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Abstract

Transcription factors activate gene expression in development, homeostasis, and stress with DNA binding domains and activation do-
mains. Although there exist excellent computational models for predicting DNA binding domains from protein sequence, models for 
predicting activation domains from protein sequence have lagged, particularly in metazoans. We recently developed a simple and ac-
curate predictor of acidic activation domains on human transcription factors. Here, we show how the accuracy of this human predictor 
arises from the clustering of aromatic, leucine, and acidic residues, which together are necessary for acidic activation domain function. 
When we combine our predictor with the predictions of convolutional neural network (CNN) models trained in yeast, the intersection is 
more accurate than individual models, emphasizing that each approach carries orthogonal information. We synthesize these findings 
into a new set of activation domain predictions on human transcription factors.

Keywords: transcription, transcription factor, activation domain, transactivation domain, transcriptional activation domain, protein 
function prediction, convolutional neural network

Received: May 16, 2023. Accepted: July 03, 2023
© The Author(s) 2023. Published by Oxford University Press on behalf of The Genetics Society of America. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
Transcription factors regulate gene expression with DNA binding 
domains and effector domains. DNA binding domains are struc-
tured, conserved, and recognize related DNA sequences 
(Latchman 2008; Ferrie et al. 2022; Staller 2022). Profile hidden 
Markov models can accurately predict DNA binding domains 
from protein sequence (Stormo 2013; Finn et al. 2016; El-Gebali 
et al. 2019). Effector domains include repression domains that 
bind corepressors and activation domains that bind coactivators. 
Some repression domains can be predicted from protein se-
quence, and many contain short linear motifs (Tycko et al. 2020; 
Soto et al. 2022; DelRosso et al. 2023). Activation domains are in-
trinsically disordered, poorly conserved, and bind to structurally 
diverse coactivators: these features have made it difficult to pre-
dict activation domains from protein sequence (Liu et al. 2006; 
Dyson and Wright 2016). There are profile hidden Markov models 
for individual activation domains (e.g. p53 or Hif1a), which can 
identify activation domains on closely related paralogs or ortho-
logs in other vertebrate species (El-Gebali et al. 2019), but these 
models are rarely generalizable to predict activation domains on 
other transcription factors. The ability to predict activation do-
mains from protein sequence would open the door to automated 
annotation of proteomes and lay a foundation for prioritizing 
disease-causing mutations. Recently developed models trained 
in yeast have provided a useful starting point (Ravarani et al. 

2018; Erijman et al. 2020; Sanborn et al. 2021). Here, we explore 
how to improve these models to work on human transcription 
factors.

Over the last few years, we and others have resolved the key se-
quence features of strong acidic activation domains, the largest 
known class (Arnold et al. 2018; Ravarani et al. 2018; Staller 
et al. 2018, 2022; Erijman et al. 2020; Tycko et al. 2020; Broyles 
et al. 2021; Sanborn et al. 2021; DelRosso et al. 2023). Based on 
these sequence features, we proposed an acidic exposure model for 
activation domain function (Staller et al. 2018, 2022). In our acidic 
exposure model, the hydrophobic residues make key contacts 
with coactivators but left alone, the hydrophobic residues interact 
with each other and prevent binding to partners (Fig. 1a). 
Interspersed between hydrophobic residues are acidic residues 
that repel each other and keep the hydrophobic residues exposed 
to solvent. The critical parameter in the acidic exposure model is 
the balance between acidic and hydrophobic residues. There are 
cases where acidic residues make fast, low-affinity contacts 
with basic residues on coactivators (Hermann et al. 2001; 
Ferreira et al. 2005; Kim and Chung 2020), but these are secondary 
to hydrophobic contacts.

The acidic exposure model motivated a simple and accurate 
mechanistic predictor of activation domains (Staller et al. 2022). 
We investigated if the clustering of acidic, aromatic, and leucine 
residues could predict activation domains. In our rational 
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mutagenesis experiments, we found that the key sequence fea-
tures controlling the activity of CITED2 (220–258) and VP16 H1 
(415–453) were net negative charge and the number of aromatic 
and leucine residues (Staller et al. 2022). VP16 H1 is a classic strong 
acidic activation domain from the human herpes simplex virus 
and a workhorse in synthetic biology applications (Sadowski 
et al. 1988; Cress and Triezenberg 1991). CITED2 shuts down the 
hypoxia response by outcompeting Hif1a for binding to the Taz1 
domain of CREB-binding protein (CBP)/p300 (Freedman et al. 
2003; Berlow et al. 2017). Both of these very strong activation do-
mains hail from proteins that lack a DNA binding domain. Our ori-
ginal mechanistic predictor showed that regions that resemble 
CITED2 and VP16 H1 in acidity and the number of aromatic and 

leucine residues were enriched for known and new activation 
domains (Staller et al. 2022). First, we computationally decom-
posed 1,608 human transcription factors into 39 amino acid 
(39-AA) tiles spaced every 1-AA, yielding 881 K tiles (Fig. 1b) 
(Lambert et al. 2018). We used 39-AA tiles because that was the 
length of the region used in our experiments. We looked for 
39-AA tiles that were similar to VP16 H1 and CITED2 (Fig. 1c), using 
the the formula:

(Charge ≤−9) AND (W + F + Y + L ≥ 7) AND
(((Charge + 9)− (W + F + Y + L−10)) ≤ 0), (1) 

Where W is tryptophan, F is phenylalanine, Y is tyrosine, and L is 

(a)

(d)

(b)

(c)

(e) (f)

Fig. 1. The acidic exposure model can predict acidic activation domains on human transcription factors. a) In the acidic exposure model, intrinsically 
disordered activation domains dynamically morph between a collapsed, inactive state and an expanded, active state where the key aromatic, and leucine 
residues are available to interact with hydrophobic surfaces of coactivators. Many activation domains show coupled folding and binding, but can also 
exhibit fuzzy binding, or remain disordered when bound. b) Schematic for computationally chopping transcription factors into 39-AA tiles spaced every 
1-AA. b) Sequences of a 39-AA version of CITED2 and a 39-AA version of VP16 H1 used in the predictor. d) The original mechanistic predictor, the boundary 
is anchored by CITED2 (star) and VP16 H1 (circle). e) Overlap between the GSL, the Soto list, and the tested regions from Staller et al. (2022). The tested 
regions include predictions, known activation domains, and negative control regions and had detectable activity in the experiment. f) Overlap between 
the acidic subsets of the GSL, the Soto list, and tested regions.

2 | S. R. Kotha and M. V. Staller
D

ow
nloaded from

 https://academ
ic.oup.com

/genetics/article/225/2/iyad131/7225743 by U
niversity of C

alifornia Library - Berkeley Library user on 16 February 2024



leucine. Charge = K + R − D − E. This predictor is anchored by 
CITED2 (net charge = −9, W + F + Y + L = 10) and VP16 H1 (net 
charge = −13, W + F + Y + L = 7) (Fig. 1d). The first term selected re-
gions that are at least as acidic as CITED2 (Fig. 1d, vertical thresh-
old). The second term selected regions with at least as many W, F, 
Y, or L residues as VP16 H1 (Fig. 1d, horizontal threshold). The 
third term interpolates between these 2 anchor points with a diag-
onal line of slope 1 (Fig. 1d, diagonal line). In this initial formula-
tion, the feature of the acidic exposure model tested by the 
predictor is the tendency of aromatic, leucine, and acidic residues 
to reside together in 39-AA regions. In the human proteome, 1139 
39-AA tiles met these criteria, which combined into 144 predicted 
activation domains. Twenty-six of these predictions overlapped 
known activation domains, more than expected by chance (P <  
1e-5 in permutation tests). We split the longest predictions and 
tested 150 regions in our high-throughput assay (Staller et al. 
2022). Of the 149 recovered fragments, 108 (72%) had detectable 
activity and 58 (39%) had high activity. This fraction was com-
pared favorably to length-matched random regions and positive 
controls. The high-activity sequences included 28 known activa-
tion domains and 30 new activation domains (Staller et al. 2022). 
The success of this predictor supported the acidic exposure model 
in so far as the combination of acidic and W, F, Y, and L residues 
lead to acidic activation domain function.

While we were developing our mechanistic predictor for hu-
man activation domains, 2 CNNs for predicting activation do-
mains in yeast were published. The first, ADpred, was trained on 
3.6 million 30-AA random peptides (Erijman et al. 2020). The se-
cond, Predictor of Activation Domains using Deep Learning in 
Eukaryotes (PADDLE), was trained on 53-AA regions that tiled 
across ∼180 Saccharomyces cerevisiae transcription factors (n =  
10,537 tiles) (Sanborn et al. 2021). Both of these datasets see the 
same primary signal we saw in our rational mutagenesis: strong 
activation domains are enriched for acidic and aromatic residues 
and depleted of basic residues. In yeast, 4 groups have reported 
the same ranking of amino acid contributions to activity: W > F  
> Y > L (Ravarani et al. 2018; Staller et al. 2018; Erijman et al. 
2020; Broyles et al. 2021; Sanborn et al. 2021). Multiple groups 
have reported that the absence of positively charged residues is 
important for activity in yeast (Ravarani et al. 2018; Erijman 
et al. 2020; Broyles et al. 2021; Sanborn et al. 2021). Sanborn et al. 
reported a correlation between White–Wimbly hydrophobicity 
and activity, but in this hydrophobicity table the top entries are 
W > F > Y > L, so the White–Wimbly hydrophobicity scale is em-
phasizing the most important amino acids (Sanborn et al. 2021). 
Erijman et al. found that [D, E][W, F, Y] dipeptides were enriched 
in active fragments (Erijman et al. 2020), consistent with our evi-
dence that acidic residues made larger contributions to activity 
when they were close to hydrophobic residues (Staller et al. 
2018, 2022). Individual acidic residues can often (but not always) 
be removed with little consequence, and instead, acidic residues 
collectively contribute to activity by creating a permissive context 
(Staller et al. 2018; Sanborn et al. 2021). All of these signals support 
the acidic exposure model and are consistent with our mechanis-
tic predictor.

In our previous work, we performed very little optimization of 
our mechanistic predictor (Staller et al. 2022). Here, we sought 
to understand why this mechanistic predictor accurately pre-
dicted transcriptional activation domains on human transcription 
factors and to improve its predictive power. We assumed that we 
were at a local maxima and it would be straightforward to find a 
much better predictor, the global maximum. Here, we added 
and removed residues, changed the length-scale, and added 

grammar. Instead, we found it hard to improve upon the original 
mechanistic predictor. We found that phenylalanine and leucine 
make the largest contributions to predictive power, while trypto-
phan, tyrosine, and methionine contribute modestly. Changing 
the tile length did not improve model performance. We had previ-
ously argued based on experiments that acidic residues make lar-
ger contributions to activity when they are close to hydrophobic 
residues (Staller et al. 2022). We attempted to add this idea to 
the predictor, but we could not find a consistent, statistically sig-
nificant signature of this effect. We had more success varying the 
boundaries of the predictor, finding regions that made small con-
tributions to predictive power, and promising new regions. In par-
allel, we attempted to predict glutamine-rich, proline-rich, or 
serine-rich activation domains but were not successful.

Based on our improved understanding of how the original 
mechanistic predictor functions, we developed a modestly im-
proved mechanistic predictor. Our new predictor uses trypto-
phan, phenylalanine, and leucine residues, 39-AA windows, and 
more relaxed thresholds for net charge and hydrophobic residue 
counts. The new model predicted many more activation domains 
with minimal loss of accuracy. The primary value of the mechan-
istic predictor is its simplicity. This model is so simple that we re-
main surprised this rule was not uncovered earlier. When we 
compare our mechanistic predictors to CNN models trained in 
yeast, we found that the intersection is more predictive than indi-
vidual models, emphasizing that each approach carries distinct 
information. We synthesize these findings into a new set of activa-
tion domain predictions.

Materials and methods
Data sources
The gold standard list (GSL) consists of activation domains from 2 
sources. The first source is transcription factors with activation 
domains that were annotated in UniProt, which are in the “data/ 
UniprotActivationDomains_HighqualitySet.csv” file. The second 
source is activation domains manually curated from the litera-
ture, which are in “/data/ActivationDomainsHuman.csv.” In “/no-
tebooks/Building the GSL.ipynb,” we combined activation 
domains from both sources into one list, merging entries with 
the same UniProt ID with overlapping start and end positions. In 
cases where the annotated boundaries differed, we used the long-
est region.

For the tested regions in Figs. 1 and 4, we used the activity data 
for fragments that we previously published (Staller et al. 2022). 
There were 443 designed fragments of different lengths, but not 
all were recovered in the assay. In addition, there were multiple 
cases where the predicted activation domain region was different 
from the UniProt region, and we experimentally tested both. Here 
we combined overlapping regions, yielding a total of 356 regions, 
which include positive controls, negative controls, and predicted 
activation domains.

The sequences of all 1,608 human transcription factors were 
downloaded from UniProt (Lambert et al. 2018). We downloaded 
the sequences of the full human proteome from UniProt. For ana-
lysis, we used the protfasta (Holehouse 2021), localcider 
(Holehouse et al. 2017), metapredict2 (Emenecker et al. 2022), pan-
das, math, itertools, matplotlib, seaborn, numpy, and scipy py-
thon packages.

Tiling
Each transcription factor sequence is computationally chopped 
into 39-AA regions spaced every 1-AA (e.g. 1–39, 2–40, 3–41, etc.), 
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yielding 881K tiles. The full proteome and GSL were similarly de-
composed into tiles. The composition of each tile was computed 
by counting amino acids. The net charge was calculated as R +  
K – D – E. The original predictor counted W + F + Y + L residues. 
Other variants of the predictor counted other subsets of residues. 
For the composition histograms in Fig. 2, we used tiles. To identify 
the enrichment of specific amino acids in activation domains, we 
performed a student’s t-test between the 2 population means. We 
report all enrichments that were significant at P < 0.01 after a 
Bonferroni correction for multiple hypothesis testing. We used a 
threshold of 15% for enrichment of individual amino acids (e.g. 
Q, P, S, or A). This 15% threshold is an emerging standard in the 
field (DelRosso et al. 2023). We classified activation domains 
with a net charge less than −3 to be acidic.

Varying the predictor
The main predictor function is make_predictions() in “notebooks/ 
AD_predictor_tools.py.” The make_predictions() function has 
parameters that can be used to vary the predictor. We varied 
the predictor in one way at a time. We adjusted the parameter 
UpperCorner_slope1 to change the slope of the boundary line ori-
ginating from the upper corner, CITED2. To create region D in 
Fig. 4a, we set UpperCorner_slope1 equal to infinity to draw a ver-
tical line to test the predictor with a vertical boundary line instead 
of a diagonal line. To vary the acidity threshold, we adjusted the 
parameter upper_corner_c from −13 to 0 to vary the charge of 
the boundary. To vary the hydrophobic residue count, we ad-
justed the parameter lower_corner_h from 0 to 15 to vary the 
count of hydrophobic and aromatic AAs. To vary the composition 
of AAs used on the y-axis we substituted each pair and triad of AAs 
for the composition parameter.

We identified all the tiles that satisfied equation (1) and then 
aggregated the overlapping tiles to predict activation domains. 
For longer predictions, there can be tiles in the middle that do 
not individually satisfy equation (1). As a result, when we project 
the tiles from our tested predictions (Fig. 4b), some of the tiles 
are outside the prediction region. We initially allowed overlaps 

of ≥1-AA, but in practice, the minimum observed overlap was 26 
residues. For each version of the predictor, we recalculated the 
properties of all tiles, adjusted the VP16 and CITED2 anchors, 
changed the inequalities, found new sets of tiles, aggregated the 
tiles into predictions, and compared the predictions to the GSL.

We then performed permutation testing. We used the function 
compare_to_random() in “notebooks/AD_predictor_tools.py” to 
compare the overlap with the GSL of predictions vs random se-
quences. To create a random set of sequences, we counted the 
number of unique UniProt IDs in the predictions and randomly 
sampled the same number of transcription factors from all hu-
man transcription factors. We found that preserving the fact 
that sometimes there were multiple predictions per transcription 
factor was more stringent in the permutation test than assuming 
all predictions were independent. Then, for each unique UniProt 
ID in the predictions, we recorded the length distribution and 
number of predictions. We iterated through unique UniProt IDs 
and randomly selected parts of each sampled transcription factor 
so that the selected parts had the same number and length distri-
bution as predictions with one UniProt ID. Finally, we recorded the 
number of times a randomly sampled transcription factor region 
had any overlap with a GSL entry, using start, end, and UniProt ID 
to compare. Here we used 1-AA overlaps to increase the strin-
gency of the permutation test. We compared this number to over-
laps of predictions with the GSL. We repeated this random 
sampling for 10,000 permutations. We never randomly sampled 
as many overlaps as the predictor.

We searched for signatures of molecular grammar in multiple 
ways. Generally, we would compute parameters for all the activa-
tion domains on the GSL and look for enrichment compared to all 
Lambert transcription factors. For the charge mixture para-
meters, we tried the original formulation of Kappa and Omega 
as well as a custom variation of Omega that quantified the mix-
ture of WFYL residues with acidic residues (Das and Pappu 2013; 
Martin et al. 2016; Ginell and Holehouse 2020). We then compared 
the parameter between the 2 sets. We also used the measured 
activities (Staller et al. 2022) to correlate activity with these 
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Fig. 2. Sequence features of activation domains. Activation domains on the GSL (orange) show very moderate enrichment of individual sequence 
properties or amino acids compared to the background of transcription factor sequences (gray).
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parameters, but the correlations were poor. For the runs of acidic 
residues, we used the activity measurements for all the tested pre-
dictions (Supplementary Fig. 8 in Supplementary File 1).

Comparing predictions to convolutional neural 
networks
The 2 neural networks to which we compared the predictor were 
ADPred and PADDLE (Erijman et al. 2020; Sanborn et al. 2021). We 
installed ADPred from https://github.com/FredHutch/adpred and 
then ran it on all Lambert transcription factors. Using the criteria 
detailed by the authors at https://adpred.fredhutch.org/, we con-
sidered sequences with at least 10 consecutive positions with a 
score of at least 0.8 to be a predicted activation domain. We down-
loaded the activation domains predicted on human transcription 
factors by PADDLE at https://cdn.elifesciences.org/articles/68068/ 
elife-68068-fig 3-data1-v3.xlsx. We used predictions of both 
medium and high strength.

We used the compare_two_predictors() function in “notebooks/ 
AD_comparison_tools.py” to compare our predictor to the neural 
net predictors. This function first individually compares the over-
lap of our predictions and a neural net’s predictions with a list of 
known activation domains (either the gold standard or the Soto 
et al. list). Then, it compares our predictions that overlap with a 
prediction made by a neural network to the list of known activa-
tion domains.

The predicted activation domain regions are deposited at 
https://zenodo.org/badge/latestdoi/548126430.

The analysis code was deposited at https://zenodo.org/badge/ 
latestdoi/548126430.

Assessing sensitivity and specificity
To assess the sensitivity and specificity of the revised mechanistic 
predictor, we first combined the GSL and the Soto list. We again 
merged overlapping entries by taking the union of coordinates 
(earlier start and later end). We removed all entries not on the 
Lambert list of transcription factors (Lambert et al. 2018). Nicole 
DelRosso provided a list of activation domains from DelRusso 
et al. (2023). We used a net charge less than –3 as a threshold for 
acidic activation domains. We considered activation domains 
that were more than half the length of their transcription factor 
to be long and excluded them from line 5 of Table 7. We calculated 
the overlap between predictions and these lists of activation do-
mains as above. Predictions that overlap list entries are labeled 
as true positives. True negatives are members of the list missed 
by the predictor. False positives are predictions not present on 
the reference list, but likely include novel predictions. We calcu-
lated sensitivity, specificity, and the f-measure according to the 
standard conventions.

Results
To quantify the performance of our activation domain 
predictors, we curated a GSL of 167 activation domains from 
135 proteins, including 129 human transcription factors 
(Supplementary Table 1). This list combined UniProt annotated 
activation domains (Downloaded June 2020), individual 
activation domains curated from NMR papers, and a classic 
hand-curated list of activation domains (Choi et al. 2000). 
Overlapping entries were combined by taking the lower start 
and greater end to make longer annotations. Activation domain 
boundaries remain difficult to define, so we chose permissive 
boundaries. When looking for overlaps between lists of activa-
tion domains, we started with a very permissive threshold,  ≥ 1 

overlapping residue, but the minimum observed overlap was 26 
residues. We developed our predictors using this GSL and 
validated the predictors with another recently published 
“Soto list” (Soto et al. 2022). To avoid circular reasoning, the 
validation set did not include the 30 novel activation domains cor-
rectly identified by the original predictor (Staller et al. 2022). 
These 30 continue to be correctly identified by our modified 
predictors.

Our GSL and the Soto list are highly overlapping (Fig. 1e), and 
acidic activation domains are the most common type (Table 1). 
The Soto list contains more long activation domains that have 
not been experimentally minimized. Our GSL is likely enriched 
for short acidic activation domains that fold into amphipathic al-
pha helices upon binding coactivators because this mechanism is 
well represented in the NMR literature. Folding and binding are 
not essential for activation domain function (Qin et al. 2003; 
Risør et al. 2021). It is important to note that the entries in 
the GSL and Soto lists are of variable quality. The activation do-
mains were identified by many labs using many different assays: 
some are very strong, others very weak, some might be 
cell-type-specific, and others may yet prove to be false positives. 
Critically, neither list represents a complete list of true positives, 
which makes evaluating prediction performance difficult (dis-
cussed further below).

Documented activation domains are more diverse than the 
traditional categories of acidic, proline-rich, or glutamine-rich 
(Sigler 1988; Gerber et al. 1994; Latchman 2008). There have 
been scattered references to alanine-rich, glycine-rich, and 
serine-rich activation domains in the literature, but they have 
not been recognized as archetypes (Schaeffer et al. 1999; 
Alerasool et al. 2022; Soto et al. 2022). After exploring several 
thresholds, we chose 15% as a threshold for composition bias 
(Supplementary Fig. 1 in Supplementary File 1). Using this 
15% threshold, our GSL contains 105 (62.9%) acidic (net charge  
< −3), 12 (7.19%) glutamine-rich (Q-rich), and 30 (18.0%) 
proline-rich (P-rich) activation domains. In addition, there are 
37 (22.2%) serine-rich (S-rich) and 7 alanine-rich (4.19%) 
(Table 1). The Soto et al. list contains 290 (79.6%) acidic, 18 
(3.5%) Q-rich, 119 (22.9%) P-rich, 124 (23.8%) S-rich, 36 (6.9%) 
glycine-rich, and 9 (1.7%) alanine-rich activation domains. 
Using our criteria, some activation domains are enriched for 
more than 1 amino acid, notably acidity, and serines. 
Annotated acidic activation domains on the 2 lists also overlap 
with our tested regions (Fig. 1f). Activation domains are en-
riched for disorder-promoting residues, consistent with the evi-
dence that nearly all activation domains are intrinsically 
disordered (Liu et al. 2006; Hahn and Young 2011; Oldfield and 
Dunker 2014; van der Lee et al. 2014). We confirmed that >90% 
of the activation domains on both lists are predicted to be in-
trinsically disordered by Metapredict2 (Supplementary Fig. 2
in Supplementary File 1, Emenecker et al. 2022).

We examined the sequence features of our GSL of activation 
domains. As a background distribution, we used a published list 

Table 1. Types of activation domains on the GSL and Soto et al. list.

Activation domain 
subclass

Number of GSL 
entries

Number of Soto 
entries

Acidic 105 290
Glutamine-rich 12 18
Proline-rich 30 119
Serine-rich 37 124
Alanine-rich 7 9
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of 1,608 human transcription factors (Lambert et al. 2018). 
Annotated activation domains have a wide distribution of lengths 
because only some have been experimentally minimized (Fig. 2). 
To make our analyses more consistent, we performed all compos-
ition analysis by decomposing each activation domain into all 
possible 39-AA sliding windows, spaced at 1-AA intervals (e.g. a 
45 residue activation domain region would become 7 39-AA tiles, 
Fig. 1b). We started with 39-AA tiles because that was the 
length-scale of the original predictor. These 39-AA tiles accommo-
date activation domains of different lengths and avoid the difficult 
problem of defining activation domain boundaries. Many activa-
tion domains are 39AA or shorter and many long ones contain 
highly active subregions. Throughout this work, we will analyze 
proteins by decomposing them into 39-AA tiles and comparing 
the features of these sets of tiles. Compared to human transcrip-
tion factor tiles, activation domain tiles show a modest enrich-
ment of net negative charge and M, D, S, L, P, Q, Y, A, V, G 
residues (t-test, P < 1e-4, Bonferroni corrected, Fig. 2, 
Supplementary Fig. 1 in Supplementary File 1). Activation do-
mains from the GSL do not exhibit extreme properties compared 
to the background sequence properties of human transcription 
factors (Supplementary Figs. 1 and 3 in Supplementary File 1). 
This similarity to the background distribution explains in part 
why activation domains have been difficult to predict from the 
sequence.

We next examined how our mechanistic predictor accurately 
identified acidic activation domains using the combination of net 
charge and the number of W + F + Y + L residues. We had previously 
shown this predictor works (Staller et al. 2022), but now we sought to 
understand why it works. To establish a background distribution, we 
first examined the sequence features of the full human proteome 
(Fig. 3a) and 1,608 human transcription factors (Lambert et al. 
2018; Fig. 3b). Compared to the full human proteome, transcription 
factor tiles are slightly positively charged, likely because DNA bind-
ing domains contain basic residues that electrostatically interact 
with the acidic phosphate backbone (Fig. 3d). Transcription factors 
contain fewer W + F + Y + L residues than the full proteome, likely 
because they are depleted for transmembrane domains and folded 
cores of globular proteins (Fig. 3e). Transcription factors contain 
strong local biases in net charge (Fig. 3b). The most common tile 
net charge for transcription factors and the proteome is neutral 
(Fig. 3e). The distribution of transcription factor tile properties is rea-
sonably representative of the full proteome.

Long runs of acidic amino acids are far more common than 
runs of basic amino acids (Bigman et al. 2022). There exist 11 tiles 
from transcription factors with a charge of −39 (D/E runs), span-
ning residues 258–307 of MYT1, a neural transcription factor 
(Nielsen et al. 2004). Acidic patches can accelerate transcription 
factor nuclear search processes (Wang et al. 2023). Conversely, 
the 6 most positively charged tiles from transcription factors 
were +21, which spanned residues 1845–1908 of SON, a splicing 
cofactor that binds DNA (Mattioni et al. 1992). The net charge of 
proteome tiles is also asymmetric, spanning from −39 to +24. 
The most acidic patch in the proteome is 50 consecutive acidic re-
sidues (−50), but the most basic region is +24 (Bigman et al. 2022). 
It has been argued that this asymmetry is because long positively 
charged regions interact nonspecifically with nucleic acids and 
cause toxicity.

When we compared the sequence properties of tiles of acti-
vation domains to tiles of full-length transcription factors, 
we found that acidic activation domains are more acidic than 
transcription factors (Fig. 3e) and have a slight enrichment for 
W + F + Y + L residues (Fig. 3d). However, the enrichment for 

the combination of acidity and W + F + Y + L residues is much 
stronger (Fig. 3c). The most acidic regions of transcription fac-
tors are not part of known activation domains. Although the 
most acidic regions are visible on a log scale (Fig. 3c), they are 
rare and not visible on a linear scale (Fig. 3e). Similarly, the tran-
scription factor tiles with the most W + F + Y + L residues are not 
part of activation domains (Fig. 3c, d). No single property distin-
guishes activation domains, but the combination of acidity and 
W + F + Y + L residues can enrich a subclass of acidic activation 
domains, as we have seen before (Staller et al. 2022). Our pre-
dictor finds activation domains that balance acidic residues 
against W + F + Y + L residues (Fig. 3c).

Similarly to how acidic activation domains are not the most 
acidic regions of transcription factors, P-rich and Q-rich activa-
tion domains are not among the transcription factor tiles 
with the most Ps or Qs (Supplementary Figs. 4 and 5 in 
Supplementary File 1). This observation is consistent with evi-
dence that Q-rich activation domains contain a lower fraction 
of Qs than proteins with true poly-Q regions, like Huntingtin 
(Ruff et al. 2014). The traditional activation domain labels 
were assigned before the completion of the human genome pro-
ject, namely, before there was a proper null distribution against 
which to show enrichment.

In contrast, S-rich activation domains are enriched for serine 
residues compared to the background of transcription factor 
sequences (Supplementary Fig. 1, Supplementary 7f in 
Supplementary File 1). The tiles spanning S-rich activation do-
mains on our GSL had more serine residues than tiles from all 
other regions of transcription factors (t-test, pval = 1.37e-229). 
Some activation domains increase activity when they are phos-
phorylated (Raj and Attardi 2017; De Mol et al. 2018; Peng et al. 
2019; Conti et al. 2023), prompting us to search for an enrich-
ment of common phosphorylation motifs (e.g. serine-proline 
(SP) and serine-glutamine (SQ)). Activation domains and repres-
sion domains contain more documented phosphorylation sites 
than DNA binding domains (Soto et al. 2022). We initially de-
tected an enrichment of short motifs when we compared the 
GSL to all transcription factor tiles. As a more stringent control, 
we shuffled the sequences of the S-rich activation domains and 
counted random occurrences of phosphorylation motifs. 
Compared to these sequence permutations, phosphorylation 
motifs did not occur in activation domains more often than ex-
pected by chance. We conclude that phosphorylation motifs are 
not enriched in S-rich human activation domains beyond what 
is expected by chance.

We tested whether the combination of W + F + Y + L and P, Q, or 
S could enrich the activation domains of each class, but none of 
these combinations worked (Supplementary Fig. 4 and 5 and 6 in 
Supplementary File 1). Our mechanistic predictor of acidic activa-
tion domains is not easily extended to other classes. We and 
others have speculated that P, Q, or S residues could keep hydro-
phobic motifs exposed to solvent in a manner analogous to acidic 
residues (Staller et al. 2018; DelRosso et al. 2023), but this analysis 
and recently published experiments suggest a more complex 
mechanism is at work.

Dissecting the mechanistic predictor
In order to improve the mechanistic predictor, we next sought to 
understand why it worked and which activation domains from 
the GSL it was identifying. We first asked if human activation do-
mains were more similar to VP16 H1 or the CITED2 by dividing our 
initial prediction region into 3 triangular regions (Fig. 4a, Table 2). 
Region A has the highest fraction of correct predictions (12/47). 
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Region B, where acidic and hydrophobic residues were balanced, 
had the most correct predictions (25/133). In contrast, Region C 
identified no activation domains on the GSL (0/18). Tiles like 

CITED2 and balanced tiles were most likely to be activation do-
mains. This analysis prompted us to remove Region C from the 
updated predictor.

(a)

(b)

(c)

(d) (e)

Fig. 3. The combination of acidic and WFYL residues predicts activation domains. a) We decomposed the proteome into 39-AA tiles and calculated the net 
charge and counted WFYL residues for each tile. For each combination of these 2 properties, we counted tiles to create a 2D histogram that is visualized as 
a heatmap. The full proteome (purple) has a more diverse distribution of tiles than other protein sets we examined. b) Tiles from annotated transcription 
factors (gray, Lambert list). c) Tiles from the entire GSL of activation domains (orange). d) Overlaps of histograms of tiles with varying numbers of WFYL 
residues, colors as in a, b, c, and e) The GSL of activation domains (orange) is enriched for acidic tiles.
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Reciprocally, when we took our correct predictions (i.e. predic-
tions with high activity in our experiment) (Staller et al. 2022) and 
examined their tiles, the peak of distribution lay along the line 
connecting CITED2 and VP16 (Fig. 4b). Virtually all of the tiles 
that mapped to Region C came from activation domains that 
also contained tiles that mapped to Region B. This new analysis 
of our published data further emphasizes how balance is the 
key to accurate prediction.

To determine the parameters that contribute most to the 
predictor, we performed a sensitivity analysis. We removed 
each of the 8 AAs in the predictor and recomputed predictive 
power (Supplementary Table 2). F, L, and charge make the lar-
gest contributions to sensitivity and specificity, likely because 
these residues are more common. Despite being enriched in 
the GSL activation domains, Y made very small contributions. 
W’s make modest contributions to predictive power because 
they are rare. Similarly, we varied the length of the tiling win-
dows and did not see improvement (Supplementary Table 3). 
These new variations of the mechanistic predictor revealed 
there was no simple way to improve upon the original 
predictor.

For further comparison, we replaced the y-axis parameter with 
all singles, pairs, and triplets of amino acids (Supplementary 
Tables 4, 5, and 6). For each combination, we changed the 
thresholds based on the sequences of CITED2 and VP16 H1 
(methods). Leucine was the single amino acid with the high-
est specificity. Leucine was present in the 5 pairs with the 
highest specificity and in 11/12 triplets with the highest spe-
cificity. Together, this analysis emphasized that a high num-
ber of leucine residues is predictive of human activation 
domains.

Table 2. Subregions of the mechanistic predictor from Fig. 3a
differ in the power to detect members of the GSL of activation 
domains.

Region 
in 
Fig. 4a

Number of 
predictions

GSL 
overlap 
count

GSL overlap 
proportion 
(precision)

Proportion of 
acidic GSL 

found 
(sensitivity)

A 47 12 0.255 0.114
B 133 25 0.188 0.238
C 18 0 0.000 0.000
D 285 28 0.098 0.267
E 202 7 0.035 0.067
F 633 50 0.079 0.476

(a)

(b)

(c)

Fig. 4. Regions that balance acidity and WFYL residues are most predictive of activation domains. a) We split our original activation domain predictor into 
regions a, b, and c. We tested the predictive power of additional regions d, e, and f. The dot indicates VP16 H1 and the star indicates CITED2, the anchor 
points for the original mechanistic predictor. b) We took the 100 strongest activation domains in our assay (Staller et al. 2022) and projected the 
constituent tiles onto the regions in a. The peak of the tile distribution is in region b. c) Projecting tiles of all members of the GSL over the regions in a.
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Expanding the boundaries of the mechanistic 
predictor
To make new predictions, we altered the boundaries of the mech-
anistic predictor to include more tiles. We had already tested 
nearly all the original predictions and found that 72% had detect-
able activity in our assay (Staller et al. 2022). Making new predic-
tions requires expanding one or more boundaries, even if it comes 
at the cost of reduced sensitivity. First, we changed the interpol-
ation between VP16 H1 and CITED2 from a diagonal line to a cor-
ner, using the minimum value of each activation domain to create 
a right triangle below CITED2 (Fig. 4a, Region D, Table 3) using 
equation (2).

(Charge ≤ −9) AND (W + F + Y + L ≥ 7). (2) 

Region D contains 285 predictions, including 168 new predictions 
and 11 additional activation domains on the GSL (Table 2). Next, 
we lowered the W + F + Y + L boundary (Fig. 4a, Region E) and low-
ered the acidic boundary (Fig. 4a, Region F). When we consider 
only acidic activation domains, the projected tiles look very simi-
lar to those of the full GSL (Supplementary Fig. 7 in 
Supplementary File 1). Regions D and F contain the most new 

predictions. In permutation tests, both versions of the revised pre-
dictor continue to detect more activation domains than expected 
by chance (Table 3).

An improved mechanistic predictor
We report an improved mechanistic predictor of acidic activation 
domains (Fig. 5a). The primary improvement of this expanded pre-
dictor is that it makes many new predictions with small decreases 
in accuracy (see below). We selected a trapezoidal region (equa-
tion 3), used 7 amino acids (W, F, L, D, E, R, K), and expanded the 
charge and hydrophobic thresholds by one:

(−13 ≤ Charge ≤−8) AND (W + F + L ≥ 6). (3) 

The trapezoid better emphasizes the balance between hydropho-
bic and acidic residues (Fig. 5a). This region predicted 546 activa-
tion domains. Of these 546 predictions, 47 are on the GSL, and 51 
regions have high activity in our assays (Table 4). Moreover, 104/ 
546 of our predictions are on the Soto list. The improved mechan-
istic predictor identified 47/105 acidic activation domains on the 
GSL (44.8% sensitivity) and 104/290 acidic activation domains on 
the Soto list (35.9% sensitivity). This improved mechanistic 

(a)

(b) (c)

Fig. 5. Intersections of the mechanistic predictors with the published neural network models from yeast. a) The region of the improved mechanistic 
predictor. b) The overlap between the original mechanistic predictor, ADpred, and CBP, IDRs predictions. c) The overlap between the improved 
mechanistic predictor, ADpred, and PADDLE predictions.

Table 3. Changing the interpolation between the 2 anchor points, CITED2 and VP16, predicts new activation domains.

Number of predictions GSL overlap count GSL overlap proportion (precision) P value (PERMUTATION)

Original mechanistic predictor 144 26 0.181 <1e-4
Original mechanistic predictor  

plus Region D (corner)
312 37 0.119 <1e-4
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predictor makes 406 new predictions on 342 transcription factors. 
These transcription factors hail from a diverse set of families in-
cluding many nuclear hormone receptors, Sox, Klf, and Zinc finger 
transcription factors.

Sequence grammar
We attempted to improve our predictor by adding sequence gram-
mar, which we define as the arrangement of amino acids. 
Examples of strict grammar include short linear sequence motifs 
(SLiMs), where amino acids must have a defined spacing or ar-
rangement, e.g. ĭxxĭĭ, where ĭ�is a bulky hydrophobic residue 
(Warfield et al. 2014; Dyson and Wright 2016). Examples of weak 
grammar include cases where acidic residues make larger contri-
butions to activity when they are close to hydrophobic residues, or 
“mini motifs” of one acidic residue followed by an aromatic resi-
due ([D or E][W or F or Y], represented as the regular expression 
[DE][WFY]) that contribute to activity (Ravarani et al. 2018; 
Staller et al. 2018; Erijman et al. 2020). In addition to searching 
for motifs, we looked for amphipathic alpha helices, distance de-
pendencies between the aromatic and acidic residues, dipeptides, 
the Kappa charge mixture parameter (Das and Pappu 2013), the 
Omega charge and proline mixture parameter (Martin et al. 2016; 
Ginell and Holehouse 2020), and repetitive runs of amino acids. 
The only statistically significant grammar signal was that tiles 
with long runs of acidic residues were less likely to be activation 
domains (Supplementary Fig. 8 in Supplementary File 1). Other 
studies have argued there is little to no grammar in activation do-
mains (Erijman et al. 2020; Sanborn et al. 2021; DelRosso et al. 
2023). The grammar that does exist is highly degenerate and flex-
ible, making it hard to detect with our small sample size. 
Ultimately, we did not add grammar to the mechanistic predictor.

Combining the mechanistic predictor with neural 
networks improves performance
We found that combining our mechanistic predictor with CNN 
predictors trained on yeast activation domains improved predict-
ive power beyond the performance of either alone. Intersecting 
our predictor (n = 144) and PADDLE (n = 604) increased sensitivity 
(Fig. 5b). For the 89 activation domains predicted by both models, 
25 (28.1%) were on the GSL and 44 (49.4%) were on the Soto list 
(Table 5, Supplementary Table 7). In addition, 88 had been tested 
in our activation domain assay and 45 (51.1%) had activity (Staller 
et al. 2022). This result implies each predictor brings orthogonal 

information. The 60 predictions removed by this intersection 
have many runs of acidic residues, consistent with the grammar 
analysis above.

We found similar predictive improvement when we intersected 
our mechanistic predictor with ADpred. ADpred made 721 predic-
tions on human transcription factors. Twenty-seven of these are 
on the GSL and 45 overlap with the Soto list (Table 5). 
Intersecting the ADpred predictions with our predictor led to 87 
overlaps: 23 (26.4%) with the GSL and 40 (46.0%) with the Soto 
list (Table 5). We tested 86 of these regions in our experiments, 
and 40 (46.5%) had detectable activity in our assay (Staller et al. 
2022). The intersection once again was more accurate than either 
model alone. ADpred and PADDLE scores are correlated (Fig. 5b). 
We conclude that combining the CNNs and our mechanistic pre-
dictor yields the most accurate predictions.

Intersecting this revised predictor with the CNNs yielded 139 
high-confidence predictions (Fig. 5c, Table 6, Supplementary 
Table 8). We anticipate that testing this new set of predictions 
will identify new activation domains.

Notably, there are 5 true activation domains found by our ori-
ginal predictor that are thrown out by PADDLE and ADpred. 
These activation domains from FOS, TIGD7, ZN513, TIGDF, and 
ZN777 contain many leucines (>10%), which is interesting be-
cause leucines make larger contributions to activity in human ac-
tivation domains than in yeast activation domains (Staller et al. 
2022). Indeed, based on our 15% threshold, FOS and ZN513 qualify 
as leucine-rich regions. We hypothesize that these leucine-rich 
activation domains are a metazoan innovation that binds to acti-
vation domain binding domains not present in yeast, such as the 
TAZ1 and TAZ2 domains of CBP/p300.

Why does the combination of the mechanistic predictor and 
the CNNs improve performance? Some of this improvement is 
likely because each approach contributes orthogonal informa-
tion. We also believe that the overlap might be providing some in-
sight into how the CNNs work. Convolutional neural networks are 
black-box models, which makes it difficult to understand the 
source of their accuracy. ADpred and PADDLE take as inputs pri-
mary sequence, predicted secondary structure, and predicted 
intrinsic disorder, but the models do not tell us which feature, 
or combination of features, is most important for prediction. For 
regulatory DNA CNNs, there are emerging tools for extracting mech-
anistic insight (Avsec et al. 2021), but analogous tools for interpreting 
protein sequence models remain limited (Erijman et al. 2020; 

Table 4. Comparison of Soto and Gold Standard Lists (GSL).

Number of 
predictions

GSL overlap 
count

GSL overlap 
proportion 
(precision)

Soto overlap 
count

Soto overlap 
proportion 
(precision)

Original mechanistic predictor 144 26 0.181 46 0.3194
Improved mechanistic 

predictor
546 47 0.086 104 0.19

Table 5. Intersection of the mechanistic predictor and convolutional neural network models improves prediction accuracy.

Predictor Predictions GSL overlap count
Percent of predictions  

on GSL (precision)
Soto overlap  

count
Percent of predictions  

on Soto (precision)

Original mechanistic predictor 144 26 18.06% 46 31.94%
ADPred 721 53 7.35% 138 19.14%
Original mechanistic predictor ∩ ADPred 87 23 26.44% 40 45.98%
PADDLE 602 76 12.62% 167 27.74%
Original mechanistic predictor ∩ PADDLE 89 25 28.09% 44 49.44%
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Mahatma et al. 2023). We speculate that the overlap between the 
mechanistic predictor and the CNNs suggests that composition 
plays a substantial role in their performance.

Assessing the performance of the predictors
Assessing the positive predictive value (precision) and the true 
positive rate (recall) of the mechanistic predictor is challenging 
because existing lists of activation domains are incomplete, mak-
ing it difficult to evaluate which predictions are false positives and 
which are novel predictions. We had previously used permutation 
tests to randomly select transcription factor regions to show the 
mechanistic predictor identified more activation domains than 
expected by chance (Staller et al. 2022). All variations of our pre-
dictors continue to meet this threshold (Methods). Here, we fur-
ther assessed the predictive power of the improved mechanistic 
predictor (546 predictions) in multiple ways. First, we assumed 
the combined GSL and Soto lists (541 entries) represented the 
full set of human activation domains. Based on this assumption, 
there are 110 true positives, the positive predictive value is 
0.201, and the true positive rate is 0.203, indicative of poor per-
formance (Table 7). Second, we used only the acidic members of 
these lists. Under this condition, the positive predictive value is 
0.194, and the true positive rate is 0.311. We consider these esti-
mates the minimum performance of our predictor. To estimate 
the maximum performance of our predictor, we next limited our 
assessment to the 127 transcription factors with at least one entry 
on the GSL or Soto lists, assuming that all activation domains on 
these transcription factors are known. Based on this assumption, 
the positive predictive value is 0.692 and the true positive rate re-
mains 0.203, indicating an increase in performance. Repeating 
this limited assessment on acidic activation domains, the positive 
predictive value is 0.667, and the true positive rate is 0.311. Fifth, 
we removed entries that comprised more than half the transcrip-
tion factor (n = 47) because in these cases little or no experimental 

effort was devoted to finding a minimal activation domain. Here, 

the positive predictive value is 0.706 and the true positive rate is 

0.344. This alternative assessment with a smaller search space 

likely represents the maximum performance of our model. The 

true performance of our revised mechanistic predictor sits be-

tween these 2 estimates.
During the review process, a systematic screen for human acti-

vation domains in K562 cells was published (DelRosso et al. 2023). 
This screen examined transcription factors and chromatin regula-
tors, so we only looked at the transcription factors. Using this list 
of activation domains from transcription factors, we repeated the 
above analyses and obtained similar performance as assessed by 
the positive predictive value, the true positive rate, and the 
F-score (Table 7). Together, these analyses give us confidence 
that the mechanistic predictor can find activation domains on hu-
man transcription factors.

Finally, as previously published, the most rigorous assessment 
of our predictor is experimental validation (Staller et al. 2022). 
When we tested the 144 predictions from the mechanistic predict-
or, 72% had detectable activity. This precision of 0.72 is compar-
able to the maximum of our estimates above (Table 7). The 
PADDLE CNN achieves a similar level of precision, 70%, in the re-
cent screen for human activation domains (DelRosso et al. 2023). 
This CNN performance is comparable to our published success 
rate (Staller et al. 2022) and the newly calculated estimates above 
(Table 7). Together, these analyses show the improved mechanis-
tic predictor identifies many more candidate activation domains 
with minimal loss of accuracy.

Next, we estimated true negatives called by the predictor in 
several ways. First, we looked for transcription factors with no 
known activation domains and no predicted activation domains 
and found 915/1,231 (74.3%) correctly predicted as true nega-
tives. Second, we looked at transcription factors with repression 
domains as defined by Soto and found that 66/384 (17%) had 

Table 6. Intersection of the improved mechanistic predictor and convolutional neural network models improves prediction accuracy.

Predictor Predictions
GSL overlap  

count
Percent of predictions  

on GSL (precision)
Soto overlap  

count
Percent of predictions  

on Soto (precision)

Improved mechanistic predictor 546 47 8.61% 104 19.05%
ADPred 721 53 7.35% 138 19.14%
Improved mechanistic predictor ∩ ADPred 216 35 16.20% 74 34.26%
PADDLE 602 76 12.62% 167 27.74%
Improved mechanistic predictor ∩ PADDLE 217 44 20.28% 86 39.63%

Table 7. Performance of the revised mechanistic predictor.

Benchmark list Predictions Benchmark
True  

positives
False  

positives
False  

negatives

Positive 
predictive value 

(precision)
True positive 

rate (sensitivity) F-score

All GSL + Soto 546 519 110 436 409 0.201 0.212 0.207
Acidic GSL + Soto 546 294 105 441 189 0.192 0.357 0.250
All GSL + Soto limited 

transcription factors
159 519 110 49 409 0.692 0.212 0.324

Acidic GSL + Soto limited 
transcription factors

143 294 105 38 189 0.734 0.357 0.481

Acidic GSL + Soto limited 
transcription factors, without 
long activation domains

139 260 101 38 159 0.727 0.388 0.506

All DelRosso 546 242 94 452 148 0.172 0.388 0.239
Acidic DelRosso 546 203 94 452 109 0.172 0.463 0.251
Acidic DelRosso limited 

transcription factors
132 203 94 38 109 0.712 0.463 0.561
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predicted activation domains, indicating a low false positive rate. 
Alternatively, these may be bifunctional transcription factors 
that activate and repress transcription. Third, we looked at the 
number of predicted activation domains that overlap repression 
domains and found 33 examples. Of these, 27/33 overlap KRAB 
domains, which are a very interesting set of false positives. We 
had previously tested 13 predictions that overlap KRAB repres-
sion domains (Staller et al. 2022). One is the KRAB domain of 
Zn473, which is one of the 4 highly divergent KRAB domains 
that function as activation domains (Tycko et al. 2020). This 
Zn473 KRAB domain behaved as an activation domain in our ex-
periments (Staller et al. 2022). In a few cases, the prediction cov-
ers the full KRAB (e.g. Znf12), but in most cases, the prediction 
overlaps the N-terminal region, which is least important for re-
pression activity (Tycko et al. 2020). Three of these predictions 
are highly active in our experiments (Zn473, Zn561, and 
Zn571), 5 have detectable activity, and 5 have very low activity, 
as expected for repression domains. Given that KRAB domains 
appear to convert to activation domains at a low rate on long 
evolutionary time scales, we might be catching some of these re-
gions in transition: the full-length KRAB domain is still a repres-
sion domain, but the N-terminal half is becoming a weak 
activation domain. Overall, we conclude that the mechanistic 
predictor has a high true negative rate and a low false positive 
rate.

Based on these assessments, the mechanistic predictor is ac-
curate and sensitive. However, we wish to emphasize that the 
main utility of the mechanistic predictor is its simplicity and 
interpretability.

The predictors identify one subclass of acidic 
activation domains
Both our original mechanistic predictor and the improved mech-
anistic predictor do not identify all of the acidic activation do-
mains on the gold standard and Soto lists. Similarly, neither 
ADpred (53/105) nor PADDLE (76/105) can detect all these acidic 
activation domains. We have tuned the mechanistic predictor to 
have a low false positive rate at the expense of a high false nega-
tive rate. While there are multiple interpretations of this result, 
we favor the interpretation that there are multiple subclasses of 
acidic activation domains and that the existing predictors can 
find the one subclass that is well described by the acidic exposure 
model. These models miss activation domains where activity is 
regulated by modifying the net charge with post-translational 
modifications. For example, the first activation domain of p53 
(net charge = −6, WFYL = 8) has three sites that increase activity 
when phosphorylated (S15, T18, S20, net charge = −12, WFYL =  
8) (Raj and Attardi 2017). These residues are interspersed with 
key aromatic and leucine residues consistent with the acidic ex-
posure model. In this case, the resting sequence falls outside the 
activation domain predictor boundary (equation 3), but the acti-
vated, phosphorylated state crosses it over the boundary. 
Understanding how phosphorylation controls activation domain 
function is an exciting area of future inquiry.

Discussion
Accurate computational models for predicting activation do-
mains from protein sequence will advance basic science and pre-
cision medicine. Computationally annotating activation domains 
would allow studies of how paralogous transcription factors di-
versify after duplication and enable evolutionary comparisons 
of domain shuffling. Comprehensive lists of transcription factors 

with activation domains could improve gene regulatory networks 
by adding signs to the connections inferred from genome binding 
data (Hummel et al. 2023) or by distinguishing direct and indirect 
connections inferred from genetic perturbations. Predicting acti-
vation domains is a key step toward building models that predict 
how mutations in activation domains modulate activity, which, in 
the long term, could classify patient mutations in activation do-
mains as benign or pathogenic (Richards et al. 2015; Starita et al. 
2017). These classifications could group patients for the develop-
ment of targeted therapies or prioritize variants for base-editing 
gene therapies.

Our mechanistic predictor is valuable because it is simple and 
interpretable. Its accuracy comes from the acidic exposure model, 
which describes a subclass of acidic activation domains that bal-
ance acidic residues with key hydrophobic residues. The analyses 
presented here confirm and strengthen our previous conjectures 
(Staller et al. 2022). This work explains why the predictor works. 
The predictor’s success further supports one critical feature of 
the acidic exposure model, that hydrophobic motifs require an 
acidic context. Our acidic exposure model is related to the stickers 
and spacers model for how specialized intrinsically disordered re-
gions form condensates (Martin et al. 2020), albeit with a more ac-
tive role for the spacers. So far, we can predict only acidic 
activation domains. Analogous predictors of P-rich, Q-rich, or 
S-rich activation domains do not work (Supplementary Fig. 4 
and 5 and 6 in Supplementary File 1).

Why are so many activation domains negatively charged? 
What is the mechanistic advantage of acidity? This question has 
been repeated many times since it was posed by Paul Sigler 
(Sigler 1988). In principle, exposure to hydrophobic residues could 
be achieved by positively charged residues, but, in practice, posi-
tively charged residues inhibit activation domain function 
(Ravarani et al. 2018; Erijman et al. 2020; Broyles et al. 2021). 
Many coactivators have positively charged surfaces, and long- 
range, low-affinity fast electrostatic interactions have been docu-
mented (Hermann et al. 2001; Ferreira et al. 2005). These electro-
static interactions can be important for making activation domain 
coactivator interactions diffusion-limited in “fly-fishing” models 
of activation domain coactivator interactions (Kim et al. 2018; 
Kim and Chung 2020). We believe there are advantages to acidic 
activation domains and disadvantages to basic activation do-
mains. The first advantage is that acidic residues electrostatically 
repel the DNA, allowing the activation domain to stick out and 
catch coactivators. Second, acidic activation domains can have 
low-affinity electrostatic intramolecular interactions with basic 
DNA binding domains, which can increase the specificity of DNA 
binding via competitive inhibition (Stott et al. 2014; Krois et al. 
2018; He et al. 2019; Wang et al. 2023). Third, acidity makes it pos-
sible to post-translationally regulate activation domain activity 
with phosphorylation (Conti et al. 2023). We see 2 potential disad-
vantages to basic activation domains: first, nonspecific, electro-
static binding to DNA that could compete with coactivator 
binding or inhibit nuclear search. Second, cation-ʌ� interactions 
between basic residues and aromatic residues (e.g. arginine–tyro-
sine interactions) could drive collapse (or condensate formation) 
and make positively charged residues less effective at keeping 
some aromatic residues exposed to solvent (Wang et al. 2018). 
There are also examples of positively charged repression domains 
(Soto et al. 2022; DelRosso et al. 2023). Together, these observa-
tions explain why so many activation domains are acidic.

Activation domains display very flexible sequence grammar. If 
activation domains had strict sequence grammar requirements 
for function, we would have seen these signatures in the 
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evolutionary record, mutagenesis, or in tiling experiments. An 
early grammar model, the 9aaTAD model, can identify known ac-
tivation domains, but in high-throughput screens of random pep-
tides or yeast transcription factors, it does not detect more often 
than expected by chance (Piskacek et al. 2007; Erijman et al. 
2020; Sanborn et al. 2021). Instead, we see evidence for very flex-
ible grammar or no grammar. The evidence for no grammar is 
that random peptides can have activation domain activity and 
that shuffling activation domain sequence can preserve or even 
sometimes increase activity (Ma and Ptashne 1987; Arnold et al. 
2018; Ravarani et al. 2018; Staller et al. 2018; Erijman et al. 2020; 
Sanborn et al. 2021). The high accuracy of our grammar-less 
composition-based predictor supports both a no-grammar model 
and a flexible-grammar model. The evidence against no-grammar 
models is that shuffling activation domain sequence can both in-
crease and decrease activity (Staller et al. 2018; Sanborn et al. 
2021). Loss of activity is more common when shuffling disrupts 
an alpha helix (Sanborn et al. 2021; Staller et al. 2022). In these shuf-
fle mutants, the arrangement of amino acids, i.e. the grammar, is 
modulating activity, ruling out a strict no-grammar model. We 
can rule out a strict-grammar model and we can rule out a no- 
grammar model, so we are left with a very flexible-grammar model.

How do we square a very flexible-grammar with the documen-
ted role of short linear motifs and amphipathic alpha helices? The 
dominant model for activation domains is that they are anchored 
by a hydrophobic short linear motif embedded in a permissive 
context. At this time, the features of the context are more clearly 
defined than the motifs. The context is acidic residues and intrin-
sic disorder. In some cases, the motifs are clearly present, con-
served, and contribute to activation domain activity (Dyson and 
Wright 2016). A motif in an amphipathic alpha helix is a very ef-
fective way to coherently display several hydrophobic residues 
to a coactivator (Giniger and Ptashne 1987). Amphipathic alpha 
helices are a good solution for building an activation domain 
(Dyson and Wright 2016), but, critically, they are not the only solu-
tion. Motifs are uncommon and rarely generalize beyond a few 
transcription factors. Surveys of random peptides, yeast tran-
scription factors, and human transcription factors found enrich-
ment of only [DE][WFY] “mini motifs” (Arnold et al. 2018; 
Ravarani et al. 2018; Erijman et al. 2020; Broyles et al. 2021; 
Sanborn et al. 2021; DelRosso et al. 2023). We argue that the crit-
ical distinction is that a motif or an amphipathic helix is not the 
only way for a cluster of hydrophobic residues to interact with a 
coactivator–many arrangements are functional. A growing num-
ber of fuzzy interactions have been documented, but they are like-
ly underreported because of investigator bias and a higher burden 
of proof (Brzovic et al. 2011; Warfield et al. 2014; Tuttle et al. 2018; 
Risør et al. 2021). Fuzzy binding is consistent with a highly 
flexible-grammar.

It is not clear at what point the motif ends and the context begins. 
In our mutagenesis of VP16 and CITED2, we found that virtually 
every hydrophobic residue contributed to activity, blurring the dis-
tinction between motifs and context. Adding aromatic residues 
near a motif—in essence extending the motif—increases activation 
domain activity (Warfield et al. 2014; Staller et al. 2018). Based on 
mutagenesis of Abf1, one group has argued that motif quality and 
context quality both contribute to function and that each can com-
pensate for the other (Langstein-Skora et al. 2022). Sequences that 
contain many functional elements will be composition driven and 
grammar-independent (e.g. DWDWDWDWDWDWDWDWDWDW 
(Ravarani et al. 2018)). Grammar and motifs will be important on 
the margin for sequences that barely have the right composition 
to be functional but can function when the residues are 

appropriately arranged into a motif. Regions with fewer acidic and 
hydrophobic residues will likely be more reliant on grammar. 
Critically, even in a highly flexible-grammar regime, not all arrange-
ments of residues will be active. Real sequences are likely to be on 
this margin because neutral drift is likely pulling strong activators 
down to the minimum functional level maintained by negative se-
lection. Marginally active activation domains would be easier to 
regulate by post-translational modifications. Weak or regulated ac-
tivation domains allow more precise combinatorial control of gene 
expression. We speculate that there is no boundary between motifs 
and context.

Conclusion
We conclude that the human proteome contains a class of strong 
acidic activation domains that can be recognized by the clustering 
of W, F, L, and acidic residues. This balance between acidity and 
hydrophobicity accurately predicts known activation domains, 
many of which are well described by our acidic exposure model. 
Our work implies there are other classes of acidic activation do-
mains that are not predicted by our model and which likely bind 
to other coactivators. Forthcoming, comprehensive maps of acti-
vation domains (DelRosso et al. 2023) will create the opportunity 
to test and improve the mechanistic predictors and the next gen-
eration of CNN models (Mahatma et al. 2023). Our analyses em-
phasize the need to characterize the sequence features that 
control activity of Q-rich, S-rich, and P-rich activation domains.

Data availability
Our hand-curated, GSL of activation domains is in Supplementary 
Table 1. All the data and code is available in the Github repository: 
https://zenodo.org/badge/latestdoi/548126430. The activity data 
from measuring the predictions of the original mechanistic pre-
dictor are from Supplementary Table 4 of Staller et al. 2022. The 
PADDLE activation domain predictions were taken from a supple-
mentary table of Sanborn et al. 2021. The Soto list of activation do-
mains is a supplemental table from Soto et al. 2022. DelRosso 
activation domain data is from DelRosso et al. 2023. The protein 
sequences of the Lambert transcription factors were from 
UniProt. Supplementary Table 9 contains our combined list of 
published and experimentally identified activation domains. 

Supplemental material available at GENETICS online.
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