

1 **Competition and habitat availability interact to structure arboreal ant communities across**
2 **scales of ecological organization**

3

4 Benjamin J. Adams^{1,*}, Evan M. Gora^{2,3}, Matina C. Donaldson-Matasci⁴, Elva J. H. Robinson⁵, Scott
5 Powell¹

6

7 1. Department of Biological Sciences, George Washington University, Washington, DC, USA

8 2. Smithsonian Tropical Research Institute, Balboa, Panama

9 3. Cary Institute of Ecosystem Studies, Millbrook, NY, USA

10 4. Department of Biology, Harvey Mudd College, Claremont, CA, USA

11 5. Department of Biology, University of York, York, UK

12

13 * Corresponding author: b.maxadams@gmail.com

14 **Abstract**

15 Understanding how resource limitation and biotic interactions interact across spatial scales is
16 fundamental to explaining the structure of ecological communities. However, empirical studies
17 addressing this issue are often hindered by logistical constraints, especially at local scales. Here, we use a
18 highly tractable arboreal ant study system to explore the interactive effects of resource availability and
19 competition on community structure across three local scales: an individual tree, the nest network created
20 by each colony, and the individual ant nest. On individual trees, the ant assemblages are primarily shaped
21 by availability of dead wood, a critical nesting resource. The nest networks within a tree are constrained
22 by the availability of nesting resources but also influenced by the cooccurring species. Within individual
23 nests, the distribution of adult ants is only affected by distance to interspecific competitors. These findings
24 demonstrate that resource limitation exerts the strongest effects on diversity at higher levels of local
25 ecological organization, transitioning to a stronger effect of species interactions at finer scales.
26 Collectively, these results highlight that the process exerting the strongest influence on community
27 structure is highly dependent on the scale at which we examine the community, with shifts occurring even
28 across fine-grained local scales.

29

30 **Keywords:** community ecology, habitat filtering, competition, resource limitation, species coexistence

31 **Introduction**

32 Resource-mediated habitat filtering and competition are expected to interact in the structuring of
33 ecological communities [1-3]. The resources available in a habitat set the foundation for which species can
34 live there, based on the fundamental niche and minimum resources required for long-term persistence of
35 each species [4, 5]. For each species that finds suitable resources, their persistence in the community can
36 then be challenged by competition, potentially leading to exclusion [6-8]. Considerable work has focused
37 on detecting the signatures of habitat filtering, competition, and their interactions at large spatial scales
38 [9, 10]. Such work summarizes broad hierarchical patterns across a diversity of habitats, with habitat
39 filtering generally being more important at large scales but with the balance shifting to competition at
40 finer scales. However, the direct mechanisms underlying patterns of diversity are frequently obscured at
41 broader spatial scales [11, 12]. At the other extreme, local spatial scales provide opportunities to directly
42 link known resource usage and competitive interactions among individuals with observable community
43 patterns [13, 14]. Nevertheless, studies that address the relative importance of resource availability and
44 competition in structuring communities across multiple local scales are rare (but see work with
45 communities in pitcher plants [15] and rock pools [16]). Filling this knowledge gap is critical for
46 understanding the extent to which local processes and their interactions scale to influence the structure of
47 ecological communities [14, 17].

48 At local spatial scales, the influences of resource availability and biotic interactions on community
49 structure are thought to be spatially dependent and complex [14]. Available resources often occur in
50 discrete patches that limit access for species in the community, especially if dispersal to new resources
51 patches is challenging [18, 19]. Although frequently simplified to pairwise, linear interactions between
52 species [20], communities generally exist as an assemblage of multiple species differentially interacting
53 across space [21, 22]. Indeed, how species use and partition resources in space is often complex and
54 variable at local scales, but one common and understudied context is when individuals acquire resources
55 and grow via establishing and expanding networked patches or nodes of resources. Examples of network
56 patterns of resource acquisition and use span such disparate systems as fungal hyphae and root networks
57 [23] and the foraging and multi-nest networks of social insect colonies [24-26]. Competition in these
58 cases then plays out via interactions between abutting or intertwined networks, with any pattern of
59 network growth facing an array of competitive pressures from multiple species and locations

60 simultaneously. How resource distribution, network growth, and competitive interactions shape local-
61 scale patterns of coexistence should thus be highly dependent on fine-scale spatial relationships. Systems
62 that incorporate these layers of local community interactions should then be ideal for addressing the
63 broader knowledge gap of how local processes scale to community level influences.

64 Arboreal ant communities are particularly tractable systems for studying the interactions between
65 resource availability and competition in the context of growth via discrete expansion of resource networks
66 [27]. Individual trees function as the primary habitat patches for arboreal ants to colonize and compete
67 over. This is true even within dense forest environments, due to the phenomena of crown shyness and
68 because arboreal ants rarely leave the crowns of trees [28, 29]. As a result, arboreal ant communities
69 within an individual tree typically act as isolated “island-like” communities following classic species-area
70 relationships [30-32]. Within a tree, resident colonies of ants also compete fiercely for a limited number
71 of pre-existing nesting cavities [33-36]. Each colony must acquire and defend multiple nest sites, without
72 the capacity to make more themselves, in order to grow and successfully reproduce [37, 38], building a
73 nest network as they do so. Finally, individual nests, which represent the finest spatial scale, vary in
74 properties of quality [39] and defensibility [38, 40], as well as in the competitive pressures they face [41].
75 Colonies must make collective decisions about which individual cavities they use within the resource-
76 limited and highly competitive environment they occupy, and how they allocate colony members to a nest
77 to maximize overall colony growth and reproduction [38, 39, 41].

78 Here we use an arboreal ant study system, where growth is via network expansion, to explore the
79 interactive effects of resource availability and competition on community structure at multiple spatial
80 scales. More specifically, we focus on the following three local scales: 1) a discrete resource patch,
81 represented by the whole tree; 2) resource networks built by organisms, represented by the within-tree
82 nest networks of the resident ant colonies; and 3) an individual resource within a network, represented by
83 the individual nest. Our central hypothesis is that resource availability has an overarching influence on
84 local community structure, and that species interactions emerge as more important at finer-grained local
85 scales. We tested this hypothesis by surveying arboreal ant communities, quantifying nest site availability,
86 mapping the spatial distribution of nests, and quantifying the contents of individual nests. At the patch-
87 scale, we evaluated how the availability of resources and the competitive context on whole trees influences
88 the ant community. At the scale of the resource network, we mapped nest networks and evaluated how

89 these are shaped by tree characteristics, ant species, and competitive context. Finally, at the scale of an
90 individual resource or node within a resource network, we examined how competition and habitat
91 limitations influenced the populations of adult ants and brood within individual nests. We expect that
92 resource availability will be more important than competition for determining ant community metrics,
93 such as species richness and nest abundance, measured at the scale of an individual tree. In contrast we
94 expect competition to determine nest selection and ant distribution, with less competitive ant species
95 selecting nest sites and distributing adult ants and brood further away from competitors. Taken together,
96 these detailed data across multiple spatial scales provide an integrative approach to identifying how local
97 resource availability and competition shape community structure, including richness, composition, and
98 physical location within a habitat.

99

100 **Methods**

101 Study Site and focal species

102 We conducted all field work at the Dagny Johnson Key Largo Hammock Botanical State Park in
103 Key Largo, Florida, USA (25.178°N, 80.366°W; hereafter Dagny State Park). The Florida Keys are marked
104 by a mild subtropical climate with mean monthly temperatures ranging between 17.9C – 31.9C with
105 approximately 101.2cm of precipitation annually ([https://climatecenter.fsu.edu/products-
106 services/data/1981-2010-normals/key-west](https://climatecenter.fsu.edu/products-services/data/1981-2010-normals/key-west)). Dagny State Park was established in 1982 and hosts the
107 largest remnant in the United States of West Indian hardwood hammock forest [42-44].

108 The hardwood hammock forests of the Florida Keys present a novel opportunity to work in an
109 arboreal ant system the overcomes many of the logistical constraints of other arboreal ant communities.
110 For example, in the highly diverse tropical forest habitats where most arboreal ant research has focused,
111 felling trees [45] or specialized equipment and training [46-48] are required simply to access the nesting
112 ecology of the ants. Across all tropical habitats, including those that are more accessible, community
113 diversity of more than a hundred species and tree-level diversity of 20 species or more [30, 32, 40, 49]
114 remains a challenge for understanding detailed species interaction or resource requirement. In contrast,
115 the hardwood hammock forests of the Florida Keys is a species rich ecosystem of conservation concern
116 [43] that has a low and easily accessible canopy (does not exceed 10m and is frequently <6m; Figure S1)
117 [42]. While the arboreal ant diversity is reduced compared to tropical habitats, tropical arboreal ant

genera are still well-represented in the full community [50], and all species rely on the same nesting resource for growth and reproduction: hollow cavities in dead stems that are often the abandoned feeding tunnels of wood boring beetles [51]. Capturing all fine-grained local scale interactions for even this reduced community of Florida Keys hammock forest could be overwhelming logically, but most ant communities are dominated by a smaller subset of especially abundant species that capture an array of competitive interactions. Our surveys revealed four especially common species in the hammock forest system that will be our focus here. In addition to high colony incidence across surveyed trees, including frequent cooccurrence (below), these four species also represented contrasting ecology within the larger community. Thus, while this study is not an exhaustive study of the full arboreal ant community in the system, it uses the most abundant players in the community that span an array of potentially generalizable interactions and outcomes. Our four focal species are as follows: (1) *Pseudomyrmex ejectus* and (2) *Pseudomyrmex simplex*, which are established native species that share similar niche space [52-54]; (3) *Pseudomyrmex gracilis*, which is a disruptive non-native with invasive potential [55, 56]; and (4) *Cephalotes varians*, a native species with known defense specialization in its use of nesting resources [57-59].

133

134 Identifying ant colonies and nest locations

We used a combination of multiple baiting and hand collecting methods [38, 60] to document ants foraging and nesting on 176 individual poisonwood trees (*Metopium toxiferum*) in relatively open areas of the hammock forests, in which individual trees are typically physically isolated from other trees. We specifically targeted trees that were not embedded in the larger forest canopy to eliminate any potential connectivity between neighboring crowns and ensure that the only ants foraging at baits were nesting within the tree [32, 61]. Baits (a combination of ~140g of canned chicken and ~60ml of honey with urine added as an additional attractant for *C. varians*) were placed throughout the entire crown of each tree at 12:00 and were examined and refreshed until 21:00 in order to document activity of both the diurnal (*P. ejectus*, *P. gracilis*, and *P. simplex*) and nocturnal species (*C. varians*). We selected a subset of the trees (n = 31) based on ease of access to the entire crown of the tree and a stratified sampling of tree sizes, and we then tracked foraging ants back to their nests. This method was used to locate all nests of all four of our focal species on each tree and to look for aggressive interactions among conspecifics at baits to

147 ensure all conspecific ants within a tree were from the same colony [38]. Voucher specimens of all ants
148 found at baits or on any other part of the tree were collected and stored in 95% ethanol to be identified in
149 the lab using keys and voucher specimens [62]. It is worthwhile to note that, within the genera of interest,
150 only our focal species of *Cephalotes* is found in the system, and that only our three focal species of the
151 genus *Pseudomyrmex* were found on our study trees in the hammock forest, even though other members
152 of the genus are found in the FL Keys more generally [50].

153

154 Measurements across local spatial scales

155 *Resource patch scale: whole tree*

156 For each tree included in the initial survey, GPS coordinates were recorded, and the diameter of
157 the trunk at 10cm above the ground was measured. Although diameter at breast height (1.3 m above the
158 ground) is a more common measure, nearly all of the trees in this forest branch below breast height
159 (average distance to first branch = 83.6cm; range = 10cm – 173cm in present study). We used the diameter
160 measured at 10cm to calculate basal area ($BA = \pi(D/2)^2$) as a proxy for tree size and an estimate of the
161 total resource patch size for the local ant community [30, 63].

162 For each tree, we also quantified the total amount of dead wood (i.e., the nest resources available
163 to the ant community) in the crown using three methods that required increasing degrees of time and
164 effort in the field but provide increasing resolution of the total resource availability. First, using visual
165 surveys conducted by at least two individuals, we estimated the total percent dieback for each tree crown
166 to the nearest 5% and took the average between the two when different [64]. We multiplied this
167 percentage by the basal area to produce a weighted proxy of available resources that accounted only for
168 dead wood (i.e., the actual nesting resource). We also counted the total number of dead stems present in
169 each tree crown. Finally, we quantified the total volume of dead wood in each tree by measuring every
170 piece of dead wood by hand and calculating individual stem volume using Newton's Formula ($L(A_{base} +$
171 $4A_{middle} + A_{tip})/6$) which was then summed for the whole tree [65].

172 *Resource network scale: nest network*

173 In ant nest networks, reducing the number of nodes or junctions that an individual ant has to
174 traverse may be more important for travel time than reducing physical distances between nests [24, 66,
175 67]. Therefore, we measured all possible paths between every nest and all other nests in a tree, recording

176 all intervening junctions between nest pairs (e.g., branching forks in a tree stem, vines crossing a tree
177 stem, two stems crossing each other, or leaves from one stem touching another branch) to generate two
178 distance measurements: the shortest physical distance between nest pairs and the smallest number of
179 junctions between nest pairs. Physical distance was measured as the minimum distance an ant needs to
180 walk between two nests (in cm) and “junction distance” was measured as the fewest number of junctions
181 encountered along any path between two nests. These measurements each produce two types of nest
182 networks: 1) a community-wide nest network for a tree that includes all ant nests and 2) an intraspecific
183 nest network for each resident ant species that connects only nests within a colony together.

184 *Individual resource scale: individual nests*

185 For every stem containing an ant nest, we calculated stem volume using Newton’s Formula as
186 described above and then destructively harvested the stem at the end of the study. To harvest, we visited
187 each nest at a time of day when each target species was not active, sealed all nest entrances, and then
188 removed the entire stem from the tree. This ensured all colony members were in their respective nests at
189 the time of collection, and none escaped subsequently. Collected nests were shipped overnight back to the
190 lab where they were immediately frozen at -20°C. All nests were dissected in the lab and the contents were
191 quantified. Specifically, for each nest we confirmed the identity of the resident species and counted all
192 eggs, larvae, worker pupae, soldier pupae, queen pupae, workers, soldiers, alate queens, dealate queens,
193 and males.

194

195 Statistical Analyses

196 *Whole tree analyses*

197 We tested how tree characteristics shaped the arboreal ant community at the scale of an
198 individual tree. We used linear regression to explore whether ant species richness or total ant nest count
199 across all species in a tree were best predicted by each of tree basal area, crown dieback-weighted basal
200 area, total dead stem count, or total dead wood volume. The four predictor variables were highly
201 correlated (correlation coefficient > 0.62) so we separately modeled each predictor for both species
202 richness and total nest count (8 total models) and evaluated model fit by comparing AIC values (Table S1).

203 Individual ant species could also respond differently to tree characteristics and to the presence of
204 other ant species on a tree. To explore this, we created four separate linear models each of eight different

205 response variables: a binary presence/absence variable for each of the four focal ant species (4 response
206 variables) or the total nest count in a tree for each species (4 response variables). All models included four
207 predictors; three variables reporting total nest counts for the non-focal species of the analysis along with
208 one of the four tree characteristic metrics listed above (32 models in total). For the presence/absence
209 tests, we used generalized linear models with binomial errors and a log link function [68]. We reduced the
210 models using backwards stepwise AIC selection [69] and AIC comparisons were used to determine best
211 model fit. Final models for all 32 tests are provided in Table S2.

212 *Nest network analyses*

213 We explored how the network of all ant nests within a tree was shaped by tree-level
214 characteristics and the composition of the local ant community. We constructed six linear models with
215 one of two response variables: the average physical distance or the average junction distance between any
216 two nests in a tree. All models included five predictors; four predictors representing number of nests
217 occupied by each of the four focal species, and a fifth predictor related to one of three metrics of dead
218 wood availability within each tree (weighted basal area, dead twig count, or total dead wood volume). To
219 explore how the nest networks of each focal species responded to tree characteristics and the presence of
220 other ant species, we evaluated another 24 models with the same set of predictors, with the response
221 variables as either the average physical distance or the junction distance among nests of the same species
222 in each tree (intraspecific nest distances). We reduced the models using backwards stepwise AIC selection
223 and AIC comparisons were used to determine best model fit. The final models for each of the tests are
224 provided in Table S3.

225 Individual ant species could also display species-specific spatial nesting patterns. To examine
226 these patterns, we explored differences in pairwise distance between all focal nests within each tree. We
227 expanded the initial data set by adding 19 more trees (n = 50 trees) with complete information on the ant
228 community and nest networks, but lacking complete dead wood data. We documented 365 intraspecific
229 pairwise nest distances split among the four focal ant species (e.g., distance between two *C. varians* nests,
230 two *P. ejectus* nests, two *P. gracilis* nests, or two *P. simplex* nests). We used two linear mixed models with
231 physical or junction distance between two nests as the response variable, nest pair category as the
232 predictor variable (4 levels; one for each species), and Tree ID as a random grouping factor. We used a
233 Tukey's post hoc test to explore differences in means per category.

234 *Individual nest analyses*

235 We first explored whether the mean volume of occupied stems differed among the four focal
236 species and from the mean volume of unoccupied dead stems on a tree. We chose volume because nest
237 quality is generally determined by cavity volume as it dictates how much space there is for colony growth
238 (e.g. Powell and Dornhaus 2013). We fit stem volume as a function of species nest occupancy using a
239 mixed effects ANOVA, where species nest occupancy was a categorical variable with five levels
240 (unoccupied, *Cephalotes varians*, *P. ejectus*, *P. gracilis*, and *P. simplex*). Tree ID was included as a
241 random grouping factor and we used Tukey's post hoc tests to explore any differences among ant species
242 nest selection.

243 We next explored whether the contents of a nest were predicted by stem volume, nesting ant
244 species identity, and distance to the nearest nest of each the four focal ant species (8 predictors; two for
245 each species to account for two different distances measurements) using zero-inflated generalized linear
246 mixed models with negative binomial errors and a log link function. [41]. In each model we included
247 either the total count of the combination of all adult ants and brood, only adult ants, or only brood as the
248 response variable. We selected these metrics as nest defensibility is determined by defensive strategies of
249 individual ant species (Powell 2009, Powell et al 2017, Camarota et al 2020, Priest et al 2021) and
250 competitor pressure depends on the neighborhood of enemies trying to usurp the nest for themselves
251 (Powell et al 2017). Ants will also differentially move their brood and redeploy adult ants based on
252 perceived threat or nest defensibility. We started with 24 models (3 response variables with all models
253 including stem volume, nest ant species identity, and one of 8 distance measures). Model reduction and
254 AIC comparison resulted in all models reducing to only ant species identity and the interaction between
255 species identity and distance to the nearest *P. gracilis* nest as the best fit models. Tree ID was treated as a
256 random grouping variable for all models. We used a Tukey's post hoc test to explore any pairwise
257 differences in nest contents between ant species.

258 All statistical tests were performed in the R environment version 4.2.2 [70] including packages
259 *lme4* [71], *lmerTest* [72], and *glmmTMB* [73]. In all models, metrics of tree size, species richness, network
260 distances, stem volumes, and individual ant counts were log transformed to meet model assumptions
261 where necessary and to match the expectation of a log-log linear relationship between species richness
262 and area measurements [74]. Finally, we confirmed normality for all parametric models using Shapiro-

263 Wilk tests on model residuals and performed residual diagnostics to confirm models conformed to model
264 assumption using *DHARMA* [75].

265

266 **Results**

267 *Resource patch scale: whole tree*

268 At the scale of discrete resource patches, whole trees with more nesting habitat had more ant
269 nests and ant species, but species richness was not related to tree size. Specifically, trees with larger basal
270 areas and more dead stems had more ant nests, but only dead stem count predicted variation in ant
271 species richness. Basal area alone did not predict the number of ant species (Figure 1; Table S1). Of the
272 three metrics of dead wood availability, the number of dead stems in a tree was the best predictor of both
273 species richness and total nests (Table S1).

274 The four focal ant species responded differently to nesting resource availability and potential
275 species interactions. *Cephalotes varians* was influenced only by nesting resource availability, with its
276 likelihood of being present on a tree higher in trees with more dead wood, with weighted basal area
277 specifically functioning as the best predictor (Figure S2; Table S2). By contrast, the two native small-
278 bodied *Pseudomyrmex*, *P. ejectus* and *P. simplex*, were influenced only by the presence of other ant
279 species. These two species generally did not co-occur, but when both were present in a tree, the number of
280 nests of the two species were negatively associated (Figure S3). Additionally, *P. ejectus* frequently co-
281 occurred with *C. varians*, whereas *P. simplex* had a lower frequency of occurrence in trees that also hosted
282 the non-native *P. gracilis* (Figure S4a and S4b; Table S2). *P. gracilis* was influenced only by resource
283 availability, establishing more nests in trees with a higher volume of dead wood (Figure S5; Table S2).

284 *Resource network scale: nest network*

285 For the resource network scale, both habitat availability and the presence of specific ant species
286 shaped the community-wide nest network formed by all resident colonies on a tree. Specifically, both the
287 physical distance and junction distance between any two nests in a tree increased with increasing dead
288 wood availability, with dead stem volume acting as the best predictor for physical distance (Figure 2a) and
289 dead stem count as the best predictor for junction distance (Figure 2b; Table S3). In addition, the average
290 physical distances between ant nests in a tree was higher in trees with more *Cephalotes* nests (Figure 2c).

291 The intraspecific nest networks of individual ant species responded differently to resource versus
292 competitor pressures. The nest networks of *P. ejectus* and *P. simplex* were more spread out in trees with
293 greater dead wood volume (both physical and junction distances for *P. ejectus* and physical distances for
294 *P. simplex*; Figure 3a and 3b; Table S3). *Cephalotes* and the two native *Pseudomyrmex* species also
295 responded to competitor abundance. Specifically, the average intraspecific nest distances for both *C.*
296 *varians* and *P. simplex* was smaller in trees with greater numbers of *P. gracilis* nests (Figure 3c and 3d;
297 Table S3). *Pseudomyrmex ejectus* also had a more clustered nest network in trees with more *C. varians*
298 nests (Figure 3e; Table S3), whereas *P. simplex* had a less clustered nest network in trees with *C. varians*.
299 Neither resource variables nor other ant species influenced the intraspecific distances among *P. gracilis*
300 nests.

301 Measuring all intraspecific pairwise nest distances also revealed species-specific nesting patterns.
302 *Cephalotes varians* and *P. ejectus* nests were, on average, more closely clustered together in space (both
303 physical and junction distances) than the nests of *P. gracilis* or *P. simplex* (Figure S6; global tests – $F_{3,355}$
304 > 7.62 , $p < 0.0006$; TukeyHSD – $z > 2.67$, $p < 0.04$).

305 *Individual resource scale: individual nests*

306 At the scale of an individual resource, defined by an individual ant nest within a nest network, *C.*
307 *varians*, *P. ejectus*, and *P. gracilis* all nested in stems that were of similar size and were larger than the
308 average unoccupied dead stem on a tree (Figure S7). In contrast, *P. simplex* nested in smaller stems that
309 were similar to average size of unoccupied dead stems on a tree (Figure S7; TukeyHSD – $z > 2.94$, $p <$
310 0.02). Exploring nest contents revealed that *C. varians* had more adult ants per nest than *P. ejectus* or *P.*
311 *gracilis* (Figure S8; TukeyHSD – $z > 3.01$, $p < 0.02$). In addition, *C. varians* and the two native
312 *Pseudomyrmex* ants showed consistent patterns for how they distributed brood and adult ants relative to
313 their proximity to a *P. gracilis* nest (Table S4). Specifically, *C. varians* had fewer total ants and brood in
314 nests that were only a few junctions from the nearest *P. gracilis* nest (Figure 4a), and *P. simplex* had fewer
315 total ants and brood in nests that were physically closer to *P. gracilis* nests (Figure 4b). By contrast, *P.*
316 *ejectus* had more ants and brood in nests closer to nests of *P. gracilis* measured by both physical and
317 junction distance (Figure 4c and 4d).

318

319 **Discussion**

320 Our results broadly support our central hypothesis that resource availability has an overarching
321 influence on local community structure, and that species interactions emerge as more important at finer-
322 grained local scales. Specifically, we observed that availability of dead wood was the primary driver of ant
323 diversity at the scale of a tree, that the nest network was shaped by interactions between resources and
324 competition, and that the distribution of ants within a nest was entirely driven by competition. Resource
325 limitations and competitive species interactions are frequently proposed as contrasting drivers of diversity
326 in arboreal ant communities [40, 61, 76, 77]. By incorporating multiple spatial scales into this current
327 study, we are able to demonstrate that both processes are acting in tandem and that the strength of their
328 effects is scale dependent. These findings provide rare empirical support for the theoretical and
329 computational framework of habitat characteristics imposing limitations on local diversity prior to [78,
330 79] or in concert with [80, 81] species interactions. The results also further highlight the need to match
331 observations to the scale at which interactions occur, to avoid masking competition and other biotic
332 interactions [13].

333 Species-area relationships are common among taxa and across spatial scales [82], but it is
334 typically unclear what specific resources are underpinning these relationships [83]. At the scale of a whole
335 tree, representing a discrete resource patch, we did not detect a direct relationship between species
336 richness and tree size (basal area) despite this relationship being a common feature of arboreal ant
337 communities [30-32, 45]. We instead detected a species-resource relationship between ant species
338 richness and dead wood availability, suggesting that nest site availability is the specific habitat limitation
339 underlying area-based relationships within this arboreal ant community. We expect that this trend is
340 widespread among arboreal ant communities, and we predict that where species-area relationships exist
341 between tree size and ant species richness, incorporating measurements of nesting resources would better
342 predict diversity patterns. Ultimately, habitable patch area is a proxy for a broad series of scale-dependent
343 resources and ecological processes ranging from likelihood of encounter during dispersal, available food
344 and nest sites, and proximity to competitors [11, 84]. These patterns suggest that habitat limitations on a
345 community can be masked when fine-scale resource availability is not considered [13].

346 Resource availability provides a foundation for determining local diversity and community
347 structure [14, 18] but species interactions and behaviors can mediate the final outcome and dynamics [1,
348 3, 21]. We demonstrate that the arboreal ants in this forest follow these general trends in terms of their

349 resource networks, represented by networked nests that each colony occupies. For example, *C. varians* is
350 a nest defense specialist that typically clusters its nests in a laboratory setting [25] and has a soldier caste
351 that uses an armored head dish to barricade the colony's nest entrances [59]. In a natural setting we
352 demonstrate that, compared to commonly co-occurring species, *C. varians* not only has the most
353 clustered intraspecific nest network, as would be indicative of a species prioritizing defensibility, but also
354 further shrinks its network in the presence of the aggressive, non-native competitor *P. gracilis*. By
355 contrast, *P. gracilis* disperses its nests broadly across a tree crown, as expected of a non-native under less
356 competitive pressure [3, 85, 86]. In addition, *P. simplex* has a broadly dispersed nest network but has a
357 significantly contracted nest network in the presence of *P. gracilis*. Collectively, these observations lend
358 additional support to the idea that *P. gracilis* is using its widely dispersed nesting strategy to limit nest
359 acquisition by other members of the community and that less aggressive native species shrink their nest
360 networks in response to this competitor.

361 Biotic interactions at finer spatial scales can also have meaningful impact on species growth
362 within the community, even when it is not reflective in measurements of species richness or composition.
363 However, the subtle impact of species interactions on growth patterns are frequently impossible to detect
364 without extensive multi-year studies tracking individuals through time [87]. Here, we were able to collect
365 data across local spatial scales, including at the fine-grained local scale of individual resources via
366 distances between nests and the distribution of ants among nests. These data allowed us to demonstrate
367 in a snapshot that the aggressive, non-native *P. gracilis* exerts competitive pressure on *C. varians* and *P.*
368 *simplex* that limits the spatial extent and pattern of colony growth. More specifically, both ants have more
369 clustered networks in trees with *P. gracilis* and tend to have fewer ants and brood in nests near *P.*
370 *gracilis*. In contrast, *P. ejectus* tends to have more ants and brood in nests nearest to *P. gracilis*.
371 Considering *P. ejectus* and *P. simplex* exhibit almost complete competitive exclusion, the distribution of *P.*
372 *ejectus* ants in nests near to *P. gracilis* could arise from a form of competitive release [88, 89] wherein *P.*
373 *gracilis* limits *P. simplex* allowing for *P. ejectus* to better perform nearer to *P. gracilis*. Experimental
374 manipulations of the ant community would be necessary to confirm these observations, but being able to
375 detect these patterns further highlights the value of a multi-scale collection regimens for local community
376 ecology data.

377 The outcome of multispecies interactions on the diversity and stability of ecological communities
378 is notoriously difficult to understand and predict [6, 22, 90]. The majority of work on the subject is
379 carried out in laboratory or mesocosm experiments [19, 91], in plant systems where individuals can be
380 more easily tracked [92, 93], or via simulations [94]. The arboreal ant community of the Florida Keys
381 hammock forests exhibits considerable utility in parsing the outcome of a multispecies interactions in a
382 complex but manageable animal community of conservation concern. The results of this study suggest
383 that while nest site availability is the main determinant of ant species richness and abundance at the scale
384 of a tree, competitive interactions between species shape the spatial distribution of nests within trees and
385 ants within nests. Experiments modifying nest site availability via artificial nest additions [32, 33, 40, 61]
386 and modifying community structure via relocating ants species among trees [35] could provide further
387 evidence for the outcomes recorded here. The arboreal ant community of the Florida Keys presents an
388 opportunity to explore ecological processes across multiple scales of ecological organization in a system
389 that is both accessible and amenable to experimental manipulations. Ultimately, the key to determining
390 the drivers of diversity is matching observations to the scale where interactions occur.

391

392 **Acknowledgements**

393 Jackie Fiore, Parisa Tabiatnejad, and Melody Weber assisted with data collection in the field. Maggie
394 Connolly, Rohit Kotha, Lucille Martin, Casey Robarts, and Christopher Webb helped with nest dissections
395 and counts of nest contents. Chloé Debyser and Valentin Lecheval assisted with code for computing nest
396 spatial distances. We thank Trudy Ferraro and Paul Rice along with the other staff of the Florida
397 Department of Environmental Protection and the Florida State Parks for access to sites and logistic
398 support in Key Largo.

399

400 **Funding**

401 This work was supported by National Science Foundation grants IOS-1755406 awarded to SP, and IOS-
402 1755425 awarded to MCDM, EJHR, with additional support for undergraduate students Lucille Martin
403 and Parisa Tabiatnejad provided by Harlan Research Fellowships from the George Washington University
404 Department of Biological Sciences.

405

406 **Ethics statement**

407 The fieldwork was conducted under permit numbers 03271915, 02122025, and 02152135 from the Florida
408 Department of Environmental Protection, Division of Recreation and Parks.

409

410 **Competing interests statement**

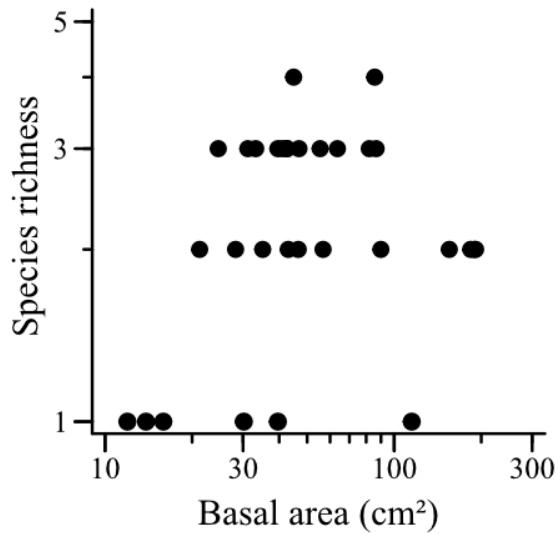
411 All authors declare no conflict or competing interests.

412

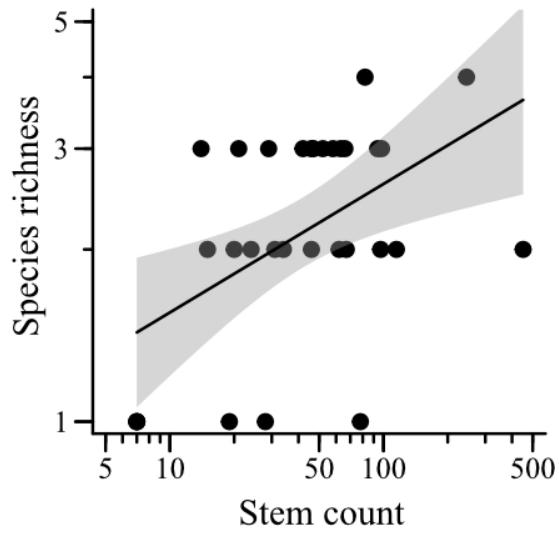
413 **Data accessibility**

414 Adams, Benjamin (2023), Competition and habitat availability interact to structure arboreal ant
415 communities across scales of ecological organization, Dryad, Dataset,
416 <https://doi.org/10.5061/dryad.h70rxwdpr>

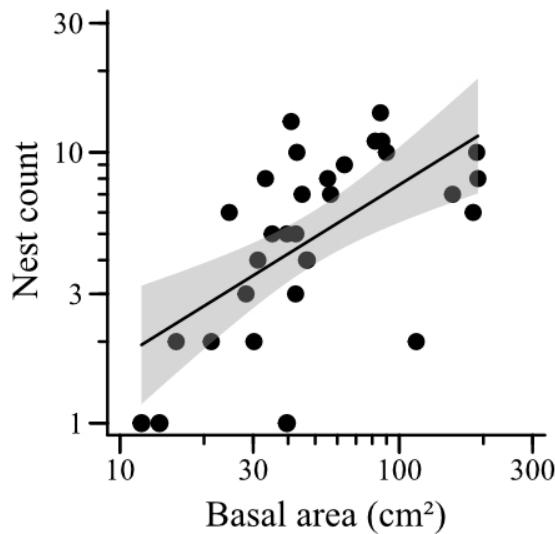
417

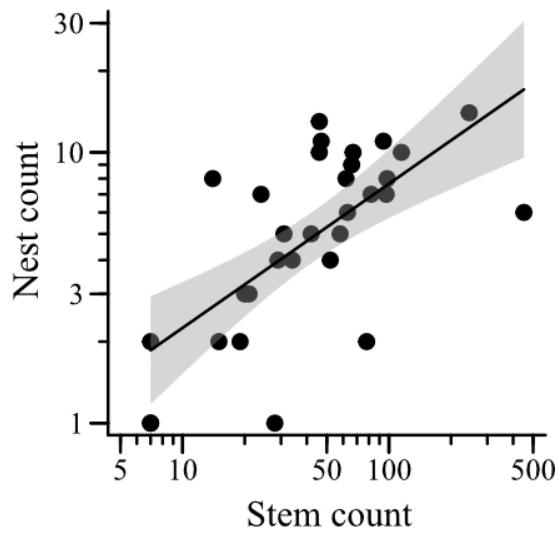

418 **Contributions**

419 BJA, MCDM, EJHR, and SP conceived the project. BJA, EMG, and SP collected field data. EMG
420 developed the dead wood metrics. BJA conducted the analysis with input from EMG, MCDM, EJHR, and
421 SP. All authors contributed to writing and editing the manuscript.


422 **Figure Captions**

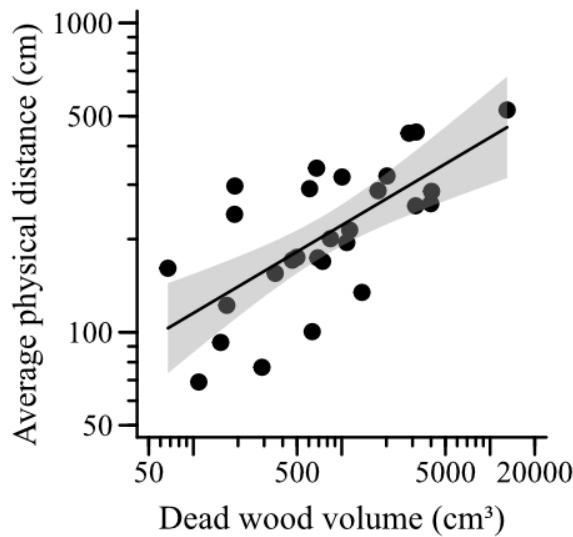
423 Figure 1. The relationships between arboreal ant species richness and total nests across tree basal area
424 (panels A and C) or the total count of dead stems in a tree (panels B and D). Regression lines with 95% CI
425 (shaded region) are included when there is a significant relationship (Table S1). Axes are on log-scales.


A

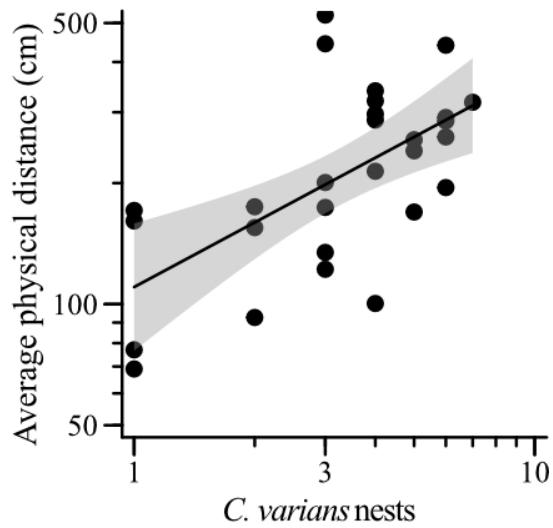

B

C

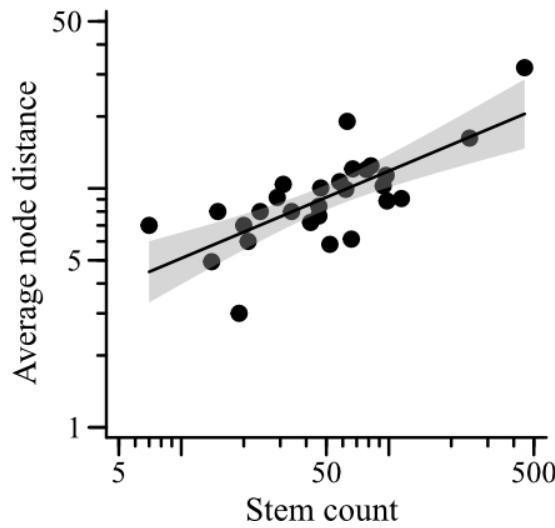
D



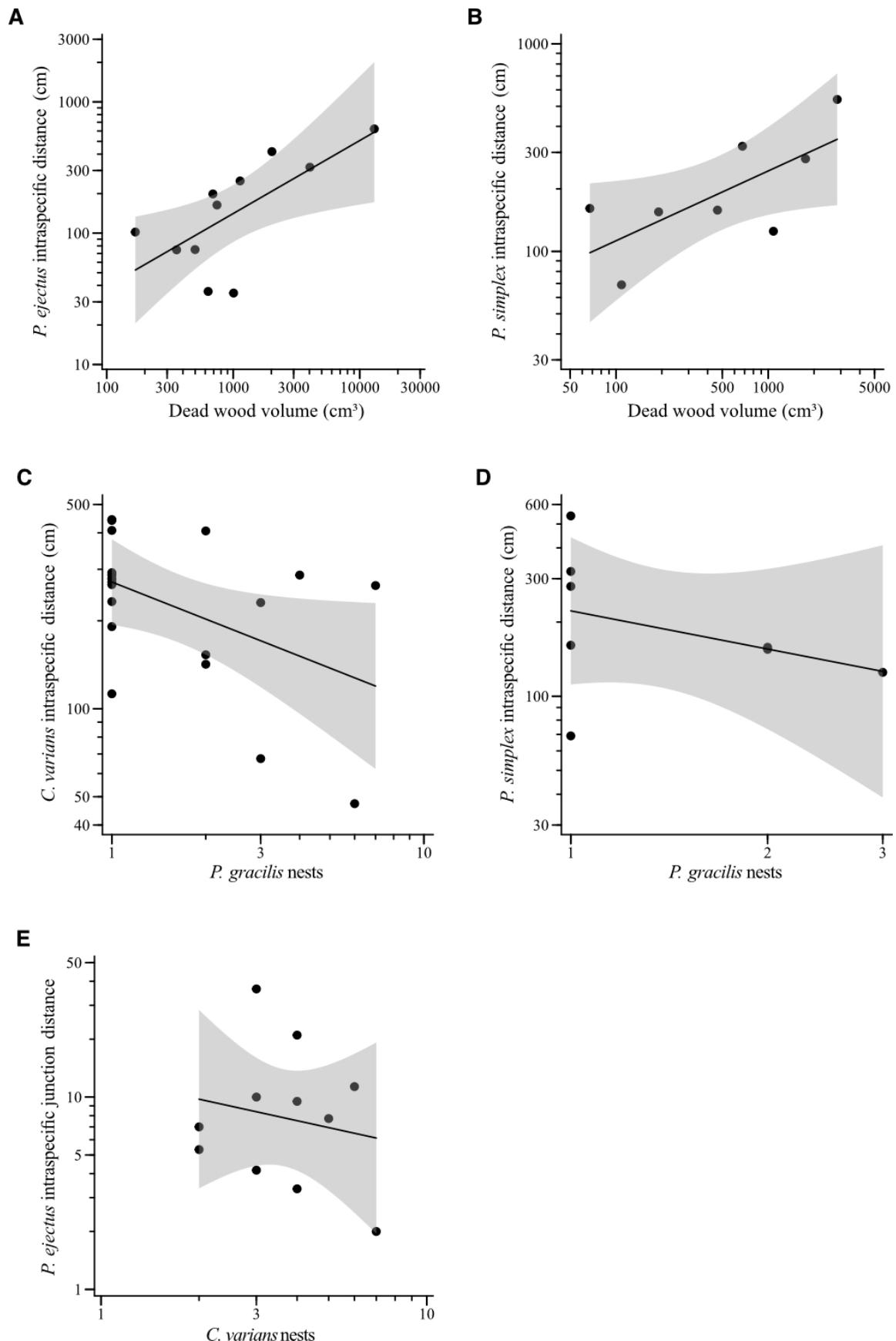
426


427

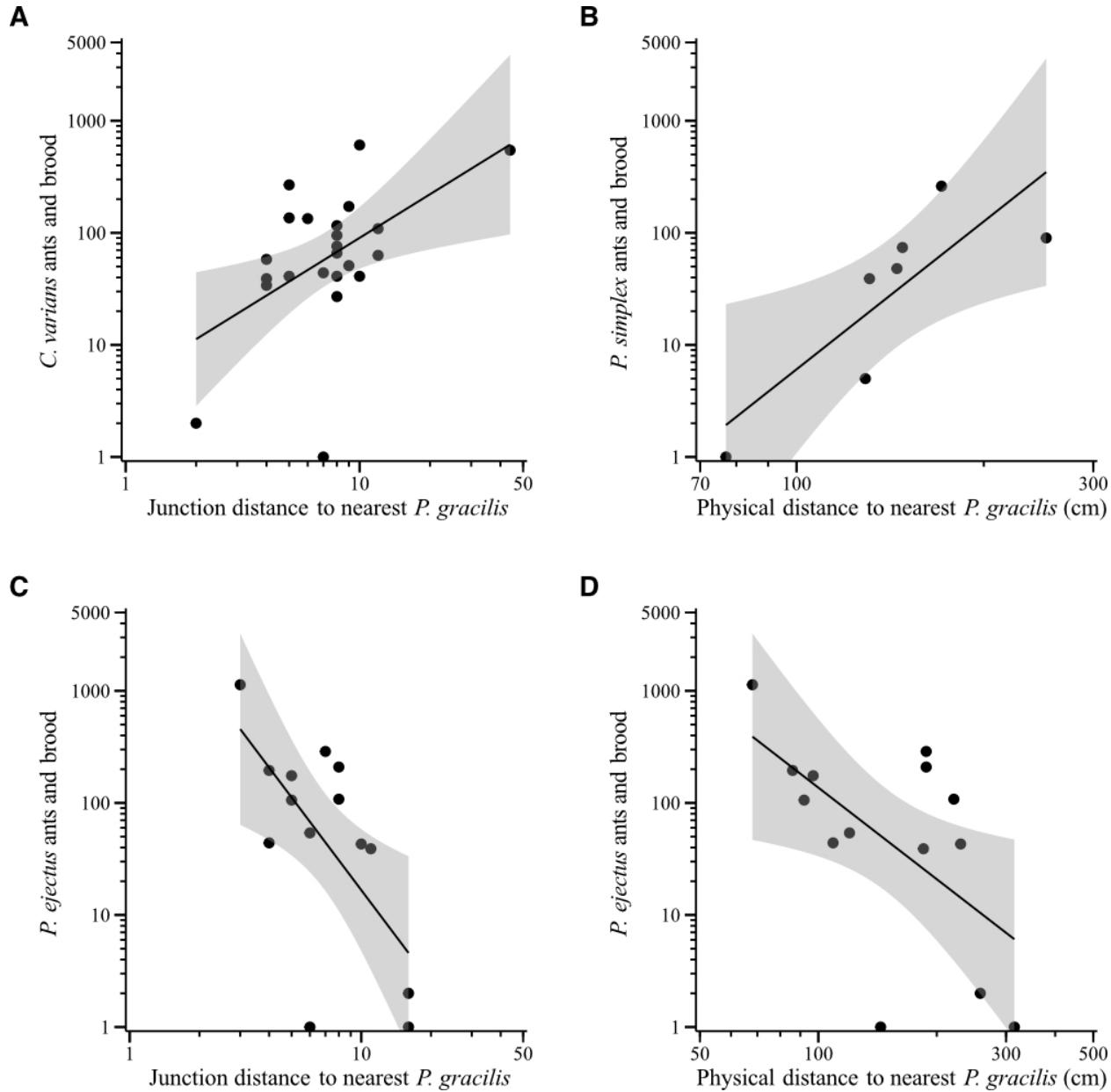
428 Figure 2. Statistically significant relationships between the community-wide distances between nests and
429 the amount of dead wood or the number of ant nests in a tree. The shaded region around the regression
430 lines indicates the 95% CI. Axes are on log-scales.


A

B



C



431
432

433 Figure 3. Statistically significant relationships between intraspecific nest distances (physical or junction
434 distance) for different focal ant species and dead wood availability or the number of nests of other ant
435 species in a tree. The shaded region around the regression lines indicates the 95% CI. Distance and
436 volume measures are on a log scale.

438 Figure 4. Statistically significant relationships between the contents of ant nests versus the distance to the
439 nearest nest of *P. gracilis*. The shaded region around the regression lines indicates the 95% CI. Axes are
440 on log scale.

441

442 **References**

443 [1] Briones, O., Montana, C. & Ezcurra, E. 1998 Competition intensity as a function of resource
444 availability in a semiarid ecosystem. *Oecologia* **116**, 365-372.

445 [2] Rapport, D.J. & Turner, J.E. 1977 Economic Models in Ecology: The economics of resource allocation
446 provide a framework for viewing ecological processes. *J. Kans. Entomol. Soc.* **195**, 367-373.

447 [3] Neumann, K. & Pinter-Wollman, N. 2022 The effect of resource availability on interspecific
448 competition between a native and an invasive ant. *Philosophical Transactions of the Royal Society B* **377**,
449 20210146.

450 [4] Colwell, R.K. & Rangel, T.F. 2009 Hutchinson's duality: the once and future niche. *Proc. Natl. Acad.*
451 *Sci.* **106**, 19651-19658.

452 [5] Hutchinson, G.E. 1957 Concluding remarks. population studies: animal ecology and demography. In
453 *Cold Spring Harbor Symposia on Quantitative Biology* (pp. 415-427).

454 [6] Tilman, D. 1982 *Resource competition and community structure*, Princeton university press.

455 [7] Chesson, P. 2000 Mechanisms of maintenance of species diversity. *Annu. Rev. Ecol. Syst.* **31**, 343-366.

456 [8] Hardin, G. 1960 The competitive exclusion principle. *J. Kans. Entomol. Soc.* **131**, 1292-1297.

457 [9] Meynard, C.N., Lavergne, S., Boulangeat, I., Garraud, L., Van Es, J., Mouquet, N. & Thuiller, W. 2013
458 Disentangling the drivers of metacommunity structure across spatial scales. *J. Biogeog.* **40**, 1560-1571.

459 [10] Ricklefs, R.E. & Schlüter, D. 1993 Species diversity: regional and historical influences. In *Species*
460 *diversity in ecological communities* (eds. R.E. Ricklefs & D. Schlüter), pp. 350-363. Chicago, University of
461 Chicago Press.

462 [11] Levin, S.A. 1992 The problem of pattern and scale in ecology: the Robert H. MacArthur award
463 lecture. *Ecology* **73**, 1943-1967.

464 [12] Kneitel, J.M. & Chase, J.M. 2004 Trade-offs in community ecology: linking spatial scales and species
465 coexistence. *Ecol. Lett.* **7**, 69-80.

466 [13] Huston, M.A. 1999 Local processes and regional patterns: appropriate scales for understanding
467 variation in the diversity of plants and animals. *Oikos*, 393-401.

468 [14] Baiser, B., Buckley, H.L., Gotelli, N.J. & Ellison, A.M. 2013 Predicting food-web structure with
469 metacommunity models. *Oikos* **122**, 492-506.

470 [15] Miller, T.E. & Kneitel, J.M. 2005 Inquiline communities in pitcher plants as a prototypical
471 metacommunity. *Metacommunities: spatial dynamics and ecological communities*, 122-145.

472 [16] Vanschoenwinkel, B., De Vries, C., Seaman, M. & Brendonck, L. 2007 The role of metacommunity
473 processes in shaping invertebrate rock pool communities along a dispersal gradient. *Oikos* **116**, 1255-
474 1266.

475 [17] Kaspari, M. & Weiser, M.D. 1999 The size-grain hypothesis and interspecific scaling in ants. *Func.*
476 *Ecol.* **13**, 530-538.

477 [18] Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F., Holt, R.D.,
478 Shurin, J.B., Law, R. & Tilman, D. 2004 The metacommunity concept: a framework for multi-scale
479 community ecology. *Ecol. Lett.* **7**, 601-613.

480 [19] Cadotte, M.W., Mai, D.V., Jantz, S., Collins, M.D., Keele, M. & Drake, J.A. 2006 On testing the
481 competition-colonization trade-off in a multispecies assemblage. *Am. Nat.* **168**, 704-709.

482 [20] Levine, J.M., Bascompte, J., Adler, P.B. & Allesina, S. 2017 Beyond pairwise mechanisms of species
483 coexistence in complex communities. *Nature* **546**, 56-64.

484 [21] Chesson, P. 1994 Multispecies competition in variable environments. *Theoretical population biology*
485 **45**, 227-276.

486 [22] Huisman, J. & Weissing, F.J. 2001 Fundamental unpredictability in multispecies competition. *Am.*
487 *Nat.* **157**, 488-494.

488 [23] Bebber, D.P., Hynes, J., Darrah, P.R., Boddy, L. & Fricker, M.D. 2007 Biological solutions to transport
489 network design. *Proceedings of the Royal Society B: Biological Sciences* **274**, 2307-2315.

490 [24] Cook, Z., Franks, D.W. & Robinson, E.J. 2014 Efficiency and robustness of ant colony transportation
491 networks. *Behav. Ecol. Sociobiol.* **68**, 509-517.

492 [25] Chang, J., Powell, S., Robinson, E.J. & Donaldson-Matasci, M.C. 2021 Nest choice in arboreal ants is
493 an emergent consequence of network creation under spatial constraints. *Swarm Intelligence* **15**, 7-30.

494 [26] Lecheval, V., Larson, H., Burns, D.D., Ellis, S., Powell, S., Donaldson-Matasci, M.C. & Robinson, E.J.
495 2021 From foraging trails to transport networks: how the quality-distance trade-off shapes network
496 structure. *Proceedings of the Royal Society B* **288**, 20210430.

497 [27] Plowman, N.S., Mottl, O., Novotny, V., Idigel, C., Philip, F.J., Rimandai, M. & Klimes, P. 2020 Nest
498 microhabitats and tree size mediate shifts in ant community structure across elevation in tropical
499 rainforest canopies. *Ecography* **43**, 431-442.

500 [28] Camargo, R.X. & Oliveira, P.S. 2012 Natural history of the Neotropical arboreal ant, *Odontomachus*
501 *hastatus*: nest sites, foraging schedule, and diet. *J. Insect Sci.* **12**, 48.

502 [29] Ng, F.S.P. 1977 Shyness in trees. *Nature Malaysiana* **2**, 35-37.

503 [30] Adams, B.J., Schnitzer, S.A. & Yanoviak, S.P. 2017 Trees as islands: canopy ant species richness
504 increases with the size of liana-free trees in a Neotropical forest. *Ecography* **40**, 1067-1075.

505 [31] Cuissi, R.G., Lasmar, C.J., Moretti, T.S., Schmidt, F.A., Fernandes, W.D., Falleiros, A.B., Schoereder,
506 J.H. & Ribas, C.R. 2015 Ant community in natural fragments of the Brazilian wetland: species-area
507 relation and isolation. *Journal of Insect Conservation* **19**, 531-537.

508 [32] Powell, S., Costa, A.N., Lopes, C.T. & Vasconcelos, H.L. 2011 Canopy connectivity and the availability
509 of diverse nesting resources affect species coexistence in arboreal ants. *J. Anim. Ecol.* **80**, 352-360.

510 [33] Philpott, S.M. & Foster, P.F. 2005 Nest-site limitation in coffee agroecosystems: artificial nests
511 maintain diversity of arboreal ants. *Ecol. Appl.* **15**, 1478-1485.

512 [34] Cerdá, X. & Retana, J. 1998 Interference interactions and nest usurpation between two subordinate
513 ant species. *Oecologia* **113**, 577-583.

514 [35] Mottl, O., Yombai, J., Fayle, T.M., Novotný, V. & Klimeš, P. 2020 Experiments with artificial nests
515 provide evidence for ant community stratification and nest site limitation in a tropical forest. *Biotropica*
516 **52**, 277-287.

517 [36] Camarota, F., Powell, S., S Melo, A., Priest, G., J Marquis, R. & L Vasconcelos, H. 2016 Co-occurrence
518 patterns in a diverse arboreal ant community are explained more by competition than habitat
519 requirements. *Ecology and Evolution* **6**, 8907-8918.

520 [37] Debout, G., Schatz, B., Elias, M. & McKey, D. 2007 Polydomy in ants: what we know, what we think
521 we know, and what remains to be done. *Biol. J. Linn. Soc.* **90**, 319-348.

522 [38] Powell, S. 2009 How ecology shapes caste evolution: linking resource use, morphology,
523 performance and fitness in a superorganism. *Journal of evolutionary biology* **22**, 1004-1013.

524 [39] Powell, S. & Dornhaus, A. 2013 Soldier-based defences dynamically track resource availability and
525 quality in ants. *Anim. Behav.* **85**, 157-164.

526 [40] Camarota, F., Vasconcelos, H.L., Marquis, R.J. & Powell, S. 2020 Revisiting ecological dominance in
527 arboreal ants: how dominant usage of nesting resources shapes community assembly. *Oecologia* **194**,
528 151-163. (doi:10.1007/s00442-020-04748-z).

529 [41] Powell, S., Donaldson-Matasci, M., Woodrow-Tomizuka, A. & Dornhaus, A. 2017 Context-dependent
530 defences in turtle ants: Resource defensibility and threat level induce dynamic shifts in soldier
531 deployment. *Func. Ecol.* **31**, 2287-2298.

532 [42] Ross, M.S., O'Brien, J.J. & Flynn, L.J. 1992 Ecological site classification of Florida Keys terrestrial
533 habitats. *Biotropica*, 488-502.

534 [43] Karim, A. & Main, M.B. 2009 Habitat fragmentation and conservation strategies for a rare forest
535 habitat in the Florida Keys archipelago. *Urban ecosystems* **12**, 359-370.

536 [44] Wilder, G.J., Sprunt, S.V., Duquesnel, J.A. & Kolterman, S.F. 2014 A floristic inventory of Dagny
537 Johnson Key Largo Hammock Botanical State Park and immediately adjacent lands (Monroe County),
538 Florida, USA. *Journal of the Botanical Research Institute of Texas* **8**, 227-251.

539 [45] Klimes, P., Idigel, C., Rimandai, M., Fayle, T.M., Janda, M., Weiblen, G.D. & Novotny, V. 2012 Why
540 are there more arboreal ant species in primary than in secondary tropical forests? *J. Anim. Ecol.* **81**,
541 1103-1112.

542 [46] Basset, Y., Novotny, V., Miller, S.E. & Kitching, R.L. 2003 Methodological advances and limitations in
543 canopy entomology. *Arthropods of tropical forests: spatio-temporal dynamics and resource use in the*
544 *canopy*, 7-16.

545 [47] Antoniazzi, R., Guevara, R., García-Franco, J., Janda, M., Leponce, M. & Dátilo, W. 2020
546 Environmental drivers of ant dominance in a tropical rainforest canopy at different spatial scales. *Ecol.*
547 *Entomol.*

548 [48] Leponce, M., Dejean, A., Mottl, O. & Klimes, P. 2021 Rapid assessment of the three-dimensional
549 distribution of dominant arboreal ants in tropical forests. *Insect Conservation and Diversity* **14**, 426-438.

550 [49] Longino, J.T. & Colwell, R.K. 2020 The arboreal ants of a Neotropical rain forest show high species
551 density and comprise one third of the ant fauna. *Biotropica*.

552 [50] Moreau, C.S., Deyrup, M.A. & Davis, L.R. 2014 Ants of the Florida Keys: species accounts,
553 biogeography, and conservation (Hymenoptera: Formicidae). *J. Insect Sci.* **14**.

554 [51] Priest, G.V., Camarota, F., Powell, S., Vasconcelos, H.L. & Marquis, R.J. 2021 Ecosystem engineering
555 in the arboreal realm: heterogeneity of wood-boring beetle cavities and their use by cavity-nesting ants.
556 *Oecologia* **196**, 427-439.

557 [52] Ward, P.S. 1985 The Nearctic species of the genus *Pseudomyrmex* (Hymenoptera: Formicidae). Las
558 especies neárticas del género *Pseudomyrmex* (Hymenoptera: Formicidae). *Quaestiones Entomologicae*.
559 **21**, 209-246.

560 [53] Larsen, A. & Philpott, S.M. 2010 Twig-nesting ants: the hidden predators of the coffee berry borer in
561 Chiapas, Mexico. *Biotropica* **42**, 342-347.

562 [54] Gonthier, D.J., Ennis, K.K., Philpott, S.M., Vandermeer, J. & Perfecto, I. 2013 Ants defend coffee
563 from berry borer colonization. *BioControl* **58**, 815-820.

564 [55] Deyrup, M., Davis, L. & Cover, S. 2000 Exotic ants in Florida. *Trans. Am. Entomol. Soc.*, 293-326.

565 [56] Wetterer, J.K., Hill, J.G., MacGown, J.A. & Booher, D.B. 2022 Populations of the graceful twig ant,
566 *Pseudomyrmex gracilis*, now bridge the distribution gap between their native range in Texas and non-
567 native range in Florida, USA. *Trans. Am. Entomol. Soc.* **148**, 51-58.

568 [57] Wilson, E.O. 1976 A social ethogram of the neotropical arboreal ant *Zacryptocerus varians* (Fr.
569 Smith). *Anim. Behav.* **24**, 354-363.

570 [58] De Andrade, M.L. & Urbani, C.B. 1999 *Diversity and adaptation in the ant genus Cephalotes, past*
571 *and present*, Staatliches Museum für Naturkunde.

572 [59] Powell, S., Price, S.L. & Kronauer, D.J. 2020 Trait evolution is reversible, repeatable, and decoupled
573 in the soldier caste of turtle ants. *Proc. Natl. Acad. Sci.* **117**, 6608-6615.

574 [60] Yanoviak, S.P. & Kaspari, M. 2000 Community structure and the habitat templet: ants in the tropical
575 forest canopy and litter. *Oikos* **89**, 259-266.

576 [61] Adams, B.J., Schnitzer, S.A. & Yanoviak, S.P. 2019 Connectivity explains local ant community
577 structure in a Neotropical forest canopy: a large-scale experimental approach. *Ecology* **100**, e02673.

578 [62] Ward, P.S. 1989 Systematic studies on pseudomyrmecine ants: revision of the *Pseudomyrmex*
579 *oculatus* and *P. subtilissimus* species groups, with taxonomic comments on other species. *Quaest.*
580 *entomol.* **25**, 393-468.

581 [63] O'Brien, S.T., Hubbell, S.P., Spiro, P., Condit, R. & Foster, R.B. 1995 Diameter, height, crown, and age
582 relationship in eight neotropical tree species. *Ecology*, 1926-1939.

583 [64] Stolte, K., Barbara, C., Campbell, S. & Gillespie, A. 2002 Forest health indicators: forestry inventory
584 and analysis program. (Research Triangle Park, North Carolina, USDA Forest Service, Southern Research
585 Station.

586 [65] Harmon, M.E. & Sexton, J. 1996 Guidelines for measurements of woody detritus in forest
587 ecosystems.

588 [66] Gordon, D.M. 2012 The dynamics of foraging trails in the tropical arboreal ant *Cephalotes*
589 *goniodontus*. *PLoS ONE* **7**, e50472.

590 [67] Gordon, D.M. 2017 Local regulation of trail networks of the arboreal turtle ant, *Cephalotes*
591 *goniodontus*. *Am. Nat.* **190**, E156-E169.

592 [68] Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H.H. & White, J.-S.S.
593 2009 Generalized linear mixed models: a practical guide for ecology and evolution. *Trends in ecology &*
594 *evolution* **24**, 127-135.

595 [69] Johnson, J.B. & Omland, K.S. 2004 Model selection in ecology and evolution. *Trends in ecology &*
596 *evolution* **19**, 101-108.

597 [70] RCoreTeam. 2023 R: A language and environment for statistical computing. Vienna: R Foundation
598 for Statistical Computing. (

599 [71] Bates, D., Maechler, M., Bolker, B. & Walker, S. 2014 lme4: Linear mixed-effects models using Eigen
600 and S4. *R package version* **1**, 1-23.

601 [72] Kuznetsova, A., Brockhoff, P.B. & Christensen, R.H.B. 2017 lmerTest package: tests in linear mixed
602 effects models. *Journal of statistical software* **82**.

603 [73] Brooks, M.E., Kristensen, K., Van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A., Skaug, H.J.,
604 Machler, M. & Bolker, B.M. 2017 glmmTMB balances speed and flexibility among packages for zero-
605 inflated generalized linear mixed modeling. *The R Journal* **9**, 378-400.

606 [74] Preston, F.W. 1962 The canonical distribution of commonness and rarity: Part I. *Ecology* **43**, 185-
607 215.

608 [75] Hartig, F. 2022 DHARMA: residual diagnostics for hierarchical (multi-level/mixed) regression models.
609 R package version 0.4.5. *Computer software* <https://CRAN.R-project.org/package=DHARMA>.

610 [76] Dejean, A., Compin, A., Delabie, J.H., Azémar, F., Corbara, B. & Leponce, M. 2019 Biotic and abiotic
611 determinants of the formation of ant mosaics in primary Neotropical rainforests. *Ecol. Entomol.*

612 [77] Ribas, C.R. & Schoereder, J.H. 2002 Are All Ant Mosaics Caused by Competition? *Oecologia* **131**,
613 606-611.

614 [78] Connell, J.H. & Slatyer, R.O. 1977 Mechanisms of succession in natural communities and their role in
615 community stability and organization. *Am. Nat.* **111**, 1119-1144.

616 [79] Meiners, S.J., Cadotte, M.W., Fridley, J.D., Pickett, S.T. & Walker, L.R. 2015 Is successional research
617 nearing its climax? New approaches for understanding dynamic communities. *Func. Ecol.* **29**, 154-164.

618 [80] D'Amen, M., Mod, H.K., Gotelli, N.J. & Guisan, A. 2018 Disentangling biotic interactions,
619 environmental filters, and dispersal limitation as drivers of species co-occurrence. *Ecography* **41**, 1233-
620 1244.

621 [81] Ulrich, W., Zaplata, M.K., Winter, S., Schaaf, W., Fischer, A., Soliveres, S. & Gotelli, N.J. 2016 Species
622 interactions and random dispersal rather than habitat filtering drive community assembly during early
623 plant succession. *Oikos* **125**, 698-707.

624 [82] Rosenzweig, M.L. 1995 *Species diversity in space and time*, Cambridge University Press.

625 [83] Turner, W.R. & Tjørve, E. 2005 Scale-dependence in species-area relationships. *Ecography* **28**, 721-
626 730.

627 [84] Lomolino, M.V. 2000 Ecology's most general, yet protean pattern: the species-area relationship. *J.*
628 *Biogeog.*, 17-26.

629 [85] Holway, D.A. 1999 Competitive mechanisms underlying the displacement of native ants by the
630 invasive Argentine ant. *Ecology* **80**, 238-251.

631 [86] Warren, R.J., Reed, K., Mathew, A., Krupp, K., Goodman, M., Archibald, K. & Spiering, D.J. 2019
632 Release from intraspecific competition promotes dominance of a non-native invader. *Biol. Invas.* **21**,
633 895-909.

634 [87] Clutton-Brock, T. & Sheldon, B.C. 2010 Individuals and populations: the role of long-term,
635 individual-based studies of animals in ecology and evolutionary biology. *Trends in ecology & evolution*
636 **25**, 562-573.

637 [88] Chase, J.M., Abrams, P.A., Grover, J.P., Diehl, S., Chesson, P., Holt, R.D., Richards, S.A., Nisbet, R.M.
638 & Case, T.J. 2002 The interaction between predation and competition: a review and synthesis. *Ecol. Lett.*
639 **5**, 302-315.

640 [89] Paine, R.T. 1966 Food web complexity and species diversity. *Am. Nat.* **100**, 65-75.

641 [90] Weigelt, A., Schumacher, J., Walther, T., Bartelheimer, M., Steinlein, T. & Beyschlag, W. 2007
642 Identifying mechanisms of competition in multi-species communities. *J. Ecol.* **95**, 53-64.

643 [91] Rittmann, B.E. & Manem, J.A. 1992 Development and experimental evaluation of a steady-state,
644 multispecies biofilm model. *Biotechnology and bioengineering* **39**, 914-922.

645 [92] Austin, M., Groves, R., Fresco, L. & Kaye, P. 1985 Relative growth of six thistle species along a
646 nutrient gradient with multispecies competition. *The Journal of Ecology*, 667-684.

647 [93] Kempel, A., Chrobock, T., Fischer, M., Rohr, R.P. & van Kleunen, M. 2013 Determinants of plant
648 establishment success in a multispecies introduction experiment with native and alien species. *Proc.
649 Natl. Acad. Sci.* **110**, 12727-12732.

650 [94] Huisman, J. & Weissing, F.J. 2001 Biological conditions for oscillations and chaos generated by
651 multispecies competition. *Ecology* **82**, 2682-2695.

652