(I, G).

A5 : scc(G, I) :- edge(G,~), edge(~, I), edge(I, G).

(1)

%≤3
scc is a collection of rules {A1, . . . , A5}. We can interpret each rule in %≤3

scc as a Horn clause. For

instance, the second rule means that if both tuples (G,~) and (~, G) are in the edge relation, then

vertices G and ~ are in the same SCC. We formally de�ne the syntax and semantics of relational

queries in Section 3.1.

As we can observe, %≤3
scc correctly captures all SCCs in the graph of Figure 2a, and in general, in

all directed graphs with SCCs of size 2 or 3. A program synthesis technique such as example-guided

synthesis (EGS) can e�ciently synthesize such queries. However, the goal of the synthesis task is

to �nd a query that is not only consistent with the user input, but also generalizes to match the

intent of the user.

2.2 Synthesis of Recursive�eries

We next illustrate a query for computing SCCs that matches user intent.
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Example 2.2. The following relational query %scc computes SCCs in a given graph:

A ′
1
: scc(G,~) :- path(G,~), path(~, G).

A ′
2
: path(G, I) :- path(G,~), path(~, I).

A ′
3
: path(G,~) :- edge(G,~).

(2)

Observe that %scc uses a predicate path which is not pre-de�ned (that is, it does not occur as an

input to the synthesis task) and also calls itself in rule A ′
2
. A predicate that does not appear in the

synthesis task as an input or an output predicate is called an invented predicate. A predicate that

can call itself by applying a series of rules is called a recursive predicate. Our goal is the discovery

of succinct and general queries such as %scc that potentially use invented and recursive predicates.

Further, observe that a non-recursive query synthesis engine such as EGS or Scythe cannot

generate %scc, nor can we modify them to directly enumerate such a query as they do not support

recursive or invented predicates. Two principal challenges arise when synthesizing such queries:

First, the outputs of intermediate relations are under-constrained and are not explicitly speci�ed

in the input-output examples. This signi�cantly inhibits the ability of the synthesizer to prune

candidate queries during search. Second, synthesis engines which attempt to enumerate candidate

programs also need constraints on the number and schema of these intermediate predicates. Tools

such as ProSynth and ILASP that support recursion would require additional supervision in form

of the correct set of mode declarations that specify the invented and recursive predicates with their

schema. Although GenSynth is able to discover invented predicates, it implicitly assumes that

they must share schema with one of the input or output predicates already provided as part of the

problem description. In our experiments in Section 6, we will present benchmarks that require

both predicate invention as well as schema invention, and observe that state-of-the-art tools fail to

correctly synthesize these queries.

We leverage a non-recursive query %≤3
scc that can be generated without templates (by using EGS)

as a starting point for the search for %scc. Observe that %scc generalizes %
≤3
scc. That is, on any graph

%scc will also report all pairs of vertices generated by %≤3
scc. In addition, for graphs with SCCs of

size 4 or more, %scc can report pairs of vertices scc(G,~) that %≤3
scc would miss.

In order to generalize it, we �rst normalize the given query, that is, convert it into a semantically

equivalent query where a premise comprises of at most one input predicate or two invented

predicates. We describe this process in Section 3.2. For ease of notation, let & = %≤3
scc. The normal

form & for the query & would look like:

d1 : scc(G, G) :- '1 (G,~), '1 (~, G).

d2 : scc(G,~) :- '1 (G,~), '1 (~, G).

d3 : scc(G, G) :- '1 (G,~), '2 (~, G).

d4 : scc(G,~) :- '1 (G,~), '2 (~, G).

d5 : scc(G,~) :- '2 (G,~), '1 (~, G).

d6 : '2 (G, I) :- '1 (G,~), '1 (~, I).

d7 : '1 (G,~) :- edge(G,~) .

(3)

Observe that rules d1, . . . , d5 in & correspond exactly to the rules A1, . . . , A5 in & , and uses two

invented predicates '1 and '2. The rules for these invented predicates are d6 and d7.

At this point, we can highlight our key insight. There is a correspondence between the rules

d6 and d7 in & and the rules A2 and A3 in %scc by which the rules are identical up to renaming of

the predicates. That is, if we could map '1 (G,~) and '2 (G,~) to path(G,~), we would obtain the
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rules A2 and A3 in %scc. Furthermore, applying this mapping to each of the rules of & would give us

a query similar to %scc.

Our generalization technique builds on this insight and identi�es an e�cient way to search

for maps that unify invented predicates. One happy e�ect of the normalization process is that it

automatically discovers the schema of the intermediate relations, thus eliminating the need for

them to be explicitly provided as a part of the input. In this sense, the normalized program &

e�ectively serves as a template and constraints the space of candidate programs to those that can

be generated by uni�cation.

2.3 Provenance-Guided Generalization

In order to search for a query % that generalizes & , we seek ways to unify the invented predicates

'1 and '2. Section 5 details a way to encode this as a constraint satisfaction problem. We start with

a bound on the number of invented predicates. For the sake of this example, let the bound be : = 1.

That is, we wish to map both '1 and '2 to the same predicate, say (1. Clearly, there are four ways

to permute the variables for '1 and '2, and each of them gives us a map:

`1 : '1 (G,~) ↦→ (1 (G,~), '2 (G,~) ↦→ (1 (G,~)

`2 : '1 (G,~) ↦→ (1 (G,~), '2 (G,~) ↦→ (1 (~, G)

`3 : '1 (G,~) ↦→ (1 (~, G), '2 (G,~) ↦→ (1 (G,~)

`4 : '1 (G,~) ↦→ (1 (~, G), '2 (G,~) ↦→ (1 (~, G)

In order to apply a uni�cation ` to & , we replace each occurrence of '1 (G,~) and '2 (G,~) with

` ('1 (G,~)) and ` ('2 (G,~)) respectively in each rule. For example, on applying `2 to & we get the

query ) (&, `2):

`2 (d1) : scc(G, G) :- (1 (G,~), (1 (~, G).

`2 (d2) : scc(G,~) :- (1 (G,~), (1 (~, G).

`2 (d3) : scc(G, G) :- (1 (G,~), (1 (G,~).

`2 (d4) : scc(G,~) :- (1 (G,~), (1 (G,~).

`2 (d5) : scc(G,~) :- (1 (~, G), (1 (~, G) .

`2 (d6) : (1 (G, I) :- (1 (~, G), (1 (I,~).

`2 (d7) : (1 (~, G) :- edge(G,~).

Observe that if a tuple is produced by & , then for any uni�cation map `, the same tuple can

be generated by ) (&, `) by applying the corresponding set of rules. We formally prove this in

Theorem 5.3. However, it is possible for ) (&, `) to have an output larger than & . In this sense,

uni�cation leads to generalization. We call ) (&, `) a candidate query.

We then check if the candidate query ) (&, `) is consistent with the input-output example

(� ,$+,$−). If it is, then we can return it as a synthesized result. On the other hand, it is also possible

that such a generalization is too general, that is, it also generates some of the tuples in $− .

In the example above, the tuple scc(c, d) can be generated by ) (&, `2) while c and d are not in

the same SCC. By analyzing the derivation tree for the erroneously generated tuple, scc(c, d), we
can assign blame to a part of the uni�cation map. This blame can be converted into a constraint

that rules out future uni�cation maps where similar patterns would occur. Blame analysis thereby

guides the search towards correct generalizations.

In order to implement this, we set up an interactive process involving a constraint solver that

proposes candidate queries and a query evaluator that veri�es whether the candidate is consistent
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with the input-output example. In the case where the candidate is not consistent, the query evaluator

provides a derivation tree of every tuple in C ∈ $− that can be generated by the candidate. We use

these derivation trees to craft the constraints. We further discuss derivation trees in Section 3.1 and

the provenance-guided technique in Section 5.3.

The key insight of the provenance-guided technique is to leverage the derivation tree of an

unexpected tuple. This tree allows us to precisely identify properties of the uni�cation which led

to the unexpected tuple being derived. This allows us to avoid considering such uni�cations in

future iterations.

Eventually, the constraint solver proposes the uni�cation map `1. Not only is the query ) (&, `1)
consistent with (� ,$+,$−), it is also similar to the intended query %scc. It has the rules:

`1 (d1) : scc(G,~) :- (1 (G,~), (1 (~, G).

`1 (d2) : scc(G,~) :- (1 (G,~), (1 (~, G).

`1 (d3) : scc(G, G) :- (1 (G,~), (1 (~, G).

`1 (d4) : scc(G,~) :- (1 (G,~), (1 (~, G) .

`1 (d5) : scc(G,~) :- (1 (G,~), (1 (~, G).

`1 (d6) : (1 (G, I) :- (1 (G,~), (1 (~, I).

`1 (d7) : (1 (G,~) :- edge(G,~).

The rules `1 (d2), `1 (d5), and `1 (d6) correspond exactly to the rules A
′
1
, A ′

2
, and A ′

3
in %scc (Equation 2).

The rules `1 (d4), and `1 (d5) are identical to `1 (d1) or can be derived using it. Using the rules `1 (d1)
and `1 (d5), one can derive the rule `1 (d1) and `1 (d3). Once simpli�ed, this gives a correct and

interpretable solution to the problem originally posed in Figure 2.

3 PROBLEM FORMULATION

In this section, we overview the syntax and semantics of relational queries, de�ne the Relational

Query Synthesis Problem, and discuss its decidability and complexity.

3.1 Syntax and Semantics of Relational�eries

As discussed in the overview, a relational query & is a set of rules. To de�ne the syntax of rules, we

�rst �x a set of input predicates, a set of invented predicates, and a set of output predicates. Each

predicate ' is associated with an arity : . A literal, '(E1, E2, . . . , E: ), consists of a :-ary predicate '

with a list of : variables.

Then, a rule A is of the form:

'ℎ (®Dℎ) :- '1 (®D1), '2 (®D2), . . . , '= (®D=),

where the single literal on the left, 'ℎ (®Dℎ), is the head of A and '1 (®D1), '2 (®D2), . . . , '= (®D=), is called
the body of A . The literals in the body can have input predicates, invented predicates, or output

predicates, while the head of the rules must have either invented predicates or output predicates. A

variable that occurs in the head must appear at least once in the body in order for the variable to

be bound. The number of literals in the body of a rule is called the size of the rule.

The semantics of a relational query may be speci�ed in multiple equivalent ways; see [Abiteboul

et al. 1995] for an overview. In this paper, we will formalize their semantics using rule instantiations

and derivation trees.We �rst �x a data domain� , whose elements wewill call constants. For example,

the set of constants for the input in Figure 2 is the set of vertices of� , that is � = {a, b, c, d, e, f}. A
tuple, '(21, 22, . . . , 2: ), consists of a :-ary relation name ' with a list of constants, 21, . . . , 2: .
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edge(b, c)

path(b, c)

edge(a, b)

path(a, b)

path(a, c)

edge(c, a)

path(c, a)

scc(a, c)

Fig. 3. Example derivation tree of the output tu-

ple scc(a, c) for the query %scc. The input to the

query is the graph of Figure 2a.

Query semantics (⟦%scc⟧(� )):

scc(a,a), scc(a,b), scc(a,c),

scc(b,a), scc(b,b), scc(b,c),

scc(c,a), scc(c,b), scc(c,c),

scc(e,e), scc(e,f), scc(f,e)

scc(f,f)

Fig. 4. Semantics of %scc with respect to the input

of directed graph � as in Figure 2a. The set � is

the set of input tuples and the query semantics

are ⟦%scc⟧(� ).

Given a map E from variables to the data domain � , we can instantiate a rule by consistently

replacing its variables G with constants E (G):

'ℎ (E (®Dℎ)) ⇐= '1 (E (®D1)), '2 (E (®D2)), . . . , '= (E (®D=)) .

Given a query % and a valuation of the input relations � , a derivation tree of a tuple C is a labelled

rooted tree where: (a) each node of the tree is labeled by a tuple, (b) each leaf is labeled by a tuple

in � ; (c) the root node is labeled by C ; and (d) for each internal node labeled U , there exists an

instantiation U ⇐= V1, . . . , V= of a rule in % such that the children of the node are respectively

labelled V1, . . . , V= . We say that a query % derives C using � if there exists a derivation tree for C .

Figure 3 shows the derivation tree for scc(a, b) in %scc. The output ⟦%⟧(� ) of a query % given an

input � is the set of output tuples '(21, 22, . . . , 2: ) which it derives from � . The query %scc on the

input in Figure 2a generates the output as in Figure 4.

3.2 Minimal Generalization Problem

Our ultimate goal is to synthesize a recursive relational query which is consistent with given

input-output examples. Given a set of input tuples, � , and a set of output tuples partitioned as $+

and $− , tools such as EGS and Scythe can e�ectively synthesize queries % such that % generates

tuples in $+ and does not generate any tuple in $− . However, these are non-recursive queries. As

discussed in the overview, we are interested in the generalization problem where given a query &

that is consistent with the input-output examples, we wish to �nd a query % that generalizes it. For

this purpose, we �rst de�ne subsumption:

De�nition 3.1 (Subsumption). A relational query % subsumes a relational query & if for any set

of input tuples � , ⟦&⟧(� ) ⊆ ⟦%⟧(� ).

That is, for any input � , if & generates a tuple C , then % also generates C . For example, the query

%scc subsumes %≤3
scc. We also de�ne the size of a relational query as the sum of the sizes of its

rules. For example, the size of the query %scc is 5 and of %≤3
scc is 11. We can now state the minimal

generalization problem:

Problem 3.2 (Minimal Generalization). Given an input-output example � = (� ,$+,$−), and a

relational query & consistent with �, �nd a relational query % that subsumes & , is consistent with �,

and is of minimal size among such queries.

For example, the user may specify the input and output tuples as described in Section 2, and seek

a query that explains the relation between input and output tuples. They may use the query %≤3
scc
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generated by EGS as a seed in order to search for the query %scc that uses invented and recursive

predicates so it can match the user intent.

4 THE SYNTHESIS ALGORITHM

In this section we describe the end-to-endMöbius algorithm, which takes an input-output example

� = (� ,$+,$−) as input and returns a relational query % (which potentially has invented and

recursive predicates). Algorithm 1 summarises the procedure.

Algorithm 1Möbius(� ,$+,$−), where (� ,$+,$−) is an instance of the synthesis task.

(1) Let &0 = EGS(� ,$+,$−). If EGS fails to return a relational query, end the procedure and

return unsat.

(2) Initialize & B ∅.
(3) While there is a tuple C ∈ $+ \ ⟦&⟧(� ):
(a) Let A ∈ &0 derive C . Update & B & ∪ {A }.

(b) Let & = Normalize(&).
(c) Compute % = Generalize(&, �,$−).
(d) If $+ ⊆ ⟦%⟧(� ), end the procedure and output C .

We start with using a non-recursive query synthesizer EGS. The output of EGS, &0, is a non-

recursive query. We construct a query & ⊆ &0 on demand, initialized to the empty set, that grows

till the synthesized query is not consistent with (� ,$+,$−).

In order to generalize the query & , we �rst normalize it to & . We discuss the normalization

procedure in Section 4.2. The normalized query is then provided as an input to the provenance-

guided generalization procedure which we discuss in Section 5.

4.1 Example-guided Synthesis

Example-guided Synthesis (EGS) is a template-free algorithm to synthesize non-recursive queries

from input-output examples. While EGS supports features such as multi-way joins and unions,

it does not allow for invented or recursive predicates. Therefore, on inherently recursive tasks,

EGS cannot synthesize the intended query. %≤3
scc is an example of a query that EGS may generate.

Additionally, EGS cannot be modi�ed to generate recursive programs as it not a syntax-guided tool.

However, EGS does provide a completeness guarantee that if there exists a non-recursive query

consistent with the input-output example (� ,$+,$−), then EGS will �nd a consistent query&0. We

can prove that there exists a recursive relational query consistent with a given input-output example

� = (� ,$+,$−) only if there is a non-recursive query that is consistent with �. Therefore, when

EGS returns unsat, we can conclude that there does not exist a query (recursive or non-recursive)

that is consistent with the input-output example. Using this, we can prove:

Theorem 4.1 (Completeness). If there exists a query consistent with the input-output example

� = (� ,$+,$−), then Möbius produces a relational query % consistent with �.

This is because we use EGS as a �rst step in the process, which allows Möbius to ensure that if

there is no consistent query, then we do not proceed with a futile search. On the other hand, if

EGS produces a query, Möbius only further generalizes it and in the worst case, it may output

the same query (after normalization). This allows us to conclude a completeness guarantee for the

end-to-end synthesis procedure.
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4.2 Normalization

Once we have the query &0, we construct & on demand. Then, in Step 3b, we normalize & to & .

Normalization introduces invented predicates in the query which we further use for generalization

through uni�cation. The following de�nition of a normal query is motivated by the Chomsky

Normal Form for context-free languages [Sipser 2012].

De�nition 4.2 (Normal Form). A relational query is said to be in the normal form if every rule is

of one of the two forms:

'( ®G) :- '1 ( ®G1), '2 ( ®G2)

'( ®G) :- '8= ( ®G8=)

where ', '1, and '2 are invented predicates and '8= is an input predicate. That is, the body of a rule

either has two invented predicates or one input predicate.

For example, %≤3
scc in Equation 1 is not in normal form while %scc in Equation 2 is. Analogous to

context-free languages, the normalization of relational queries can be carried out by rewriting the

rules into semantically equivalent rules and introducing invented predicates, and we can show that

every query can be normalized. We employ a greedy heuristic to normalize queries that allows us

to minimize the size of the number of invented predicates as well as their arity.

Let a given rule be of the form:

'( ®G) :- '1 ( ®G1), '2 ( ®G2), . . . , '= ( ®G=).

We partition the literals in the body into two disjoint sets (; and (A such that the number of variables

shared by literals in (; and literals in (A are minimal. Let ®G; be a vector of variables that occur in
the literals in (; and either in ®G or a literal in (A . Similarly, let ®GA be a vector of variables that occur
in the literals in (A and either in ®G or a literal in (; . Then, we can rewrite A as:

'( ®G) :- '; ( ®G; ), 'A ( ®GA )

'; ( ®G; ) :- '81 ( ®G81 ), . . . , '8= ( ®G8= )

'A ( ®G 9 ) :- ' 91 ( ®G 91 ), . . . , ' 9< ( ®G 9< ),

where we have (; = {'81 ( ®G81 ), . . . , '8= ( ®G8= )} and (A = {'81 ( ®G81 ), . . . , '8= ( ®G8= )}. We can iteratively

apply this rewriting rule to normalize the query. Observe that this is a greedy process, and hence

minimality of the normal form is not guaranteed. We discuss its implications in Section 7.

Secondly, instead of recreating '; and 'A at every step of the normalization procedure, we reuse

the invented predicates. That is, if there are two predicates which are described by syntactically

identical rule bodies (up to permutation of variables) that exists in the query, we require only one of

them. This allows us to reuse predicates and shrink the search space. If one chooses not to reuse the

predicates, they will be eventually uni�ed during the generalization step. However, this heuristic

allows us to reduce the size of the search space and hence accelerate the synthesis process. Note

that this optimization does not compromise the end-to-end guarantee of Theorem 4.1. For the

running example, the normalization of %≤3
scc generates the query & in Equation 3.

5 PROVENANCE-GUIDED GENERALIZATION

We can use the normalized relational query as a template to constrain the space of candidate

queries to only those which can be constructed by uni�cation of predicates. As discussed in the

overview, the user may provide a query like %≤3
scc (Equation 1) and intend to generalize it to %scc

(Equation 2). In the rest of this section, we develop a provenance-guided technique to solve the
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Algorithm 2 Generalize(&, �,$−), where& is a normalized query, � is the set of input tuples and

$− is the set of negatively labeled output tuples.

(1) Initialize q B q0 (&).

(2) Let & have  invented predicates. Then, for : = 1, 2, . . . ,  :

(a) Let ` = Generalize(&,:, q).
(b) If the Generalize procedure fails to �nd a uni�cation map `, then break the loop.

(c) Otherwise, let % = ) (&, `).
(i) If ⟦%⟧(� ) ∩$−

= ∅, end the procedure and return % .

(ii) Otherwise, for each C in ⟦%⟧(� ) ∩$− , update:

q B q ∧ Constraint(&, `, C).

minimal generalization problem (Problem 3.2) for queries in the normal form. We have named this

provenance-guided generalization procedure Generalize and outline it in Algorithm 2.

We can show thatGeneralize solves the generalization problem (Problem 3.2) for normal queries

with the guarantee that the output of Algorithm 2 will have the least number of invented predicates:

Theorem 5.1. Given a normalized query & , input tuples � and negatively labeled output tuples

$− , the query % generated by Generalize(&, �,$−) is a normalized query that subsumes & , does not

generate tuples in $− , and has the fewest invented predicates among all such queries.

The proof of this theorem relies on Theorem 5.3 which ensures that % subsumes& , the soundness

check in Step 2(c)i of Algorithm 2 that ensures no tuple in $− are generated, and the fact that

Step 2 of Algorithm 2 searches for the least number of invented predicates incrementally. Therefore,

Algorithm 1 solves Problem 3.2 when the input is a normalized query & . In cases where the input

query is not normalized, we can guarantee subsumption but not minimality. We discuss this in the

Section 9. The rest of this section discusses the details of the algorithm.

5.1 Generalization Algorithm

This algorithm approaches generalization as a uni�cation procedure. That is, as explained in the

overview, we rewrite the literals in the query. In order to carry out this process, we seek a map `

from the literals using the invented predicates in & to literals using fresh invented predicates. For

this section, we consider the following query &0 that uses three invented predicates '1, '2, and '3:

d1 : scc(G,~) :- '1 (G,~), '2 (G,~).

d2 : '1 (G,~) :- edge(G,~).

d3 : '2 (G, I) :- '1 (I,~), '1 (~, G).

d4 : '3 (G, I) :- '1 (G,~), '2 (I,~).

(4)

Here, the predicate '1 (G,~) represents that there is an edge between G and ~, '2 (G, I) represents
there is a path of length two from I to G and '3 (G, I) represents there is a path of length three from

G to I. Consider a uni�cation map ` that maps all of '1 (G,~), '2 (G,~), and '3 (G,~) to an invented

predicate (1 (G,~). Formally, we de�ne:

De�nition 5.2 (Uni�cation Map). Given query & with invented predicates in R and variables in

- , and a set of invented predicates S that do not occur in & , a uni�cation map ` : R · - ∗ → S ·- ∗

is a function from literal '( ®G) in & that use predicate ' ∈ R to a literal ( ( ®G ′) that uses predicate
( ∈ S and where ®G ′ is a permutation of variables ®G .
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In order to apply a uni�cation map ` to a query& , we replace each occurrence of the literal '( ®G)

in & with ( ( ®G ′). We denote such a query with ) (&, `) where ) is a transformation that applies `

to & . In the running example, we have ) (&0, `):

` (d1) : scc(G,~) :- (1 (G,~), (1 (G,~).

` (d2) : (1 (G,~) :- edge(G,~).

` (d3) : (1 (G, I) :- (1 (I,~), (1 (~, G).

` (d4) : (1 (G, I) :- (1 (G,~), (1 (I,~).

(5)

This method of uni�cation provides a subsumption guarantee that the query ) (&0, `) generates
all the tuples generated by &0:

Theorem 5.3 (Subsumption). For every relational query & and a uni�cation map `, the query

) (&, `) subsumes & , that is, on every input � , ⟦&⟧(� ) ⊆ ⟦) (&, `)⟧(� ).

Proof. Consider a tuple C that can be derived by & and has a derivation tree g . Then, to prove

that C can be derived by ) (&, `), we construct a derivation tree for C in ) (&, `) by replacing each

rule d in C by ` (d). It is immediate that the constructed tree uses rules in ) (&, `) to derive C . □

However,) (&, `) may derive undesirable tuples, for instance, consider the tuple scc(c, d) derived
by ) (&0, `) (as shown in Figure 5a). Hence, ) (&0, `) is an incorrect generalization and we would

like to prune it out in the next iteration of the generalization procedure. Observe that for a given

query & , the space of uni�cation maps is �nite. One can enumerate all uni�cation maps, construct

the corresponding queries and check if they are consistent with the input-output example. If there

are  predicates in& and : predicates after uni�cation, then the number of possible maps are given

by:
 
∑

:=1

{

 

:

}

( − :)=! ≥ =!
#
∑

:=1

(

 

: − 1

)

( − :) ∽ =!2 ≥ 2
=+ ,

where
{

 
:

}

is the Stirling number of the second kind and we assume that each predicate has arity =

and the signatures are untyped. This implies that number of candidate queries that can be generated

by uni�cation grow exponentially in both the number of invented predicates in the normalized

query as well as the arity of the predicates, making an exhaustive search infeasible. Therefore we

reduce this search problem to a constraint satisfaction problem by encoding the possible uni�cation

maps as variables, and prune it using provenance.

5.2 Encoding Generalization as Constraint Satisfaction

Let the bound on the number of invented predicates in the candidate query be : . Then, for every

invented predicate ' of arity = in & , we introduce:

(1) an integer variable 2 (') such that 1 ≤ 2 (') ≤ : , and
(2) for each integer 8 such that 1 ≤ 8 ≤ =, an integer variable ? (', 8) such that 1 ≤ ? (', 8) ≤ =.

We only permit aliasing between relations '1 and '2 of equal arities, ='1 and ='2 respectively. I.e.,

='1 ≠ ='2 =⇒ 2 ('1) ≠ 2 ('2). We also require that ? (', 8) should be unique for 8 . That is, for all

relations ' and indices 8 and 9 , ? (', 8) = ? (', 9) =⇒ 8 = 9 .

The conjunction of the above constraints form the initial constraint q0 (&). In order to interpret

an assignment to this encoding as a uni�cation, we say that the literal '(G1, . . . , G=) is mapped to

(2 (') (G? (',1) , . . . , G? (',=) ).

Example 5.4. For the query in Equation 4, we would have:

q0 (&0) = q1 ∧ q2 ∧ q3 ∧ q4,
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where the �rst conjunct q1 ensures that each relation '8 appearing in&0 is mapped to some relation

in (1, (2, . . . , (: :

q1 = 1 ≤ 2 ('1) ≤ : ∧ 1 ≤ 2 ('2) ≤ :.

Because both relations '1 and '2 have equal arities, there are no restrictions on their potentially

being aliased:

q2 = True.

The �nal two conjuncts q3 and q4 ensure the schemas of the source and destination relations, '8
and (2 ('8 ) are permutations of each other:

q3 = 1 ≤ ? ('1, 1) ≤ 2 ∧ 1 ≤ ? ('1, 2) ≤ 2 ∧

1 ≤ ? ('2, 1) ≤ 2 ∧ 1 ≤ ? ('2, 2) ≤ 2, and

q4 = ? ('1, 1) ≠ ? ('1, 2) ∧ ? ('2, 1) ≠ ? ('2, 2).

5.3 Provenance-Guided Constraint Generation

Observe that ` is an incorrect generalization and we would like to eliminate the assignment that

leads to it. For this purpose, we carefully analyze the program ) (&0, `). Intuitively, it is clear that
unifying '1 and '2 can lead to an incorrect program as the former represents paths and the latter

represents reverse paths. Therefore, one can assign the blame of incorrect generalization to the

uni�cation of '1 (G,~) with '2 (G,~), and this is independent of how '3 (G,~) is uni�ed with either

of the two.

In general, the goal is to identify a minimal set of predicates whose uni�cation leads to incorrect

generalization, and use this to prune out all uni�cation maps that contain them. For this purpose,

we construct a program that is equivalent to ) (&, `) by introducing tunneling clauses to & . In the

uni�cation map if some predicate '( ®G) is uni�ed with '′ ( ®G ′), then we add the rules '( ®G) :- '′ ( ®G ′)
and '′ ( ®G ′) :- '( ®G). For a query & and uni�cation map `, the program constructed using the

tunneling clauses is represented as ) ′ (&, `). We wish to show that ) (&, `), the program generated

by unifying predicates in& is semantically equivalent to) ′ (&, `), the program generated by adding

the tunneling clauses.

Theorem 5.5 (Tunneling). The programs ) (&, `) and ) ′ (&, `) are semantically equivalent.

Proof. Consider an input � . We will show that ) (&, `) can derive a tuple C using input � , if and

only if, ) ′ (&, `) can derive C . The proof in both directions proceed by structural induction on the

derivation tree of C .

In the forward direction, consider a derivation of C in) (&, `). If '( ®G ′) is uni�ed to ( ( ®G), for every
rule of the form ( ( ®G) :- '8= ( ®G8=) we introduce the rule '( ®G

′) :- '8= ( ®G8=). For every rule ` (d) of the
form ( ( ®G) :- (1 ( ®G1), (2 ( ®G2), consider the rules ` (d1) and ` (d2) whose heads derive the predicates
(1 ( ®G1) and (2 ( ®G2). Let d be '( ®G) :- '1 ( ®G1), '2 ( ®G2) and the heads of d1 and d2 be '

′
1
( ®G ′

1
) and '′

2
( ®G2)

′

respectively. As we have ` (d) using the heads of ` (d1) and ` (d2), we have that '1 ( ®G1) is uni�ed
with '′

1
( ®G ′

1
) to form (1 ( ®G1) (and similarly for (1 ( ®G1)). Hence, we can introduce the rules d and

the tunneling clauses '1 ( ®G1) :- '
′
1
( ®G ′

1
) and '′

1
( ®G ′

1
) :- '1 ( ®G1). The corresponding derivation tree in

) ′ (&, `) can derive C .

Now consider a derivation tree in ) ′ (&, `). If it uses a rule d ∈ & , we introduce the rule ` (&). If
it uses a tunneling clause '1 ( ®G1) :- '2 ( ®G2), then it must be the case that ` uni�es '1 ( ®G1) and '2 ( ®G2)
to some ( ( ®G). Then, we introduce the rule ( ( ®G) :- ( ( ®G). The corresponding tree derives C using

rules in ` (&) along with tautological rules of the form ( ( ®G) :- ( ( ®G). Observe that tautological rules
can be eliminated in the derivation tree as their head is the same as the predicate in the premise.

This gives us a derivation tree for C using rules ` (&).
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edge(c, d)

(1 (c, d)

edge(c, d)

(1 (c, d)

scc(c, d)

(a) Example derivation tree of the output tuple

scc(c, d) for the query ) (&0, `).

edge(c, d)

'1 (c, d)

'2 (c, d)

edge(c, d)

'1 (c, d)

scc(c, d)

(b) Example derivation tree of the output tuple

scc(c, d) for the query ) ′ (&0, `).

Fig. 5. The derivation tree of the tuple scc(c, d) for the queries) (&0, `) and)
′ (&0, `). The input to the query

is the graph of Figure 2a.

Therefore, any tuple that can be derived in ` (&) can be derived in ) ′ (&, `), and they are seman-

tically equivalent queries. □

Below is the query with tunneling clauses for the running example &0 with uni�cation ` (that is,

) (&0, `) as in Equation 5) .

d1 : scc(G,~) :- '1 (G,~), '2 (G,~). d6 : '1 (G,~) :- '3 (G,~).

d2 : '1 (G,~) :- edge(G,~). d7 : '2 (G,~) :- '1 (G,~).

d3 : '2 (G, I) :- '1 (I,~), '1 (~, G). d8 : '2 (G,~) :- '3 (G,~).

d4 : '3 (G, I) :- '1 (G,~), '2 (I,~). d9 : '3 (G,~) :- '1 (G,~).

d5 : '1 (G,~) :- '2 (G,~). d10 : '3 (G,~) :- '2 (G,~).

On evaluating the program ) (&0, `) on the input graph of Figure 2b, we observe that it derives

the tuple scc(c, d). By Lemma 5.5, ) ′ (&0, `) also derives scc(c, d). Figure 5 shows the derivation
tree for the two programs.

We will use the derivation tree of scc(c, d) in ) ′ (&, `) to assign the blame of generating a tuple

in $− . That is, in the running example, we analyze the derivation tree in Figure 5b and seek all

tunneling rules used in the derivation. Observe that the tree uses only the rule d7 which corresponds

to unifying '1 (G,~) and '2 (G,~). Any uni�cation map that uni�es these two predicates (with the

same rearrangement of variables) will generate scc(c, d) and we can eliminate them in the future

iterations. However, the derivation tree does not use a rule with '3, and hence we can conclude

that a uni�cation of '3 is irrelevant to the derivation of the undesirable tuple. In this sense, the

analysis of the derivation tree gives us a part of the uni�cation to assign blame for generating a

tuple in $− .

In general, if the derivation tree includes a tunneling clause of the form '( ®G1) :- '
′ (c ( ®G)) for

some permutation of variables c , we add the constraint:

¬

(

2 (') = 2 ('′) ∧
:

∧

8=1

? (', 8) = ? ('′, c (8))

)

,
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where : is the arity of '. This constraint prunes out all uni�cations where '( ®G1) is uni�ed with

'′ (c ( ®G)). If the derivation tree uses more than one tunneling clause, we take the conjunction of all

of them.

The process of constructing the derivation tree of a tuple C in ) ′ (&, `) is implemented as a

subroutine Constraint(&, `, C), and is used in Algorithm 2.

6 EXPERIMENTAL EVALUATION

Our implementation of Möbius consists of approximately 1,300 lines of Python code. We use

Soufflé [Zhao et al. 2020] to evaluate candidate queries and compute data provenance, and we use

Z3 to solve the constraints generated by the Generalize procedure. Our evaluation in this section

attempts to answer the following questions:

Q1. E�ectiveness: How e�ective is Möbius in synthesizing queries with a variety of recursion

schemes compared to state-of-the-art tools?

Q2. Generalizability: Does predicate uni�cation improve accuracy when the learned query is tested

on unseen data?

Q3. Expressibility: How does the expressive power of Möbius compare against the baselines?

Q4. Convergence: Does accounting for data provenance improve convergence time?

We describe our benchmark suite in Section 6.1 and the three baselines against which we com-

pareMöbius in Section 6.2. We present our �ndings for Q1, Q2, Q3, and Q4 in Sections 6.3–6.6

respectively.

6.1 Benchmarks

We evaluate Möbius on a suite of 21 synthesis tasks obtained from the domains of knowledge

discovery and program analysis. The intended solutions for all of these tasks involve the use of

recursion. We present a summary of these benchmarks in Table 1. The benchmarks are divided

into seven categories:

(1) Transitive Closure: This is the simplest example of a recursive query that constructs the

transitive closure of the input predicate. We use the example of reachability in directed

graphs for this category.

(2) Boolean Transitive Closure: This category comprises of queries that involve transitive closure

and some Boolean operation such as conjunction or disjunction. It includes �ve benchmarks

that draw from the domains of knowledge discovery and program reasoning.

(3) Linear Queries: A linear query is one where the invented (or output) predicate occurs at

most once in each rule [Abiteboul et al. 1995]. While the previous two benchmark categories

also include only linear queries, this category includes three benchmarks from knowledge

discovery that are not covered by Boolean transitive closure.

(4) Intersection: These queries correspond to intersection of linear queries (such as scc is an

intersection of path and its reverse). This category consists of two benchmarks.

(5) Schema Invention: The monochromatic query corresponds �nding monochromatic paths in a

vertex colored graph. We discuss it in detail in Section 6.4.

(6) Non-linear Queries: These are three other queries from knowledge discovery and program

analysis that cannot be expressed as a linear query.

(7) Mutual Recursion: This category consists of six linear and non-linear queries involving mutual

recursion, that is, they have two or more recursive predicates that call each other.

These benchmarks are collected from previous literature on relational query synthesis and

express a diverse range of challenges from across di�erent application domains.
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Table 1. Table summarizing benchmark characteristics. We evaluate Möbius on a suite of 21 benchmarks

featuring diverse recursion schemes. For each benchmark, we summarize the number of input-output relations

and the number of input-output tuples. Ten of these benchmarks use invented predicates.

Name Brief description
Input Output Reference Solution

Preds Tuples Preds Tuples Rules InvPreds Literals

transitive closure
path graph reachability [Raghothaman et al. 2020] 1 7 1 31 2 0 3

boolean transitive closure
ancestor �nd ancestor in a family tree [Muggleton et al. 2015] 2 8 1 19 4 1 9
connected unidirectional graph reachability [Mendelson et al. 2021] 1 20 1 104 4 1 5
escape escape analysis for Java [Si et al. 2018] 4 13 1 6 6 0 11
union-�nd equivalence of elements in same set [Si et al. 2018] 3 21 1 36 4 0 6
wikiedits extract edit history in Wikipedia 4 16 1 7 2 0 8

linear queries
rsg reverse-same-generation in family tree [Abiteboul et al. 1995] 3 17 1 11 2 0 4
sgen same generation in family tree [Abiteboul et al. 1995] 1 7 1 21 2 0 5
zero checking equality of numbers 2 12 1 38 6 0 16

intersection
blue-and-green graph reachability with two colored paths 2 9 1 5 2 0 5
scc compute SCCs in graph [Raghothaman et al. 2020] 1 10 1 25 3 1 5

schema invention
monochromatic monochromatic paths in a vertex colored graph 2 134 1 56 3 1 6

non-linear queries
andersen inclusion-based pointer analysis for C [Andersen 1994] 4 7 1 7 4 0 9
dyck well balanced parentheses 2 10 1 8 3 0 7
modref mod-ref analysis for Java [Si et al. 2018] 7 18 5 34 10 0 18

mutual recursion
1-call-site 1-call-site pointer analysis for Java [Whaley and Lam 2004] 7 28 1 4 4 1 10
1-object 1-object-sensitive pointer analysis [Milanova et al. 2002] 9 40 1 4 4 1 11
1-object-1-type 1-type-1-object sensitive analysis [Smaragdakis et al. 2011] 10 48 1 6 5 2 13
1-type 1-type-sensitive pointer analysis [Smaragdakis et al. 2011] 10 42 1 5 4 1 10
2-call-site 2-call-site pointer analysis for Java [Whaley and Lam 2004] 7 30 1 4 4 1 10
buildwall learn a stable wall strategy [Muggleton et al. 2015] 4 30 1 4 3 1 7

6.2 Baselines

We compareMöbiuswith three state-of-the-art synthesizers that use di�erent synthesis techniques:

GenSynth [Mendelson et al. 2021], which uses an evolutionary search algorithm, and ILASP [Law

et al. 2020] and Popper [Cropper and Morel 2021], which are based on constraint solving techniques.

ILASP and Popper model the synthesis problem as a search through a �nite space of candidate

queries. In order to evaluate them in our setting, we generated candidate rules for each of the 21

benchmarks using instance-speci�c mode declarations. A mode declaration is a syntactic constraint

on the candidate queries such as the length of the rule or the number of times a particular relation

can occur in its body. In particular, we provide ILASPwith the names and signatures of all predicates,

including invented predicates, whether they can appear as the head of a clause, and the maximum

number of times each predicate can appear in a clause body. In addition, we also provide the

maximum number of variables in each rule. Similarly, we provide Popper with bounds on the

number of learned rules, their lengths, and the number of variables which can occur in each rule.

We ensure uniformity by running all baselines in single-threaded mode.

For each benchmark query, we recovered the minimum mode declarations required from its

reference solution. For example, consider the query:

path(G, I) :- path(G,~), path(~, I).

path(G,~) :- edge(G,~).

From this target query, we would recover the following mode declarations:

#modeb(1, edge(var(V), var(V)), (positive)).

#modeb(2, path(var(V), var(V)), (positive)).

#modeh(path(var(V), var(V))).

#maxv(3).

These mode declarations specify that edge and path predicates may appear in rule bodies, and

also specify the maximum number of times they may be used. Additionally, the head of a rule can
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Table 2. Table summarizing e�ectiveness of synthesis. We evaluate Möbius and the three baselines on a

suite of 21 benchmarks. GenSynth(1) and GenSynth(32) correspond to executions with one and 32 threads

(its default se�ing) respectively. The remaining tools are run in single-threaded mode.Möbius successfully

synthesizes all benchmarks with an average run-time of 23.1 seconds, while GenSynth(32) times out on

one benchmark. GenSynth(1), ILASP and Popper time out on 7 benchmarks each. Note that GenSynth and

Popper fail to find a solution for 1 and 7 benchmarks respectively.

Name
Runtime

Möbius GenSynth(1) GenSynth(32) ILASP Popper

path <1 <1 1.1 <1 <1

ancestor <1 5.0 3.3 timeout 21.8
connected 1.2 - - timeout -
escape <1 4.5 2.5 1.0 -
union-�nd 1.0 2.1 2.8 20.2 timeout
wikiedits 1.5 157.8 4.5 1.0 42.1

rsg 1.8 39.5 11.7 27.9 3.7
sgen 1.3 6.5 2.5 2.3 <1
zero 11.1 timeout 13.3 3.4 -

blue-and-green 1.6 17.9 7.0 3.1 3.2
scc 2.2 4.7 2.4 timeout -

monochromatic 14.2 5.1 5.2 timeout timeout
andersen 5.7 timeout 143.0 554.8 timeout
dyck 133.9 565.9 6.3 52.1 -
modref 275.8 timeout 352.8 timeout -

1-call-site 1.1 timeout 5.7 timeout timeout
1-object 1.4 753.7 timeout 299.9 timeout
1-object-1-type 20.8 timeout 2.7 455.9 24.6
1-type 3.1 timeout 224.3 timeout timeout
2-call-site 1.2 timeout 4.9 406.5 timeout
buildwall 2.3 44.3 6.0 194.3 -

only have path or scc predicate, and no rule should use more than 3 variables. That is, the mode

declaration implicitly specify that there is only one recursive predicate path. In case of invented

predicates, the user must explicitly provide the invented predicate along with its schema.

Lemma 4.2 of [Thakkar et al. 2021] alternatively provides an instance-agnostic technique to

derive mode declarations. However, as we will see in our evaluation in Section 6.3, the baseline tools

often run out of time with even the more constrained instance-speci�c settings, thereby rendering

this instance-agnostic approach infeasible.

In summary, we make the most favorable case for these baselines by choosing the tightest set of

mode declarations that contains the reference solution for the corresponding synthesis task.

6.3 E�ectiveness

We compared the performance of Möbius against the baselines by running each of them on the

benchmarks. We set a uniform timeout of 15 minutes for all tools, and ran the experiments on

a desktop workstation with a Ryzen 9 5950X CPU and 128 GB of memory running Linux. We

measured the running time of each of these tools on each benchmark. We present the running

times in Table 2.

Overall, Möbius consistently produces solutions in the least time, despite requiring lesser

guidance than all three baseline tools. Across the 21 benchmarks, on average, Möbius requires

41%, 76%, and 60% of the time needed by GenSynth(1), ILASP and Popper respectively. Although

running GenSynth with 32 threads results in a signi�cant speedup over GenSynth(1), it remains

slower thanMöbius on all but 3 benchmarks. Observe also thatMöbius is the only tool which does

not timeout on any benchmark.

We note that Möbius solves all but two synthesis tasks in less than 30 seconds. In the two most

expensive benchmarks, modref (a program analysis task) and dyck (matching well-parenthesized
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(2) The end-to-end synthesis technique is complete (as proved in Theorem 4.1) and does not

require additional supervision from the user in terms of mode declarations or schemas for

invented predicates.

6.6 Convergence

Finally, we ask whether accounting for data provenance in the generalization process improves

convergence time. We construct a variation of Algorithm 2 where the assignment in Step 2(c)ii is

instead replaced by:

q B q ∧
∨

E

(E ≠ ` (E)),

where E ranges over all variables currently in context. In other words, we prohibit the constraint

solver from producing the same uni�cation map ` in future, but do not perform failure analysis or

generalization of any kind.

We ran this modi�ed algorithm on all 20 benchmarks with the same 15 minute time limit as before.

In this setting, the algorithm only succeeds on 4 of the 20 synthesis tasks: path, ancestor, union-�nd,

and escape. Observe that all of these are variations of transitive closure. The non-recursive seed

queries produced by EGS were correspondingly small and had fewer invented predicates. This

greatly reduced the size of the search space, making an exhaustive search feasible. On the other

hand, for most other benchmarks, we conclude that provenance-guided generalization is crucial

for successful termination.

6.7 Performance on Non-Recursive Benchmarks

The user may occasionally be unaware of whether the intended solution for a problem instance

requires the use of recursion. In these cases, they may directly call Möbius in order to synthesize

a program, instead of beginning with an exploratory run of a non-recursive query synthesizer.

Therefore, in our �nal experiment, we analyze the performance of Möbius on a suite of 79 non-

recursive benchmarks, drawn from the evaluation of EGS in [Thakkar et al. 2021].

We summarize our observations of running time in Figure 8. On average, recursive synthesis

imposes only a 57% time overhead, and in all but 6 of the benchmarks, end-to-end synthesis using

Möbius requires less than 2× the time needed for synthesis using EGS.

Additionally, it is possible thatMöbius generalizes the non-recursive program to a more succinct

non-recursive program using an invented predicate. We see this in the case of generating the

grandparent relation. EGS generates:

grandparent(x, z) :- mother(x, y), mother(y, z).

grandparent(x, z) :- mother(x, y), father(y, z).

grandparent(x, z) :- father(x, y), mother(y, z).

grandparent(x, z) :- father(x, y), father(y, z).

While this is a correct solution,Möbius generalizes it by inventing a predicate corresponding to

the parent relation (denoted below with (), and returns the following solution with the size of the

program reduced from 8 to 4:

S(x, y) :- mother(x, y).

S(x, y) :- father(x, y).

grandparent(x, z) :- S(x, y), S(y, z).

7 LIMITATIONS AND FUTURE WORK

In this section, we discuss a few limitations of Möbius, and outline opportunities for future work:
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Datalog [Abiteboul et al. 1995]. Extending our approach to support additional features in-

cluding negation, comparison predicates, and aggregation is an important direction of future

research.

8 RELATED WORK

We discuss related work on synthesis of relational queries and synthesis of recursive programs.

Synthesis of Relational Queries. The problem of synthesizing recursive relational queries has

been explored by some previous approaches. These include constraint-solving techniques like

Zaatar [Albarghouthi et al. 2017], ILASP [Law et al. 2020] andNeo [Feng et al. 2018b], enumerative

search techniques such as ALPS [Si et al. 2018], hybrid techniques like ProSynth [Raghothaman

et al. 2020] and Popper [Cropper and Morel 2021], genetic programming techniques like Gen-

Synth [Mendelson et al. 2021], and neural learning techniques such as NTP [Rocktäschel and

Riedel 2017a]. All of these techniques require additional supervision in the form of instance-speci�c

templates to synthesize recursive programs.

We note that techniques like ILASP and Popper target a more expressive fragment of declarative

programs. Additionally, neural learning techniques [Dong et al. 2019; Evans and Grefenstette 2018;

Rocktäschel and Riedel 2017a; Si et al. 2019; Yang et al. 2017] and GenSynth can handle tasks that

involve noise. Neural techniques such as CTPs [Rocktäschel and Riedel 2017b] extend classical

techniques to support automated discovery of a minimal set of rules to bias the search.

A number of techniques have been developed to target the non-recursive fragment, such as

Scythe [Wang et al. 2017a,c], SQLSynthesizer [Zhang and Sun 2013], and example-guided synthe-

sis [Thakkar et al. 2021]. These techniques do not need instance-speci�c templates.

Synthesis of Recursive Programs. Beyond the domain of relational queries, a number of program

synthesis approaches target recursive programs. Escher is a general purpose algorithm for recursive

program synthesis that can be adapted to di�erent domain speci�c languages [Albarghouthi et al.

2013]. It is parameterized by the components (instructions) that can be used in the program.

Synduce uses quanti�er bounding for inductive program synthesis where the problem instance is

speci�ed as an input reference (recursive) function and a recursion skeleton [Farzan and Nicolet

2021]. Cypress targets the domain of heap-manipulating programs that occur in data structure

transformations [Itzhaky et al. 2021], and Burst presents a bottom-up method for synthesizing

functional recursive programs from logical speci�cations.

Generalizability in Program Synthesis. The question of generalizability is important to program

synthesis. A number of approaches convert the synthesis problem into an optimization task by

requiring to �nd the simplest program [Gulwani 2011; Mechtaev et al. 2015; Raychev et al. 2016].

Suchmethods have limited e�ciency as requiring the optimal solution greatly increases the di�culty

of the problem. The idea of generalization through uni�cation has been studied in the context of

conditional linear integer arithmetic (CLIA), however, CLIA is inherently non-recursive [Ji et al.

2021]. There also exist approaches that improve the generalizability by introducing user interactions

as input to synthesizers [Ji et al. 2020; Padhi et al. 2018; Wang et al. 2017b].

9 CONCLUSION

We have proposed a novel two-phase method to synthesize recursive relational queries from input-

output examples. We �rst use an example-guided technique to synthesize a seed non-recursive

program and then use a constraint-based method to generalize it into a query with recursive and

invented predicates. We have implemented this method as an end-to-end synthesis tool named

Möbius. The two phased approach allows us to leverage the merits of both the techniques as well as
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provide theoretical guarantees including completeness and termination. We have evaluatedMöbius

on a diverse suite of tasks from the literature, and compared it to state-of-the-art synthesizers.

WhileMöbius targets the domain of relational queries, our technique suggests a way for the fully

automated synthesis of recursive programs in di�erent domains such as conditional programs and

string transformations. The key idea is the two phased approach of �rst synthesizing a non-recursive

program and then extrapolating and generalizing it by searching for recursion schemes.
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