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The ground-based gravitational wave (GW) detectors LIGO and Virgo have
enabled the birth of multi-messenger GW astronomy via the detection of
GWs from merging stellar-mass black holes (BHs) and neutron stars (NSs).
GW170817, the first binary NS merger detected in GWs and all bands of
the electromagnetic spectrum, is an outstanding example of the impact that
GW discoveries can have on multi-messenger astronomy. Yet, GW170817
is only one of the many and varied multi-messenger sources that can
be unveiled using ground-based GW detectors. In this contribution, we
summarize key open questions in the astrophysics of stellar-mass BHs and
NSs that can be answered using current and future-generation ground-
based GW detectors, and highlight the potential for new multi-messenger
discoveries ahead.

KEYWORDS
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1 Introduction

The discovery of the binary NS merger GW170817 during the second observing run
(O2) of the LIGO (LIGO Scientific Collaboration et al., 2015) and Virgo (Acernese et al.,
2015) GW detectors kicked off a new era in multi-messenger astrophysics (MMA;
Figures 1, 2). In addition to marking the first direct detection of a GW chirp from a
binary NS merger (Abbott et al., 2017c), GW170817 also represents the first astrophysical
event to be observed with GWs and a completely independent messenger, namely,

Frontiers in Astronomy and Space Sciences 01 frontiersin.org

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2024.1386748
https://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2024.1386748&domain=pdf&date_stamp=2024-05-20
mailto:alessandra.corsi@ttu.edu
mailto:alessandra.corsi@ttu.edu
https://doi.org/10.3389/fspas.2024.1386748
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fspas.2024.1386748/full
https://www.frontiersin.org/articles/10.3389/fspas.2024.1386748/full
https://www.frontiersin.org/articles/10.3389/fspas.2024.1386748/full
https://www.frontiersin.org/articles/10.3389/fspas.2024.1386748/full
https://www.frontiersin.org/articles/10.3389/fspas.2024.1386748/full
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Corsi et al. 10.3389/fspas.2024.1386748

electromagnetic waves. Indeed, GW170817 was the first direct
association of aNS-NSmerger with a short gamma-ray burst (GRB),
an IR-optical-UV kilonova, and an electromagnetic afterglow
observed from radio to X-rays (see Abbott et al., 2017e, and
references therein).

The rich multi-messenger data collected for GW170817
(Figure 1), together with detailed modeling and simulations,
have painted the most detailed picture yet of a binary NS
merger, impacting a variety of fields beyond gravitational
physics and including nuclear physics (e.g., Bauswein et al., 2017;
Kasen et al., 2017; Margalit and Metzger, 2017; Annala et al.,
2018; Radice et al., 2018b; Abbott et al., 2018c; Côté et al.,
2018; De et al., 2018; Most et al., 2018; Rezzolla et al., 2018;
Capano et al., 2020), relativistic astrophysics (e.g., Shibata et al.,
2017; Lazzati et al., 2018; Ruiz et al., 2018; Lazzati et al., 2021),
stellar evolution and population synthesis (e.g., Dominik et al., 2013;
Kruckow et al., 2018; Vigna-Gómez et al., 2018), and cosmology
(e.g., Abbott et al., 2017a; Baker et al., 2017; Creminelli and
Vernizzi, 2017; Ezquiaga and Zumalacárregui, 2017; Sakstein and
Jain, 2017; Chen et al., 2018).

As of today, the LIGO and Virgo detectors have reported
highly-significant discoveries of ∼100 compact binary coalescences
(Abbott et al., 2023a). The detections are dominated by binary
BH mergers. Two highly-significant NS-NS mergers (GW170817
and GW190425; Abbott et al., 2017c; 2020a) and a few BH-NS
merger candidates have been identified (Abbott et al., 2021a),
but GW170817 remains the only GW event with a secure
electromagnetic counterpart association. While revolutionizing the
field of GW-MMA, the discovery of GW170817 highlighted many
open questions that remain to be answered. To this end, the
LIGO and Virgo collaborations have developed plans for further
improvements in sensitivity of these detectors that will fully exploit
what is possible at these existing facilities (hereafter, post-O5 or
A# era, Figure 3; Abbott et al., 2018a; Fritschel et al., 2023). Several
new frontiers in MMA will also come on the horizon with these
envisioned sensitivity upgrades for the LIGO detectors (which
include an expanded network with LIGO India—hereafter LIGO
Aundha—expected to be operational starting in the early 2030;
Iyer et al., 2023). However, it is likely that the full discovery potential
of MMA will be realized only with next-generation ground-based
GW detectors such as Cosmic Explorer (hereafter, CE) and the
EinsteinTelescope (hereafter, ET), envisioned to becomeoperational
in the 2030s and requiring new facilities and longer interferometer
arms (Figures 2, 3; Branchesi et al., 2023; Evans et al., 2023). Here,
we review the major open questions in the field of MMA as enabled
by ground-based GW detectors (Sections 2–3), and briefly discuss
the short-to-long term potential of this field (Section 4).

We stress that, while this work highlights topics in MMA for
which observations of GWs and light are critical, the field of
MMA is broader and includes messengers such as cosmic rays and
neutrinos (e.g., Particle Physics Project Prioritization Panel, 2023,
and references therein). Here, we mention these other probes only
briefly. We also stress that our discussion is centered on the science
enabled by ground-based GW detectors operating in the few Hz
to few kHz GW frequency regime. However, the GW spectrum is
much broader, and fundamental contributions to its exploration
are being provided by Pulsar Timing Arrays (Detweiler, 1979;
Agazie et al., 2023; EPTA Collaboration et al., 2023; Reardon et al.,

2023; Xu et al., 2023), and will be provided in the future by
space-based instruments such as LISA (Amaro-Seoane et al., 2023)
and DECIGO (Kawamura et al., 2011).

2 MMA of compact binary mergers:
key open questions

2.1 Diversity of NS-NS/BH-NS mergers and
r-process yields

GW170817 remains so far the only event seen in both GWs
and electromagnetic emission. An associated GRB (170817A) was
detected about 2 s after the merger by the Fermi/GBM and Integral
satellites (Figure 1; Abbott et al., 2017b; Savchenko et al., 2017).
About 11 h after the GW detection, an optical counterpart was
identified by the Swope Supernova Team (Figure 1; Coulter et al.,
2017). Via extensive multi-wavelength observations carried by
several teams, this counterpart was recognized to be a kilonova—a
quasi-thermal fast-fading transient associated with r-process
nucleosynthesis occurring in the neutron-rich debris created by
the merger itself (Chornock et al., 2017; Cowperthwaite et al.,
2017; Drout et al., 2017; Evans et al., 2017; Kasliwal et al.,
2017; Nicholl et al., 2017; Pian et al., 2017; Smartt et al., 2017;
Soares-Santos et al., 2017; Tanvir et al., 2017; Valenti et al., 2017;
Villar et al., 2017). The kilonova detection also enabled the arcsec
localization of GW170817, and hence the identification of its host
galaxy and measurement of its redshift (Hjorth et al., 2017; Im et al.,
2017; Levan et al., 2017; Palmese et al., 2017; Pan et al., 2017).
Located only ≈40Mpc away, GW170817 is the closest short GRB
with known redshift identified as of today. As the radio-to-X-ray
follow-up observations of the GW170817/GRB 170817A afterglow
revealed, GW170817 also brought the first ever direct detection
of a relativistic jet observed off-axis (Figure 1, JVLA and Chandra
insets), and proved that relativistic jets are much more complex
than typically assumed for cosmological short GRBs (for which
the on-axis view prevents a detailed study of the jet structure;
Alexander et al., 2017; Haggard et al., 2017; Hallinan et al., 2017;
Margutti et al., 2017; Troja et al., 2017; Mooley et al., 2018b;
Margutti et al., 2018; Mooley et al., 2018a).

As the sensitivity of the LIGO detectors continues to improve
steadily compared to the O2 run (Figure 3), one of the biggest
priorities in the field of MMA is the collection of a larger sample
of GW170817-like multi-messenger detections: going from 1 to ∼10
(nearby) events localized by GW detectors to less than 100 deg2 by
the post-O5/A# era is amust (Petrov et al., 2022;Abbott et al., 2018a,
see also Section 4). Increasing the sample of nearby, extensively
monitored events is key to answering some fundamental questions
left open by GW170817 such as, are NS-NS mergers the only
site or one of many sites of r-process nucleosynthesis; are the
heaviest of the heavy elements synthesized in those mergers; does
the yield of various heavy elements match the Solar abundance
(e.g., Eichler et al., 1989; Bauswein et al., 2013b; Metzger, 2019;
Arcones and Thielemann, 2023; Setzer et al., 2023, and references
therein). More generally, nearby multi-messenger detections are
critical to understanding what is the possible zoo of electromagnetic
counterparts of NS-NS and BH-NS systems (blue versus red
kilonovae, choked versus successful and structured versus top-hat
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FIGURE 1
Figure reproduced from Abbott et al. (2017e). Timeline of the discovery of GW170817, its associated GRB 170817a, and its associated kilonova
SSS17a/AT 2017gfo. The follow-up observations are shown by messenger and wavelength relative to the time of the GW event. The shaded dashes
represent the times when information was reported in a GCN Circular. The names of the relevant instruments, facilities, or observing teams are
collected at the beginning of the row. Representative observations in each band are shown as solid circles with their areas approximately scaled by
brightness; the solid lines indicate when the source was detectable by at least one telescope. Magnification insets give a picture of the first detections
in GWs, and in the gamma-ray, optical, X-ray, and radio bands.
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FIGURE 2
Aerial views of the LIGO Hanford (left) and Livingston (center) observatories (credits: Caltech/MIT/LIGO Lab; LIGO Scientific Collaboration et al., 2015).
We also show an artist’s impression of a Cosmic Explorer (CE) observatory (credits: Angela Nguyen, Virginia Kitchen, Eddie Anaya, California State
University Fullerton; Evans et al., 2023).

FIGURE 3
Figure adapted from Evans et al. (2023). Measured sensitivity of LIGO
in its second (O2) and third (O3) observing runs, and estimated
sensitivities of LIGO A+ (also referred to as LIGO O5 sensitivity;
Abbott et al., 2018a), LIGO A# (Fritschel et al., 2023), ET
(Branchesi et al., 2023), and the 20 km and 40 km CE
detectors (Evans et al., 2023). We note that by reconfiguring several
smaller optics, the 20 km detector could be operated either in a
broad-band mode (solid) or a kilohertz-focused mode (dotted).

jets), and what is the range of circum-burst medium densities in
relation to the properties of the host galaxies (e.g., Bloom et al.,
2002; Fong and Berger, 2013; Barnes et al., 2016; Hotokezaka et al.,
2016; Radice et al., 2016; Bovard et al., 2017; Lazzati and Perna,
2019; Margalit and Metzger, 2019; Nakar, 2020; Ascenzi et al., 2021;
Raaijmakers et al., 2021; Camilletti et al., 2022; Fong et al., 2022;
Gottlieb and Nakar, 2022; Perna et al., 2022; Gompertz et al., 2023a;
Colombo et al., 2023; Nouri et al., 2023).

Ultimately, a diverse sample of multi-messenger detections of
nearby and well-localized NS-NS and BH-NS systems will enable
us to map the properties of the progenitors as probed by GWs
(especially in terms of total mass, mass ratio, and Equation of
State, hereafter, EoS; Abbott et al., 2018c; 2019a, and references
therein), to the properties of their merger ejecta and of the circum-
merger environment as probed by electromagnetic observations
(Margalit and Metzger, 2019, and references therein). Joint multi-
messenger analysis will then shed light on the physical processes
that determine such mapping (e.g., Radice et al., 2018a, and
refrences therein).

FIGURE 4
Figure reproduced from Balasubramanian et al. (2022). 3 GHz radio
light curve of GW170817 (black dots, red star and red triangle) plus
extrapolation of the X-ray observations to the radio band (purple
squares), together with the best fit model and corresponding error
(black line and gray shaded area) representing the emission from the
relativistic jet.

2.2 Short GRB jets and central engines

The association of GW170817 with a GRB and an off-axis
radio-to-X-ray afterglow (Section 2.1; Figure 4) has demonstrated
how GW observations can open the way to directly linking GRB
progenitors to their relativistic jets. However, we are still far from
fully understanding the physics behind the workings of GRB central
engines and their jets, especially in terms of emission processes, jet
composition and structure, and the role of magnetic fields.

Because in a compact binary merger the amplitude of the
emitted GWs depends mildly on the orientation of the binary,
GW detections can enable the study of off-axis GRB jets that
may otherwise go undetected and/or unrecognized as off-axis
events via electromagnetic observations alone (Lazzati et al.,
2017; Granot et al., 2018b; Bartos et al., 2019; Dichiara et al., 2020;
Matsumoto and Piran, 2020; Schroeder et al., 2020; Grandorf et al.,
2021; Ricci et al., 2021; Eddins et al., 2023; Ghosh et al., 2024).
This is key to shedding light on the jet structures that, in turn,
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are determined by complex processes involving the GRB central
engines (that power the jet itself), and the interaction of the jets
with the neutron-rich debris surrounding the merger sites (e.g.,
Rossi et al., 2002; Aloy et al., 2005; Bromberg et al., 2011; Nakar
and Piran, 2018; Lazzati et al., 2018; Lazzati and Perna, 2019;
Gottlieb et al., 2021; Sharan Salafia and Ghirlanda, 2022; García-
García et al., 2023; Pavan et al., 2023, and references therein). As
demonstrated by ∼50 years of GRB observations, the structure of
relativistic jets is largely masked in high-luminosity cosmological
GRBs, whose electromagnetic emission is dominated by fast jet cores
observed on-axis. In fact, the prompt γ-ray emission of the off-axis
GRB 170817A was energetically weaker by about three orders of
magnitude than the weakest cosmological short GRB (Fong et al.,
2015). Its afterglow showed a behavior substantially different from
the power-law-decaying afterglows of cosmological GRBs, with a
delayed onset and a rising light curve observed from radio to X-rays
(Figure 4 Alexander et al., 2017; Haggard et al., 2017; Hallinan et al.,
2017; Margutti et al., 2017; Troja et al., 2017; D’Avanzo et al., 2018;
Mooley et al., 2018b; Margutti et al., 2018; Mooley et al., 2018a;
Makhathini et al., 2021; Balasubramanian et al., 2022). While
extensive multi-band observations and detailed modeling have
allowed us to link these unusual properties of GRB 170817A
with a structured jet observed off-axis (Lazzati et al., 2018),
significant uncertainties remain. Specifically, the polar profile
(distribution of energy as a function of polar angle) of the
GW170817 outflow remains highly debated, with analytical
functions including Gaussian, power-law, and exponential profiles,
as well as numerically-simulated profiles, all providing plausible
fits to the data. In the radio band, future observations of off-axis
GRB light curves combined with polarization measurements and
Very-Long Baseline Interferometry (VLBI) can help shed light
on both the jet structure and the largely unknown structure
of magnetic fields within shocked ejecta (e.g., Ghisellini and
Lazzati, 1999; Sari, 1999; Corsi et al., 2018; Gill and Granot, 2018;
Granot et al., 2018a;Mooley et al., 2018a; Ghirlanda et al., 2019; Gill
and Granot, 2020; Teboul and Shaviv, 2021, and references therein).

The origin of the γ-rays in GRB170817a remains equally
debated: while the structured outflow model can explain why
a GRB was detected even if off-axis (Lazzati et al., 2017), a
mildly relativistic shock breakout of a cocoon from the merger’s
ejecta is also possible (Gottlieb et al., 2018). Future multi-
messenger observations of off-axis GRBs (including potential
coincident detections betweenGW signals and sub-thresholdGRBs;
Kocevski et al., 2018; Magee et al., 2019; Tohuvavohu et al., 2020;
Fletcher et al., 2023), will greatly help settle these debates (Lazzati,
2020; Beniamini et al., 2022; Bošnjak et al., 2022).

While the LIGO-Virgo-KAGRA detectors (Figure 2, left and
central panel) continue to improve their sensitivity to GWs from
GRBs (Abbott et al., 2021b; 2022b), these searches will undergo
a leap forward when next-generation GW detector such as CE
and ET, with ≈10× the sensitivity of the current LIGO detectors
(Figure 2, right panel; Figure 3), will probe the population of NS-
NS mergers up to the star formation peak (and beyond for BH-
BH mergers, Figure 5; Branchesi et al., 2023; Evans et al., 2023;
Gupta et al., 2023a). With these next-generation detectors, we
can expect each short GRB observed by satellites such as Fermi
(Thompson and Wilson-Hodge, 2022) and Swift (Gehrels et al.,
2004) to have a counterpart in GWs (Ronchini et al., 2022).

The direct mapping of GRBs to their progenitors—something
inaccessible to electromagnetic observations alone—is key to
shedding light on the conditions that enable the launch of
successful relativistic jets, especially in relation to the properties
of the progenitors (including whether BH-BH mergers make
GRBs; Loeb, 2016; Connaughton et al., 2016; Dai et al., 2017;
Perna et al., 2018; 2019; Veres et al., 2019; Graham et al., 2023)
and the nature of the central engines (BHs versus long- or
short-lived NSs; Bucciantini et al., 2012; Giacomazzo and Perna,
2013; Bauswein et al., 2013a; Giacomazzo et al., 2013; Mösta et al.,
2020, see also Section 2.4). Systematic measurements of the
delay times between GW mergers and GRBs, in addition to
providing stringent fundamental physics tests, will further our
understanding of the GRB jet launching mechanisms, of the physics
of the jet breakouts from the surrounding medium, and of the
dissipation and radiation mechanisms as related to the unknown
composition of jets (Granot et al., 2017; Shoemaker and Murase,
2018; Zhang, 2019; Lazzati, 2020).

Probing directly and systematically the progenitor of short
GRBs observed in γ-rays will also shed light on whether the
phenomenological classification ofGRBs in short/hard and long/soft
as related to two different classes of progenitors (compact binary
mergers and collapsars, respectively) holds in all cases. In fact,
this classification scheme has been challenged by observations
of long GRBs associated with kilonovae or lacking supernova
counterparts to very deep limits, and short GRBs showing
potential supernova bumps in their light curves (Della Valle et al.,
2006; Fynbo et al., 2006; Ahumada et al., 2021; Troja et al., 2022a;
Rastinejad et al., 2022; Rossi et al., 2022; Yang et al., 2022; Barnes
and Metzger, 2023; Gompertz et al., 2023b). In the future, deep
GW observations of these peculiar GRBs will provide the definitive
word on the nature of their progenitors and likely settle current
classification debates (Dimple et al., 2023).

2.3 Electromagnetic precursors to
compact binary mergers

Electromagnetic emission from GW170817 was probed only
after the GW merger (starting from about 2 s after; Figure 1)
with the detection of γ-rays. Hence, as of today, the pre-merger
phase remains unexplored in terms of potential electromagnetic
counterparts. As the sensitivity and number of ground-based GW
detectors increase, GW observations of an in-spiraling system can
provide the advance notice required to capture light from the
moments closest to merger (Figure 6; see also Cannon et al., 2012;
Singer and Price, 2016; Messick et al., 2017; Chan et al., 2018; Zhao
and Wen, 2018; Sachdev et al., 2020a; Magee et al., 2021; Nitz and
Dal Canton, 2021; Nitz et al., 2020; Borhanian and Sathyaprakash,
2022; Banerjee et al., 2023; Chatterjee and Wen, 2023; Hu and
Veitch, 2023; Miller et al., 2023).

Multi-messenger observations of the moments just before the
merger could probe several highly-debated astrophysical scenarios
(see Wang and Liu, 2021, for a recent review, and references
therein). From a theoretical perspective, models predict the possible
existence of pre-merger electromagnetic signatures via a variety
of mechanisms including two-body electromagnetic interactions,
resonant NS crust shattering, magnetic reconnection and particle
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FIGURE 5
Figure adapted from Evans et al. (2023). The reach of current and future ground-based GW detectors for compact binary mergers (NS-NS mergers in
gold; BH-NS mergers in red; and BH-BH mergers in black; see Section 2.5) is represented as a function of total binary mass and redshift at various
signal-to-noise ratio (SNR) thresholds (blue lines for SNR 8; orange lines for SNR 100; and green lines for SNR 1000). The population of observed
compact-object binaries is plotted with small triangles. We use dotted lines for LIGO at its O4 sensitivity; dashed lines for LIGO at its projected O5
sensitivity, also referred to as LIGO A+ (Abbott et al., 2018a); and dash-dotted lines for LIGO at its projected post-O5 A# sensitivity (the ultimate
performance of current LIGO detectors envisioned for the post-O5 era; Fritschel et al., 2023). CE40 (Evans et al., 2023), a next-generation GW detector
concept, can expand the cosmic horizon of NS-NS mergers, and enable observations of new populations including mergers from Population III BHs
(blue dots), and speculative primordial BHs (magenta dots).

acceleration through the revival of pulsar-like emission during the
in-spiral phase, the decay of tidal tails, the formation of fireballs
or wind-driven shocks (e.g., Goldreich and Lynden-Bell, 1969;
Vietri, 1996; Hansen and Lyutikov, 2001; Moortgat and Kuijpers,
2006; Roberts et al., 2011; Lai, 2012; Metzger and Berger, 2012;
Piro, 2012; Tsang et al., 2012; Penner et al., 2012; Medvedev and
Loeb, 2013; Metzger and Zivancev, 2016; Suvorov and Kokkotas,
2019; Beloborodov, 2021; Sridhar et al., 2021; Most and Philippov,
2023b; Cooper et al., 2023). It has also been suggested that in
the late in-spiral phase of a NS-NS or BH-NS merger in which
one NS is a magnetar, the tidal-induced deformation may surpass
the maximum that the magnetar’s crust can sustain, driving a
catastrophic global crust destruction that releases magnetic energy
as a superflare with energy hundreds of times larger than giant
flares of magnetars (Zhang et al., 2022). Numerical studies support
the conclusion that electromagnetic flares may be observed before
the merger (Palenzuela et al., 2013; Most and Philippov, 2020; 2022;
2023a). A key related open questions is whether NS mergers may
power a fraction of fast radio bursts (FRBs; Lorimer et al., 2007;
Thornton et al., 2013; Zhang, 2014; Williams and Berger, 2016;
Paschalidis and Ruiz, 2019; Rowlinson et al., 2019; Zhang, 2020;
Wada et al., 2020; Chen Z.-L. et al., 2023; Pan et al., 2023).

Observationally, while high-energy precursors have been
observed in short (and long) GRBs (Lazzati, 2005; Burlon et al.,
2008; 2009; Troja et al., 2010; Zhong et al., 2019; Wang et al., 2020;
Petroff et al., 2022; Dichiara et al., 2023), it is still a matter of
debate whether these precursors have a different origin from
that of the GRB itself, or are rather just a manifestation of the
variable GRB emission (Charisi et al., 2015; Xiao et al., 2022).
Searches for electromagnetic precursors have been carried in
coincidence with compact binary mergers identified by LIGO
and Virgo during O2/O3 having a non-negligible probability

to contain a NS (Stachie et al., 2022). While these searches
found no significant candidate precursor signals, open questions
discussed above can be explored in future searches with improved
sensitivity, potentially aided by GW early alerts and localizations,
and extending across the electromagnetic spectrum (from radio
to γ-rays; Figure 6).

2.4 Nature of the merger remnant and
neutron star EoS

After a NS-NS merger, a compact remnant is left over. The
nature of such a remnant—either a NS or a BH—is thought
to depend primarily on the masses of the binary components
(i.e., total mass of the system and mass ratio) and on the EoS
of nuclear matter (e.g., Ravi and Lasky, 2014; Piro et al., 2017;
Shibata and Hotokezaka, 2019). If a NS remnant is formed (as
opposed to a prompt BH formation), its lifetime could range from
short lived (hypermassive NS supported only temporarily against
gravity by differential rotation), to long lived (supramassive NSs
supported against gravity by uniform rotation), to indefinitely stable
(Beniamini and Lu, 2021; Margalit et al., 2022; Wang et al., 2024).
GWs can be used to probe the post-merger remnant via a variety
of yet-to-be detected signals and, when paired with electromagnetic
observations, can greatly help us understand the astrophysics of the
post-merger phase.

GWs produced by oscillations of the hot, extremely dense
remnant may come into reach with improved ground-based
detectors (e.g., Bauswein et al., 2012; Clark et al., 2014; Bauswein
and Stergioulas, 2015; Clark et al., 2016; Krolak et al., 2023).
The formation of a hypermassive NS is expected to give off
quasi-periodic GWs of frequencies ≈2− 4 kHz, while GWs from
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FIGURE 6
This Figure is based on the simulations presented in Gupta et al. (2023a), for GW detector networks containing zero to three next-generation
observatories. The HLA network contains the two current LIGO detectors (Hanford and Livingston) operating at the upgraded A# sensitivity (Figure 3),
plus the LIGO Aundha at A# sensitivity. The 20LA and 40LA networks represent configurations with a single 20 km-long arms CE detector operating in
the context of an upgraded (A# sensitivity) LIGO network with locations in Livingston and Aundha. The HLET network is one with a single
next-generation GW detector (ET) operating together with LIGO Hanford and LIGO Livingston at their upgraded A# sensitivity. The 4020A network
represents the CE reference configuration as described in (Evans et al., 2023), with one 40 km-long and one 20 km-long next-generation detectors
plus LIGO Aundha at A# sensitivity. The 20LET and 40LET networks represent a single CE detector (either 20 km or 40 km) operating with LIGO
Livingston and the ET. Finally, the 4020 ET is the reference CE configuration operating with ET. For these networks, we calculate the signal-to-noise
ratio of NS-NS systems at 1, 2, 5, 10, 30, 60, 120, 300, 600 min before merger (data points) for events that are localized within 100deg2 (top) or 10deg2

(bottom) at 5 min before merger, in 1 year. If the network signal-to-noise ratio is > 10 at the considered time before merger, then the binary is included
in the count. We assume a local merger rate density of 320Gpc−3 yr−1, but note that this rate is subject to large uncertainties
(10−1700Gpc−3 yr−1; Abbott et al., 2023b). There are no events satisfying the imposed criteria at > 120min before the merger given the assumed
low-frequency cut-off of 5 Hz for all the detectors (results could be improved if ET reaches sub-5Hz sensitivity). We also note that all events with
ΔΩ ≤ 10deg2 at 5 min before merger are located at z < 0.2; and, all events with ΔΩ ≤ 100deg2 at 5 min before merger are located at z < 0.5. Finally, all
events detected 5 min before merger (with no restrictions on the localization accuracy) lie at z < 0.9.

quasi-normal modes of promptly-formed BHs are found at
higher frequencies of ≈6.5− 7 kHz (Shibata and Taniguchi, 2006;
Breschi et al., 2022). Hence, post-merger GW observations can be
used to constrain the yet-uncertain EoS of NS matter in a way
complementary tomeasurements of the tidal deformation of theNSs
during the late in-spiral phase (e.g., Flanagan and Hinderer, 2008;
Chatziioannou et al., 2017; Landry, 2023). Simulations indicate
that oscillations of a deformed, differentially rotating massive
NS emit a GW spectrum with a pronounced peak generated by
the fundamental quadrupolar oscillation mode, whose frequency
correlates with the radius of the non-rotating NS (Bauswein et al.,
2012). More specifically, the frequency of this mode is proportional
to the square root of the mean density (Bauswein et al., 2012).
Hence, for a given remnant mass (approximately given by the
total binary mass), the peak frequency is determined by the
radius. In turn, the determination of the dominant post-merger
GW frequency can provide an upper-limit for the maximum

mass of non-rotating NSs, with implications for the NS mass
distribution and, indirectly, electromagnetic counterparts (Margalit
and Metzger, 2017; Ai et al., 2020; Bernuzzi, 2020). It has also
been suggested that in compact binary mergers where short-lived
NSs are formed after the merger, the quasi-periodic oscillations
of the remnants may imprint quasi-periodic modulations of the
γ-rays emitted in the associated GRBs (Chirenti et al., 2023).
As of today, the viability of this process remains debated
(Most and Quataert, 2023).

After the early (dynamical) GW-driven phase, the (secular)
evolution of remnants that did not collapse to BHs is driven by
viscous magnetohydrodynamics processes and neutrino cooling
(Piro et al., 2017; Bernuzzi, 2020). Mapping observationally
NS-NS progenitors to their remnants via their GW and
electromagnetic emission offers an unprecedented opportunity
to understand this complex interplay of gravitational, nuclear,
weak and electromagnetic interactions (Beniamini and Lu, 2021;
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Margalit et al., 2022; Wang et al., 2024). In the case of GW170817,
the presence of an electromagnetic counterpart disfavors a prompt
BH formation. The velocity, total mass, and electron fraction of the
blue kilonova ejecta (as constrained from the observations) support
the idea that the merger formed a rapidly spinning hypermassive
and magnetized NS, with a 0.1–1s lifetime (Metzger et al., 2018). In
this interpretation, the lifetime of the GW170817 merger remnant
is short because a long-lived remnant would have injected a
rotational energy of a few ≈1052 erg into the ejecta, which can
be excluded from observations (Radice et al., 2020). However, an
interpretation of GW170817 in the context of a long-lived (days
to months) remnant with a small dipole magnetic field (so as to
minimize the energy injected into its outflows) cannot be excluded
(Ai et al., 2018; Yu et al., 2018).

Overall, post-merger scenarios involving long-lived or stable
NSs formed in compact binary mergers have been proposed
to explain various features in GRB light curves and have
received new attention after GW170817. Proposed electromagnetic
signatures of long-lived remnants range from brighter-than-
normal magnetar-powered kilonovae, to early-time X-ray afterglow
plateaus and late-time radio and X-ray flares (Nakar and Piran,
2011; Rowlinson et al., 2013; Hotokezaka et al., 2018; Bartos et al.,
2019; Kathirgamaraju et al., 2019; Nedora et al., 2021; Ai et al.,
2022; Sarin et al., 2022; Sadeh et al., 2024; Wang et al., 2024).
Proposed GW signatures include oscillation modes of a short-
lived hypermassive NS, bar-mode instabilities, and rapid spindown
powered by magnetic-field induced ellipticities (e.g., Lai and
Shapiro, 1995; Owen et al., 1998; Cutler, 2002a; Shibata, 2005;
Corsi and Mészáros, 2009; Hotokezaka et al., 2013; Ciolfi and
Rezzolla, 2013; Dall’Osso et al., 2015; Clark et al., 2016). Several
observing campaigns aimed at identifying electromagnetic or
GW signatures of long-lived remnants have been conducted
for both GW170817 and other short GRBs, and promise to
become more constraining of proposed models with next-
generation GW and electromagnetic instrumentation (e.g.,
Coyne et al., 2016; Horesh et al., 2016; Abbott et al., 2017d; 2019b;
Sowell et al., 2019; Schroeder et al., 2020; Balasubramanian et al.,
2021; Bruni et al., 2021; Abbott et al., 2021c; Grandorf et al., 2021;
Balasubramanian et al., 2022; Troja et al., 2022b; Hajela et al.,
2022; Eddins et al., 2023; Grace et al., 2023; Krolak et al., 2023;
Ghosh et al., 2024). By probing the mass of the post-merger
remnants in a systematic fashion, next-generation GW detectors
like CE and ET could also probe models of supernova
engines (Fryer, 2023).

2.5 Compact binary merger population
properties

As the number of NS-NS, BH-NS, and BH-BH detections
increases following the improvement in sensitivity of the LIGO,
Virgo, and KAGRA detectors (Figure 3, 7), MMA studies based on
single-event analyses will be crucially complemented by statistical
studies of larger source samples. While interesting individual events
and outliers will enable probing the most extreme systems, joint
analyses of a large number of compact binaries will yield an exquisite
characterization of the properties of the bulk of the population.
These analyses can constrain key population properties such as

merger rates, mass distributions, r-process yields, properties of
the GRB jets, etc. (e.g., Biscoveanu et al., 2020b; Chen et al., 2021;
Abbott et al., 2023b; Biscoveanu et al., 2023; Delfavero et al., 2023),
while enabling comparison with similar constraints derived from
observations via other messengers (e.g., Belczynski et al., 2021;
Landry and Read, 2021; Fishbach and Kalogera, 2022; Mandel
and Broekgaarden, 2022; Liotine et al., 2023). On the longer term,
the study of NS-NS mergers is likely to see an even more
substantial shift from single-event analyses to population inference
and statistical studies. In fact, next-generation GW detectors may
enable us to probe the properties of NS-NS mergers across cosmic
history and galactic environments (Figure 5), measure the time
delay distribution between formation and merger (Safarzadeh et al.,
2019), and thereby infer the history of chemical evolution in the
Universe even beyond the reach of electromagnetic astronomy
(Chruślińska, 2022). For the loudest and best-localized BH-BH
binaries, the uncertainty volume will be small enough to confidently
identify the host galaxy even in absence of a counterpart (Vitale
and Whittle, 2018; Borhanian and Sathyaprakash, 2022). The ability
of GW detectors to precisely measure masses, distances and sky
positions of thousands of mergers per year is key to this end
(Vitale and Evans, 2017; Gupta et al., 2023a; Evans et al., 2023,
see Figure 7).

Increased detection rates of compact binary mergers containing
the heaviest stellar-mass BHs will also shed light on crucial
open questions in stellar astrophysics, especially when combined
with electromagnetic surveys. Theory predicts the existence of
a gap in the BH mass distribution because of pair-instability
supernova (Fowler and Hoyle, 1964; Barkat et al., 1967; Woosley,
2017). This mechanism should produce a dearth of BH-BH
binaries with components in the mass range ∼50− 135M⊙ (e.g.,
Belczynski et al., 2016). The largest uncertainty on the lower end
of this “mass gap” comes from uncertainties on the nuclear
reaction rate 12C(α,γ)16O (Farmer et al., 2019). The mass gap
can be contaminated from hierarchical mergers of lower-mass
BHs (Fishbach et al., 2017; Gerosa and Berti, 2017; Gerosa and
Fishbach, 2021; Tagawa et al., 2021; Ford and McKernan, 2022)
and from other formation channels with possible characteristic
electromagnetic signatures, including stellar collisions in young
stellar clusters (Costa et al., 2022; Ballone et al., 2023); the core
collapse of rapidly rotating massive stars from progenitors with
helium cores ≳ 130M⊙ (“collapsars”), which could lead to long
GRBs, r-process nucleosynthesis, and GWs of frequency ∼0.1−
50Hz from non-axisymmetric instabilities (Siegel et al., 2022);
super-Eddington accretion in isolated binaries (van Son et al., 2020);
or more exotic scenarios, such as accretion onto primordial
BHs (De Luca et al., 2021; De Luca and Bellomo, 2023). Several
astrophysical scenarios predict the possibility of mergers between
BHs on the “far side” of the mass gap (Mangiagli et al., 2019;
Hijikawa et al., 2021; Santoliquido et al., 2023). The observation
of such mergers with next-generation GW detectors could allow
us to measure the location of the upper end of the mass gap.
Since the “width” of the mass gap is to a good approximation
constant as a function of the uncertain nuclear reaction rates
(e.g., Farmer et al., 2019), these constraints will also inform us
about the location of the lower end of the mass gap. Theoretical
predictions should also be compared with the already evident
“bump” in the observed mass distribution of BH-BH mergers at
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FIGURE 7
Figure derived from the simulations presented in Gupta et al. (2023a).
Redshift distribution of NS-NS mergers detected in 1 year and
localized within the sky area indicated at the top, for various networks
of ground-based GW detectors (see the caption of Figure 6). The small
vertical lines on the x-axis mark the median redshift of each
distribution. The assumed local merger rate density of NS-NS systems
is 320Gpc−3 yr−1. We note that this rate is subject to large uncertainties
(10− 1700Gpc−3 yr−1; Abbott et al., 2023b).

∼35M⊙ that cannot be explained byPoissonnoise alone (Farah et al.,
2023). Ultimately, the combination of GW observations and
electromagnetic transient surveys can give important insight into
nuclear reaction rates and supernova physics (Farmer et al., 2020;
Karathanasis et al., 2023).

2.6 Impact of GW-enabled MMA on
cosmology

Observations of GWs from well-localized compact binary
mergers can measure absolute source distances. When coupled
with an independent determination of redshift through an
electromagnetic counterpart, they provide constraints on the
Hubble constant (H0) and hence the expansion history of the
Universe (e.g., Schutz, 1986; Holz and Hughes, 2005; Dalal et al.,
2006; Sathyaprakash and Schutz, 2009; Nissanke et al., 2010;
Del Pozzo, 2012; Abbott et al., 2017a; Mukherjee et al., 2021a;
Jin, 2023; Mancarella et al., 2023; Chen et al., 2024). Absolute
distance measurements at low redshifts, as those enabled by GW
observations, can constrain dark energy when combined with
observations of the primary anisotropies in the cosmic microwave
background (e.g., Hu, 2005). We note that, in modified theories
of gravity that predict a non-trivial dark energy equation of state
and deviations from general relativity in the propagation of GWs
across cosmological distances, the effect of the modified GW
propagation can dominate over that of the dark energy equation
of state, potentially becoming observable with next-generation GW
observatories (e.g., Belgacem et al., 2018; Mukherjee et al., 2021c;
Afroz and Mukherjee, 2023).

Multi-messenger observations of GW170817 allowed for a
measurement of the Hubble constant using the GW detection of
the NS-NS merger combined with the optical identification of the
host galaxy (Abbott et al., 2017a). The GW measurement returned
a value of H0 = 70+12−8 km s−1 Mpc−1. While this measurement is
not sufficiently precise to significantly impact the current debate
on the tension between different measurements of H0 (Freedman,
2021; Freedman and Madore, 2023; Kamionkowski and Riess,
2023), its importance as a measurement completely independent
of both the Planck cosmic microwave background and the
local Cepheid-supernovae distance ladder measurements has been
widely recognized. The dominant source of uncertainty in the H0
measurement viaGWs is the degeneracy between the binary viewing
angle and the source distance.Hence, an independent determination
of the viewing angle is of great importance (Nakar and Piran,
2021). For this reason, and as demonstrated by GW170817 itself,
VLBI observations of the afterglow radio centroids and images of
compact binary mergers are key to improve the H0 measurement
(Mooley et al., 2018a; Ghirlanda et al., 2019; Chen H.-Y. et al., 2023;
Govreen-Segal and Nakar, 2023). Hotokezaka et al. (2019) estimate
that 15 more localized GW170817-like events (with comparable
signal-to-noise ratio and favorable orientation), having radio images
and light curve data, can resolve the current Hubble tension,
as compared to 50–100 GW events necessary in the absence of
radio data. An accurate measurement of the Hubble constant from
standard siren GW cosmology also requires a robust peculiar
velocity correction of the redshift of the host galaxy (Nimonkar and
Mukherjee, 2024).

It is important to note that a substantial fraction of sources
detected by a given GW network over a certain timescale may not
have associated transient electromagnetic counterparts. However,
multi-messenger studies can still be relevant as they provide
advantages related to incorporating host galaxy information. Indeed,
it is possible to carry out a measurement of H0 using a statistical
approach that incorporates the redshifts of all potential host

Frontiers in Astronomy and Space Sciences 09 frontiersin.org

https://doi.org/10.3389/fspas.2024.1386748
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Corsi et al. 10.3389/fspas.2024.1386748

galaxies within the GW three-dimensional localization region
(Chen et al., 2018). This technique yields an H0 measurement
that has a greater uncertainty than that which can be achieved
via direct counterpart identifications, but still informative once
many detections are combined (Chen et al., 2018). The statistical
approach also implies that, in the absence of a counterpart,
only those GW events with small enough localization volumes
yield informative H0 measurements. Another proposed statistical
technique exploits the clustering scale of the GW sources with
galaxies of known redshift, and will be applicable also to the
high redshift GW sources detectable with next-generation GW
detectors (Mukherjee et al., 2021b; Cigarrán Díaz and Mukherjee,
2022; Mukherjee et al., 2022). In summary, with GW detectors of
improved sensitivity able to observe farther and to localize better,
galaxy surveys and statistical approaches for the measurement ofH0
are likely to becomemore andmore relevant (Ye and Fishbach, 2021;
Borghi et al., 2023; Dalang and Baker, 2023; Ghosh et al., 2023). In
the era of next-generationGWdetectors, other statistical techniques
that do not require host galaxy information nor electromagnetic
counterpart identifications may complement the constraints on
cosmology as determined via these MMA techniques, particularly
for the population of BH-NS mergers (Colombo et al., 2023;
Shiralilou et al., 2023).

3 New frontiers in MMA

NSs and stellar-mass BHs, in isolation, in binary systems, and/or
overall as populations, can be sources of GW signals that are
very different from the compact binary merger signals already
detected by LIGO and Virgo. We have mentioned some of these
signals in the context of the nature of the post-merger remnant
question left open by GW170817 (Section 2.4). Here, we expand our
discussion to a zoo of yet-to-be-detected signals that may reveal
the physics behind a suite of extreme astrophysical phenomena,
and open new ways of doing MMA that include inference of
population properties via correlations between the GW signals
and other (electromagnetic) observables such as galaxy counts
and the cosmic microwave background (e.g., Ando et al., 2013;
Mukherjee et al., 2020b; a; Agarwal et al., 2022; De Lillo et al., 2022;
Balaudo et al., 2023; De Lillo and Suresh, 2023; De Lillo et al., 2023;
Perna et al., 2023; Yang et al., 2023).

Rotating NSs are thought to produce quasi-periodic GWs that
can last for millions of years (and hence are usually referred to
as continuous GWs), arising from time-varying mass quadrupoles
supported by elastic or magnetic stresses (Melosh, 1969), or
current quadrupoles known as “r-modes” (Andersson, 1998;
Lindblom et al., 1998; Glampedakis and Gualtieri, 2018). Accreting
NSs (low-mass X-ray binaries), which are thought to become
millisecond pulsars after accretion ends, can also be driven to
non-axisymmetry by lateral temperature gradients (Bildsten, 1998;
Ushomirsky et al., 2002), internal magnetic distortion (Melosh,
1969; Bonazzola and Gourgoulhon, 1996; Cutler, 2002b), or
magnetic bottling of accreted material (Melatos and Payne, 2005),
hence emitting GWs. Continuous GW emission will help reveal
properties of NSs such as composition (EoS), internal magnetic
field, and viscosity, in addition to unveiling NSs that cannot be
observed electromagnetically (e.g., Bonazzola and Gourgoulhon,

1996; Bildsten, 1998; Owen et al., 1998; Andersson and Kokkotas,
2001; Owen, 2005; Glampedakis and Gualtieri, 2018; Gittins et al.,
2021; Morales and Horowitz, 2022; Riles, 2023, and references
therein). Current searches for continuous GWs produced by
spinning NSs with asymmetries improve with every LIGO-
Virgo-KAGRA run (e.g., Abbott et al., 2022c) and dozens of
known millisecond pulsars could come into the reach of next-
generation GW detectors (Woan et al., 2018; Gupta et al., 2023a;
Evans et al., 2023), with the potential of many more thanks to
upcoming or next-generation electromagnetic facilities such as
the next-generation Very Large Array (ngVLA; Murphy and
ngVLA Science Advisory Council, 2020) and the Square Kilometre
Array (Kalogera et al., 2019; Evans et al., 2023; Pagliaro et al., 2023;
Riles, 2023; Wette, 2023). Detection by next-generation instruments
also looks promising for bright low mass X-ray binaries such as
Scorpius X-1 (Gupta et al., 2023a; Evans et al., 2023).

Impulsive, energetic NS events other than binary mergers can
also produce bursts of GWs. For example, magnetar γ-ray flares
(possibly accompanied by FRBs; Abbott et al., 2022d; Abbott et al.,
2022d; Ball and Frey, 2023) and pulsar glitches (e.g., Abbott et al.,
2022a) are the targets of current searches for GW signals in LIGO-
Virgo-KAGRA data. While near-future detector upgrades could
probe GW signals expected in the most optimistic scenarios (Corsi
and Owen, 2011), next-generation GW observatories are likely to
probe a wider range of possible GW outcomes (Evans et al., 2023).
We stress that the detection of normal modes of NSs such as so-
called “f-modes” will measure the cold NS EoS and masses of a
population different from that seen in compact binary mergers, and
combined with electromagnetic observations will yield information
on internal magnetic fields (Evans et al., 2023).

Core-collapse supernovae are also thought to generate bursts
of GWs from the dynamics of hot, high density matter in their
central regions. Next-generation GW detectors are expected to
be sensitive to supernovae within the Milky Way and its satellite
galaxies (Kalogera et al., 2019; Srivastava et al., 2019; Szczepańczyk
and Zanolin, 2022; Evans et al., 2023; Gossan and Hall, 2023),
while some extreme supernovae, such as collapsars with cocoons,
could generate GWs that could come into reach with current
generation GW detectors (e.g., Siegel et al., 2022; Abbott et al.,
2020b; Gottlieb et al., 2023, and references therein). The detection
of a core-collapse event in GWs would provide a unique channel
for observing the explosion’s central engine and the (hot) EoS
of the newly formed compact remnant. A nearby supernova
could also provide a spectacular multi-messenger event via a
coincident neutrino detection (e.g., Bionta et al., 1987; Janka, 2017;
Chang et al., 2022; Abbasi et al., 2023; Guarini et al., 2023).

Finally, a stochastic GW background can be generated by a
large variety of phenomena of cosmological (Caprini and Figueroa,
2018) and/or astrophysical origin. The detection of a cosmological
stochastic background would be of fundamental importance for our
understanding of the early Universe. While current GW detectors
are not optimized for the detection of a stochastic background
of cosmological origin, a fraction of the parameter space in
various scenarios is compatible with a detection by future detectors
(Caprini et al., 2016; Caprini and Figueroa, 2018; Barish et al.,
2021). Astrophysical backgrounds contain key information about
the distribution of mass, redshift, and other properties of their
corresponding source populations (e.g., Mukherjee and Silk, 2020;
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Yang et al., 2021). The merger rate of NS-NS mergers as estimated
from current observations suggests that distant, unresolvable binary
NSs create a significant astrophysical stochastic GW background
(Abbott et al., 2018b), adding to the contribution from BH-BH
and BH-NS binaries. In addition to compact binary coalescences
of BHs and NSs, rotating NSs, magnetars, and core-collapse
supernovae can all contribute sub-dominant stochastic backgrounds
(e.g., Owen et al., 1998; Ferrari et al., 1999; Buonanno et al., 2005;
Regimbau and de Freitas Pacheco, 2006; Regimbau, 2011; Rosado,
2012; Renzini et al., 2022). Overall, the ability to detect and
subtract GW foregrounds, and to detect sub-dominant stochastic
backgrounds, is critical to unveil potential new avenues for
MMA using stochastic GW signals (e.g., Biscoveanu et al., 2020a;
Sachdev et al., 2020b; Sharma andHarms, 2020;Mukherjee and Silk,
2021; Zhou et al., 2022; Bellie et al., 2023; Zhong et al., 2023).

4 Discussion

As discussed in Section 2.1, going from one GW170817-like
event to ∼10 well-localized NS-NS mergers detected in GWs and
enjoying extensive electromagnetic follow-up represents a goal of
the utmost importance for the current generation of ground-based
GW detectors. It is also critical that the observational resources
required to carry out a systematic electromagnetic follow up of
NS-NS and BH-NS systems remain available. In fact, in the case of
GW170817, observations from radio to γ-rays involving space-
based and ground-based detectors with field of views (FOVs)
ranging from tens of square degrees to a fraction of a square degree
(Abbott et al., 2017e, and references therein), all proved essential
to shed light on the different ejecta components (from the slow
neutron-rich debris powering the kilonova to the structured jet
emitting from radio to X-rays; e.g., Burns, 2020; Margutti and
Chornock, 2021, and references therein). Going forward, it is clear
that the more GW detectors improve their localization capabilities,
enabling deep follow-up observations across the electromagnetic
spectrum with instruments of different FOVs (Figure 7),
the larger the impact of new GW detections on the
field of MMA.

Improvements in sensitivity to ground-based GW detectors
will enable us to reach a GW localization accuracy of ≈10 deg2

(matched to the field of view of the Vera C. Rubin Observatory,
hence greatly simpifying the hunt for kilonoave; Ivezić et al., 2019;
Andreoni et al., 2022; Gupta et al., 2023b; Figure 7) for hundreds
to thousands of NS-NS mergers per year with median redshifts
of zmedian ≈ 0.15 for networks containing three 4 km-long LIGO
detectors at sensitivities comparable to that of the so-called A#
configuration (the ultimate performance of current LIGO detectors
envisioned for the post-O5 era; Fritschel et al., 2023); zmedian ≈ 0.2
for networks containing at least one next-generation GW detector
(with sensitivity ≈10× that of the LIGO detectors in their projected
O5 configuration); and up to a zmedian ≈ 0.6 for an international
network with three next-generation GW detectors. A network of
ground-based GW detectors including one (three) next-generation
instrument(s) could enable localizations of tens (hundreds and up
to ∼103) of nearby NS-NS mergers per year to ≲ 1 deg2 (Figure 7;
see also Evans et al., 2023; Gupta et al., 2023a). This, in turn,
will allow sensitive tiling observations of the GW error regions

with radio (and X-ray) telescopes (such as the ngVLA), as well
as IR telescopes (such as Nancy Grace Roman Space Telescope;
McEnery, 2019), independently of a previous identification of
an optical counterpart via larger FOV optical telescopes. This
capability is likely to prove critical to probe the higher-mass NS-
NS and BH-NS systems that may be characterized by red and
dim kilonovae, but still be accompanied by (potentially off-axis)
radio-to-X-ray jet afterglows (Chase et al., 2022; Gupta et al., 2023b;
Andreoni et al., 2024).

It is fundamental to realize that the same improvement in
sensitivity that enables GW detectors in a network to localize
nearby compact binary mergers to exquisite accuracy (as discussed
above), also enables such detectors to see farther compact binary
merger events extending the reach of MMA to higher redshifts
(see Sections 2.2, 2.5, 2.6 and Figure 7), as well as to unveil
new sources of GW emission (see Sections 2.1, 2.4, 2.3, and 3).
Indeed, as evident from the maximum redshift in the distributions
in Figure 7, only networks of next-generation detectors can
extend the reach of GWs to the peak of star formation (z ≈ 1–2)
for GW events localized to ≲ 10 deg2. Space missions such as
Fermi and Swift, Roman, and future NASA programs focused
on the transient and time-variable Universe, are key to ensure
continued progress in the electromagentic follow-up of these events
(National Academies of Sciences, Engineering, and Medicine, 2023;
Sambruna et al., 2023). From the ground, the Rubin Observatory,
the Extremely Large Telescopes, and the ngVLA will provide follow-
up capabilities for GW events that are key to enable MMA to reach
its full potential over the next decade and beyond (Beasley et al.,
2019; Chornock et al., 2019; Corsi et al., 2019; Lazio et al., 2019;
Murphy et al., 2023; National Academies of Sciences, Engineering,
and Medicine, 2023). The IceCube-Generation 2 neutrino
observatory will help constrain emission models for high-
energy neutrinos in nearby NS-NS mergers and potentially
open the way for discoveries across three different messengers
(Aartsen et al., 2021; National Academies of Sciences, Engineering,
and Medicine, 2023; Mukhopadhyay et al., 2024). Multi-band
GW data sets formed with the LISA space-based GW detector
can also impact MMA studies of compact binary mergers
(see Sesana, 2016; Vitale, 2016; Amaro-Seoane et al., 2023, and
references therein).
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