
Commonly asked questions about transcriptional
activation domains
Aditya Udupa1, Sanjana R. Kotha1,2 and Max V. Staller1,2,3

Abstract
Eukaryotic transcription factors activate gene expression with
their DNA-binding domains and activation domains. DNA-
binding domains bind the genome by recognizing structurally
related DNA sequences; they are structured, conserved, and
predictable from protein sequences. Activation domains recruit
chromatin modifiers, coactivator complexes, or basal tran-
scriptional machinery via structurally diverse protein-protein
interactions. Activation domains and DNA-binding domains
have been called independent, modular units, but there are
many departures from modularity, including interactions be-
tween these regions and overlap in function. Compared to
DNA-binding domains, activation domains are poorly under-
stood because they are poorly conserved, intrinsically disor-
dered, and difficult to predict from protein sequences. This
review, organized around commonly asked questions, de-
scribes recent progress that the field has made in under-
standing the sequence features that control activation domains
and predicting them from sequence.
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What are transcriptional activation
domains?
Transcriptional activation domains are the regions of
transcription factors (TFs) that bind to coactivator
complexes to activate transcription [1e3]. These regions
are also called transactivation domains or activator do-
mains, and all three terms have been applied both to
minimized regions of high activity (10e80 AA) and the
entirety of the TF outside the DNA-binding domain
(DBD; 100s of AA). We will use the term activation
domain to refer to short regions that directly bind to
coactivators. Activation domains are defined experimen-
tally, most often in sufficiency assays, where candidate
protein regions are fused to a heterologous DBD and
activity is measured with a reporter gene. There are high-
throughput sufficiency assays in yeast, fly, and human
cells that use pooled oligo synthesis to study short TF
fragments, !80AA [4e9], but some groups have queried
longer regions [10,11]. The boundaries of nearly all an-
notated activation domains should be regarded as ap-
proximations because very little experimental effort has
been devoted to defining boundaries precisely.

The primary known function of activation domains is to
recruit coactivator complexes. These interactions are
highly dynamic, with short dwell times that are hard to
catchwithpull-downassays in vivo [12e14].Therearenow
dozens of beautiful NMR structures of these interactions,
as reviewed by Dyson and Wright [1]. It remains a goal in
the field to map interactions between activation domains
and coactivators. Genetically defining the coactivator
dependence of activation domains yields complex results
that have been hard to interpret [15]. Recent TURBO-ID
experiments, which capture dynamic interactions in vivo,
suggest thatmost activation domains preferentially bind to
only 1e2 coactivators [16]. Importantly, different mem-
bers of a single DBD family (e.g. FOXO) recruited
different combinations of the TFIID, CBP/p300, NuA4,
and BAF complexes [16]. Organizing TFs into families by
DBD homology has been useful, but going forward we will
require an orthogonal organization system for grouping
TFs with functionally similar activation domains.

Are all activation domains acidic?
The first few dozen activation domains were all nega-
tively charged [17,18], inspiring a seminal paper by Paul
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Sigler entitled, “Transcriptional activation. Acid blobs
and negative noodles” [19]. Sigler leveraged his au-
thority as a respected structural biologist to argue that
activation domains did not need to fold in order to be
functional. This seemingly simple idea was heretical at
the time. It is now clear that TFs are highly enriched for
intrinsically disordered protein regions (IDRs), which
do not fold into a single 3D structure, comprise roughly a
third of the residues in eukaryotic proteomes, and are
enriched for protein-protein interactions and post-
translational modifications [20e22]. Sigler’s paper re-
mains highly recommended reading.

Traditionally, activation domains are classified by their
most common residue as acidic, glutamine (Q)-rich,
proline-rich, or serine-rich. For this review, we collected
lists of activation domains from recent surveys [9,16,
23e25] (Table S1). After confirming the UniProt ID of
each domain, we obtained the full-length sequences of all
isoforms and used the published coordinates of the
domain to find the sequence of each region. If the region
matched the domain, we saved the UniProt ID of the
isoform in the column of Table S1 titled “Matching
Isoforms.” In cases where there were multiple matches,
we selected one to record in the Uniprot ID column of
Table S1, preferring the canonical isoform when it was
among the matches. For a few members of the DelRosso
library, we used the Ensembl ID to confirmwhich isoform
to designate as the UniProt ID. Finally, we merged do-
mains with the same UniProt ID with overlapping start
and end coordinates, yielding the union of overlapping
annotations. We used the updated start and end co-
ordinates to find the region of the full-length sequence to
use as the new domain sequence.

The combined list of activation domains revealed that
Q-rich activation domains are rare (19/760, 2.50 %) and
that the three other classes overlap highly (Figure 1)
[2,26,27]. Acidic activation domains were the first group
described [17,18], remain the largest, and contain the
strongest members [28]. In these domains, aromatic and
leucine residues make the largest contributions to the
activation domain function [29]. Individual acidic resi-
dues are dispensable and poorly conserved but collec-
tively essential for function [7]. Many acidic activation
domains are well-described by our acidic exposure
model, wherein the critical aromatic and leucine resi-
dues make contact with shallow hydrophobic grooves on
coactivators (Figure 2) [4,30]. However, in the unbound
state, the aromatic and leucine residues interact with
each other and drive collapse into an inactive state. The
acidic residues repel each other and favor solvation,
keeping the hydrophobic residues exposed to solvent,
where they are available to bind coactivators. Intermix-
ing the positions and balancing the numbers of acidic
and hydrophobic residues is important for full activity
[4,5,7,26]. The exchange between collapsed and
expanded states might be rapid, but the time scale has

not yet been measured. The acidic exposure model is an
instance of the stickers-and-spacers model with a very
active role in the spaces [31]. This model is supported
by work from many groups [5e8,27,32,33]. Surface
plasmon resonance assays showed that acidic residues
can also mediate fast, low-affinity electrostatic binding
to coactivators and that hydrophobic residues mediate
slow, high-affinity binding [7,34,35]. The overlap be-
tween acidic, serine-rich, proline-rich, and Q-rich acti-
vation domains have led Bintu et al. to playfully describe
them all together as greasy acidic noodles sprinkled with
salt (S), pepper (P), and queso (Q). Evidence that
phosphorylation can modulate activation domain activ-
ity has led to speculation that some S-rich or P-rich
activation domains are inducible acidic activation do-
mains [36,37].

Within acidic activation domains, there is functional
diversity. There are hints that L-rich activation domains
bind to CBP/p300 and aromatic-rich activation domains
bind to Med25 [30,33,38]. Binding specificity arises
from the structure of the coactivator-binding interface
imposing geometric constraints on the activation
domain. For example, the deep hydrophobic canyon of
Taz1 imposes more constraint than the shallow hydro-
phobic canyon of Med15 [9,39] A live-imaging study of
transcriptional bursting found that 45/78 activation do-
mains primarily regulate either transcriptional burst size

Figure 1

Among annotated activation domains, the traditional classes are highly
overlapping. Acidic activation domains have a net charge < −3, P-rich
have >15 % proline, and S-rich have >15 % serine.
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or burst duration, but less often both (9/78) [40].
Activation domains that recruit Mediator or the general
transcriptional machinery tended to modulate burst
size, while activation domains that recruit SWI/SNF,
histone acetyltransferases, or the super elongation
complex tended to regulate burst intensity [16,40].

Why are so many active domains acidic?
In principle, the exposure of hydrophobic residues
offered by acidic residues in the acidic exposure model
could be achieved by basic residues, but acidic residues
have several advantages. Most importantly, because
DNA is acidic, it repels acidic activation domains, pro-
motes exposure, and prevents non-specific DNA bind-
ing [41]. Acidic activation domains can have low-affinity,
intramolecular, electrostatic interactions with DBD that
can increase DNA specificity [42e45] and electrostatic
interactions with basic coactivators [34,35]. When DNA
repels activation domains, evolution can tune DNA af-
finity by acting only on the DBD. A drawback of posi-
tively charged residues is that they can have cation-pi
interactions with aromatic residues, which would in-
crease collapse instead of exposure [46]. The electro-
static constraint posed by DNA can explain why many
activation domains are acidic.

Acidic activation domain function is deeply conserved
across eukaryotes. The Gal4/UAS system from yeast
works beautifully in flies, mammals, and plants [47].
Acidic activation domains from animals, viruses, and
plants work well in yeast [11,28,48]. This promiscuous
species-crossing has fueled speculation that acidic acti-
vation domains existed in the ancestor of all eukaryotes.

Why are activation domains disordered?
Virtually all activation domains are intrinsically disor-
dered, but many undergo coupled binding and folding,
often into short alpha helices [1]. The first explanation
for intrinsic disorder is that it allows activation domains
to fold differently with each interaction partner [1,49].
In p53, varying the helical propensity trades off affinity
for two partners, drastically modulating protein function
[50]. Known activation domains are enriched for low-
confidence secondary structural predictions in Alpha-
Fold models [16]. So far, there are few clear examples
where the activation domain remains disordered while
bound to the coactivator, but we suspect this type of
interaction is underreported due to ascertainment bias
[51]. The second explanation comes from the acidic
exposure model, where disorder reduces the entropic
cost of keeping W,F,Y,L residues exposed to solvent

Figure 2

In our acidic exposure model, disordered activation domains rapidly transition between collapsed and expanded states. The collapsed state is inactive.
The expanded state is competent to bind coactivators because the W,F,Y,L residues are exposed to solvent. The W,F,Y,L residues make critical contacts
with hydrophobic surfaces on the coactivator. Many activation domains experience coupled folding and binding, but folding is not essential. Electrostatic
interactions between the activation domain and coactivator can contribute to binding or steering, but these interactions are of low affinity and not always
necessary.
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because they need to be exposed for only a fraction of
the time to allow coactivator binding. The third expla-
nation is that intrinsically disordered sequences can use
longerange, loweaffinity electrostatic interactions to
achieve diffusion-limited binding [52e56].

A controversial idea is the detergent model, which
argues that activation domains loosen the interactions
between nucleosomes and DNA to help create
nucleosome-free regions for TF binding [8,57]. This
idea contrasts with the standard model where activation
domains recruit chromatin remodeling enzymes,
including ISWI, SWI/SNF, CHD, and INO80, which use
ATP-hydrolysis to slide or evict nucleosomes [58]. We
do not endorse this detergent model.

What is the molecular grammar in activation
domains?
Molecular grammar describes how the arrangement or
order of amino acids contributes to function. There is a
spectrum ranging from an extreme of “no grammar,”
where only the composition matters, to an extreme of
“strict grammar,” where the exact order of residues is
essential for function. The dominant model for activa-
tion domains is that they are short linear motifs (SLiMs)
of hydrophobic residues surrounded by a permissive
context [59,60]. For example, the FxxFF motif, where
F is a hydrophobic residue, is surrounded by acidic
residues on many activation domains, often forming an
amphipathic alpha helix that presents a continuous hy-
drophobic surface to the coactivator [1,61]. There are
two problems with motif-centered models. First, indi-
vidual motifs are conserved within a family of orthologs,
but each motif is rarely present in many families, making
each one too specific to be a useful predictor of activa-
tion domains [4,37,61]. Second, our mutagenesis has
revealed that multiple motifs are necessary for full ac-
tivity [4,30]. The reliance on motifs has served as a
robust set of training wheels for the field, but as our
understanding of activation domain function matures,
the fixation on motifs is holding us back because motifs
imply a strict molecular grammar. We believe that it is
time to focus on clusters of hydrophobic residues
embedded in a permissive context, emphasizing a much
more flexible grammar.

There is strong evidence against strict grammar: random
peptides with activation domain activity do not have
enriched motifs [6], shuffling activation domain
sequence can increase activity in a third of examples
[4,7], and searching for clusters of W,F,Y,L residues in
acidic regions is a good predictor of activation domains
[26,30]. Interesting work on Abf1 in yeast completely
blurs the line between motifs and context [62]. There is
also strong evidence against no grammar: shuffling
sequence often has profound effects on activity, espe-
cially in helices [4,7,30], and interchanging aromatic

residues can disrupt activity [30]. We are left with weak
grammar, which we still do not fully understand and is at
times disconcerting. Shuffling sequences can disrupt
activity, or it can have little effect; breaking helices can
disrupt activity or have little effect; interchanging
similar residues (D> E or F>W) can disrupt activity or
have little effect [7,29,30,39]. We refer the reader to
Kotha and Staller 2023 for an extended discussion of the
role of motifs and grammar in activation domains [26].

Can we predict activation domains from
protein sequence?
Recently, high-throughput assays for measuring activa-
tion domain activity have powered convolutional neural
network (CNN) models for predicting activation do-
mains from protein sequence. The first computational
model for activation domains, the 9aaTAD model, used
regular expressions to find matches to a highly degen-
erate motif and context pattern [63]. However, in two
high-throughput screens in yeast, this pattern was not
enriched in activation domains and was not a useful
predictor [6,7]. Rational mutagenesis of one activation
domain and lasso regression models on random peptides
revealed key amino acids [4,5,8]. The first CNN acti-
vation domain predictor was developed with a dataset of
3.6 million 30-AA random peptides tested in yeast [6].
The second CNN was developed with a dataset of 53-
AA peptides from 180 Saccharomyces cerevisiae TFs
(n = 7460 tiles) [7]. In our experience [64] and the
work of others [11,26,27,64], both of these models do a
good job of predicting the general location of activation
domains on human and plant TFs. We have found they
do an excellent job of prioritizing a few regions of a TF
that are likely to be activation domains. Both models
struggle to find activation domain boundaries accurately,
but these boundaries are poorly defined. To our surprise,
scanning for clusters of W,F,L residues in acidic regions
performs nearly as well as CNN models for human TFs,
implying both that prediction is simpler than antici-
pated and that the grammar is highly degenerate [26].
Second-generation CNN models with more sophisti-
cated architectures are already more accurate [65]. As
more data becomes available, we anticipate the activa-
tion domain predictors will improve.

What is the link between activation domains
and phase separation?
It is now clear that transcription occurs in dynamic
clusters [66]. These clusters are non-stoichiometric
assemblies with dozens of copies of each TF and coac-
tivator complexes that together recruit dozens of Pol II
molecules, some of which successfully transcribe
mRNAs [67e72]. It remains deeply contested whether
these clusters of active transcription are phase-
separated biomolecular condensates [73,74]. There is
evidence that the same protein-protein interactions that
enable activation domain function in vivo enable phase
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separation in vitro [73]. Modulation of phase separation
in vitro can identify interaction-binding partners or drugs
[75]. There are examples from plants where a TF be-
comes inactive as it enters the condensate for long-term
storage [76,77]. Careful studies in a synthetic system
showed that phase separation can be completely sepa-
rated from activation domain strength [78].

We speculate that the reason there has been so much
confusion between transcriptional activation and phase
separation is that both processes rely on multivalency.
Multivalency is essential in many phase-separated sys-
tems and dynamic protein-protein interactions (See
companion review by Berlow and colleagues). TFs and
activation domains engage in multivalent binding with
coactivators. Activation domains show multivalency on
two-length scales. First, many TFs have multiple acti-
vation domains that can bind the same coactivator:
there are five patches of Gcn4 that each contact many
(but not all) of the four activation domain-binding do-
mains of Med15 [13]. For p53, the active form is a
tetramer [79], and it can form four contacts with CBP/
p300 [49]. Second, within activation domains, adding
aromatic or leucine residues near key hydrophobic
motifs boosts activity by lengthening the interaction
surface [4,61,80].

Concluding remarks
Over the past 6 years, new methods have clarified the
sequence determinants that control acidic activation
domain function. We anticipate the next few years will
expand these approaches to activation domains from
other classes and investigate post-translational modifi-
cations. The major open questions are to define func-
tional classes of activation domains, map interactions
with coactivators, and build improved predictors.
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interactions independent of phase separation. Mol Cell 2022,
82:1878–1893.e10.

High-resolution imaging of a synthetic system demonstrates how
transcriptional activation can be completely uncoupled from phase
separation. The combination of a dCas system with Optogenetics
probed the relationship between phase separation and multivalency. In
several systems, phase-separated droplets resulted in a decrease of
total and nascent RNA levels at synthetic locus. VPR and FUSN fusion
resulted in higher nascent and total RNA concomitant with phase
separation; however, in cells with comparable VPR & FUSN

concentration that did not form droplets, increased RNA levels were
comparable.
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