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Abstract

Understanding how resource limitation and biotic interactions interact across spatial scales is
fundamental to explaining the structure of ecological communities. However, empirical studies
addressing this issue are often hindered by logistical constraints, especially at local scales. Here, we use a
highly tractable arboreal ant study system to explore the interactive effects of resource availability and
competition on community structure across three local scales: an individual tree, the nest network created
by each colony, and the individual ant nest. On individual trees, the ant assemblages are primarily shaped
by availability of dead wood, a critical nesting resource. The nest networks within a tree are constrained
by the availability of nesting resources but also influenced by the cooccurring species. Within individual
nests, the distribution of adult ants is only affected by distance to interspecific competitors. These findings
demonstrate that resource limitation exerts the strongest effects on diversity at higher levels of local
ecological organization, transitioning to a stronger effect of species interactions at finer scales.
Collectively, these results highlight that the process exerting the strongest influence on community
structure is highly dependent on the scale at which we examine the community, with shifts occurring even

across fine-grained local scales.

Keywords: community ecology, habitat filtering, competition, resource limitation, species coexistence



31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

Introduction

Resource-mediated habitat filtering and competition are expected to interact in the structuring of
ecological communities [1-3]. The resources available in a habitat set the foundation for which species can
live there, based on the fundamental niche and minimum resources required for long-term persistence of
each species [4, 5]. For each species that finds suitable resources, their persistence in the community can
then be challenged by competition, potentially leading to exclusion [6-8]. Considerable work has focused
on detecting the signatures of habitat filtering, competition, and their interactions at large spatial scales
[9, 10]. Such work summarizes broad hierarchical patterns across a diversity of habitats, with habitat
filtering generally being more important at large scales but with the balance shifting to competition at
finer scales. However, the direct mechanisms underlying patterns of diversity are frequently obscured at
broader spatial scales [11, 12]. At the other extreme, local spatial scales provide opportunities to directly
link known resource usage and competitive interactions among individuals with observable community
patterns [13, 14]. Nevertheless, studies that address the relative importance of resource availability and
competition in structuring communities across multiple local scales are rare (but see work with
communities in pitcher plants [15] and rock pools [16]). Filling this knowledge gap is critical for
understanding the extent to which local processes and their interactions scale to influence the structure of
ecological communities [14, 17].

At local spatial scales, the influences of resource availability and biotic interactions on community
structure are thought to be spatially dependent and complex [14]. Available resources often occur in
discrete patches that limit access for species in the community, especially if dispersal to new resources
patches is challenging [18, 19]. Although frequently simplified to pairwise, linear interactions between
species [20], communities generally exist as an assemblage of multiple species differentially interacting
across space [21, 22]. Indeed, how species use and partition resources in space is often complex and
variable at local scales, but one common and understudied context is when individuals acquire resources
and grow via establishing and expanding networked patches or nodes of resources. Examples of network
patterns of resource acquisition and use span such disparate systems as fungal hyphae and root networks
[23] and the foraging and multi-nest networks of social insect colonies [24-26]. Competition in these
cases then plays out via interactions between abutting or intertwined networks, with any pattern of

network growth facing an array of competitive pressures from multiple species and locations
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simultaneously. How resource distribution, network growth, and competitive interactions shape local-
scale patterns of coexistence should thus be highly dependent on fine-scale spatial relationships. Systems
that incorporate these layers of local community interactions should then be ideal for addressing the
broader knowledge gap of how local processes scale to community level influences.

Arboreal ant communities are particularly tractable systems for studying the interactions between
resource availability and competition in the context of growth via discrete expansion of resource networks
[27]. Individual trees function as the primary habitat patches for arboreal ants to colonize and compete
over. This is true even within dense forest environments, due to the phenomena of crown shyness and
because arboreal ants rarely leave the crowns of trees [28, 29]. As a result, arboreal ant communities
within an individual tree typically act as isolated “island-like” communities following classic species-area
relationships [30-32]. Within a tree, resident colonies of ants also compete fiercely for a limited number
of pre-existing nesting cavities [33-36]. Each colony must acquire and defend multiple nest sites, without
the capacity to make more themselves, in order to grow and successfully reproduce [37, 38], building a
nest network as they do so. Finally, individual nests, which represent the finest spatial scale, vary in
properties of quality [39] and defensibility [38, 40], as well as in the competitive pressures they face [41].
Colonies must make collective decisions about which individual cavities they use within the resource-
limited and highly competitive environment they occupy, and how they allocate colony members to a nest
to maximize overall colony growth and reproduction [38, 39, 41].

Here we use an arboreal ant study system, where growth is via network expansion, to explore the
interactive effects of resource availability and competition on community structure at multiple spatial
scales. More specifically, we focus on the following three local scales: 1) a discrete resource patch,
represented by the whole tree; 2) resource networks built by organisms, represented by the within-tree
nest networks of the resident ant colonies; and 3) an individual resource within a network, represented by
the individual nest. Our central hypothesis is that resource availability has an overarching influence on
local community structure, and that species interactions emerge as more important at finer-grained local
scales. We tested this hypothesis by surveying arboreal ant communities, quantifying nest site availability,
mapping the spatial distribution of nests, and quantifying the contents of individual nests. At the patch-
scale, we evaluated how the availability of resources and the competitive context on whole trees influences

the ant community. At the scale of the resource network, we mapped nest networks and evaluated how
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these are shaped by tree characteristics, ant species, and competitive context. Finally, at the scale of an
individual resource or node within a resource network, we examined how competition and habitat
limitations influenced the populations of adult ants and brood within individual nests. We expect that
resource availability will be more important than competition for determining ant community metrics,
such as species richness and nest abundance, measured at the scale of an individual tree. In contrast we
expect competition to determine nest selection and ant distribution, with less competitive ant species
selecting nest sites and distributing adult ants and brood further away from competitors. Taken together,
these detailed data across multiple spatial scales provide an integrative approach to identifying how local
resource availability and competition shape community structure, including richness, composition, and

physical location within a habitat.

Methods

Study Site and focal species

We conducted all field work at the Dagny Johnson Key Largo Hammock Botanical State Park in
Key Largo, Florida, USA (25.178°N, 80.366°W; hereafter Dagny State Park). The Florida Keys are marked
by a mild subtropical climate with mean monthly temperatures ranging between 17.9C — 31.9C with
approximately 101.2cm of precipitation annually (https://climatecenter.fsu.edu/products-

services/data/1981-2010-normals/key-west). Dagny State Park was established in 1982 and hosts the

largest remnant in the United States of West Indian hardwood hammock forest [42-44].

The hardwood hammock forests of the Florida Keys present a novel opportunity to work in an
arboreal ant system the overcomes many of the logistical constraints of other arboreal ant communities.
For example, in the highly diverse tropical forest habitats where most arboreal ant research has focused,
felling trees [45] or specialized equipment and training [46-48] are required simply to access the nesting
ecology of the ants. Across all tropical habitats, including those that are more accessible, community
diversity of more than a hundred species and tree-level diversity of 20 species or more [30, 32, 40, 49]
remains a challenge for understanding detailed species interaction or resource requirement. In contrast,
the hardwood hammock forests of the Florida Keys is a species rich ecosystem of conservation concern
[43] that has a low and easily accessible canopy (does not exceed 10m and is frequently <6m; Figure S1)

[42]. While the arboreal ant diversity is reduced compared to tropical habitats, tropical arboreal ant
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genera are still well-represented in the full community [50], and all species rely on the same nesting
resource for growth and reproduction: hollow cavities in dead stems that are often the abandoned feeding
tunnels of wood boring beetles [51]. Capturing all fine-grained local scale interactions for even this
reduced community of Florida Keys hammock forest could be overwhelming logistically, but most ant
communities are dominated by a smaller subset of especially abundant species that capture an array of
competitive interactions. Our surveys revealed four especially common species in the hammock forest
system that will be our focus here. In addition to high colony incidence across surveyed trees, including
frequent cooccurrence (below), these four species also represented contrasting ecology within the larger
community. Thus, while this study is not an exhaustive study of the full arboreal ant community in the
system, it uses the most abundant players in the community that span an array of potentially
generalizable interactions and outcomes. Our four focal species are as follows: (1) Pseudomyrmex ejectus
and (2) Pseudomyrmex simplex, which are established native species that share similar niche space [52-
54]; (3) Pseudomyrmex gracilis, which is a disruptive non-native with invasive potential [55, 56]; and (4)

Cephalotes varians, a native species with known defense specialization in its use of nesting resources [57-

59].

Identifying ant colonies and nest locations

We used a combination of multiple baiting and hand collecting methods [38, 60] to document
ants foraging and nesting on 176 individual poisonwood trees (Metopium toxiferum) in relatively open
areas of the hammaock forests, in which individual trees are typically physically isolated from other trees.
We specifically targeted trees that were not embedded in the larger forest canopy to eliminate any
potential connectivity between neighboring crowns and ensure that the only ants foraging at baits were
nesting within the tree [32, 61]. Baits (a combination of ~140g of canned chicken and ~60ml of honey
with urine added as an additional attractant for C. varians) were placed throughout the entire crown of
each tree at 12:00 and were examined and refreshed until 21:00 in order to document activity of both the
diurnal (P. ejectus, P. gracilis, and P. simplex) and nocturnal species (C. varians). We selected a subset of
the trees (n = 31) based on ease of access to the entire crown of the tree and a stratified sampling of tree
sizes, and we then tracked foraging ants back to their nests. This method was used to locate all nests of all
four of our focal species on each tree and to look for aggressive interactions among conspecifics at baits to

6
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ensure all conspecific ants within a tree were from the same colony [38]. Voucher specimens of all ants
found at baits or on any other part of the tree were collected and stored in 95% ethanol to be identified in
the lab using keys and voucher specimens [62]. It is worthwhile to note that, within the genera of interest,
only our focal species of Cephalotes is found in the system, and that only our three focal species of the
genus Pseudomyrmex were found on our study trees in the hammock forest, even though other members

of the genus are found in the FL Keys more generally [50].

Measurements across local spatial scales

Resource patch scale: whole tree

For each tree included in the initial survey, GPS coordinates were recorded, and the diameter of
the trunk at 10cm above the ground was measured. Although diameter at breast height (1.3 m above the
ground) is a more common measure, nearly all of the trees in this forest branch below breast height
(average distance to first branch = 83.6cm; range = 10cm — 173cm in present study).We used the diameter
measured at 10cm to calculate basal area (BA = m(D/2)2) as a proxy for tree size and an estimate of the
total resource patch size for the local ant community [30, 63].

For each tree, we also quantified the total amount of dead wood (i.e., the nest resources available
to the ant community) in the crown using three methods that required increasing degrees of time and
effort in the field but provide increasing resolution of the total resource availability. First, using visual
surveys conducted by at least two individuals, we estimated the total percent dieback for each tree crown
to the nearest 5% and took the average between the two when different [64]. We multiplied this
percentage by the basal area to produce a weighted proxy of available resources that accounted only for
dead wood (i.e., the actual nesting resource). We also counted the total number of dead stems present in
each tree crown. Finally, we quantified the total volume of dead wood in each tree by measuring every
piece of dead wood by hand and calculating individual stem volume using Newton’s Formula (L (Abase +
4Amiddie + Atip)/6) which was then summed for the whole tree [65].

Resource network scale: nest network

In ant nest networks, reducing the number of nodes or junctions that an individual ant has to

traverse may be more important for travel time than reducing physical distances between nests [24, 66,

67]. Therefore, we measured all possible paths between every nest and all other nests in a tree, recording
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all intervening junctions between nest pairs (e.g., branching forks in a tree stem, vines crossing a tree
stem, two stems crossing each other, or leaves from one stem touching another branch) to generate two
distance measurements: the shortest physical distance between nest pairs and the smallest number of
junctions between nest pairs. Physical distance was measured as the minimum distance an ant needs to
walk between two nests (in cm) and “junction distance” was measured as the fewest number of junctions
encountered along any path between two nests. These measurements each produce two types of nest
networks: 1) a community-wide nest network for a tree that includes all ant nests and 2) an intraspecific
nest network for each resident ant species that connects only nests within a colony together.
Individual resource scale: individual nests

For every stem containing an ant nest, we calculated stem volume using Newton’s Formula as
described above and then destructively harvested the stem at the end of the study. To harvest, we visited
each nest at a time of day when each target species was not active, sealed all nest entrances, and then
removed the entire stem from the tree. This ensured all colony members were in their respective nests at
the time of collection, and none escaped subsequently. Collected nests were shipped overnight back to the
lab where they were immediately frozen at -20°C. All nests were dissected in the lab and the contents were
quantified. Specifically, for each nest we confirmed the identity of the resident species and counted all
eggs, larvae, worker pupae, soldier pupae, queen pupae, workers, soldiers, alate queens, dealate queens,

and males.

Statistical Analyses

Whole tree analyses

We tested how tree characteristics shaped the arboreal ant community at the scale of an
individual tree. We used linear regression to explore whether ant species richness or total ant nest count
across all species in a tree were best predicted by each of tree basal area, crown dieback-weighted basal
area, total dead stem count, or total dead wood volume. The four predictor variables were highly
correlated (correlation coefficient > 0.62) so we separately modeled each predictor for both species
richness and total nest count (8 total models) and evaluated model fit by comparing AIC values (Table S1).

Individual ant species could also respond differently to tree characteristics and to the presence of

other ant species on a tree. To explore this, we created four separate linear models each of eight different
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response variables: a binary presence/absence variable for each of the four focal ant species (4 response
variables) or the total nest count in a tree for each species (4 response variables). All models included four
predictors; three variables reporting total nest counts for the non-focal species of the analysis along with
one of the four tree characteristic metrics listed above (32 models in total). For the presence/absence
tests, we used generalized linear models with binomial errors and a log link function [68]. We reduced the
models using backwards stepwise AIC selection [69] and AIC comparisons were used to determine best
model fit. Final models for all 32 tests are provided in Table S2.

Nest network analyses

We explored how the network of all ant nests within a tree was shaped by tree-level
characteristics and the composition of the local ant community. We constructed six linear models with
one of two response variables: the average physical distance or the average junction distance between any
two nests in a tree. All models included five predictors; four predictors representing number of nests
occupied by each of the four focal species, and a fifth predictor related to one of three metrics of dead
wood availability within each tree (weighted basal area, dead twig count, or total dead wood volume). To
explore how the nest networks of each focal species responded to tree characteristics and the presence of
other ant species, we evaluated another 24 models with the same set of predictors, with the response
variables as either the average physical distance or the junction distance among nests of the same species
in each tree (intraspecific nest distances). We reduced the models using backwards stepwise AIC selection
and AIC comparisons were used to determine best model fit. The final models for each of the tests are
provided in Table S3.

Individual ant species could also display species-specific spatial nesting patterns. To examine
these patterns, we explored differences in pairwise distance between all focal nests within each tree. We
expanded the initial data set by adding 19 more trees (n = 50 trees) with complete information on the ant
community and nest networks, but lacking complete dead wood data. We documented 365 intraspecific
pairwise nest distances split among the four focal ant species (e.g., distance between two C. varians nests,
two P. ejectus nests, two P. gracilis nests, or two P. simplex nests). We used two linear mixed models with
physical or junction distance between two nests as the response variable, nest pair category as the
predictor variable (4 levels; one for each species), and Tree ID as a random grouping factor. We used a

Tukey’s post hoc test to explore differences in means per category.
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Individual nest analyses

We first explored whether the mean volume of occupied stems differed among the four focal
species and from the mean volume of unoccupied dead stems on a tree. We chose volume because nest
quality is generally determined by cavity volume as it dictates how much space there is for colony growth
(e.g. Powell and Dornhaus 2013). We fit stem volume as a function of species nest occupancy using a
mixed effects ANOVA, where species nest occupancy was a categorical variable with five levels
(unoccupied, Cephalotes varians, P. ejectus, P. gracilis, and P. simplex). Tree ID was included as a
random grouping factor and we used Tukey’s post hoc tests to explore any differences among ant species
nest selection.

We next explored whether the contents of a nest were predicted by stem volume, nesting ant
species identity, and distance to the nearest nest of each the four focal ant species (8 predictors; two for
each species to account for two different distances measurements) using zero-inflated generalized linear
mixed models with negative binomial errors and a log link function. [41]. In each model we included
either the total count of the combination of all adult ants and brood, only adult ants, or only brood as the
response variable. We selected these metrics as nest defensibility is determined by defensive strategies of
individual ant species (Powell 2009, Powell et al 2017, Camarota et al 2020, Priest et al 2021) and
competitor pressure depends on the neighborhood of enemies trying to usurp the nest for themselves
(Powell et al 2017). Ants will also differentially move their brood and redeploy adult ants based on
perceived threat or nest defensibility. We started with 24 models (3 response variables with all models
including stem volume, nest ant species identity, and one of 8 distance measures). Model reduction and
AIC comparison resulted in all models reducing to only ant species identity and the interaction between
species identity and distance to the nearest P. gracilis nest as the best fit models. Tree ID was treated as a
random grouping variable for all models. We used a Tukey’s post hoc test to explore any pairwise
differences in nest contents between ant species.

All statistical tests were performed in the R environment version 4.2.2 [70] including packages
Ime4 [71], ImerTest [72], and glmmTMB [73]. In all models, metrics of tree size, species richness, network
distances, stem volumes, and individual ant counts were log transformed to meet model assumptions
where necessary and to match the expectation of a log-log linear relationship between species richness
and area measurements [74]. Finally, we confirmed normality for all parametric models using Shapiro-
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Wilk tests on model residuals and performed residual diagnostics to confirm models conformed to model

assumption using DHARMa [75].

Results
Resource patch scale: whole tree

At the scale of discrete resource patches, whole trees with more nesting habitat had more ant
nests and ant species, but species richness was not related to tree size. Specifically, trees with larger basal
areas and more dead stems had more ant nests, but only dead stem count predicted variation in ant
species richness. Basal area alone did not predict the number of ant species (Figure 1; Table S1). Of the
three metrics of dead wood availability, the number of dead stems in a tree was the best predictor of both
species richness and total nests (Table S1).

The four focal ant species responded differently to nesting resource availability and potential
species interactions. Cephalotes varians was influenced only by nesting resource availability, with its
likelihood of being present on a tree higher in trees with more dead wood, with weighted basal area
specifically functioning as the best predictor (Figure S2; Table S2). By contrast, the two native small-
bodied Pseudomyrmex, P. ejectus and P. simplex, were influenced only by the presence of other ant
species. These two species generally did not co-occur, but when both were present in a tree, the number of
nests of the two species were negatively associated (Figure S3). Additionally, P. ejectus frequently co-
occurred with C. varians, whereas P. simplex had a lower frequency of occurrence in trees that also hosted
the non-native P. gracilis (Figure S4a and S4b; Table S2). P. gracilis was influenced only by resource
availability, establishing more nests in trees with a higher volume of dead wood (Figure S5; Table S2).
Resource network scale: nest network

For the resource network scale, both habitat availability and the presence of specific ant species
shaped the community-wide nest network formed by all resident colonies on a tree. Specifically, both the
physical distance and junction distance between any two nests in a tree increased with increasing dead
wood availability, with dead stem volume acting as the best predictor for physical distance (Figure 2a) and
dead stem count as the best predictor for junction distance (Figure 2b; Table S3). In addition, the average

physical distances between ant nests in a tree was higher in trees with more Cephalotes nests (Figure 2c).
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The intraspecific nest networks of individual ant species responded differently to resource versus
competitor pressures. The nest networks of P. ejectus and P. simplex were more spread out in trees with
greater dead wood volume (both physical and junction distances for P. ejectus and physical distances for
P. simplex; Figure 3a and 3b; Table S3). Cephalotes and the two native Pseudomyrmex species also
responded to competitor abundance. Specifically, the average intraspecific nest distances for both C.
varians and P. simplex was smaller in trees with greater numbers of P. gracilis nests (Figure 3c and 3d;
Table S3). Pseudomyrmex ejectus also had a more clustered nest network in trees with more C. varians
nests (Figure 3e; Table S3), whereas P. simplex had a less clustered nest network in trees with C. varians.
Neither resource variables nor other ant species influenced the intraspecific distances among P. gracilis
nests.

Measuring all intraspecific pairwise nest distances also revealed species-specific nesting patterns.
Cephalotes varians and P. ejectus nests were, on average, more closely clustered together in space (both
physical and junction distances) than the nests of P. gracilis or P. simplex (Figure S6; global tests — Fs 355
> 7.62, p < 0.0006; TukeyHSD — z >2.67, p < 0.04).

Individual resource scale: individual nests

At the scale of an individual resource, defined by an individual ant nest within a nest network, C.
varians, P. ejectus, and P. gracilis all nested in stems that were of similar size and were larger than the
average unoccupied dead stem on a tree (Figure S7). In contrast, P. simplex nested in smaller stems that
were similar to average size of unoccupied dead stems on a tree (Figure S7; TukeyHSD — z > 2.94, p <
0.02). Exploring nest contents revealed that C. varians had more adult ants per nest than P. ejectus or P.
gracilis (Figure S8; TukeyHSD — z > 3.01, p < 0.02). In addition, C. varians and the two native
Pseudomyrmex ants showed consistent patterns for how they distributed brood and adult ants relative to
their proximity to a P. gracilis nest (Table S4). Specifically, C. varians had fewer total ants and brood in
nests that were only a few junctions from the nearest P. gracilis nest (Figure 4a), and P. simplex had fewer
total ants and brood in nests that were physically closer to P. gracilis nests (Figure 4b). By contrast, P.
ejectus had more ants and brood in nests closer to nests of P. gracilis measured by both physical and

junction distance (Figure 4c and 4d).

Discussion
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Our results broadly support our central hypothesis that resource availability has an overarching
influence on local community structure, and that species interactions emerge as more important at finer-
grained local scales. Specifically, we observed that availability of dead wood was the primary driver of ant
diversity at the scale of a tree, that the nest network was shaped by interactions between resources and
competition, and that the distribution of ants within a nest was entirely driven by competition. Resource
limitations and competitive species interactions are frequently proposed as contrasting drivers of diversity
in arboreal ant communities [40, 61, 76, 77]. By incorporating multiple spatial scales into this current
study, we are able to demonstrate that both processes are acting in tandem and that the strength of their
effects is scale dependent. These findings provide rare empirical support for the theoretical and
computational framework of habitat characteristics imposing limitations on local diversity prior to [78,
79] or in concert with [80, 81] species interactions. The results also further highlight the need to match
observations to the scale at which interactions occur, to avoid masking competition and other biotic
interactions [13].

Species-area relationships are common among taxa and across spatial scales [82], but it is
typically unclear what specific resources are underpinning these relationships [83]. At the scale of a whole
tree, representing a discrete resource patch, we did not detect a direct relationship between species
richness and tree size (basal area) despite this relationship being a common feature of arboreal ant
communities [30-32, 45]. We instead detected a species-resource relationship between ant species
richness and dead wood availability, suggesting that nest site availability is the specific habitat limitation
underlying area-based relationships within this arboreal ant community. We expect that this trend is
widespread among arboreal ant communities, and we predict that where species-area relationships exist
between tree size and ant species richness, incorporating measurements of nesting resources would better
predict diversity patterns. Ultimately, habitable patch area is a proxy for a broad series of scale-dependent
resources and ecological processes ranging from likelihood of encounter during dispersal, available food
and nest sites, and proximity to competitors [11, 84]. These patterns suggest that habitat limitations on a
community can be masked when fine-scale resource availability is not considered [13].

Resource availability provides a foundation for determining local diversity and community
structure [14, 18] but species interactions and behaviors can mediate the final outcome and dynamics [1,
3, 21]. We demonstrate that the arboreal ants in this forest follow these general trends in terms of their
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resource networks, represented by networked nests that each colony occupies. For example, C. varians is
a nest defense specialist that typically clusters its nests in a laboratory setting [25] and has a soldier caste
that uses an armored head dish to barricade the colony’s nest entrances [59]. In a natural setting we
demonstrate that, compared to commonly co-occurring species, C. varians not only has the most
clustered intraspecific nest network, as would be indicative of a species prioritizing defensibility, but also
further shrinks its network in the presence of the aggressive, non-native competitor P. gracilis. By
contrast, P. gracilis disperses its nests broadly across a tree crown, as expected of a non-native under less
competitive pressure [3, 85, 86]. In addition, P. simplex has a broadly dispersed nest network but has a
significantly contracted nest network in the presence of P. gracilis. Collectively, these observations lend
additional support to the idea that P. gracilis is using its widely dispersed nesting strategy to limit nest
acquisition by other members of the community and that less aggressive native species shrink their nest
networks in response to this competitor.

Biotic interactions at finer spatial scales can also have meaningful impact on species growth
within the community, even when it is not reflective in measurements of species richness or composition.
However, the subtle impact of species interactions on growth patterns are frequently impossible to detect
without extensive multi-year studies tracking individuals through time [87]. Here, we were able to collect
data across local spatial scales, including at the fine-grained local scale of individual resources via
distances between nests and the distribution of ants among nests. These data allowed us to demonstrate
in a snapshot that the aggressive, non-native P. gracilis exerts competitive pressure on C. varians and P.
simplex that limits the spatial extent and pattern of colony growth. More specifically, both ants have more
clustered networks in trees with P. gracilis and tend to have fewer ants and brood in nests near P.
gracilis. In contrast, P. ejectus tends to have more ants and brood in nests nearest to P. gracilis.
Considering P. ejectus and P. simplex exhibit almost complete competitive exclusion, the distribution of P.
ejectus ants in nests near to P. gracilis could arise from a form of competitive release [88, 89] wherein P.
gracilis limits P. simplex allowing for P. ejectus to better perform nearer to P. gracilis. Experimental
manipulations of the ant community would be necessary to confirm these observations, but being able to
detect these patterns further highlights the value of a multi-scale collection regimens for local community

ecology data.
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The outcome of multispecies interactions on the diversity and stability of ecological communities
is notoriously difficult to understand and predict [6, 22, 90]. The majority of work on the subject is
carried out in laboratory or mesocosm experiments [19, 91], in plant systems where individuals can be
more easily tracked [92, 93], or via simulations [94]. The arboreal ant community of the Florida Keys
hammock forests exhibits considerable utility in parsing the outcome of a multispecies interactions in a
complex but manageable animal community of conservation concern. The results of this study suggest
that while nest site availability is the main determinant of ant species richness and abundance at the scale
of a tree, competitive interactions between species shape the spatial distribution of nests within trees and
ants within nests. Experiments modifying nest site availability via artificial nest additions [32, 33, 40, 61]
and modifying community structure via relocating ants species among trees [35] could provide further
evidence for the outcomes recorded here. The arboreal ant community of the Florida Keys presents an
opportunity to explore ecological processes across multiple scales of ecological organization in a system
that is both accessible and amenable to experimental manipulations. Ultimately, the key to determining

the drivers of diversity is matching observations to the scale where interactions occur.
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422  Figure Captions
423 Figure 1. The relationships between arboreal ant species richness and total nests across tree basal area
424  (panels A and C) or the total count of dead stems in a tree (panels B and D). Regression lines with 95% CI

425  (shaded region) are included when there is a significant relationship (Table S1). Axes are on log-scales.
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432

Figure 2. Statistically significant relationships between the community-wide distances between nests and
the amount of dead wood or the number of ant nests in a tree. The shaded region around the regression

lines indicates the 95% CI. Axes are on log-scales.
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433

434

435

436

Figure 3. Statistically significant relationships between intraspecific nest distances (physical or junction
distance) for different focal ant species and dead wood availability or the number of nests of other ant
species in a tree. The shaded region around the regression lines indicates the 95% CI. Distance and

volume measures are on a log scale.
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438  Figure 4. Statistically significant relationships between the contents of ant nests versus the distance to the
439  nearest nest of P. gracilis. The shaded region around the regression lines indicates the 95% CI. Axes are

440  onlog scale.
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