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Abstract
While the hexagonal lattice is ubiquitous in two dimensions, the body centered cubic lattice and the

face centered cubic lattice are both commonly observed in three dimensions. A geometric variational
problem motivated by the diblock copolymer theory consists of a short range interaction energy and a
long range interaction energy. In three dimensions, and when the long range interaction is given by the
nonlocal operator (−∆) −3/2 , it is proved that the body centered cubic lattice is the preferred structure.

1 Introduction
In two dimensions the most familiar lattice is the hexagonal lattice, seen in many places like honeycomb,
chicken wire fence, graphene,and carbon nanotube. In three dimensions, however, there are two common
lattices: the body centered cubic lattice (BCC lattice) and the face centered cubic lattice (FCC lattice). In
crystallography of metals the BCC lattice is found in iron, chromium, tungsten, and niobium, while the FCC
lattice appears in aluminum, copper, gold, and silver. In the sphere packing problem the maximal packing
density is attained by the hexagonal lattice in two dimensions [22, Tóth], the FCC lattice in three dimensions
[9, Hales], the E8 lattice in eight dimensions [23, Viazovska], and the Leech lattice in 24 dimensions [5, Cohn,
Kumar, Miller, Radchenko, and Viazovska].

Lattices studied in this paper arise from a geometric variational problem. Consider the free energy
functional

J Λ,s (Ω) = P Λ (Ω) +
γ

2

Z

Ω
(−∆) −s (χ Ω − ω)(x) dx (1.1)

where

ω ∈ (0, 1), γ > 0, s > 0 (1.2)

are parameters. The functional is defined on subsets Ω of a sample space which we take to be Rd/Λ, the flat
torus of Rd modulo a lattice Λ, and the volume of Ω is fixed at ω times the volume of R d/Λ.

This problem is motivated by the Ohta-Kawasaki density functional theory for diblock copolymers [13].
A diblock copolymer molecule consists of a linear subchain of A-monomers grafted covalently to another
subchain of B-monomers [1, Bates and Fredrickson].Because of the repulsion between the unlike monomers,
the different type sub-chains tend to segregate, but as they are chemically bonded in chain molecules,
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Figure 1: Making a BCC lattice and an FCC lattice out of a cubic lattice.

segregation of subchains lead to local micro-phase separation:micro-domains rich in either A-monomers or
B-monomers emerge to form a particular pattern called a morphological phase.

Many morphological phases have been observed in diblock copolymers. Of relevance to this work is
the spherical phase. It occurs when the number of A-monomers is significantly smaller than the number
of B-monomers in chain molecules. More precisely let N A and N B be the numbers of A-monomers and
B-monomers respectively in a chain molecule. The composition parameter of a diblock copolymer is ω =
NA /(N A + N B ) ∈ (0, 1), the same ω as in (1.2). Then a diblock copolymer exists in the spherical phase if ω
is sufficiently small. In this phase the A-monomers form micro-domains of small balls and the B-monomers
make up the rest of the system; [10, Helfand and Wasserman]. A diblock copolymer with larger ω-value
exists in the cylindrical phase where A-monomers form cylinders; a diblock copolymer with  ω-value close to
1/2 exists in the lamellar phase where A- and B-monomers form planar layers; see [1]

It is known that the small balls in the spherical phase have approximately the same radius [17]. What is
not clear is how these balls arrange themselves in space, the question we investigate in this paper.

The Ohta-Kawasaki theory treats monomer density fields as the main order parameters. In the strong
segregation regime, the A-monomers occupy a subset Ω of the system sample, and the B-monomers occupy
the complement of Ω. The authors of this paper showed that in this regime the Ohta-Kawasaki functional
converges to a geometric variational problem like (1.1) in the sense of the Gamma limit theory [14].

We studied problem (1.1) on two and three dimensional bounded domains with zero Neumann boundary
condition [16, 15, 17].The exponent s there was taken to be 1, so the operator in the second term was (−∆)−1

instead of (−∆) −s as in (1.1). It was proved in [17] that given a bouned domain in R3 and a positive integer
N , if ω is sufficiently small and γ is suitably large, the variational problem (1.1) admits a stable stationary
point which is the union of N perturbed balls. This result gave a mathematical confirmation of the existence
of the spherical mophological phase in diblock copolymers.

The perturbed balls in the stationary point found in [17] have asymptotically the same radius; however
the exact locations of the balls are not known. Generally one cannot expect a perfect periodic structure if
the sample domain has boundary: there are always defects near the boundary.To circumvent this problem,
in this paper we take the sample domain to be a flat torus, namely Rd/Λ where Λ is an d-dimensional lattice
in R d. Obviously functions on R d/Λ (or subsets of R d/Λ) can be viewed as Λ-periodic functions on R d (or
Λ-periodic subsets of Rd). Our goal is to find a lattice which is optimal for problem (1.1).

The functional J Λ,s in (1.1) is defined on Lebesgue measurable subsets Ω of Rd/Λ of the prescribed
volume:

|Ω| = ω|Rd/Λ| (1.3)

where ω ∈ (0, 1) is given in (1.2). Here | · | denotes the d-dimensional Lebesgue measure on Rd/Λ. The
number ω is the first parameter of this problem; it fixes the volume of Ω. The measure of the flat torus,
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denoted |Rd/Λ| or simply |Λ|, is the measure of a fundamental parallelepiped of Λ in R d. It is also called
the volume of the lattice Λ; see (2.25).

The first term P Λ (Ω) is the perimeter of Ω in Rd/Λ. If Ω is a subset with C1 boundary, then the perimeter
is simply the area of ∂Ω. The second term in (1.1) is an integral over Ω multipled by γ/2 where

γ ∈ (0, ∞) (1.4)

is the second parameter of the problem. The integrand in the second term is the outcome of the operator
(−∆) −s on χ Ω − ω where χ Ω is the characteristic function of Ω, i.e. χΩ(x) = 1 if x ∈ Ω and = 0 if x ̸∈ Ω.
The constant s

s ∈ (0, ∞) (1.5)

in the exponent of −∆ is the last parameter.
In the Ohta-Kawasaki theory, (−∆) −1 is chosen for convenience; see [4, Choksi and Ren].In this paper

we mainly study the case d = 3 and s = 3/2 and show how this case is connected to the three dimensional
analogy of Kronecker’s limit formulas, and to the height problem for flat tori.

Denote Green’s function of the operator (−∆) s by GΛ,s so that

(−∆) sGΛ,s = δ −
1

|Rd/Λ|
(1.6)

where δ is the delta measure centered at 0 ∈ Rd/Λ. One decomposes GΛ,s into

GΛ,s (x) = K d,s (x) + R Λ,s (x) (1.7)

where Kd,s is the fundamental solution of the operator (−∆) s on Rd and RΛ,s is the regular part of G Λ,s .
While K d,s does not depend on Λ, the regular part of Green’s function evaluated at 0, i.e. RΛ,s (0), contains
much information about the lattice Λ. If d = 3 and s = 3/2, to find the optimal lattice, one should minimize
RΛ,3/2 (0) with respect to lattice Λ of unit volume; see Proposition 2.2.

We take the configuration Ω to be the simplest set: a ball of radius r, i.e. Ω = B r . By the constraint
(1.3), r is related to ω via

πd/2 r d

Γ d
2 + 1

= ω|Rd/Λ|. (1.8)

Then one compares the free energy per volume,

1
|Rd/Λ|

J Λ,s (B r ) (1.9)

of the ball on different flat tori Rd/Λ. It turns out that to minimize (1.9) it suffices to consider lattices of
unit volume; see Proposition 2.1. Then (1.8) becomes

πd/2 r d

Γ d
2 + 1

= ω (1.10)

and r replaces ω as a main parameter. Since the spherical phase of a diblock copolymer exists when ω
is small, we are interested in the scenario that r is small. Asymptotically, as r → 0, the quantity (1.9)
is determined by R Λ,s (0); see Proposition 2.2. Therefore RΛ,s (0) serves as a quantity that measures the
optimality of lattice Λ in problem (1.1). We raise this question:

Question 1.1.Which lattice Λ of unit volume minimizes R Λ,s (0)?

When s is in (0, d/2), K d,s in (1.7) is given by the Riesz potential

K d,s (x) =
κd,s

|x|d−2s
, κd,s =

Γ d−2s
2

22sπd/2 Γ(s)
(1.11)
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where Γ(·) is the gamma function. When d = 3 and s = 1, the Riesz potential is 1
4π|x| which is known as the

Coulomb potential.
The borderline case s = d/2 turns out to be very interesting, when it comes to R Λ,d/2 (0). If d = 2, then

s = 1 and (−∆) s is the usual Laplacian −∆. The fundamental solution K 2,1 is not a Riesz potential but a
logarithmic function

K 2,1 (x) =
1

2π
log

1
|x|

. (1.12)

One can write Green’s function G Λ,1 of −∆ on a two dimensional flat torus in terms of a Jacobi’s theta
function and relate RΛ,1 (0) to Dedekind’s eta function. Chen and Oshita proved that among two dimensional
lattices of unit area, R Λ,1 (0) is minimized uniquely by the hexagonal lattice [2]. Sandier and Serfaty noted
that one can also connect R Λ,1 (0) to Dedekind’s eta function via Kronecker’s second limit formula. They
gave another proof of Chen and Oshita’s result in [19].

In this paper, we consider the case s = d/2 in three dimensions, i.e. d = 3 and s = 3/2. It will be shown
in Lemma 3.3 that the fundamental solution K 3,3/2 is

K 3,3/2 (x) =
1

2π2 log
1

|x|
. (1.13)

We will prove the following theorem.

Theorem 1.2.Let d = 3 and s = 3/2. Among three dimensional lattices Λ of unit volume, RΛ,3/2 (0) is
uniquely minimized by the BCC lattice.

Two lattices are equivalent if we can transform one to the other by a dilation and an orthogonal transform.
Equivalent lattices are indistinguishable. By a lattice, we often mean the equivalent class of a lattice. The
uniqueness assertion in Theorem 1.2 means uniqueness up to this equivalence.

When d = 2 and s = d/2 = 1, the corresponding RΛ,1 (0) can be expressed in terms of Dedekind’s eta
function; see [2,12, 18] for this point and its applications. Here for d = 3 and s = d/2 = 3/2, we derive a
key result, Lemma 3.3, that expresses RΛ,3/2 (0) in terms of the variables in the Iwasawa decomposition of
Λ∗ . Here Λ∗ is the dual lattice of Λ; see (2.34) for the definition of a dual lattice.

The proof of the theorem uses the notion of the height of a manifold. Let M be a closed Riemannian
manifold and

0 = λ 0 < λ 1 ≤ λ 2 ≤ λ 3... (1.14)

be the eigenvalues of −∆ on M , counting multiplicity. Define the zeta-regularization

Z(M, s) =
∞X

j=1

1
λs

j

. (1.15)

Then the height of M is
h(M) = Z ′ (M, 0). (1.16)

Here Z ′ (M, s) is the derivative of Z with respect to s.
We relate RΛ,3/2 (0) to h(R 3/Λ ∗), the height of R3/Λ ∗ . Here R3/Λ ∗ is a flat torus viewed as a Riemannian

manifold. We show in Lemma 4.5 that

h(R3/Λ ∗ ) = (2π) 2RΛ,3/2 (0) + 2 log(2π). (1.17)

Then we apply a theorem by Sarnak and Str¨ombergsson:among lattices in R3 of unit volume, the height of
the corresponding flat tori is minimized uniquely by the FCC lattice [20]. Since the BCC lattice is the dual
lattice of the FCC lattice, Theorem 1.2 follows from (1.17).

Acknowledgments.We would like to thank Rustum Choksi for valuable discussions.

4



2 Preliminaries
The long range interaction term in (1.1) is denoted

I Λ,s (Ω) =
Z

Ω
(−∆) −s (χ Ω − ω)(x) dx (2.1)

so that
J Λ,s (Ω) = P Λ (Ω) +

γ

2
I Λ,s (Ω). (2.2)

Instead of J Λ,s (Ω), it is more appropriate to consider

eJ Λ,s (Ω) =
1

|Rd/Λ|
J Λ,s (Ω) (2.3)

the energy of the configuration Ω per volume, when one studies the impact of the lattice Λ.
The size and the shape of a configuration play different roles in eJ Λ,s (Ω). To separate the two factors

write the lattice as tΛ where t ∈ (0, ∞) and Λ is a lattice of unit volume, |Λ| = 1. Then |tΛ| = t d. The size
of the lattice tΛ is given by t; the shape of tΛ by Λ. The configuration is also written as tΩ ⊂ R d/tΛ with
Ω ⊂ Rd/Λ.

Proposition 2.1. 1. For fixed Λ and fixed Ω, eJ tΛ,s (tΩ) is minimized, with respect to t, at

t = t Λ,s,Ω =
PΛ (Ω)

sγI Λ,s (Ω)
1/(2s+1)

and the minimum value is

eJ t Λ,s,Ω Λ,s (t Λ,s,Ω Ω) = 1 +
1
2s

PΛ (Ω) 2s/(2s+1) sγI Λ,s (Ω) 1/(2s+1) .

2. If Ω = B r and Λ is fixed, then eJ tΛ,s (tB r ) is minimized, with respect to t, at

t = t Λ,s,B r =
2πd/2 r d−1

sγI Λ,s (B r )Γ(d/2)
1/(2s+1)

and the minimum value is

eJ t Λ,s,B r Λ,s (t Λ,s,B r
B r ) = 1 +

1
2s

 
2πd/2 r d−1

Γ(d/2)

2s/(2s+1)

(sγI Λ,s (B r ))1/(2s+1) .

Proof. We show that

PtΛ (tΩ) = t d−1 PΛ (Ω), (2.4)
I tΛ,s (tΩ) = t d+2s I Λ,s (Ω). (2.5)

The first scaling relation (2.4) follows from the definition of perimeter:

PΛ (Ω) = sup
Z

Ω
div g(x) dx : g  C∈ 1(Rd/Λ, R d), |g(x)| ≤ 1 x ∀ ∈ R d/Λ . (2.6)

To see (2.5), let λj , (j = 0, 1, 2, ... and λ 0 = 0 < λ 1 ≤ λ 2 < ...), be the eigenvalues of −∆ on R d/Λ counting
multiplicity, and φ j be the corresponding eigenfunctions.Let v = (−∆) −s (χ Ω − ω) and assume

v(x) =
∞X

j=1

cj φj (x), x ∈ R d/Λ. (2.7)
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Note that j starts from 1 here. Then

χΩ(x) − ω = (−∆) sv (x) =
∞X

j=1

cj λs
j φj (x). (2.8)

On R d/tΛ, the eigenvalues of −∆ are λ j

t 2 , j = 0, 1, 2, ..., and the corresponding eigenfunctions are φ j ( ·
t ).

Then, with y ∈ R d/tΛ,

(−∆) sv
y
t = (−∆) s

∞X

j=1

cj φj
y
t

=
∞X

j=1

cj
λ j

t2

s

φj
y
t

= t −2s χΩ
y
t

− ω

= t −2s (χ tΩ (y) − ω) .

Hence
(−∆) −s (χ tΩ − ω) (y) = t 2sv

y
t

, (2.9)

and
I tΛ,s (tΩ) =

Z

tΩ
t2sv

y
t dy = t d+2s

Z

Ω
v(x) dx = t d+2s I Λ,s (Ω) (2.10)

which proves (2.5).
The energy per cell area of tΩ is

eJ tΛ,s (tΩ) =
1
td

J tΛ,s (tΩ) =
1
t

PΛ (Ω) +
t2sγ

2
I Λ,s (Ω).

With respect to t, the last quantity is minimized at

t = t Λ,s,Ω =
PΛ (Ω)

sγI Λ,s (Ω)
1/(2s+1)

(2.11)

and the minimum value is

eJ t Λ,s,Ω Λ,s (t Λ,s,Ω Ω) = 1 +
1
2s

PΛ (Ω) 2s/(2s+1) sγI Λ,s (Ω) 1/(2s+1) . (2.12)

This proves the first part of the proposition.
To see the second part, note that the area of a (d − 1)-sphere is

PΛ (B r ) =
2πd/2 r d−1

Γ(d/2)
(2.13)

which does not depend on Λ.

This proposition shows that to determine the optimal lattice when the configuration set is a ball, one
only needs to minimize I Λ,s (B r ) with respect to lattice Λ of unit volume.

When d = 2 or 3 and s = 1, I Λ,1 (B r ) is essentially R Λ,1 (0), the regular part of Green’s function at 0,
up to some additive and multiplicative constants [16, 17]. When d = 3 and s = 3/2, the next proposition
provides an approximation of I Λ,3/2 (B r ); it asserts that as r → 0, I Λ,3/2 (B r ) is asymptotically determined
by RΛ,3/2 (0).
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Proposition 2.2.When d = 3 and s = 3/2, there exist c 1(r) and c 2(r) > 0 depending on r but not on Λ
such that

lim
r→0

I Λ,3/2 (B r ) − c1(r)
c2(r)

= R Λ,3/2 (0)

for each lattice Λ

Proof. In terms of Green’s function G Λ,s

(−∆) −s (χ B r − ω)(w) =
Z

B r

GΛ,s (w − v) dv (2.14)

I Λ,s (B r ) =
Z

B r

Z

B r

GΛ,s (w − v) dv dw. (2.15)

In the case of d = 3 and s = 3/2, G Λ,3/2 can be written as

GΛ,3/2 (w) = −
1

2π2 log |w| + RΛ,3/2 (w) (2.16)

where RΛ,3/2 is smooth on (R3\Λ)  {∪ (0, 0, 0)}; see Lemma 3.3. Note that

−
Z

B r

Z

B r

log |w − w̃| dwd w̃ =
4π
3

2
r 6 log

1
r

− r 6
Z

B 1

Z

B 1

log |v − ṽ| dvdṽ (2.17)
Z

B r

Z

B r

RΛ,3/2 (w − w̃) dwd w̃ =
Z

B r

Z

B r

RΛ,3/2 (0) + O(r 2) dwd w̃

=
4π
3

2
r 6RΛ,3/2 (0) + O(r 8). (2.18)

Here one used the fact R∇ (0) = 0 since G(w) = G(−w) for all w ∈ R 3\Λ to deduce the O(r 2) term.
Therefore

I Λ,3/2 (B r ) =
8r6

9
log

1
r

−
r 6

2π2

Z

B 1

Z

B 1

log |v − ṽ| dvdṽ +
4π
3

2
r 6RΛ,3/2 (0) + O(r 8). (2.19)

Let

c1(r) =
8r6

9
log

1
r

−
r 6

2π2

Z

B 1

Z

B 1

log |v − ṽ| dvdṽ

c2(r) =
4π
3

2
r 6

and the proposition follows from (2.19).

In the rest of the paper we show that R Λ,3/2 (0) is uniquely minimized by the BCC lattice. Let us briefly
recall some basic facts in the lattice theory. A d-dimensional lattice Λ is a subset of R d of the form

Λ = {n 1v1 + n 2v2 + ... + n dvd : n j ∈ Z} (2.20)

where {v1, v2, ..., vd} is a set of linearly independent vectors in Rd. Denote by V  GL∈ (d, R) the d × d matrix
whose j-th row is the row vector v j ; V is called a generator matrix of Λ. The Gram matrix Q of V is a
positive definite matrix given by

Q = V V ′ (2.21)

where V′ is the transpose of V .
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The most important lattice in two dimensions is arguably the hexagonal lattice. For this lattice we can
take v1 = (1, 0) and v 2 = (1/2,

√
3/2). Then

V =

"
1 0
1
2

√
3

2

#
, Q =

"
1 1

2
1
2 1

#
. (2.22)

When d = 3, Z 3 is a cubic lattice, generated by (1, 0, 0), (0, 1, 0), and (0, 0, 1).Both the generator matrix
and the Gram matrix are the identity matrix.

Adding body centers (1/2, 1/2, 1/2) + λ, λ ∈ Z3, to Z 3, we obtain a BCC lattice; see the left plot of Figure
1. This lattice has a generator matrix and a corresponding Gram matrix as follows:

V =






− 1
2

1
2

1
2

1
2

− 1
2

1
2

1
2

1
2

− 1
2




 , Q =






3
4

− 1
4

− 1
4

− 1
4

3
4

− 1
4

− 1
4

− 1
4

3
4




 . (2.23)

From the cubic lattice Z 3, adding face centers (0, 1/2, 1/2) + λ, (1/2, 0, 1/2) + λ, and (1/2, 1/2, 0) + λ,
λ ∈ Z 3, we have an FCC lattice; see the right plot of Figure 1. This lattice has

V =






0 1
2

1
2

1
2 0 1

2
1
2

1
2 0




 , Q =






1
2

1
4

1
4

1
4

1
2

1
4

1
4

1
4

1
2




 (2.24)

as a generator matrix and a corresponding Gram matrix.
The flat torus associated with Λ is the quotient space R d/Λ. The Lebesgue measure of Rd/Λ is

|Rd/Λ| = |Λ| = | det V | = (det Q) 1/2 (2.25)

which we denote by |Λ| for simplicity. It is also called the volume of the lattice Λ.
Two lattices are equivalent if one can be transformed to the other by a dilation and an orthogonal

transform. Any lattice that is equivalent to the lattice described in (2.22), ((2.23) or (2.24), respectively), is
a hexagonal lattice, (BCC lattice or FCC lattice, respectively).

To understand this equivalence relation in terms of generator matrices, let V  GL∈ (d, R) transform to
Ṽ  GL∈ (d, R) by the right action

V → Ṽ = V κU (2.26)

where κ ∈ R\{0} and U is a d × d orthogonal matrix and. The resulting space of left cosets is

Hd = GL(d, R)/O(d)R × (2.27)

where O(d) is the group of d × d orthogonal matrices and R × in (2.27) denotes the space of nonzero scalar
multiples of the d × d identity matrix. Note that this R × is the center of GL(d, R).

When d = 3, by the Iwasawa decomposition [11], each point in H 3 can be uniquely represented by an
upper triangular matrix of the form

τ =






y1y2 y1x2 x3

y1 x1

1




 (2.28)

where x1, x2, x3, y1, y2 ∈ R and y 1, y2 > 0. More precisely, every generator matrix V  GL∈ (3, R) can be
written as

V = τκU (2.29)
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where τ is of the form (2.28), κ ∈ R × , and U is an orthogonal matrix. The Gram matrix Q corresponding
to V is

Q = κ 2τ τ ′ . (2.30)

The generator matrix V  GL∈ (3, R) of the BCC lattice in (2.23) is decomposed as in (2.29) with

τ =






2
√

2
3

√
3

2
2

√
2

3 (− 1
2 ) − 1

3
2

√
2

3
− 1

3

1




 , κ =

√
3

2
, U =






0 1√
2

1√
2

2√
6

− 1√
6

1√
6

1√
3

1√
3

− 1√
3




 . (2.31)

For the FCC lattice in (2.24) the decomposition (2.29) is given by

τ =






√
3

2
2

√
2

3

√
3

2
1
3

1
2√

3
2

1
2

1




 , κ =

1√
2

, U =






− 1√
3

1√
3

1√
3

1√
6

− 1√
6

2√
6

1√
2

1√
2 0




 . (2.32)

There is still more redundancy in Hd. If g is in the modular group SL(d, Z) and V is a generator matrix,
then gV is another generator matrix of the same lattice. This left action, V → gV , gives rise to the double
coset space

SL(d, Z)\H d = SL(d, Z)\GL(d, R)/O(d)R × (2.33)

which is the space of equivalent lattice classes.
If Λ is a lattice in R d, the dual lattice of Λ is

Λ∗ = {k ∈ R d : k · λ ∈ Z for all λ ∈ Λ}. (2.34)

If V and Q are a generator matrix and a Gram matrix of Λ respectively, then we can take

V ∗ = (V −1 ) ′ , Q∗ = V ∗(V ∗ ) ′ = Q −1 (2.35)

to be a generator matrix and a Gram matrix of Λ ∗ respectively. The dual lattice of a hexagonal lattice is
again a hexagonal lattice. By (2.23) and (2.24), the dual lattice of an FCC lattice is a BCC lattice, and vice
versa.

As a function of w ∈ R d, e2πik·w is Λ-periodic if k ∈ Λ ∗ ; it is an eigenfunction of the −∆ operator on
Rd/Λ, with the eigenvalue (2π) 2|k|2. For s > 0 let G Λ,s be Green’s function of the operator (−∆) s on Rd/Λ
so that

(−∆) sGΛ,s = δ −
1

|Λ|
,

Z

Rd /Λ
GΛ,s (w) dw = 0. (2.36)

Now write G Λ,s as
GΛ,s (w) =

X

k∈Λ ∗

Ck e2πik·w , C0 = 0

where the sum is assumed to converge in the sense of distributions on Rd/Λ. Here C0 = 0 because of the
integral condition in (2.36). By the fact

δ =
X

k∈Λ ∗

1
|Λ|

e2πik·w , (2.37)

the Ck ’s satisfy
X

k∈Λ ∗

(2π)2s |k|2sCk e2πik·w =
X

k∈Λ ∗

1
|Λ|

e2πik·w − 1
|Λ|

.
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Hence Ck = 1
(2π) 2s |k| 2s |Λ| if k ̸= 0 and C 0 = 0. Consequently

GΛ,s (w) =
X

k∈Λ ∗ \{0}

e2πik·w

(2π)2s |k|2s |Λ|
. (2.38)

Let V ∗ be a generator matrix of Λ ∗ and Q∗ = V ∗ (V ∗) ′ be the associated Gram matrix. If k = mV ∗ for
m ∈ Z d, then

|k|2 = mV ∗(mV ∗) ′ = mQ ∗m ′ := Q ∗ [m].

This allows us to write alternatively

GΛ,s (w) =
X

m∈Z d \{0}

e2πimV ∗ ·w

(2π)2sQ∗ [m]s |Λ|
. (2.39)

3 RΛ,3/2 (0)
The expression (2.39) for Green’s function GΛ,s is reminiscent of the twisted Epstein zeta function introduced
by Siegel. Let Q be a positive definite d × d matrix, u, v ∈ R d, and define this zeta function by

ζ(s, u, v, Q) =
X

m∈Z d ,m+v̸=0

e2πim·u

Q[m + v] s
, s ∈ C, Re s >

d

2
. (3.1)

Lemma 3.1 ([8,Epstein], [21, Siegel]). As a function of s, ζ admits an analytic continuation on C. It is
entire if u ̸∈ Z d, and has a simple pole at s = d/2 if u ∈ Z d. Furthermore, ζ satisfies the functional equation

π−s Γ(s)ζ(s, u, v, Q) = e−2πiu·v (det Q)−1/2 π−(d/2−s) Γ
d

2
− s ζ

d

2
− s, v, −u, Q−1 . (3.2)

The case u ∈ Z d was treated by Epstein and the case u ̸∈ Z d by Siegel. In the latter case there is the
question what ζ(d/2, u, v, Q) is? If d = 2, the answer is given by Kronecker’s second limit formula. If d = 3
and v = 0, Efrat proved the result below.

By (2.29) and (2.30) we write
Q = (det Q) 1/3 (y2

1y2)−2/3 τ τ ′ (3.3)

where τ , together with the x j ’s and the y j ’s, is given in (2.28). Let

z1 = x 1 + iy 1, z2 = x 2 + iy 2, x4 = x 3 − x 1x2. (3.4)

Define a matrix Q 2 to be

Q2 =
1
y1

 
y1 x1

1

! 
y1

x1 1

!

(3.5)

and denote by ζ2 this zeta function in two dimensions:

ζ2

 
s,

"
u2

u3

#

, 0, Q2

!

=
X

(n 1 ,n 2 )∈Z 2 \{(0,0)}

e2πi(n 1 u 2 +n 2 u 3 )

Q2[n]s

=
X

(n 1 ,n 2 )∈Z 2 \{(0,0)}

e2πi(n 1 u 2 +n 2 u 3 ) ys
1

|n1z1 + n 2|2s
(3.6)

which converges absolutely for Re s > 1.
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Lemma 3.2 ([6, Efrat]). Let d = 3, v = 0, and u ̸ ∈ Z 3. Then

(det Q)1/2 ζ 3
2

, u, 0, Q = y 1/2
1 y2 ζ2

 
3
2

,

"
u2

u3

#

, 0, Q2

!

− 4π log
Y

(n 1 ,n 2 )∈Z 2

1 − exp − 2πy2|(n2 − u 3)z1 − (n 1 − u 2)|

exp 2πi(u1 + (n 1 − u 2)x 2 + (n 2 − u 3)x 4) .

A comparison of GΛ,s in (2.39) and ζ in (3.1) shows that

GΛ,s (w) = (2π) −2s |Λ|−1 ζ (s, V∗w, 0, Q∗) . (3.7)

We proceed to find the fundamental solution of G Λ,3/2 and the regular part of G Λ,3/2 evaluated at 0. Let
V ∗ be a generator matrix of the dual lattice Λ ∗ and Q∗ = V ∗ (V ∗ ) ′ be its Gram matrix. By the Iwasawa
decomposition one can write V∗ and Q∗ as

V ∗ = (det V ∗ )1/3 (y2
1y2)−1/3 τ U (3.8)

Q∗ = (det Q ∗ )1/3 (y2
1y2)−2/3 τ τ ′ . (3.9)

Here U is an orthogonal matrix and τ is a triangular matrix in the Iwasawa decomposition of V ∗ (not V );
τ takes the form

τ =






y1y2 y1x2 x3

y1 x1

1




 (3.10)

where y1, y2 > 0, and x 1, x2, x3 ∈ R. Also set z1, z2, and x 4 as in (3.4).

Lemma 3.3.When d = 3 and s = 3/2,

GΛ,3/2 (w) = −
1

2π2 log |w| + RΛ,3/2 (w)

where RΛ,3/2 is a smooth function near 0 and

RΛ,3/2 (0) =
y1/2

1 y2

(2π)3




X

(n 1 ,n 2 )∈Z 2 \{(0,0)}

y3/2
1

|n1z1 + n 2|3



 − 1
2π2 log 2πy1/3

1 y2/3
2 |Λ|−1/3

− 1
2π2 log

Y

(n 1 ,n 2 )∈Z 2 \{(0,0)}

1 − exp − 2πy2|n2z1 − n 1| + 2πi(n 1x2 + n 2x4) .

Here xj , y j , and z j , given by (3.10) and (3.4), come from τ in the Iwasawa decomposition of V ∗ .

Proof. By (3.7) and Lemma 3.2

GΛ,3/2 (w) = (2π) −3 (det Q∗)1/2 ζ (3/2, V ∗w, 0, Q∗) (3.11)

=
y1/2

1 y2

(2π)3
ζ2

 
3
2

,

"
u2

u3

#

, 0, Q∗
2

!

− 1
2π2 log

Y

(n 1 ,n 2 )∈Z 2

1 − exp − 2πy2|(n2 − u 3)z1 − (n 1 − u 2)|

exp 2πi(u1 + (n 1 − u 2)x 2 + (n 2 − u 3)x 4) . (3.12)
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Here
u = V ∗w (3.13)

and

Q∗
2 =

1
y1

 
y1 x1

1

! 
y1

x1 1

!
. (3.14)

As w → 0 in (3.12), u → 0; since the function ζ 2 is regular at u 2 = u 3 = 0,

ζ2
3
2

, 0, 0, Q∗
2 =

X

(n 1 ,n 2 )∈Z 2 \{(0,0)}

y3/2
1

|n1z1 + n 2|3
. (3.15)

The term on the right side of (3.15) is actually the real analytic Eisenstein series at  s = 3/2 times twice the
Riemann zeta function at 3.

In the infinite product of (3.12) the n1 = n 2 = 0 term

1 − exp − 2πy2| − u 3z1 + u 2| + 2πi(u 1 − u 2x2 − u 3x4) (3.16)

causes a logarithmic singularity at w = 0. Let

w̃ = Uw (3.17)

where U is the orthogonal matrix in (3.8). Then by (3.8) and (3.13)

u = (det V ∗ )1/3 (y2
1y2)−1/3 τUw

= (det V ∗ )1/3 (y2
1y2)−1/3 τ w̃ (3.18)

namely

u1 = (det V ∗)1/3 (y2
1y2)−1/3 (y1y2w̃1 + y 1x2w̃2 + x 3w̃3)

u2 = (det V ∗)1/3 (y2
1y2)−1/3 (y1w̃2 + x 1w̃3)

u3 = (det V ∗)1/3 (y2
1y2)−1/3 w̃3.

Calculations show that

q := −2πy 2| − u 3z1 + u 2| + 2πi(u 1 − u 2x2 − u 3x4) (3.19)

= 2πy1/3
1 y2/3

2 (−| w̃2 − i w̃3| + i w̃1) (det V∗)1/3 . (3.20)

Then (3.20) implies that

log |1 − eq| = log |q| + O(|q|)

= log | w̃| + log 2πy1/3
1 y2/3

2 + log | det V∗ |1/3 + O y1/3
1 y2/3

2 | w̃| | det V∗ |1/3

= log |w| + log 2πy1/3
1 y2/3

2 + log | det V∗ |1/3 + O y1/3
1 y2/3

2 |w| | det V∗ |1/3 . (3.21)

The remaining terms in the infinite product of (3.12) are regular; they give
Y

(n 1 ,n 2 )∈Z 2 \{(0,0)}

1 − exp − 2πy2|n2z1 − n 1| + 2πi(n 1x2 + n 2x4) (3.22)

when u = 0, i.e. w = 0. Lemma 3.3 then follows from (3.12) with the help of (3.15), (3.21), and (3.22).
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4 k3(Q∗) and h(R3/Λ ∗)
Now consider Epstein’s zeta function

ZQ (s) =
X

m∈Z d \{0}

1
Q[m]s

, s ∈ C, Re s >
d

2
(4.1)

where Q is a positive definite d × d matrix. Clearly Z Q is a special case of the twisted Epstein zeta function
considered earlier:

ZQ (s) = ζ(s, u, 0, Q), if u ∈ Z d. (4.2)

Lemma 4.1 ([8, Epstein]).As a function of s, Z Q (s) has a meromorphic extension to C with only one simple
pole at d/2 and its residue is (det Q) −1/2 πd/2 Γ(d/2) −1 . Moreover, ZQ satisfies the functional equation

π−s Γ(s)Z Q (s) = (det Q) −1/2 π−(d/2−s) Γ
d

2
− s ZQ −1

d

2
− s .

Let k d(Q) be

kd(Q) = lim
s→d/2

ZQ (s) −
(det Q)−1/2 πd/2 Γ(d/2) −1

s − d/2
(4.3)

the constant term in the Laurent series of ZQ about d/2. When d = 2, k 2(Q) is given by the first Kronecker
limit formula. When d = 3, k 3(Q) follows from a formula in [7, Efrat].

Lemma 4.2. Let d = 3 and τ be the triangular matrix associate with Q as in (2.28), (2.29) and (2.30).
Then

k3(Q) = 2π(det Q) −1/2 log(det Q)−1/3 + 2γ − 2 − 2 log y1/3
1 y2/3

2 − 4 log g(τ )

where γ = 0.57721... is Euler’s constant and

g(τ ) = exp



 −
y1/2

1 y2

8π




X

(n 1 ,n 2 )∈Z 2 \{(0,0)}

y3/2
1

|n1z1 + n 2|3









Y

(n 1 ,n 2 )∈(Z 2 \{(0,0)})/±1

1 − exp − 2πy2|n2z1 − n 1| + 2πi(n 1x2 + n 2x4) . (4.4)

Proof. As explained in [7], the Eisenstein series E(τ, t) associated with the maximal parabolic subgroup of
SL(3, Z) can be written as

E(τ, t) =
X

(n 1 ,n 2 ,n 3 )=1

(y2
1y2)t

(y2
1 |n3z2 + n 1|2 + (n 3x3 + n 1x1 + n 2)2)3t/2 (4.5)

where xj , y j , and zj come from τ as in (2.28) and (3.4). Let

E ∗(τ, t) = ζ ∗ (3t)E(τ, t) (4.6)

where ζ∗ (s) = π −s/2 Γ(s/2)ζ(s) and ζ(s) is the Riemann zeta function. E ∗(τ, t) as a function of t admits a
meromorphic continuation to C with poles at t = 1, 0 of residues 2/3, −2/3 respectively. It is shown in [7]
that

E ∗(τ, t) =
2/3

t − 1
+ γ − log 4π −

2
3

log y1y2
2 − 4 log g(τ ) + O(t − 1) (4.7)

where g(τ ) is given in (4.4).
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Let Q be a 3 by 3 positive definite matrix associated with τ as in (2.30) so that

Q = (det Q) 1/3 (y2
1y2)−2/3 τ τ ′ .

One relates ZQ (s) to E ∗ (τ, t):

ZQ (s) =
X

m∈Z 3 \{0}

1
Q[m]s

= (det Q) −s/3
X

m∈Z 3 \{0}

(y2
1y2)2s/3

|mτ |2s

= (det Q) −s/3
X

m∈Z 3 \{0}

(y2
1y2)2s/3

((m 1y1y2)2 + (m 1y1x2 + m 2y1)2 + (m 1x3 + m 2x1 + m 3)2)s

= (det Q) −s/3
X

m∈Z 3 \{0}

(y2
1y2)2s/3

(y2
1 |m1z2 + m 2|2 + (m 1x3 + m 2x1 + m 3)2)s

= (det Q) −s/3 ζ(2s)
X

(m 1 ,m 2 ,m 3 )=1

(y2
1y2)2s/3

(y2
1 |m1z2 + m 2|2 + (m 1x3 + m 2x1 + m 3)2)s

= (det Q) −s/3 ζ(2s)E τ, 2s
3

= (det Q) −s/3 πsΓ(s) −1 E ∗ τ, 2s
3

. (4.8)

By (4.7) with t = 2s/3, (4.8) becomes

ZQ (s) = (det Q) −s/3 πsΓ(s) −1 1
s − 3/2

+ γ − log 4π −
2
3

log y1y2
2 − 4 log g(τ ) + O s − 3

2
. (4.9)

Expand the other terms in (4.8) about s = 3/2 to find

(det Q)−s/3 πs = π 3/2 (det Q)−1/2 + π3/2 (det Q)−1/2 log π(det Q)−1/3 s − 3
2

+ O s − 3
2

(4.10)

Γ(s) = Γ
3
2

+ Γ ′ 3
2

 
s − 3

2
+ O s − 3

2
. (4.11)

Note that

Γ
3
2

=
π1/2

2
, Γ ′ (3/2)

Γ(3/2)
= ψ

3
2

= 2 − 2 log 2 − γ

where ψ = Γ ′ /Γ is the digamma function. Consequently by (4.10), and (4.11), (4.9) simplifies to

ZQ (s) =
2π(det Q)−1/2

s − 3/2
+2π(det Q) −1/2 log(det Q)−1/3 + 2γ − 2 − 2 log y1/3

1 y2/3
2 − 4 log g(τ ) +O s − 3

2
(4.12)

and the lemma follows.

Lemma 4.3.Let Λ be a three-dimensional lattice. Then

k3(Q∗ ) = 2π(det Q∗ )−1/2 2γ − 2 + 2 log(2π) + (2π)2RΛ,3/2 (0)

where Q∗ is a Gram matrix associated with Λ ∗ .

Proof. Compare RΛ.3/2 (0) in Lemma 3.3 and k 3(Q) in Lemma 4.2 with Q substituted by Q ∗ .
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Recall the height h(M ) of a Riemannian manifold defined in (1.16). When M is a flat torus R d/Λ, the
eigenfunctions of −∆ are e2πik·w , k ∈ Λ ∗ , and the corresponding eigenvalues are 4π2|k|2. Then the height of
Rd/Λ is essentially given by Epstein’s zeta function because

Z(R d/Λ, s) =
X

k∈Λ ∗ \{0}

1
(2π)2s |k|2s

= (2π) −2s
X

m∈Z n \{0}

1
Q∗ [m]s = (2π) −2s ZQ ∗ (s) (4.13)

where Q∗ is a Gram matrix associated with the dual lattice Λ ∗ .
We reprove a result in [3, Chiu], correcting a minor error.

Lemma 4.4.Let Q be a Gram matrix associated with lattice Λ. Then

h(Rd/Λ) = (det Q) 1/2 π−d/2 Γ
d

2
kd(Q) + ψ

d

2
− γ + 2 log 2

where ψ = Γ ′ /Γ is the digamma function. In particular

h(R3/Λ ∗) = (det Q ∗ )1/2 (2π)−1 k3(Q∗) − 2γ + 2.

Proof. By (4.13), the height of R d/Λ is

h(Rd/Λ) = Z ′ (Rd/Λ, 0)
= −2 log(2π)Z Q ∗ (0) + Z ′

Q ∗ (0). (4.14)

By Lemma 4.1,
ZQ ∗ (s) = (det Q ∗)−1/2 π2s−d/2 Γ(s) −1 Γ

d

2
− s ZQ

d

2
− s . (4.15)

For s near 0, expand

π2s−d/2 = π −d/2 + 2π−d/2 log π s + O(s2) (4.16)

Γ(s) −1 = s + γs 2 + O(s 3) (4.17)

Γ
d

2
− s = Γ

d

2
− Γ ′ d

2
s + O(s2) (4.18)

ZQ
d

2
− s = −

(det Q)−1/2 πd/2 Γ d
2

−1

s + k d(Q) + O(s) (4.19)

where (4.19) follows from (4.3). Then

ZQ ∗ (s) = −1 + (det Q)1/2 π−d/2 Γ
d

2
kd(Q) + ψ

d

2
− γ − 2 log π s + O(s2). (4.20)

Hence

ZQ ∗ (0) = −1 (4.21)

Z ′
Q ∗ (0) = (det Q) 1/2 π−d/2 Γ

d

2
kd(Q) + ψ

d

2
− γ − 2 log π (4.22)

and consequently by (4.14)

h(Rd/Λ) = (det Q) 1/2 π−d/2 Γ
d

2
kd(Q) + ψ

d

2
− γ + 2 log 2 (4.23)

from which the lemma follows.
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We now state the key lemma in this paper.

Lemma 4.5.If d = 3, then
h(R3/Λ ∗ ) = (2π) 2RΛ,3/2 (0) + 2 log(2π).

Proof. Compare RΛ,3/2 (0) in Lemma 4.3 and h(R 3/Λ ∗ ) in Lemma 4.4.

To prove the main theorem, we need a deep result of Sarnak and Str¨ombergsson.

Theorem 4.6 ([20,Sarnak and Str ömbergsson]).Among three dimensional lattices Λ of unit volume, the
height h(R3/Λ) is uniquely minimized by the FCC lattice.

Proof of Theorem 1.2. By Lemma 4.5 and Theorem 4.6, RΛ,3/2 (0) is uniquely minimized when Λ ∗ is the
FCC lattice. Since the FCC lattice is the dual lattice of the BCC lattice by (2.23) and (2.24), Λ must be
the BCC lattice.
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