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ABSTRACT

Despite great advances in program synthesis techniques, they re-
main algorithmic black boxes. Although they guarantee that when
synthesis is successful, the implementation satisfies the specifica-
tion, they provide no additional information regarding how the
implementation works or the manner in which the specification is
realized. One possibility to answer these questions is to use large
language models to construct human-readable explanations. Unfor-
tunately, experiments reveal that LLMs frequently produce nonsen-
sical or misleading explanations when applied to the unidiomatic
code produced by program synthesizers. In this paper, we develop
an approach to reliably augment the implementation with explana-
tory names. Experiments and user studies indicate that these names
help users in understanding synthesized implementations.
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1 INTRODUCTION

The promise of allowing developers to express their intent in more
flexible ways has led to an enormous rise of interest in program syn-
thesis over the last fifteen years [Gulwani et al. 2017]. Sophisticated
algorithms have been developed that can synthesize non-trivial
pieces of code [Alur et al. 2018]. As an example, we invite the reader
to inspect the following program f (1), produced by DreamCoder,
a recent state-of-the-art program synthesizer [Ellis et al. 2021]:

f(1)=map (An.g1(L,1+n)) (range(len(l))), where
g1(Ln) = ga(filter (Az.n > len (filter (Au.z >u)l)) 1), and
g2(1) = hd (filter (Ay. isnil (filter (Az.z>y) 1)) ).

This implementation was produced in response to a specification for
a program that sorts a list of numbers. A collection of input-output
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Figure 1: Overall architecture of our system, NomNom. We
begin with a specification-implementation pair, (E, f), and
a subroutine g of interest. The system alternates between
querying a first LLM to obtain candidate names w for g and
validating w by using a second language model to resynthe-
size an alternative implementation.

examples was provided, which included, among others:
f(r9; 2; 7; 11) =11; 2; 7; 91 (1)

It is our contention that difficulty in understanding complicated
implementations such as these hinders the practical adoption of
program synthesizers. In fact, [Ellis et al. 2021] itself includes helpful
comments outlining the purpose of different functions: f(I) sorts
the input list [, g1 (I, n) computes the n-th smallest element of [, and
g2(1) computes the largest value in [.

Can we automatically obtain descriptive function names such as
these, perhaps by use of a large language model? Unfortunately,
because of the unidiomatic code produced by synthesis engines,
straightforward use of an LLM leads to poorly chosen function
names. For our example, text-davinci-003 suggests the names
“largestSmallestIndices”, “findNearestNumber” and “getFirstItem
MinThanArgumentValue” for the functions f, g; and g respectively.

In this paper, we explore how a combination of two simple ideas
can result in significantly more helpful names which programmers
can use to understand synthesized implementations.
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Figure 2: (2a) Effectiveness of different name generation approaches on a larger dataset. (2b) Accuracy of participant responses
when explaining how implementations worked. In the group of questions on the left, we asked participants to identify the
purpose of different functions, while in the second group of questions, we asked for a more global explanation of how the
implementation worked. (2¢) Distribution of participant preferences among function names produced by different algorithms.

2 IDEA 1: AUGMENTING LLM PROMPTS

As a first step, we augment the prompt supplied to the LLM with
hints that explain the purpose of each function. Informally, we
simply instrument each function with print statements that log the
inputs flowing into and outputs emerging out of each function:

g5(1) = let ans = g3(1); print [ — ans; return ans.

Upon testing the implementation with the monitoring instrumen-
tation enabled, one finds that g2 performs the mapping:

[11~1,[2; 11=21[2; 7; 117, and [9; 2; 7; 11+,

(2)
which immediately suggests that g»(l) evaluates to the largest
element of the list [. In addition, the original function g, (/) can be
replaced with any implementation g4 (1) that satisfies Equation 2
without affecting the fact that the original program f(I) satisfies
the specification of Equation 1.

Monitoring code in this manner is closely related to the idea
of subspecifications, a recent concept introduced by [Nazari et al.
2023] in order to locally explain programs produced by program
synthesizers. The chief difference between the two ideas is that
subspecifications are both necessary and sufficient conditions for
the global implementation to work, while the “tight” subspecs in
Equation 2 are only sufficient but not always necessary conditions.
In other words, subspecs describe what a function is supposed to do,
while tight subspecs describe what the function actually does.

Such hints increase the accuracy of the backbone LLM from 24%
to 60%, as shown in Figure 2a, and the system is able to correctly
suggest the name “findLargestElement” for the function gs.

3 IDEA 2: ALGORITHMIC SANITY CHECKS

Our second insight is that when a function is appropriately named,
that name can be used to substantially recover the original imple-
mentation. For example, given the function name findLargestElement
and its type, GPT-3.5 suggests the implementation:

Al fold (Ai. Aj. ifi> j thenielse j) (hd I) (t1 I).

Observe that this new function continues to satisfy the same tight
subspec in Equation 2. This suggests that findLargestElement is
indeed an appropriate name for the subroutine g;. Although such
checks do not guarantee the appropriateness of names, they indicate

at least some degree of internal consistency, which we can use to
detect and filter out inappropriate function names.

This further boosts the accuracy of the system from 60% to 82%
respectively. Although it leads to a drop in the response rate, we
can exploit non-determinism in LLM responses, and give it multiple
chances to suggest function names that pass the filter. Together
with some other optimizations, our complete system achieves an
accuracy of 79% while answering 77% of all questions that we ask.

4 ARE OUR NAMES HELPFUL TO USERS?

In order to determine whether names help users in understanding
implementations, we chose four programs and asked a group of 18
student programmers questions about them. Each participant at-
tempted some tasks using names produced by the baseline language
model, and other tasks with names produced by our synthesizer,
NoMmNoMm. As one can see in Figure 2b, users clearly achieved better
understanding of the code when using names produced by our tool.
We then asked another group of 18 student programmers to rate
their preference among names produced by different tools. As Fig-
ure 2c, there is uniformly increasing preference among participants
for names produced by NomNom.
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