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Abstract

Transcription factors activate gene expression in development, homeostasis, and stress with DNA binding domains and activation do-
mains. Although there exist excellent computational models for predicting DNA binding domains from protein sequence, models for
predicting activation domains from protein sequence have lagged, particularly in metazoans. We recently developed a simple and ac-
curate predictor of acidic activation domains on human transcription factors. Here, we show how the accuracy of this human predictor
arises from the clustering of aromatic, leucine, and acidic residues, which together are necessary for acidic activation domain function.
When we combine our predictor with the predictions of convolutional neural network (CNN) models trained in yeast, the intersection is
more accurate than individual models, emphasizing that each approach carries orthogonal information. We synthesize these findings
into a new set of activation domain predictions on human transcription factors.
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Introduction

Transcription factors regulate gene expression with DNA binding
domains and effector domains. DNA binding domains are struc-
tured, conserved, and recognize related DNA sequences
(Latchman 2008; Ferrie et al. 2022; Staller 2022). Profile hidden
Markov models can accurately predict DNA binding domains
from protein sequence (Stormo 2013; Finn et al. 2016; El-Gebali
et al. 2019). Effector domains include repression domains that
bind corepressors and activation domains that bind coactivators.
Some repression domains can be predicted from protein se-
quence, and many contain short linear motifs (Tycko et al. 2020;
Soto et al. 2022; DelRosso et al. 2023). Activation domains are in-
trinsically disordered, poorly conserved, and bind to structurally
diverse coactivators: these features have made it difficult to pre-
dict activation domains from protein sequence (Liu et al. 2006;
Dyson and Wright 2016). There are profile hidden Markov models
for individual activation domains (e.g. p53 or Hifla), which can
identify activation domains on closely related paralogs or ortho-
logs in other vertebrate species (El-Gebali et al. 2019), but these
models are rarely generalizable to predict activation domains on
other transcription factors. The ability to predict activation do-
mains from protein sequence would open the door to automated
annotation of proteomes and lay a foundation for prioritizing
disease-causing mutations. Recently developed models trained
in yeast have provided a useful starting point (Ravarani et al.

2018; Erijman et al. 2020; Sanborn et al. 2021). Here, we explore
how to improve these models to work on human transcription
factors.

Over the last few years, we and others have resolved the key se-
quence features of strong acidic activation domains, the largest
known class (Arnold et al. 2018; Ravarani et al. 2018; Staller
et al. 2018, 2022; Erijjman et al. 2020; Tycko et al. 2020; Broyles
et al. 2021; Sanborn et al. 2021; DelRosso et al. 2023). Based on
these sequence features, we proposed an acidic exposure model for
activation domain function (Staller et al. 2018, 2022). In our acidic
exposure model, the hydrophobic residues make key contacts
with coactivators but left alone, the hydrophobic residues interact
with each other and prevent binding to partners (Fig. 1a).
Interspersed between hydrophobic residues are acidic residues
that repel each other and keep the hydrophobic residues exposed
to solvent. The critical parameter in the acidic exposure model is
the balance between acidic and hydrophobic residues. There are
cases where acidic residues make fast, low-affinity contacts
with basic residues on coactivators (Hermann et al. 2001;
Ferreira et al. 2005; Kim and Chung 2020), but these are secondary
to hydrophobic contacts.

The acidic exposure model motivated a simple and accurate
mechanistic predictor of activation domains (Staller et al. 2022).
We investigated if the clustering of acidic, aromatic, and leucine
residues could predict activation domains. In our rational
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Fig. 1. The acidic exposure model can predict acidic activation domains on human transcription factors. a) In the acidic exposure model, intrinsically
disordered activation domains dynamically morph between a collapsed, inactive state and an expanded, active state where the key aromatic, and leucine
residues are available to interact with hydrophobic surfaces of coactivators. Many activation domains show coupled folding and binding, but can also
exhibit fuzzy binding, or remain disordered when bound. b) Schematic for computationally chopping transcription factors into 39-AA tiles spaced every
1-AA.b) Sequences of a 39-AA version of CITED2 and a 39-AA version of VP16 H1 used in the predictor. d) The original mechanistic predictor, the boundary
is anchored by CITED? (star) and VP16 H1 (circle). e) Overlap between the GSL, the Soto list, and the tested regions from Staller et al. (2022). The tested
regions include predictions, known activation domains, and negative control regions and had detectable activity in the experiment. f) Overlap between

the acidic subsets of the GSL, the Soto list, and tested regions.

mutagenesis experiments, we found that the key sequence fea-
tures controlling the activity of CITED2 (220-258) and VP16 H1
(415-453) were net negative charge and the number of aromatic
and leucine residues (Staller et al. 2022). VP16 H11is a classic strong
acidic activation domain from the human herpes simplex virus
and a workhorse in synthetic biology applications (Sadowski
et al. 1988; Cress and Triezenberg 1991). CITED2 shuts down the
hypoxia response by outcompeting Hifla for binding to the Tazl
domain of CREB-binding protein (CBP)/p300 (Freedman et al.
2003; Berlow et al. 2017). Both of these very strong activation do-
mains hail from proteins that lack a DNA binding domain. Our ori-
ginal mechanistic predictor showed that regions that resemble
CITED2 and VP16 H1 in acidity and the number of aromatic and

leucine residues were enriched for known and new activation
domains (Staller et al. 2022). First, we computationally decom-
posed 1,608 human transcription factors into 39 amino acid
(39-AA) tiles spaced every 1-AA, yielding 881K tiles (Fig. 1b)
(Lambert et al. 2018). We used 39-AA tiles because that was the
length of the region used in our experiments. We looked for
39-AAtiles that were similar to VP16 H1 and CITED? (Fig. 1c), using
the the formula:

(Charge <-9) AND (W+F+Y+L >7) AND
(((Charge +9)- (W+F+Y+L-10)) <0), (1)

Where W is tryptophan, F is phenylalanine, Y is tyrosine, and L is
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leucine. Charge=K+R — D — E. This predictor is anchored by
CITED2 (net charge=-9, W+F+Y+L=10) and VP16 H1 (net
charge=-13, W+F+Y +L=7) (Fig. 1d). The first term selected re-
gions that are at least as acidic as CITED? (Fig. 1d, vertical thresh-
old). The second term selected regions with at least as many W, F,
Y, or L residues as VP16 H1 (Fig. 1d, horizontal threshold). The
third term interpolates between these 2 anchor points with a diag-
onal line of slope 1 (Fig. 1d, diagonal line). In this initial formula-
tion, the feature of the acidic exposure model tested by the
predictor is the tendency of aromatic, leucine, and acidic residues
to reside together in 39-AA regions. In the human proteome, 1139
39-AA tiles met these criteria, which combined into 144 predicted
activation domains. Twenty-six of these predictions overlapped
known activation domains, more than expected by chance (P <
le-5 in permutation tests). We split the longest predictions and
tested 150 regions in our high-throughput assay (Staller et al.
2022). Of the 149 recovered fragments, 108 (72%) had detectable
activity and 58 (39%) had high activity. This fraction was com-
pared favorably to length-matched random regions and positive
controls. The high-activity sequences included 28 known activa-
tion domains and 30 new activation domains (Staller et al. 2022).
The success of this predictor supported the acidic exposure model
in so far as the combination of acidic and W, F, Y, and L residues
lead to acidic activation domain function.

While we were developing our mechanistic predictor for hu-
man activation domains, 2 CNNs for predicting activation do-
mains in yeast were published. The first, ADpred, was trained on
3.6 million 30-AA random peptides (Erijman et al. 2020). The se-
cond, Predictor of Activation Domains using Deep Learning in
Eukaryotes (PADDLE), was trained on 53-AA regions that tiled
across ~180 Saccharomyces cerevisiae transcription factors (n=
10,537 tiles) (Sanborn et al. 2021). Both of these datasets see the
same primary signal we saw in our rational mutagenesis: strong
activation domains are enriched for acidic and aromatic residues
and depleted of basic residues. In yeast, 4 groups have reported
the same ranking of amino acid contributions to activity: W >F
>Y >L (Ravarani et al. 2018; Staller et al. 2018; Erijjman et al.
2020; Broyles et al. 2021; Sanborn et al. 2021). Multiple groups
have reported that the absence of positively charged residues is
important for activity in yeast (Ravarani et al. 2018; Erijman
et al. 2020; Broyles et al. 2021; Sanborn et al. 2021). Sanborn et al.
reported a correlation between White-Wimbly hydrophobicity
and activity, but in this hydrophobicity table the top entries are
W>F>Y>L, so the White-Wimbly hydrophobicity scale is em-
phasizing the most important amino acids (Sanborn et al. 2021).
Erijman et al. found that [D, E][W, F, Y] dipeptides were enriched
in active fragments (Erijjman et al. 2020), consistent with our evi-
dence that acidic residues made larger contributions to activity
when they were close to hydrophobic residues (Staller et al.
2018, 2022). Individual acidic residues can often (but not always)
be removed with little consequence, and instead, acidic residues
collectively contribute to activity by creating a permissive context
(Stalleretal. 2018; Sanborn et al. 2021). All of these signals support
the acidic exposure model and are consistent with our mechanis-
tic predictor.

In our previous work, we performed very little optimization of
our mechanistic predictor (Staller et al. 2022). Here, we sought
to understand why this mechanistic predictor accurately pre-
dicted transcriptional activation domains on human transcription
factors and to improve its predictive power. We assumed that we
were at a local maxima and it would be straightforward to find a
much better predictor, the global maximum. Here, we added
and removed residues, changed the length-scale, and added

grammar. Instead, we found it hard to improve upon the original
mechanistic predictor. We found that phenylalanine and leucine
make the largest contributions to predictive power, while trypto-
phan, tyrosine, and methionine contribute modestly. Changing
the tile length did not improve model performance. We had previ-
ously argued based on experiments that acidic residues make lar-
ger contributions to activity when they are close to hydrophobic
residues (Staller et al. 2022). We attempted to add this idea to
the predictor, but we could not find a consistent, statistically sig-
nificant signature of this effect. We had more success varying the
boundaries of the predictor, finding regions that made small con-
tributions to predictive power, and promising new regions. In par-
allel, we attempted to predict glutamine-rich, proline-rich, or
serine-rich activation domains but were not successful.

Based on our improved understanding of how the original
mechanistic predictor functions, we developed a modestly im-
proved mechanistic predictor. Our new predictor uses trypto-
phan, phenylalanine, and leucine residues, 39-AA windows, and
more relaxed thresholds for net charge and hydrophobic residue
counts. The new model predicted many more activation domains
with minimal loss of accuracy. The primary value of the mechan-
istic predictor is its simplicity. This model is so simple that we re-
main surprised this rule was not uncovered earlier. When we
compare our mechanistic predictors to CNN models trained in
yeast, we found that the intersection is more predictive than indi-
vidual models, emphasizing that each approach carries distinct
information. We synthesize these findings into a new set of activa-
tion domain predictions.

Materials and methods
Data sources

The gold standard list (GSL) consists of activation domains from 2
sources. The first source is transcription factors with activation
domains that were annotated in UniProt, which are in the “data/
UniprotActivationDomains_HighqualitySet.csv” file. The second
source is activation domains manually curated from the litera-
ture, which are in “/data/ActivationDomainsHuman.csv.” In “/no-
tebooks/Building the GSL.ipynb,” we combined activation
domains from both sources into one list, merging entries with
the same UniProt ID with overlapping start and end positions. In
cases where the annotated boundaries differed, we used the long-
est region.

For the tested regions in Figs. 1 and 4, we used the activity data
for fragments that we previously published (Staller et al. 2022).
There were 443 designed fragments of different lengths, but not
all were recovered in the assay. In addition, there were multiple
cases where the predicted activation domain region was different
from the UniProt region, and we experimentally tested both. Here
we combined overlapping regions, yielding a total of 356 regions,
which include positive controls, negative controls, and predicted
activation domains.

The sequences of all 1,608 human transcription factors were
downloaded from UniProt (Lambert et al. 2018). We downloaded
the sequences of the full human proteome from UniProt. For ana-
lysis, we used the protfasta (Holehouse 2021), localcider
(Holehouse et al. 2017), metapredict2 (Emenecker et al. 2022), pan-
das, math, itertools, matplotlib, seaborn, numpy, and scipy py-
thon packages.

Tiling
Each transcription factor sequence is computationally chopped
into 39-AA regions spaced every 1-AA (e.g. 1-39, 2-40, 3-41, etc.),
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yielding 881K tiles. The full proteome and GSL were similarly de-
composed into tiles. The composition of each tile was computed
by counting amino acids. The net charge was calculated as R+
K — D — E. The original predictor counted W +F +Y + L residues.
Other variants of the predictor counted other subsets of residues.
For the composition histograms in Fig. 2, we used tiles. To identify
the enrichment of specific amino acids in activation domains, we
performed a student’s t-test between the 2 population means. We
report all enrichments that were significant at P<0.01 after a
Bonferroni correction for multiple hypothesis testing. We used a
threshold of 15% for enrichment of individual amino acids (e.g.
Q, P, S, or A). This 15% threshold is an emerging standard in the
field (DelRosso et al. 2023). We classified activation domains
with a net charge less than -3 to be acidic.

Varying the predictor

The main predictor function is make_predictions() in “notebooks/
AD_predictor_tools.py.” The make_predictions() function has
parameters that can be used to vary the predictor. We varied
the predictor in one way at a time. We adjusted the parameter
UpperCorner_slopel to change the slope of the boundary line ori-
ginating from the upper corner, CITED2. To create region D in
Fig. 4a, we set UpperCorner_slopel equal to infinity to draw a ver-
tical line to test the predictor with a vertical boundary line instead
of a diagonal line. To vary the acidity threshold, we adjusted the
parameter upper_corner_c from —13 to O to vary the charge of
the boundary. To vary the hydrophobic residue count, we ad-
justed the parameter lower_corner_h from 0 to 15 to vary the
count of hydrophobic and aromatic AAs. To vary the composition
of AAs used on the y-axis we substituted each pair and triad of AAs
for the composition parameter.

We identified all the tiles that satisfied equation (1) and then
aggregated the overlapping tiles to predict activation domains.
For longer predictions, there can be tiles in the middle that do
not individually satisfy equation (1). As a result, when we project
the tiles from our tested predictions (Fig. 4b), some of the tiles
are outside the prediction region. We initially allowed overlaps
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of >1-AA, but in practice, the minimum observed overlap was 26
residues. For each version of the predictor, we recalculated the
properties of all tiles, adjusted the VP16 and CITED2 anchors,
changed the inequalities, found new sets of tiles, aggregated the
tiles into predictions, and compared the predictions to the GSL.

We then performed permutation testing. We used the function
compare_to_random() in “notebooks/AD_predictor_tools.py” to
compare the overlap with the GSL of predictions vs random se-
quences. To create a random set of sequences, we counted the
number of unique UniProt IDs in the predictions and randomly
sampled the same number of transcription factors from all hu-
man transcription factors. We found that preserving the fact
that sometimes there were multiple predictions per transcription
factor was more stringent in the permutation test than assuming
all predictions were independent. Then, for each unique UniProt
ID in the predictions, we recorded the length distribution and
number of predictions. We iterated through unique UniProt IDs
and randomly selected parts of each sampled transcription factor
so that the selected parts had the same number and length distri-
bution as predictions with one UniProt ID. Finally, we recorded the
number of times a randomly sampled transcription factor region
had any overlap with a GSL entry, using start, end, and UniProt ID
to compare. Here we used 1-AA overlaps to increase the strin-
gency of the permutation test. We compared this number to over-
laps of predictions with the GSL. We repeated this random
sampling for 10,000 permutations. We never randomly sampled
as many overlaps as the predictor.

We searched for signatures of molecular grammar in multiple
ways. Generally, we would compute parameters for all the activa-
tion domains on the GSL and look for enrichment compared to all
Lambert transcription factors. For the charge mixture para-
meters, we tried the original formulation of Kappa and Omega
as well as a custom variation of Omega that quantified the mix-
ture of WFYL residues with acidic residues (Das and Pappu 2013;
Martin et al. 2016; Ginell and Holehouse 2020). We then compared
the parameter between the 2 sets. We also used the measured
activities (Staller et al. 2022) to correlate activity with these
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Fig. 2. Sequence features of activation domains. Activation domains on the GSL (orange) show very moderate enrichment of individual sequence
properties or amino acids compared to the background of transcription factor sequences (gray).
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parameters, but the correlations were poor. For the runs of acidic
residues, we used the activity measurements for all the tested pre-
dictions (Supplementary Fig. 8 in Supplementary File 1).

Comparing predictions to convolutional neural
networks

The 2 neural networks to which we compared the predictor were
ADPred and PADDLE (Erijman et al. 2020; Sanborn et al. 2021). We
installed ADPred from https://github.com/FredHutch/adpred and
then ran it on all Lambert transcription factors. Using the criteria
detailed by the authors at https:/adpred.fredhutch.org/, we con-
sidered sequences with at least 10 consecutive positions with a
score of atleast 0.8 to be a predicted activation domain. We down-
loaded the activation domains predicted on human transcription
factors by PADDLE at https://cdn.elifesciences.org/articles/68068/
elife-68068-fig 3-datal-v3.xlsx. We used predictions of both
medium and high strength.

We used the compare_two_predictors() function in “notebooks/
AD_comparison_tools.py” to compare our predictor to the neural
net predictors. This function first individually compares the over-
lap of our predictions and a neural net’s predictions with a list of
known activation domains (either the gold standard or the Soto
et al. list). Then, it compares our predictions that overlap with a
prediction made by a neural network to the list of known activa-
tion domains.

The predicted activation domain regions are deposited at
https://zenodo.org/badge/latestdoi/548126430.

The analysis code was deposited at https:/zenodo.org/badge/
latestdoi/548126430.

Assessing sensitivity and specificity

To assess the sensitivity and specificity of the revised mechanistic
predictor, we first combined the GSL and the Soto list. We again
merged overlapping entries by taking the union of coordinates
(earlier start and later end). We removed all entries not on the
Lambert list of transcription factors (Lambert et al. 2018). Nicole
DelRosso provided a list of activation domains from DelRusso
et al. (2023). We used a net charge less than -3 as a threshold for
acidic activation domains. We considered activation domains
that were more than half the length of their transcription factor
tobe long and excluded them from line 5 of Table 7. We calculated
the overlap between predictions and these lists of activation do-
mains as above. Predictions that overlap list entries are labeled
as true positives. True negatives are members of the list missed
by the predictor. False positives are predictions not present on
the reference list, but likely include novel predictions. We calcu-
lated sensitivity, specificity, and the f-measure according to the
standard conventions.

Results

To quantify the performance of our activation domain
predictors, we curated a GSL of 167 activation domains from
135 proteins, including 129 human transcription factors
(Supplementary Table 1). This list combined UniProt annotated
activation domains (Downloaded June 2020), individual
activation domains curated from NMR papers, and a classic
hand-curated list of activation domains (Choi et al. 2000).
Overlapping entries were combined by taking the lower start
and greater end to make longer annotations. Activation domain
boundaries remain difficult to define, so we chose permissive
boundaries. When looking for overlaps between lists of activa-
tion domains, we started with a very permissive threshold, >1

Table 1. Types of activation domains on the GSL and Soto et al. list.

Activation domain Number of GSL Number of Soto
subclass entries entries
Acidic 105 290
Glutamine-rich 12 18
Proline-rich 30 119
Serine-rich 37 124
Alanine-rich 7 9

overlapping residue, but the minimum observed overlap was 26
residues. We developed our predictors using this GSL and
validated the predictors with another recently published
“Soto list” (Soto et al. 2022). To avoid circular reasoning, the
validation set did notinclude the 30 novel activation domains cor-
rectly identified by the original predictor (Staller et al. 2022).
These 30 continue to be correctly identified by our modified
predictors.

Our GSL and the Soto list are highly overlapping (Fig. 1e), and
acidic activation domains are the most common type (Table 1).
The Soto list contains more long activation domains that have
not been experimentally minimized. Our GSL is likely enriched
for short acidic activation domains that fold into amphipathic al-
pha helices upon binding coactivators because this mechanism is
well represented in the NMR literature. Folding and binding are
not essential for activation domain function (Qin et al. 2003;
Risgr et al. 2021). It is important to note that the entries in
the GSL and Soto lists are of variable quality. The activation do-
mains were identified by many labs using many different assays:
some are very strong, others very weak, some might be
cell-type-specific, and others may yet prove to be false positives.
Critically, neither list represents a complete list of true positives,
which makes evaluating prediction performance difficult (dis-
cussed further below).

Documented activation domains are more diverse than the
traditional categories of acidic, proline-rich, or glutamine-rich
(Sigler 1988; Gerber et al. 1994; Latchman 2008). There have
been scattered references to alanine-rich, glycine-rich, and
serine-rich activation domains in the literature, but they have
not been recognized as archetypes (Schaeffer et al. 1999;
Alerasool et al. 2022; Soto et al. 2022). After exploring several
thresholds, we chose 15% as a threshold for composition bias
(Supplementary Fig. 1 in Supplementary File 1). Using this
15% threshold, our GSL contains 105 (62.9%) acidic (net charge
<-3), 12 (7.19%) glutamine-rich (Q-rich), and 30 (18.0%)
proline-rich (P-rich) activation domains. In addition, there are
37 (22.2%) serine-rich (S-rich) and 7 alanine-rich (4.19%)
(Table 1). The Soto et al. list contains 290 (79.6%) acidic, 18
(3.5%) Q-rich, 119 (22.9%) P-rich, 124 (23.8%) S-rich, 36 (6.9%)
glycine-rich, and 9 (1.7%) alanine-rich activation domains.
Using our criteria, some activation domains are enriched for
more than 1 amino acid, notably acidity, and serines.
Annotated acidic activation domains on the 2 lists also overlap
with our tested regions (Fig. 1f). Activation domains are en-
riched for disorder-promoting residues, consistent with the evi-
dence that nearly all activation domains are intrinsically
disordered (Liu et al. 2006; Hahn and Young 2011; Oldfield and
Dunker 2014; van der Lee et al. 2014). We confirmed that >90%
of the activation domains on both lists are predicted to be in-
trinsically disordered by Metapredict2 (Supplementary Fig. 2
in Supplementary File 1, Emenecker et al. 2022).

We examined the sequence features of our GSL of activation
domains. As a background distribution, we used a published list
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of 1,608 human transcription factors (Lambert et al. 2018).
Annotated activation domains have a wide distribution of lengths
because only some have been experimentally minimized (Fig. 2).
Tomake our analyses more consistent, we performed all compos-
ition analysis by decomposing each activation domain into all
possible 39-AA sliding windows, spaced at 1-AA intervals (e.g. a
45 residue activation domain region would become 7 39-AA tiles,
Fig. 1b). We started with 39-AA tiles because that was the
length-scale of the original predictor. These 39-AA tiles accommo-
date activation domains of different lengths and avoid the difficult
problem of defining activation domain boundaries. Many activa-
tion domains are 39AA or shorter and many long ones contain
highly active subregions. Throughout this work, we will analyze
proteins by decomposing them into 39-AA tiles and comparing
the features of these sets of tiles. Compared to human transcrip-
tion factor tiles, activation domain tiles show a modest enrich-
ment of net negative charge and M, D, S, L, P, Q, Y, A, V, G
residues (t-test, P<1le-4, Bonferroni corrected, Fig. 2,
Supplementary Fig. 1 in Supplementary File 1). Activation do-
mains from the GSL do not exhibit extreme properties compared
to the background sequence properties of human transcription
factors (Supplementary Figs. 1 and 3 in Supplementary File 1).
This similarity to the background distribution explains in part
why activation domains have been difficult to predict from the
sequence.

We next examined how our mechanistic predictor accurately
identified acidic activation domains using the combination of net
charge and the number of W + F +Y + L residues. We had previously
shown this predictor works (Staller et al. 2022), but now we sought to
understand why it works. To establish a background distribution, we
first examined the sequence features of the full human proteome
(Fig. 3a) and 1,608 human transcription factors (Lambert et al.
2018; Fig. 3b). Compared to the full human proteome, transcription
factor tiles are slightly positively charged, likely because DNA bind-
ing domains contain basic residues that electrostatically interact
with the acidic phosphate backbone (Fig. 3d). Transcription factors
contain fewer W+F+7Y +L residues than the full proteome, likely
because they are depleted for transmembrane domains and folded
cores of globular proteins (Fig. 3e). Transcription factors contain
strong local biases in net charge (Fig. 3b). The most common tile
net charge for transcription factors and the proteome is neutral
(Fig. 3e). The distribution of transcription factor tile properties is rea-
sonably representative of the full proteome.

Long runs of acidic amino acids are far more common than
runs of basic amino acids (Bigman et al. 2022). There exist 11 tiles
from transcription factors with a charge of =39 (D/E runs), span-
ning residues 258-307 of MYT1, a neural transcription factor
(Nielsen et al. 2004). Acidic patches can accelerate transcription
factor nuclear search processes (Wang et al. 2023). Conversely,
the 6 most positively charged tiles from transcription factors
were +21, which spanned residues 1845-1908 of SON, a splicing
cofactor that binds DNA (Mattioni et al. 1992). The net charge of
proteome tiles is also asymmetric, spanning from -39 to +24.
The most acidic patch in the proteome is 50 consecutive acidic re-
sidues (-50), but the most basic region is +24 (Bigman et al. 2022).
It has been argued that this asymmetry is because long positively
charged regions interact nonspecifically with nucleic acids and
cause toxicity.

When we compared the sequence properties of tiles of acti-
vation domains to tiles of full-length transcription factors,
we found that acidic activation domains are more acidic than
transcription factors (Fig. 3e) and have a slight enrichment for
W+F+Y+L residues (Fig. 3d). However, the enrichment for

the combination of acidity and W+F+Y +L residues is much
stronger (Fig. 3c). The most acidic regions of transcription fac-
tors are not part of known activation domains. Although the
most acidic regions are visible on a log scale (Fig. 3c), they are
rare and not visible on a linear scale (Fig. 3e). Similarly, the tran-
scription factor tiles with the most W + F + Y + L residues are not
part of activation domains (Fig. 3¢, d). No single property distin-
guishes activation domains, but the combination of acidity and
W +F +Y +Lresidues can enrich a subclass of acidic activation
domains, as we have seen before (Staller et al. 2022). Our pre-
dictor finds activation domains that balance acidic residues
against W+ F +Y + L residues (Fig. 3c).

Similarly to how acidic activation domains are not the most
acidic regions of transcription factors, P-rich and Q-rich activa-
tion domains are not among the transcription factor tiles
with the most Ps or Qs (Supplementary Figs. 4 and 5 in
Supplementary File 1). This observation is consistent with evi-
dence that Q-rich activation domains contain a lower fraction
of Qs than proteins with true poly-Q regions, like Huntingtin
(Ruff et al. 2014). The traditional activation domain labels
were assigned before the completion of the human genome pro-
ject, namely, before there was a proper null distribution against
which to show enrichment.

In contrast, S-rich activation domains are enriched for serine
residues compared to the background of transcription factor
sequences (Supplementary Fig. 1, Supplementary 7f in
Supplementary File 1). The tiles spanning S-rich activation do-
mains on our GSL had more serine residues than tiles from all
other regions of transcription factors (t-test, pval = 1.37e-229).
Some activation domains increase activity when they are phos-
phorylated (Raj and Attardi 2017; De Mol et al. 2018; Peng et al.
2019; Conti et al. 2023), prompting us to search for an enrich-
ment of common phosphorylation motifs (e.g. serine-proline
(SP) and serine-glutamine (SQ)). Activation domains and repres-
sion domains contain more documented phosphorylation sites
than DNA binding domains (Soto et al. 2022). We initially de-
tected an enrichment of short motifs when we compared the
GSL to all transcription factor tiles. As a more stringent control,
we shuffled the sequences of the S-rich activation domains and
counted random occurrences of phosphorylation motifs.
Compared to these sequence permutations, phosphorylation
motifs did not occur in activation domains more often than ex-
pected by chance. We conclude that phosphorylation motifs are
not enriched in S-rich human activation domains beyond what
is expected by chance.

We tested whether the combination of W+ F+Y +LandP, Q, or
S could enrich the activation domains of each class, but none of
these combinations worked (Supplementary Fig. 4 and 5 and 6 in
Supplementary File 1). Our mechanistic predictor of acidic activa-
tion domains is not easily extended to other classes. We and
others have speculated that P, Q, or S residues could keep hydro-
phobic motifs exposed to solvent in a manner analogous to acidic
residues (Staller et al. 2018; DelRosso et al. 2023), but this analysis
and recently published experiments suggest a more complex
mechanism is at work.

Dissecting the mechanistic predictor

In order to improve the mechanistic predictor, we next sought to
understand why it worked and which activation domains from
the GSL it was identifying. We first asked if human activation do-
mains were more similar to VP16 H1 or the CITED2 by dividing our
initial prediction region into 3 triangular regions (Fig. 4a, Table 2).
Region A has the highest fraction of correct predictions (12/47).
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Region B, where acidic and hydrophobic residues were balanced, CITED2 and balanced tiles were most likely to be activation do-
had the most correct predictions (25/133). In contrast, Region C mains. This analysis prompted us to remove Region C from the
identified no activation domains on the GSL (0/18). Tiles like updated predictor.
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constituent tiles onto the regions in a. The peak of the tile distribution is in region b. c) Projecting tiles of all members of the GSL over the regions in a.

Table 2. Subregions of the mechanistic predictor from Fig. 3a
differ in the power to detect members of the GSL of activation
domains.

Proportion of

Region GSL GSL overlap acidic GSL
in Number of overlap proportion found
Fig. 4a predictions count (precision) (sensitivity)
A 47 12 0.255 0.114
B 133 25 0.188 0.238
C 18 0 0.000 0.000
D 285 28 0.098 0.267
E 202 7 0.035 0.067
F 633 50 0.079 0.476

Reciprocally, when we took our correct predictions (i.e. predic-
tions with high activity in our experiment) (Staller et al. 2022) and
examined their tiles, the peak of distribution lay along the line
connecting CITED2 and VP16 (Fig. 4b). Virtually all of the tiles
that mapped to Region C came from activation domains that
also contained tiles that mapped to Region B. This new analysis
of our published data further emphasizes how balance is the
key to accurate prediction.

To determine the parameters that contribute most to the
predictor, we performed a sensitivity analysis. We removed
each of the 8 AAs in the predictor and recomputed predictive
power (Supplementary Table 2). F, L, and charge make the lar-
gest contributions to sensitivity and specificity, likely because
these residues are more common. Despite being enriched in
the GSL activation domains, Y made very small contributions.
W'’s make modest contributions to predictive power because
they are rare. Similarly, we varied the length of the tiling win-
dows and did not see improvement (Supplementary Table 3).
These new variations of the mechanistic predictor revealed
there was no simple way to improve upon the original
predictor.

For further comparison, we replaced the y-axis parameter with
all singles, pairs, and triplets of amino acids (Supplementary
Tables 4, 5, and 6). For each combination, we changed the
thresholds based on the sequences of CITED2 and VP16 H1
(methods). Leucine was the single amino acid with the high-
est specificity. Leucine was present in the 5 pairs with the
highest specificity and in 11/12 triplets with the highest spe-
cificity. Together, this analysis emphasized that a high num-
ber of leucine residues is predictive of human activation
domains.
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Table 3. Changing the interpolation between the 2 anchor points, CITED2 and VP16, predicts new activation domains.

Number of predictions ~ GSL overlap count  GSL overlap proportion (precision) P value (PERMUTATION)
Original mechanistic predictor 144 26 0.181 <le-4
Original mechanistic predictor 312 37 0.119 <le-4
plus Region D (corner)
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Fig. 5. Intersections of the mechanistic predictors with the published neural network models from yeast. a) The region of the improved mechanistic
predictor. b) The overlap between the original mechanistic predictor, ADpred, and CBP, IDRs predictions. c) The overlap between the improved

mechanistic predictor, ADpred, and PADDLE predictions.

Expanding the boundaries of the mechanistic
predictor

To make new predictions, we altered the boundaries of the mech-
anistic predictor to include more tiles. We had already tested
nearly all the original predictions and found that 72% had detect-
able activity in our assay (Staller et al. 2022). Making new predic-
tions requires expanding one or more boundaries, even if it comes
at the cost of reduced sensitivity. First, we changed the interpol-
ation between VP16 H1 and CITED? from a diagonal line to a cor-
ner, using the minimum value of each activation domain to create
a right triangle below CITED2 (Fig. 4a, Region D, Table 3) using
equation (2).

(Charge < -9) AND W+F+Y+L >7). (2)

Region D contains 285 predictions, including 168 new predictions
and 11 additional activation domains on the GSL (Table 2). Next,
we lowered the W + F + Y + L boundary (Fig. 4a, Region E) and low-
ered the acidic boundary (Fig. 4a, Region F). When we consider
only acidic activation domains, the projected tiles look very simi-
lar to those of the full GSL (Supplementary Fig. 7 in
Supplementary File 1). Regions D and F contain the most new

predictions. In permutation tests, both versions of the revised pre-
dictor continue to detect more activation domains than expected
by chance (Table 3).

An improved mechanistic predictor

We report an improved mechanistic predictor of acidic activation
domains (Fig. 5a). The primary improvement of this expanded pre-
dictoris thatit makes many new predictions with small decreases
in accuracy (see below). We selected a trapezoidal region (equa-
tion 3), used 7 amino acids (W, F, L, D, E, R, K), and expanded the
charge and hydrophobic thresholds by one:

(-13 < Charge <—8) AND (W+F +L > 6). 3)

The trapezoid better emphasizes the balance between hydropho-
bic and acidic residues (Fig. 5a). This region predicted 546 activa-
tion domains. Of these 546 predictions, 47 are on the GSL, and 51
regions have high activity in our assays (Table 4). Moreover, 104/
546 of our predictions are on the Soto list. The improved mechan-
istic predictor identified 47/105 acidic activation domains on the
GSL (44.8% sensitivity) and 104/290 acidic activation domains on
the Soto list (35.9% sensitivity). This improved mechanistic
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Table 4. Comparison of Soto and Gold Standard Lists (GSL).

GSL overlap Soto overlap

Number of GSL overlap proportion Soto overlap proportion

predictions count (precision) count (precision)
Original mechanistic predictor 144 26 0.181 46 0.3194
Improved mechanistic 546 47 0.086 104 0.19

predictor

Table 5. Intersection of the mechanistic predictor and convolutional neural network models improves prediction accuracy.

Percent of predictions  Soto overlap  Percent of predictions

Predictor Predictions  GSL overlap count on GSL (precision) count on Soto (precision)
Original mechanistic predictor 144 26 18.06% 46 31.94%
ADPred 721 53 7.35% 138 19.14%
Original mechanistic predictor n ADPred 87 23 26.44% 40 45.98%
PADDLE 602 76 12.62% 167 27.74%
Original mechanistic predictor n PADDLE 89 25 28.09% 44 49.44%

predictor makes 406 new predictions on 342 transcription factors.
These transcription factors hail from a diverse set of families in-
cluding many nuclear hormone receptors, Sox, Klf, and Zinc finger
transcription factors.

Sequence grammar

We attempted to improve our predictor by adding sequence gram-
mar, which we define as the arrangement of amino acids.
Examples of strict grammar include short linear sequence motifs
(SLiMs), where amino acids must have a defined spacing or ar-
rangement, e.g. ®xx®®, where @ is a bulky hydrophobic residue
(Warfield et al. 2014; Dyson and Wright 2016). Examples of weak
grammar include cases where acidic residues make larger contri-
butions to activity when they are close to hydrophobic residues, or
“mini motifs” of one acidic residue followed by an aromatic resi-
due ([D or E][W or F or Y], represented as the regular expression
[DE][WFY]) that contribute to activity (Ravarani et al. 2018;
Staller et al. 2018; Erijman et al. 2020). In addition to searching
for motifs, we looked for amphipathic alpha helices, distance de-
pendencies between the aromatic and acidic residues, dipeptides,
the Kappa charge mixture parameter (Das and Pappu 2013), the
Omega charge and proline mixture parameter (Martin et al. 2016;
Ginell and Holehouse 2020), and repetitive runs of amino acids.
The only statistically significant grammar signal was that tiles
with long runs of acidic residues were less likely to be activation
domains (Supplementary Fig. 8 in Supplementary File 1). Other
studies have argued there is little to no grammar in activation do-
mains (Erijjman et al. 2020; Sanborn et al. 2021; DelRosso et al.
2023). The grammar that does exist is highly degenerate and flex-
ible, making it hard to detect with our small sample size.
Ultimately, we did not add grammar to the mechanistic predictor.

Combining the mechanistic predictor with neural
networks improves performance

We found that combining our mechanistic predictor with CNN
predictors trained on yeast activation domains improved predict-
ive power beyond the performance of either alone. Intersecting
our predictor (n=144) and PADDLE (n = 604) increased sensitivity
(Fig. 5b). For the 89 activation domains predicted by both models,
25 (28.1%) were on the GSL and 44 (49.4%) were on the Soto list
(Table 5, Supplementary Table 7). In addition, 88 had been tested
in our activation domain assay and 45 (51.1%) had activity (Staller
et al. 2022). This result implies each predictor brings orthogonal

information. The 60 predictions removed by this intersection
have many runs of acidic residues, consistent with the grammar
analysis above.

We found similar predictive improvement when we intersected
our mechanistic predictor with ADpred. ADpred made 721 predic-
tions on human transcription factors. Twenty-seven of these are
on the GSL and 45 overlap with the Soto list (Table 5).
Intersecting the ADpred predictions with our predictor led to 87
overlaps: 23 (26.4%) with the GSL and 40 (46.0%) with the Soto
list (Table 5). We tested 86 of these regions in our experiments,
and 40 (46.5%) had detectable activity in our assay (Staller et al.
2022). The intersection once again was more accurate than either
model alone. ADpred and PADDLE scores are correlated (Fig. 5b).
We conclude that combining the CNNs and our mechanistic pre-
dictor yields the most accurate predictions.

Intersecting this revised predictor with the CNNs yielded 139
high-confidence predictions (Fig. 5c, Table 6, Supplementary
Table 8). We anticipate that testing this new set of predictions
will identify new activation domains.

Notably, there are 5 true activation domains found by our ori-
ginal predictor that are thrown out by PADDLE and ADpred.
These activation domains from FOS, TIGD7, ZN513, TIGDF, and
ZN777 contain many leucines (>10%), which is interesting be-
cause leucines make larger contributions to activity in human ac-
tivation domains than in yeast activation domains (Staller et al.
2022). Indeed, based on our 15% threshold, FOS and ZN513 qualify
as leucine-rich regions. We hypothesize that these leucine-rich
activation domains are a metazoan innovation that binds to acti-
vation domain binding domains not present in yeast, such as the
TAZ1 and TAZ?2 domains of CBP/p300.

Why does the combination of the mechanistic predictor and
the CNNs improve performance? Some of this improvement is
likely because each approach contributes orthogonal informa-
tion. We also believe that the overlap might be providing some in-
sightinto how the CNNs work. Convolutional neural networks are
black-box models, which makes it difficult to understand the
source of their accuracy. ADpred and PADDLE take as inputs pri-
mary sequence, predicted secondary structure, and predicted
intrinsic disorder, but the models do not tell us which feature,
or combination of features, is most important for prediction. For
regulatory DNA CNN, there are emerging tools for extracting mech-
anisticinsight (Avsec et al. 2021), but analogous tools for interpreting
protein sequence models remain limited (Erijman et al. 2020;
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Table 6. Intersection of the improved mechanistic predictor and convolutional neural network models improves prediction accuracy.

GSL overlap Percent of predictions Soto overlap Percent of predictions
Predictor Predictions count on GSL (precision) count on Soto (precision)
Improved mechanistic predictor 546 47 8.61% 104 19.05%
ADPred 721 53 7.35% 138 19.14%
Improved mechanistic predictor n ADPred 216 35 16.20% 74 34.26%
PADDLE 602 76 12.62% 167 27.74%
Improved mechanistic predictor n PADDLE 217 44 20.28% 86 39.63%
Table 7. Performance of the revised mechanistic predictor.
Positive
True False False predictive value True positive

Benchmark list Predictions Benchmark positives positives negatives (precision) rate (sensitivity) F-score
All GSL + Soto 546 519 110 436 409 0.201 0.212 0.207
Acidic GSL + Soto 546 294 105 441 189 0.192 0.357 0.250
All GSL + Soto limited 159 519 110 49 409 0.692 0.212 0.324

transcription factors
Acidic GSL + Soto limited 143 294 105 38 189 0.734 0.357 0.481

transcription factors
Acidic GSL + Soto limited 139 260 101 38 159 0.727 0.388 0.506

transcription factors, without

long activation domains
All DelRosso 546 242 94 452 148 0.172 0.388 0.239
Acidic DelRosso 546 203 94 452 109 0.172 0.463 0.251
Acidic DelRosso limited 132 203 94 38 109 0.712 0.463 0.561

transcription factors

Mahatma et al. 2023). We speculate that the overlap between the
mechanistic predictor and the CNNs suggests that composition
plays a substantial role in their performance.

Assessing the performance of the predictors

Assessing the positive predictive value (precision) and the true
positive rate (recall) of the mechanistic predictor is challenging
because existing lists of activation domains are incomplete, mak-
ingitdifficult to evaluate which predictions are false positives and
which are novel predictions. We had previously used permutation
tests to randomly select transcription factor regions to show the
mechanistic predictor identified more activation domains than
expected by chance (Staller et al. 2022). All variations of our pre-
dictors continue to meet this threshold (Methods). Here, we fur-
ther assessed the predictive power of the improved mechanistic
predictor (546 predictions) in multiple ways. First, we assumed
the combined GSL and Soto lists (541 entries) represented the
full set of human activation domains. Based on this assumption,
there are 110 true positives, the positive predictive value is
0.201, and the true positive rate is 0.203, indicative of poor per-
formance (Table 7). Second, we used only the acidic members of
these lists. Under this condition, the positive predictive value is
0.194, and the true positive rate is 0.311. We consider these esti-
mates the minimum performance of our predictor. To estimate
the maximum performance of our predictor, we next limited our
assessment to the 127 transcription factors with at least one entry
on the GSL or Soto lists, assuming that all activation domains on
these transcription factors are known. Based on this assumption,
the positive predictive value is 0.692 and the true positive rate re-
mains 0.203, indicating an increase in performance. Repeating
this limited assessment on acidic activation domains, the positive
predictive value is 0.667, and the true positive rate is 0.311. Fifth,
we removed entries that comprised more than half the transcrip-
tion factor (n=47) because in these cases little or no experimental

effort was devoted to finding a minimal activation domain. Here,
the positive predictive value is 0.706 and the true positive rate is
0.344. This alternative assessment with a smaller search space
likely represents the maximum performance of our model. The
true performance of our revised mechanistic predictor sits be-

tween these 2 estimates.

During the review process, a systematic screen for human acti-
vation domains in K562 cells was published (DelRosso et al. 2023).
This screen examined transcription factors and chromatin regula-
tors, so we only looked at the transcription factors. Using this list
of activation domains from transcription factors, we repeated the
above analyses and obtained similar performance as assessed by
the positive predictive value, the true positive rate, and the
F-score (Table 7). Together, these analyses give us confidence
that the mechanistic predictor can find activation domains on hu-
man transcription factors.

Finally, as previously published, the most rigorous assessment
of our predictor is experimental validation (Staller et al. 2022).
When we tested the 144 predictions from the mechanistic predict-
or, 72% had detectable activity. This precision of 0.72 is compar-
able to the maximum of our estimates above (Table 7). The
PADDLE CNN achieves a similar level of precision, 70%, in the re-
cent screen for human activation domains (DelRosso et al. 2023).
This CNN performance is comparable to our published success
rate (Staller et al. 2022) and the newly calculated estimates above
(Table 7). Together, these analyses show the improved mechanis-
tic predictor identifies many more candidate activation domains
with minimal loss of accuracy.

Next, we estimated true negatives called by the predictor in
several ways. First, we looked for transcription factors with no
known activation domains and no predicted activation domains
and found 915/1,231 (74.3%) correctly predicted as true nega-
tives. Second, we looked at transcription factors with repression
domains as defined by Soto and found that 66/384 (17%) had
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predicted activation domains, indicating a low false positive rate.
Alternatively, these may be bifunctional transcription factors
that activate and repress transcription. Third, we looked at the
number of predicted activation domains that overlap repression
domains and found 33 examples. Of these, 27/33 overlap KRAB
domains, which are a very interesting set of false positives. We
had previously tested 13 predictions that overlap KRAB repres-
sion domains (Staller et al. 2022). One is the KRAB domain of
Zn473, which is one of the 4 highly divergent KRAB domains
that function as activation domains (Tycko et al. 2020). This
Zn473 KRAB domain behaved as an activation domain in our ex-
periments (Staller et al. 2022). In a few cases, the prediction cov-
ers the full KRAB (e.g. Znf12), but in most cases, the prediction
overlaps the N-terminal region, which is least important for re-
pression activity (Tycko et al. 2020). Three of these predictions
are highly active in our experiments (Zn473, Zn561, and
Zn571), 5 have detectable activity, and 5 have very low activity,
as expected for repression domains. Given that KRAB domains
appear to convert to activation domains at a low rate on long
evolutionary time scales, we might be catching some of these re-
gions in transition: the full-length KRAB domain is still a repres-
sion domain, but the N-terminal half is becoming a weak
activation domain. Overall, we conclude that the mechanistic
predictor has a high true negative rate and a low false positive
rate.

Based on these assessments, the mechanistic predictor is ac-
curate and sensitive. However, we wish to emphasize that the
main utility of the mechanistic predictor is its simplicity and
interpretability.

The predictors identify one subclass of acidic
activation domains

Both our original mechanistic predictor and the improved mech-
anistic predictor do not identify all of the acidic activation do-
mains on the gold standard and Soto lists. Similarly, neither
ADpred (53/105) nor PADDLE (76/105) can detect all these acidic
activation domains. We have tuned the mechanistic predictor to
have a low false positive rate at the expense of a high false nega-
tive rate. While there are multiple interpretations of this result,
we favor the interpretation that there are multiple subclasses of
acidic activation domains and that the existing predictors can
find the one subclass thatis well described by the acidic exposure
model. These models miss activation domains where activity is
regulated by modifying the net charge with post-translational
modifications. For example, the first activation domain of p53
(net charge = -6, WFYL = 8) has three sites that increase activity
when phosphorylated (S15, T18, S20, net charge=-12, WFYL =
8) (Raj and Attardi 2017). These residues are interspersed with
key aromatic and leucine residues consistent with the acidic ex-
posure model. In this case, the resting sequence falls outside the
activation domain predictor boundary (equation 3), but the acti-
vated, phosphorylated state crosses it over the boundary.
Understanding how phosphorylation controls activation domain
function is an exciting area of future inquiry.

Discussion

Accurate computational models for predicting activation do-
mains from protein sequence will advance basic science and pre-
cision medicine. Computationally annotating activation domains
would allow studies of how paralogous transcription factors di-
versify after duplication and enable evolutionary comparisons
of domain shuffling. Comprehensive lists of transcription factors

with activation domains could improve gene regulatory networks
by adding signs to the connections inferred from genome binding
data (Hummel et al. 2023) or by distinguishing direct and indirect
connections inferred from genetic perturbations. Predicting acti-
vation domains is a key step toward building models that predict
how mutations in activation domains modulate activity, which, in
the long term, could classify patient mutations in activation do-
mains as benign or pathogenic (Richards et al. 2015; Starita et al.
2017). These classifications could group patients for the develop-
ment of targeted therapies or prioritize variants for base-editing
gene therapies.

Our mechanistic predictor is valuable because it is simple and
interpretable. Its accuracy comes from the acidic exposure model,
which describes a subclass of acidic activation domains that bal-
ance acidic residues with key hydrophobic residues. The analyses
presented here confirm and strengthen our previous conjectures
(Staller et al. 2022). This work explains why the predictor works.
The predictor’s success further supports one critical feature of
the acidic exposure model, that hydrophobic motifs require an
acidic context. Our acidic exposure model is related to the stickers
and spacers model for how specialized intrinsically disordered re-
gions form condensates (Martin et al. 2020), albeit with a more ac-
tive role for the spacers. So far, we can predict only acidic
activation domains. Analogous predictors of P-rich, Q-rich, or
S-rich activation domains do not work (Supplementary Fig. 4
and 5 and 6 in Supplementary File 1).

Why are so many activation domains negatively charged?
What is the mechanistic advantage of acidity? This question has
been repeated many times since it was posed by Paul Sigler
(Sigler 1988). In principle, exposure to hydrophobic residues could
be achieved by positively charged residues, but, in practice, posi-
tively charged residues inhibit activation domain function
(Ravarani et al. 2018; Erijman et al. 2020; Broyles et al. 2021).
Many coactivators have positively charged surfaces, and long-
range, low-affinity fast electrostatic interactions have been docu-
mented (Hermann et al. 2001; Ferreira et al. 2005). These electro-
staticinteractions can be important for making activation domain
coactivator interactions diffusion-limited in “fly-fishing” models
of activation domain coactivator interactions (Kim et al. 2018;
Kim and Chung 2020). We believe there are advantages to acidic
activation domains and disadvantages to basic activation do-
mains. The first advantage is that acidic residues electrostatically
repel the DNA, allowing the activation domain to stick out and
catch coactivators. Second, acidic activation domains can have
low-affinity electrostatic intramolecular interactions with basic
DNA binding domains, which can increase the specificity of DNA
binding via competitive inhibition (Stott et al. 2014; Krois et al.
2018; He et al. 2019; Wang et al. 2023). Third, acidity makes it pos-
sible to post-translationally regulate activation domain activity
with phosphorylation (Conti et al. 2023). We see 2 potential disad-
vantages to basic activation domains: first, nonspecific, electro-
static binding to DNA that could compete with coactivator
binding or inhibit nuclear search. Second, cation-n interactions
between basic residues and aromatic residues (e.g. arginine-tyro-
sine interactions) could drive collapse (or condensate formation)
and make positively charged residues less effective at keeping
some aromatic residues exposed to solvent (Wang et al. 2018).
There are also examples of positively charged repression domains
(Soto et al. 2022; DelRosso et al. 2023). Together, these observa-
tions explain why so many activation domains are acidic.

Activation domains display very flexible sequence grammar. If
activation domains had strict sequence grammar requirements
for function, we would have seen these signatures in the
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evolutionary record, mutagenesis, or in tiling experiments. An
early grammar model, the 9aaTAD model, can identify known ac-
tivation domains, but in high-throughput screens of random pep-
tides or yeast transcription factors, it does not detect more often
than expected by chance (Piskacek et al. 2007; Erijman et al.
2020; Sanborn et al. 2021). Instead, we see evidence for very flex-
ible grammar or no grammar. The evidence for no grammar is
that random peptides can have activation domain activity and
that shuffling activation domain sequence can preserve or even
sometimes increase activity (Ma and Ptashne 1987; Arnold et al.
2018; Ravarani et al. 2018; Staller et al. 2018; Erijman et al. 2020;
Sanborn et al. 2021). The high accuracy of our grammar-less
composition-based predictor supports both a no-grammar model
and a flexible-grammar model. The evidence against no-grammar
models is that shuffling activation domain sequence can both in-
crease and decrease activity (Staller et al. 2018; Sanborn et al.
2021). Loss of activity is more common when shuffling disrupts
analpha helix (Sanborn et al. 2021; Staller et al. 2022). In these shuf-
fle mutants, the arrangement of amino acids, i.e. the grammar, is
modulating activity, ruling out a strict no-grammar model. We
can rule out a strict-grammar model and we can rule out a no-
grammar model, so we are left with a very flexible-grammar model.

How do we square a very flexible-grammar with the documen-
ted role of short linear motifs and amphipathic alpha helices? The
dominant model for activation domains is that they are anchored
by a hydrophobic short linear motif embedded in a permissive
context. At this time, the features of the context are more clearly
defined than the motifs. The context is acidic residues and intrin-
sic disorder. In some cases, the motifs are clearly present, con-
served, and contribute to activation domain activity (Dyson and
Wright 2016). A motif in an amphipathic alpha helix is a very ef-
fective way to coherently display several hydrophobic residues
to a coactivator (Giniger and Ptashne 1987). Amphipathic alpha
helices are a good solution for building an activation domain
(Dyson and Wright 2016), but, critically, they are not the only solu-
tion. Motifs are uncommon and rarely generalize beyond a few
transcription factors. Surveys of random peptides, yeast tran-
scription factors, and human transcription factors found enrich-
ment of only [DE]J[WFY] “mini motifs” (Arnold et al. 2018;
Ravarani et al. 2018; Erijman et al. 2020; Broyles et al. 2021;
Sanborn et al. 2021; DelRosso et al. 2023). We argue that the crit-
ical distinction is that a motif or an amphipathic helix is not the
only way for a cluster of hydrophobic residues to interact with a
coactivator-many arrangements are functional. A growing num-
ber of fuzzy interactions have been documented, but they are like-
ly underreported because of investigator bias and a higher burden
of proof (Brzovic et al. 2011; Warfield et al. 2014; Tuttle et al. 2018;
Risgr et al. 2021). Fuzzy binding is consistent with a highly
flexible-grammar.

Itis not clear at what point the motif ends and the context begins.
In our mutagenesis of VP16 and CITED2, we found that virtually
every hydrophobic residue contributed to activity, blurring the dis-
tinction between motifs and context. Adding aromatic residues
near a motif—in essence extending the motif—increases activation
domain activity (Warfield et al. 2014; Staller et al. 2018). Based on
mutagenesis of Abf1, one group has argued that motif quality and
context quality both contribute to function and that each can com-
pensate for the other (Langstein-Skora et al. 2022). Sequences that
contain many functional elements will be composition driven and
grammar-independent (e.g. DWDWDWDWDWDWDWDWDWDW
(Ravarani et al. 2018)). Grammar and motifs will be important on
the margin for sequences that barely have the right composition
to be functional but can function when the residues are

appropriately arranged into a motif. Regions with fewer acidic and
hydrophobic residues will likely be more reliant on grammar.
Critically, even in a highly flexible-grammar regime, not all arrange-
ments of residues will be active. Real sequences are likely to be on
this margin because neutral drift is likely pulling strong activators
down to the minimum functional level maintained by negative se-
lection. Marginally active activation domains would be easier to
regulate by post-translational modifications. Weak or regulated ac-
tivation domains allow more precise combinatorial control of gene
expression. We speculate that there is no boundary between motifs
and context.

Conclusion

We conclude that the human proteome contains a class of strong
acidic activation domains that can be recognized by the clustering
of W, F, L, and acidic residues. This balance between acidity and
hydrophobicity accurately predicts known activation domains,
many of which are well described by our acidic exposure model.
Our work implies there are other classes of acidic activation do-
mains that are not predicted by our model and which likely bind
to other coactivators. Forthcoming, comprehensive maps of acti-
vation domains (DelRosso et al. 2023) will create the opportunity
to test and improve the mechanistic predictors and the next gen-
eration of CNN models (Mahatma et al. 2023). Our analyses em-
phasize the need to characterize the sequence features that
control activity of Q-rich, S-rich, and P-rich activation domains.

Data availability

Our hand-curated, GSL of activation domainsis in Supplementary
Table 1. All the data and code is available in the Github repository:
https://zenodo.org/badge/latestdoi/548126430. The activity data
from measuring the predictions of the original mechanistic pre-
dictor are from Supplementary Table 4 of Staller et al. 2022. The
PADDLE activation domain predictions were taken from a supple-
mentary table of Sanborn et al. 2021. The Soto list of activation do-
mains is a supplemental table from Soto et al. 2022. DelRosso
activation domain data is from DelRosso et al. 2023. The protein
sequences of the Lambert transcription factors were from
UniProt. Supplementary Table 9 contains our combined list of
published and experimentally identified activation domains.
Supplemental material available at GENETICS online.
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