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Abstract—Radio frequency identification (RFID) has gained
significant attention because it provides a highly versatile plat-
form for identifying, tracking, and monitoring objects. An
emerging trend in this technology is the use of nonlinear RFID,
such as passive harmonic tags, which have been demonstrated
to be effective against clutters, echoes, crosstalk, and other
electromagnetic interferences. This article presents a compre-
hensive review of recent advances and applications of passive
harmonic RFIDs and integrated systems. A passive harmonic
RFID exploits the frequency orthogonality of the transmitted
(fundamental tone) and received (harmonics) radio-frequency
(RF) signals to enable robust interrogation in noisy and cluttered
environments, not possible with traditional passive linear RFIDs.
This review article evaluates passive harmonic RFID systems in
comparison to traditional systems and highlights their pros and
cons. Several state-of-the-art chipless and chip-based harmonic
RFIDs are presented, and their novel applications in identifi-
cation, tracking, sensing, and biotelemetry are discussed. The
review summarizes the key successes and challenges of passive
harmonic RFID systems and provides insights into their future
development, implementation, and optimization.

Index Terms—Radio frequency identification (RFID), pas-
sive RFID, harmonic radar, harmonic transponder, nonlinear
backscatter.

I. INTRODUCTION

ADIO frequency identification (RFID) technology, which

facilitates efficient data collection and communication
among wirelessly connected devices, is expected to become
increasingly crucial as the Internet of Things (IoT) continues
to expand. RFID technology has been extensively implemented
for tagging, locating, sensing, and tracking objects across a
wide range of industries, including retail [1], [2], logistics
[31, [4], healthcare [5], [6], [7], and agriculture [8]. Recent
studies have examined the utilization of RFID systems in
different frequencies, ranging from low frequency (LF) to
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Fig. 1. Comparison of traditional (left) and harmonic RFID systems (right).

Traditional RFID systems operating at a single frequency are vulnerable to
clutters and multipath propagation effect, while harmonic RFID systems can
significantly mitigate the interference.

microwave industrial, scientific, and medical (ISM) bands [9],
[10], [11], [12], [13]. An LF RFID system is utilized for
short-range communication, primarily in applications such
as inventory management, access control, and asset tracking
within close proximity [10], [11], [14]. On the other hand,
RFID systems operating at higher frequencies, such as ultra-
high frequency (UHF) or microwave, possess a longer read
range, making them suitable for tracking larger items like
vehicles and shipping containers or for use in industrial and
outdoor environments [12], [15], [16]. RFID systems can also
be classified into active and passive systems based on their
power source. Active RFID systems are equipped with an inte-
grated power source, usually a battery, while passive RFID
systems rely on the energy harvested from the reader’s sig-
nal. Although active RFIDs have the capability to transmit
data over long distances, they come with added complexity,
maintenance requirements, shorter lifespan, and temperature
limitations. The use of micro-batteries may minimize the size
of the system; however, they still require frequent replace-
ment, which can be costly and time-consuming for large-scale
applications [17]. In contrast, passive RFIDs can operate indef-
initely, thereby reducing maintenance costs and increasing
system lifespan. Additionally, passive RFIDs can operate in
a wide range of temperatures, making them suitable for harsh
environments and remote locations where active RFIDs may
not be practical. In general, while active RFIDs may be
more appropriate for certain applications, passive RFIDs are
often the preferred choice for long-term, low-maintenance, and
cost-effective solutions.

A passive RFID system, as depicted in Fig. 1, typically
consists of a passive RFID tag and a reader or interroga-
tor. The transponder receives radio-frequency (RF) signals
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emitted by the interrogator and, in response, transmits modu-
lated signals containing specific information pertaining to the
object. The interrogator subsequently recognizes the signals
from the transponder and extracts the desired information,
such as the object’s location, inventory information, or other
relevant data. However, conventional RFID systems utilize
the same frequency for both uplink and downlink trans-
missions, which can result in issues such as self-jamming,
multipath scattering, and poor performance in cluttered envi-
ronments [Fig. 1] [8], [13], [18], [19], [20]. To address these
challenges, researchers have proposed the utilization of dif-
ferent frequency bands for data transmission (Tx) and receiv-
ing (Rx) [21], [22], [23], [24], [25]. One widely employed
approach is using harmonic radar and harmonic transponder-
based systems [23], [24], [25], [26]. In these systems, the
transponders receive signals at the fundamental frequency
from a harmonic radar and respond by nonlinear backscatter-
ing harmonics (usually the second harmonic). This allows the
harmonic radar to effectively access useful information even in
cluttered environments [Fig. 1]. Given these advantages, pas-
sive harmonic RFIDs represent a promising solution for iden-
tifying, sensing, and tracking objects in various scenarios [25],
[26], [27], [28], [29].

This article provides a comprehensive review of passive har-
monic RFID systems, which play a vital role in a plethora of
IoT-based applications. The comparison of conventional and
harmonic RFID systems, the design and implementation of
harmonic transponders, as well as recent developments in the
application of passive harmonic RFIDs, are examined in detail.
Section II provides a brief history and a comparison of tra-
ditional and harmonic RFID systems. Section III presents the
analysis of harmonic RFID transponders, including both chip-
less and chip-based transponders, with a particular focus on
antennas and circuits that convert the received RF signal into
its harmonics. Section IV outlines applications of passive har-
monic RFID systems in various sectors. These include the
identification of objects and individuals, accurate localization
of specific objects (e.g., insects and livestock), and monitoring
of physical, chemical, and biological (e.g., human vital signs)
parameters. Section V discusses the challenges and future
directions of passive harmonic RFIDs. This review article pro-
vides an in-depth overview of the design, implementation, and
practical use of passive harmonic RFID systems.

II. CONVENTIONAL AND HARMONIC RFID SYSTEMS
A. Brief History

The evolution of the practical radar system can be traced
back to 1935, when Watson-Watt first demonstrated a system
utilizing the reflection of radio waves off an aircraft to detect
and track its location [30]. In the ensuing decade, radar tech-
nology underwent a period of rapid development, leading to
the creation of a series of radars designed for the detection
of aircrafts, ships, and other military targets [31], [32], [33].
In the 1970s, radar technology was introduced to the field of
entomology for direct observation of high-flying insects [34],
[35], [36]. The implementation of entomological radars has

significantly impacted the field, enabling cost-effective, long-
term tracking and monitoring of the movements of airborne
insects, a task previously unattainable through visual obser-
vation or video recording. In [37], a vertical-looking radar
(VLR) is employed to investigate the migration patterns of
high-altitude insects. The VLR emits a beam that is directed
vertically and nutates around its vertical axis, along with the
rotation of the polarization plane. An inset passing through
the nutating beam can modulate the radar cross-section, yield-
ing radar echoes that possess characteristics associated with
the speed, direction, orientation, size, and shape of the insect.
These parameters can be determined by applying specialized
algorithms to the complex Fourier transform of the backscat-
tered signal. The findings of the research suggest that it may
be feasible to conduct efficient, continuous, and prolonged
monitoring of the density, orientation, composition, and direc-
tion of movement of insects. The vertical-beam radars have
been further refined to realize enhanced accuracy in the esti-
mation of the mass and density of airborne targets [38], [39],
[40], [41]. Despite the undeniable significance and noteworthy
accomplishments of the research, there remain non-negligible
limitations and challenges that must be acknowledged. The
system, while able to identify species based on size, lacks
the capability to provide more detailed identification features.
Furthermore, its applicability is restricted to scenarios where
there is a low density of objects. In situations where the den-
sity of objects is high, the received radar signal can become
severely compromised, resulting in inaccurate information
about the target. More importantly, the system is only able to
detect insects flying at high altitudes, as those flying in close
proximity to the ground are obscured by reflections from the
ground, plants, and other natural and man-made reflectors.

B. Conventional RFID Systems

Radar is an instrument that transmits an interrogation sig-
nal and receives its reflection from objects, and a radar alone
is incapable of providing specific information or identification
for individual objects. On the other hand, RFID technology,
which has its roots in radar technology, integrates radar and
radio broadcasting. This allows data transmission and basic
information processing functions using the radio wave, thereby
enabling precise tracking, recognition, and identification of
objects. An RFID system typically comprises a reader and
RFID tags. The RFID tag affixed to the target object receives
the interrogation signal and either transmits (in the case of
active tags) or reflects (in the case of passive tags) RF signals
back to the reader. The return signal contains the identifica-
tion information (i.e., ID) of a specific object, such as its
category, specific position, and inventory information [13],
[42], [43], [44], [45]. While RFID technology has partially
mitigated the aforementioned challenges in radar technology,
conventional RFID systems continue to face significant issues
related to clutter, jamming, and multipath propagation [8],
[13], [18], [19], [20]. These electromagnetic interferences can
originate from a variety of sources, including the reception of
direct radio signals by the side or back-lobe of the receiver
antenna, the presence of multiple readers and targets, and the
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reflection and scattering from strong-reflecting objects such as
the ground in underground or ground-dwelling object tracking,
metal objects in industrial environments, and human bodies in
biomedical and vital sign monitoring applications. The preva-
lence of clutter and multipath interference has been found to
greatly obscure the low-power signal returned by the RFID
tag, especially for the passive tags examined in this review.
This significantly impairs the performance of RFID systems.
Therefore, it is imperative that these challenges be addressed
with a sense of urgency. A straightforward remedy is to sep-
arate the transmit and receive frequency of the transponder.
For instance, in [46], a self-oscillating mixer is leveraged to
realize the transponder that can upconvert the incoming sig-
nal to a higher carrier frequency by incorporating a dual-band
substrate-integrated-waveguide (SIW) metamaterial antenna.
Nevertheless, an external voltage supply is still needed to
power up the transistor. While the issue of DC supply can
be resolved by using the concept of wireless power transfer,
as shown in [47], this may result in a complex circuit topology.

C. Harmonic RFID Systems

Recent advancements in harmonic RFID technology have
exhibited a high degree of robustness towards clutter
and multipath interference, effectively addressing the long-
standing issue in linear RFID systems [24], [25], [48],
[49], [50]. Harmonic RFID systems consist of harmonic read-
ers and harmonic transponders. Distinct from conventional
RFID systems, which employ identical frequency bands for
both transmission and reception of radio signals, these har-
monic RFID systems incorporate a more advanced approach.
They utilize a fundamental frequency for the downlink com-
munication (from reader to tag) and a harmonic frequency for
the uplink communication (from tag to reader) [Fig. 1]. This
makes them particularly effective in tracking and monitoring
objects that are challenging to detect with traditional passive
linear RFID systems, particularly for those situated surrounded
by reflectors and ground.

Mascanzoni and Wallin first developed a portable harmonic
RFID system for tracking the movement of tagged carabid
beetles [48]. The system employs a commercially available
RECCO radar, which transmits a continuous wave signal at
915 MHz and receives at 1830 MHz. The passive tags, which
are constructed with Schottky diodes and thin wire antennas,
are affixed to the insects. When illuminated by the interro-
gation signal, these tags re-radiate the signal at the second
harmonic (1830 MHz), thereby providing the localized posi-
tion of the insect. This method has been demonstrated to be
effective in locating and identifying stationary or low-speed
moving targets, such as snails and butterflies, within a detec-
tion range of a few tens of meters [51], [52], [53]. It is worth
noting, however, that this rudimentary RFID system functions
solely as a direction finder and is not capable of measuring the
target range or flight trajectories of insects. To overcome this
difficulty, a more advanced RFID system has been developed,
which utilizes a pulsed harmonic radar emitting brief, high-
power bursts of electromagnetic radiation [49]. This results
in a high peak power of the transmitted signal, facilitating
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the detection of tags at greater distances while maintaining
a low average power consumption. The utilization of pulsed
harmonic radars allows for the determination of the posi-
tion, track, and velocity of low-flying objects. Studies have
demonstrated the effectiveness of this type of RFID system
in tracking the flight paths of bumble bees, moths, and honey
bees at low altitudes and at distances of up to 900 m, with a
consistently reliable operational range of 750 m [24], [49].
Recently, a range of methodologies have been proposed to
further augment the performance of harmonic RFID systems,
with an emphasis on reducing system dimensionality and
increasing detection range, accuracy, and sensitivity. It has
been reported that the use of vertically polarized antennas in
a harmonic RFID system is more efficient in tracking insects,
such as hornets [50], compared to horizontally polarized anten-
nas (i.e., wire antennas in [48], [49]). This is attributed to the
fact that the tags used for tracking are typically mounted on the
insect’s back in a vertical orientation, which is more practical
than horizontal mounting. As the tag remains vertical during
most of the insect’s flight, vertically polarized antennas ensure
minimal loss of polarization and consistent detection of the
tag. As a matter of fact, antennas are critical components in
harmonic RFID systems, which are expected to exhibit optimal
performance within a compact size. Further examination of
antenna design in harmonic RFID systems will be discussed
in the subsequent section. In addition, efforts have also been
undertaken to improve the performance of harmonic RFID
systems through the optimization of signal processing. For
instance, Tsai and colleagues proposed a harmonic radar uti-
lizing the pseudorandom code positioning technique to attain
high range accuracy and sensitivity [54]. The sensitivity of
the transceiver is determined to be —120 dBm, which is 27 dB
below the noise level. Maggiora and colleagues improved the
sensitivity of a harmonic radar by using pulse compression
techniques [55]. This advancement enables precise tracking of
hornets within a detection range of approximately 500 m.
Generally speaking, harmonic RFID technology represents
a powerful and versatile tool for detecting objects in clut-
tered and noisy environments, which is not possible with
conventional RFID systems. With ongoing advancements and
optimizations, harmonic RFID systems have been successfully
applied in a wide range of fields [48], [49], [50], [56], [57].
In these applications, transponders play a crucial role as they
must be specifically designed to meet the requirements of the
intended environment or purpose. In the following, we will
discuss the classification and design of harmonic transponders
as well as the applications of passive harmonic RFID systems.

III. HARMONIC TRANSPONDERS

Transponders constitute the core of an RFID system, as they
contain the identification information of the targeted object.
Passive transponders can be classified into two categories:
chipless RFID and chip-based RFID. The primary distinc-
tion between the two types lies in the presence of microchips,
with chipless RFID lacking microchips and chip-based RFID
incorporating them. Chipless RFID tags have the advantage
of simple circuit design and low cost, with prices as low as
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TABLE I
COMPARISON OF CHIPLESS AND CHIP-BASED RFID
Characteristics Chipless RFID Chip-based RFID
Microchips Absent Present
Cost Low (US$0.01) Medium (US$0.1-1)
Reading distance Short (~ 1 m) Long (1-12 m)
Data storage capacity Low/medium High
Reading capability Up to 3 tags at a time 1000 tags at a time
Reader power level Low Medium/high
Tag antenna design Complex Simple
Tag system design Simple Complex
Harsh environment High tolerance Low tolerance

1 cent [58]. However, the backscattering principle utilized in
these tags limits the read distance and information storage
capability. Typically, chipless RFID tags have a read distance
of approximately 1 m and data storage capacity ranging from
one to a few tens of bits. On the other hand, chip-based RFID
tags have a read distance of 1-12 m and data storage capac-
ity of tens or hundreds of bits [59]. Furthermore, the reading
capability of chipless RFID tags is limited, with only one or
up to three tags able to be read at a time. In contrast, chip-
based RFID tags can be read simultaneously in large numbers,
with recent research indicating a capability of up to 1000
tags [59]. Additionally, chipless RFID tags typically require
antennas with larger bandwidths, while chip-based RFID tags
only necessitate narrow-band antennas [60]. A comprehensive
comparison of the characteristics of chipless and chip-based
RFID tags is presented in Table I, highlighting the key differ-
ences between the two types of tags. Overall, chipless RFID
tags offer cost-effectiveness, suitable for near-field communi-
cation, while chip-based RFID tags offer greater read distance,
storage capacity, and simultaneous reading capability, suitable
for a wider range of applications.

A. Chipless RFID

Recent research has demonstrated the capabilities of both
one-bit and multi-bit passive chipless RFID tags [56], [57],
[61], [62], [63], [64]. One-bit passive chipless RFID tags
are composed of antennas and a passive nonlinear frequency
multiplier. These tags typically feature two antennas: one
operating at the fundamental frequency (f) for receiving the
interrogation signal and another operating at the second har-
monic frequency (2f) for retransmitting the signal. The passive
frequency multiplier, which is employed for harmonic gener-
ation, is commonly constructed using a Schottky diode as the
primary component for harmonic generation and lumped ele-
ments for impedance matching and filtering, enhancing the
performance of the transponder. In multi-bit tags, additional
resonant elements are added for ID encoding, which allows
for a greater amount of data to be encoded and transmitted.

In the design of chipless RFID tags, it is essential to com-
prehend the critical aspects of the system and to anticipate
and optimize the performance of the harmonic transponder.

Lead
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Fig. 2. (a) Schematic of the transponder formed by a dipole antenna and
a diode with a parallel connected inductive loop. Inset: photograph of the
transponder [56]. (b) Schematic of the SMS7621-based harmonic transponder
(left) and its photograph (right) [57].

One critical metric that can be employed to evaluate the
performance of harmonic tags is the harmonic cross-section,
which is represented by [56]

A
oy = ESCGUCGM 1)

where & represents the conversion efficiency of the tag, Gy
and Gy, denote the gain of the tag antennas at the fundamen-
tal and second harmonic frequencies, respectively, and As is
the fundamental wavelength. The harmonic cross-section area
of the tag can be further utilized to calculate the second har-
monic power detected by the radar and to evaluate the overall
performance of the harmonic RFID system, by utilizing the
harmonic radar range equation [56]:

. P,thGrfGrh( A )2

P
h 47 47 r?

@

where P,, denotes the second harmonic power received by
the radar, P, represents the fundamental power transmitted
by the radar, oj, signifies the harmonic cross-section defined
in Eq. (1), G,y and G, are the radar transmitting and receiv-
ing antenna gain at the fundamental and second harmonic
frequency, respectively, r symbolizes the distance between the
radar and tag, and Aj is the second harmonic wavelength.
Egs. (1) and (2) have been validated in numerous stud-
ies, including [56] and many subsequent related works [65],
[66], [67]. In [56], a chipless RFID tag is designed to func-
tion at the fundamental frequency of 9.41 GHz and the second
harmonic frequency of 18.82 GHz. The RFID tag comprises a
dipole antenna and a Schottky diode paralleled with an induc-
tive loop, as shown in Fig. 2(a). The tag achieves optimal
performance with a 12-mm-long dipole antenna when in iso-
lation, and with an 8-mm-long dipole antenna fed 2 mm from
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the attached end when mounted on insects. The measured har-
monic cross-section of the tag shows excellent consistency
with simulated predictions, verifying the validity of the theory.

It is established through Eq. (1) that the performance of
a chipless tag can be optimized through the careful design
of both the antenna and frequency multiplier. Reference [56]
achieves the optimal design by experimenting with different
antennas while keeping the frequency conversion stage, specif-
ically the diode and inductive loop, unchanged. In [57], the
maximum readout range of a passive chipless tag is realized
through the careful selection of the Schottky diode. The tag
receives the RF signal at the fundamental frequency (3.5 GHz)
and re-radiates the modulated signal at the second harmonic
frequency (7 GHz). As shown in Fig. 2(b), the diode is consid-
ered to be the sole nonlinear component in a passive chipless
transponder. Its conversion loss plays a significant role in
determining the overall conversion efficiency of the transpon-
der. A comparison of different Schottky diodes reveals that
SMS7621 has a lower conversion loss of the tag, resulting
in a longer detection range. Specifically, the SMS7621-based
transponder can achieve a maximum readout distance of 8 m
at room temperature, which is 1 m greater than that of the
SMS7630-based transponder. Furthermore, it is found that
low temperatures have the potential to increase the maximum
readout range of the transponder. When the temperature is
varied from —40°C to +40°C, the maximum readout dis-
tance increases from 7.4 m to 7.7 m for the SMS7621-based
transponder, and from 6.4 m to 7.1 m (more than 10%) for
the SMS7630-based transponder.

The transponders discussed in [56] and [57] can be clas-
sified as one-bit passive chipless tags. These tags utilize the
presence or absence of a second harmonic signal to encode
the logic “1” or “0”. Other notable examples of one-bit har-
monic tags include those that utilize off-the-shelf Schottky
diode (e.g., HSMS-2850) [61], as well as those that employ
custom diodes (e.g., organic pentacene-based diodes) [62], and
innovative antenna designs [63]. Single-bit harmonic tags, with
relatively simple system architecture, have demonstrated their
effectiveness in a diverse array of locating, sensing, and track-
ing applications [49], [60], [61], [62], [63]. However, in certain
identification applications, the utilization of multi-bit tags,
which possess a greater coding capacity, may be deemed more
suitable. Multi-bit tags utilize multiple resonant elements that
can be configured in various forms, including but not limited to
split-ring resonators (SRRs) [64], [68], spiral resonators [69],
open-loop resonators [70], microstrip resonators [71], and
antennas [64]. Fig. 3 presents two representative examples
of multi-bit harmonic tags, where the resonant elements are
implemented using (a) band stop SRRs and (b) narrowband
diode antennas. The utilization of multiple resonant elements,
each resonating at a specific desired frequency, enables the
encoding of multi-bit identification information. One or a
pair of resonant elements is responsible for encoding a sin-
gle bit. The information retransmitted by the tag is encoded
in the frequency spectrum, with the binary digits “1” and
“0” represented by the presence or absence of resonant dips
at a particular frequency band. To ensure optimal opera-
tion, the antenna and diode of multi-bit tags are typically
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(@) (b)

Fig. 3. Multi-bit harmonic transponders composed of (a) a wide-band bow-
tie antenna and band stop split-ring resonators and (b) narrowband dipole
antennas [64].

required to cover a wide frequency range. In [64], a Schottky
diode BAT 15-03 and a wideband bow tie antenna are uti-
lized to meet the bandwidth requirements. Recent studies have
also proposed chipless harmonic RFID transponders that exe-
cute multiplexed sensing by leveraging frequency and phase
shifts [25], [72], [73]. The characteristics of these passive
harmonic transponders are summarized in Table II.

B. Chip-Based RFID

Chip-based harmonic transponders are similar in design to
conventional chip-based transponders, but possess an additional
functional block for frequency conversion. The functional com-
ponents that are common to both conventional and harmonic
transponders with chips include (1) antennas for receiving and
re-radiating signals; (2) an energy harvester, which captures
transmitted interrogation power and converts it to usable DC
energy to power the microchip; and (3) integrated circuits (IC)
for generating and storing identification data. The chip-based
harmonic tags exhibit a greater diversity of configurations in
comparison to their chip-less counterparts. As reported in [74],
a chip-based harmonic RFID system is proposed for the local-
ization of objects with high precision and resolution. Fig, 4(a)
illustrates the schematic and image of the harmonic transpon-
der. In this design, Antenna 1 (ANT 1) is utilized to receive
the RF signal at the fundamental frequency and to provide
the fundamental signal to the energy harvesting and downlink
demodulation units. The energy harvester powers the digital
logic circuits and the tag receiver. Furthermore, Antenna 2 (ANT
2) is also employed to receive the fundamental signal, which
is then transmitted to a nonlinear transmission line (NLTL).
The NLTL, composed of ladders of inductors and capacitors,
is responsible for generating the second harmonic signal and
reflecting it back to ANT 2, which subsequently retransmits
the signal to the reader. The RFID system operates in the UHF
band, with the fundamental (downlink) frequency of around
1 GHz and the second harmonic (uplink) frequency of around
2 GHz. It is demonstrated that the system achieves millimeter-
level ranging resolution and centimeter-level precision with a
sampling rate of 15 Hz. Additionally, a thorough investigation
is carried out to examine the effects of the quantity of tags on
critical system parameters, including the rate of data collection,
power consumption, and inaccuracies in location estimation.
The results point out that the proposed harmonic RFID system,
aided by code division multiple access (CDMA), can enable
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TABLE I

REPRESENTATIVES OF PASSIVE CHIPLESS AND CHIP-BASED HARMONIC RFID TRANSPONDERS

123

Size Frequenc Data Read Harmonic
Ref. Type (LxW) q y storage range (m) Antenna G Other components Comments
(mm?) (GHz) capacity /Power enerator
. § 9.41 e 7 A single dipole Schottky diode . Miniature,
[56] | Chipless | 81 &i1gg2 | Omebit W antenna (HSCH.5340) | Inductiveloop lightweight
[57) | Chipless | 8545 | 35&7 | Omebit | oo | * dual-band S%“;}g gy | Matching networks | - InereReecrend
. T 0.4 Nested slot Schottky diode Filtering and Compact, paper-
[61] | Chipless 75%65 12&24 One-bit (8 dBm) antennas (HSMS-2850) matching networks substrate
. ~200 0.0075 . 0.125 Two coil Pentacene- Fully-organic,
[62] | Chipless %200 & 0.015 One-bit (10 dBm) antennas based diode None paper-substrate
. 5.9-6 , 58 Modified Schottky diode Compact, low .
[63] | Chipless | 9.5x9.5 & One-bit (0.1 W) | Minkowski loops | (HSCH-5340) None power, Increase
11.8-12 read range
~90x70 | 1.65-7.65 4 bits A W.ideband bow Four SRRs
tie antenna
- lor2 0.165° Cross coupled Schottky Diode Multi-bit, low-
[64] | Chipless | ~60x30 2-6 bits (13 dB) dipoles (BAT 15-03W) One or two SRRs cost
~50%25 26 2o0r3 Four or six dipole None
bits antennas
Gons 45 One Rx aniemna 1oL Circuit Low cost, high
[25] | Chipless N.A ’ Analog : and one Tx m 1r§:u1 Sensing element oW cost, g
& llggg— (10 dBm) sensing antenna MK-54 resolution
. 1.23,1.73, 4 Two 1§X ant;nnas Schottky diode Filtering and Fle);llb le, 101\?.]'
[72] | Chipless | 100x70 | g5 ¢ Analog | (25 4Bm) and one Tx (HSMS-2850) | matching networks |  Profile, multi-
antenna functional
Chip- Y Multi-bit ~15 Two separate 5pe'1;gi/1har'veste'f, High precision,
(751 based ~55x20 1&2 (1kHz)" | (30 dBm) antennas NLTL et e(t)cglc unit, high resolution,
Chip- ‘ 0915 o 46 Two separate En;rgy harvester, High precision,
[27] based ~80x25" & 1.83 Multi-bit (0 dBm) antennas NLTL microcontroller, reduced
' etc. interference
Chip- :1810016107 0.434 _ 18 Two meandered E“e;g{ }t‘.ar"“t?tr’
7711 based i &oses | B8PS | (18dBm) | dipole antennas NLTL modulation unit, |- Ultra-low power
~90x40* etc.
Chip- Multi-bit ~1.5-2 Two separate ljpe'l;glylhar'vestc':tr, MUI.t 1—functlgnal,
[78] based N.A. 095& 1.9 (500 Hz)" (=20 antennas NLTL igital logic unit, increase
dBm)! etc. sensitivity
o1 | S | g | D3| Mutibin |8 e | (HSMS.2830) | micsoconmoler, | incressed read
based & 0.868 (1 kHz) (30 dBm) antenna ete. range
Chip- Injection Rectifier, Fully-integrated,
[80] | pased | 2-5%2.5% | 5.8&11.6 | 4bits N.A. On-chip antennas locked LC oscillator, register, low-power
oscillator amplifier, etc.
Controllable Power Low-power
t Chip- " L. 4t A wideband horn second- management unit, uplink,
[81] based ~30%20 244438 | Multi-bit (25 dBm) antenna harmonic microcontroller, uncompromised
termination etc. rectification
Chip- 0915 o 6.5 A dual-band Internal Third-harmonic,
[82] based ~50%30 & 2.745 Multi-bit (30 dBm) antenna circuitry of RFID IC increased read
’ RFID IC range

$ represents that while various design dimensions are analyzed in the reference, the value presented here correlates the maximum read range.

T represents the distance between reader and tag during the experiments and does not indicate the maximum read range, while other values in this column represent
the maximum read range, corresponding to the lowest conversion loss.

I'represents the power of harmonic signal converted by the tag, while other values in this column represent the fundamental power transmitted by the radar.

# indicates the size of the tag circuit and does not include the size of antennas, while other values in this column indicate the overall dimensions of tags.

¥ The three dimensions here represent the sizes of the Rx antenna (434 MHz), Tx antenna (868 MHz), and circuit of the tag, respectively.

¥ focuses on the design and implementation of an integrated rectifier-transmitter for harmonic wireless sensing applications and does not fully demonstrate a chip-

based RFID system.

" represents the sampling rate or data modulation rate.

the concurrent localization of multiple tags. The transponder
design presented in [74] has since been adopted in subsequent

studies referenced as [75], [76].

In [77], a harmonic RFID tag with a representative config-
uration is utilized. As depicted in Fig. 4(b), the interrogation

signal is received via ANT 1 and subsequently divided into
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Fig. 4. Schematic and circuit implementation of the chip-based harmonic
transponders, as in (a) [74] and (b) [77], which comprise Rx and Tx antennas,
energy harvesters, digital circuits, and harmonic generators.

two paths. One path is converted to DC power through an
energy harvester, providing energy for the tag circuits, while
the other path passes through a frequency multiplier (NLTL)
before being retransmitted by ANT 2. The resulting harmonic
signal, backscattered by the transponder, is then received by
the reader and undergoes post-signal processing to obtain the
transmitted ID. The tag configuration presented in [77] is
consistent with those reported in recent literature [27], [78],
which may be streamlined by incorporating a single broadband
or multi-band antenna in place of the two separated anten-
nas [79]. We note that chip-based harmonic RFID systems
predominantly operate within the UHF bands, owing to the
comparatively low path loss and accessibility of unlicensed
frequency bands. These systems may be optimized for higher
operating frequencies by leveraging on-chip technology [80]
and advanced circuit designs [81].

The utilization of the second harmonic signal in the afore-
mentioned harmonic RFID systems has been established as an
efficient method for mitigating self-jamming and multi-path
propagation. In recent developments, the application of the
third harmonic signal in RFID systems has been proposed as
a means of enhancing energy harvesting [26], activating sen-
sor units [16], and facilitating communication between the tag
and reader [82]. The third harmonic signal can be utilized
as the RF input to an energy harvester, which is then recti-
fied to DC energy and reinjected into the RFID chip. This
methodology improves the sensitivity of the chip, resulting in
a 2.5-m enhancement of the readout range [26]. Furthermore,
the third harmonic signal can directly provide energy to a sen-
sor linked with the tag, thereby expanding the functionality
of the tag [16]. Additionally, as shown in Fig. 5, the third
harmonic can also be used for downlink and uplink commu-
nication between the tag and reader [82]. To achieve this, an
RF harmonic interface layer is implemented in the conven-
tional reader to transmit the interrogation signal and receive
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Fig. 5. Harmonic RFID system which utilizes the third harmonic signal for
downlink and uplink transmissions between the reader and tag. The system
consists of a conventional UHF interrogator, a custom designed harmonic RF
layer and a harmonic RFID tag [82].

the third harmonic signal containing identification information.
A custom-designed dual-band harmonic tag antenna, which
operates at both fundamental and third harmonic frequencies,
is coupled to a traditional RFID chip to increase third har-
monic radiation efficiency. The transponder re-radiates the
third harmonic signal (2745 MHz) once it receives the fun-
damental signal (915 MHz). The proposed third harmonic
RFID system not only preserves the advantages of the sec-
ond harmonic RFID system, but also offers enhanced readout
range, increased data rate, and greater potential for various
applications.

C. Antennas for RFID

The harmonic RFID transponder necessitates the utiliza-
tion of either two separate antennas or a dual-band/wide-band
antenna for the reception of the fundamental frequency and
the transmission of the harmonic frequency. It is desirable for
antennas to possess satisfactory performance within a com-
pact size. The miniature and lightweight characteristics of the
antenna promote its implementation on small objects. The high
gain and directivity characteristics of the antenna enhance
its capability of producing a sufficient directional radiation
field, potentially extending the readout range. In specific RFID
applications, a wide operating bandwidth is desirable to cover
the entire operating frequency range [64], [72]. The polar-
ization of the antenna is also a crucial factor that needs to
be considered, as careful selection of the polarization of the
tag antenna and reader antenna can minimize polarization loss
and improve transmission distance [50]. Additionally, it is
imperative to take into account the potential impact of exter-
nal factors, such as metallic objects or human presence, on
the performance of the RFID antenna when implementing the
system in specific scenarios [83], [84], [85].

To date, numerous antennas have been developed to meet
the requirements of RFID applications [84], [85], [86], [87],
[88], [89], [90], [91]. A comprehensive summary of rep-
resentative works in antenna design for RFID is presented
in Table III, including the performance characteristics of the
antennas. In [84], an electrically small antenna is proposed,
which features a gain of 0.08 dBi at the operating frequency
of 923 MHz. As depicted in Fig. 6(a), the antenna has a
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TABLE III
REPRESENTATIVES OF ANTENNAS FOR RFID APPLICATIONS
; Maximum : Fractional Radiation
. Size (LxWxH Frequenc Bandwidth g
Ref. Antenna Configuration ((mm3) ) (gl;{z) Y Rf_’alized, (MHz) Bandwidth | Efficiency Characteristics
Gain (dBi) (%) (%)
Dual-layer, two patches fed x - Electrically small,
[84] via a PIFA array 26x14x2.4 0.923 -4 16 17 23 metal-mountable
[85] A meandereq patch'fec! by 100%50%0.8 0915 3.8 43 47 NA. Broadband, metal-
a coupled microstrip line mountable
[86] Slotted, magnetic dipole- 180%60x20" 0.92 53 62 6.7 NA. Low—proﬁlf:, vertical
based antenna polarized
A single longer dipole and + 24 7.5 120 5 Dual-band, single-
[87] a pair of shorter dipoles 43726x0.5 9.5 2100 42 93 substrate
[88] SIR coupled dipole 25%9%1.6 24 2.6 95 4.0 88.6 Dual-bar.ld, broadband,
antenna 5-6 3.6 1380 26.5 96.87 electrically small
Hybrid-fed microstrip ~ + 3 1.17 50 1.7 . ~ .
[89] antenna 35x35%1.5 6 333 240 40 40-70 Dual-fed, low-profile
Diamond-shaped patch + 0915 7.8 18 2.0 87 Dual-band, single-
[90] antenna 150x150x1.66 2.45 9.4 80 33 94 substrate
. 24 -1 ~5000 19 41 On chip, dual-band,
[91] Rectangular slot antenna 2.5%2.5%2.5 0 0 8000 20 3] millimeter-wave

* represents —3 dB (half-power) bandwidth/fractional bandwidth, while others represent —10 dB bandwidth/fractional bandwidth.
$ represents that the results are obtained from simulations, while others are obtained from measurements.
Trefers solely to the dimensions of the resonator or radiator and does not encompass the overall dimensions of the antenna.

(b)

Fig. 6. (a) An electrically small, metal-mountable antenna operating at
923 MHz [84]. (b) A wideband, metal-mountable antenna operating in the
range of 889-932 MHz [85].

dual-layer structure, utilizing two loaded via-patches that
are fed through a dual-element planar inverted-F antenna
array. The proposed antenna offers two main advantages:
its compact size, measuring 0.08Ax0.04Ax0.007A, and its
reliable performance when mounted on metallic surfaces,
making it well-suited for applications involving metallic
objects. Furthermore, a capacitively coupled patch antenna
presented in [85] can also be mounted on metallic objects
[Fig. 6(b)]. The antenna exhibits a —10 dB bandwidth of
43 MHz (889-932 MHz), spanning the 902-928 MHz UHF
band. This antenna, with its wide bandwidth, may be a viable
option for the previously mentioned multi-bit RFID systems.

Dual-band or wideband antennas, which enable simultane-
ous reception and transmission using a single antenna, are
generally considered a superior option to using separate receiv-
ing and transmitting antennas [87], [88], [89], [90], [91]. The
utilization of dual-band or wideband antennas in the design
of harmonic RFID systems can significantly decrease the
overall dimension and complexity of the system, while con-
currently ensuring sufficient isolation between the fundamental
and harmonic signals. A dual-band directional antenna operat-
ing at 2.4 GHz and 5 GHz is presented in [87]. The dual-band
antenna comprises a single longer dipole with capacitive

Feeding *
Point

N

(b)

Microstrip
Line

(a)

Fig. 7. Dual-band RFID antennas operating at (a) 2.4 GHz and 5 GHz
and [87] (b) 2.4-, 5.2-, and 5.8-GHz frequency bands [88].

loadings and a pair of shorter dipoles to cater to the lower and
upper frequency bands, respectively. All the dipole structures,
as well as the microstrip feed line, are printed on a com-
mon substrate, facilitating a compact and planar configuration
[Fig. 7(a)]. The experimental results indicate that the antenna
exhibits antenna gains of 7.5 dBi and 9.5 dBi for the 2.4-GHz
and 5-GHz bands, respectively. The —10 dB bandwidths for
the 2.4-GHz band and the 5-GHz band are respectively deter-
mined to be 120 MHz and 2100 MHz, corresponding to
relative bandwidths of 5% and 42%. Moreover, a coplanar,
dual-band antenna is proposed in [88] for RFID applications in
the 2.4-, 5.2-, and 5.8-GHz frequency ranges. As illustrated in
Fig. 7(b), the design employs a stepped impedance resonator
(SIR) to attain resonance at the lower frequency and a modified
planar dipole that is coupled with the SIR to achieve resonance
at the higher frequency with wide-band coverage. The result-
ing antenna exhibits a nearly omnidirectional radiation pattern
and achieves maximum gains of 2.6 dBi at 2.48 GHz and
3.6 dBi at 5.35 GHz. In a more recent study [89], a compact
hybrid-fed microstrip antenna is proposed for harmonic RFID
applications. The antenna features an outer split ring patch
operating at the fundamental frequency and an inner circular
patch operating at the second harmonic. The proposed antenna
demonstrates satisfactory gain and radiation efficiency, and
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has been effectively implemented in a harmonic microfluidic
sensor [92].

IV. APPLICATIONS OF PASSIVE HARMONIC RFIDS

Passive harmonic RFID technology has demonstrated
remarkable advantages in various domains for identification
[64], [77], tracking [93], [94], and monitoring of objects [95],
[96], [97]. In this section, we systematically categorize the
diverse applications of passive harmonic RFID systems doc-
umented in academic literature. A comprehensive overview
of their utilization is provided, offering detailed information
on each application. The objective is to impart a systematic
and thorough understanding of the numerous applications of
passive harmonic RFID systems.

A. Tagging and ldentification

Tagging and identification is probably considered as one of
the most fundamental applications of RFID systems. In [77],
a compact and low-power harmonic RFID tag is designed and
evaluated experimentally. The proposed tag is powered by an
energy harvesting unit and can function with received signal
strength as low as —6 dBm. The digital modulation circuitry
of the RFID tag employs a shift register to create the identifi-
cation code, which is loaded in parallel as an 8-bit data stream
and transmitted in series upon deactivation. An increased num-
ber of bits may also be possible by incorporating multiple shift
registers. Additionally, an interrogator is designed to power the
tag and read the transmitted ID within a range of 1.8 m when
the transmitted power is 18 dBm. The read range could be
further extended by increasing the transmitted power or imple-
menting high-gain antennas. Moreover, harmonic transponders
with larger data storage capacities and faster data transmission
speeds may be achievable with more sophisticated integrated
circuits [75], [77].

Besides chip-based harmonic RFID tags, chipless harmonic
RFIDs have been increasingly used for identification and
tagging as an attractive alternative to traditional barcodes
[58], [64]. The chipless RFIDs employ resonators or anten-
nas that operate at individual frequencies to generate single-bit
or multiple-bit identification information. Despite the benefits
of low cost, simple design, and lightweight, many chipless
RFIDs, as well as a portion of chip-based RFIDs, still expe-
rience interference issues in environments with multiple tags
or readers. To address this challenge, the CDMA protocol has
been proposed for harmonic RFID systems [74], [76]. This
protocol enables the system to handle situations where a large
and unknown number of tags are present. Furthermore, the
CDMA protocol allows the tag to differentiate between down-
link commands from multiple readers and respond accordingly,
thus effectively addressing reader-to-reader collisions with a
minimal rate of read failure. The harmonious integration of
the harmonic technology and the CDMA protocol offers a
promising solution for identification in complex and dynamic
environments with multiple paths and scattering.

B. Tracking and Localization

Harmonic RFID systems have been established as a reli-
able approach for accurately tracking insects that fly at low
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Fig. 8. Application of harmonic RFID systems for (a) tracking of Asian
hornets [55] and (b) localizing buried plastic pipelines [94].

altitudes or over flat terrain [48], [49], [56]. Psychoudakis et al.
developed a harmonic RFID system aimed at monitoring the
migration of the Emerald Ash Borer [63]. This system com-
prises a low-power, portable radar unit and a compact RF
tag that can be affixed to the insect. The integration of the
Avago/Agilent HSCH-5340 diode and a modified Minkowski
loop antenna significantly improves the harmonic conversion
efficiency and decreases the tag size, in comparison to previous
systems. The system boasts a remarkable detection range
of up to 58 m, when operating at 5.9 and 11.8 GHz with
0.1 W transmit power and 22 dBi Rx/Tx antenna gain. In
a more recent study reported in [55], the miniature passive
tags attached to the insects allow the harmonic RFID system
to effectively track the flight trajectory and nest location of
the insects. The georeferenced tracks of hornets in the vicin-
ity of Calvo, located in the interior of Liguria, Italy, are
depicted in Fig. 8(a), where the entomological radar is rep-
resented by a blue square situated in the center of the image.
The small, colored squares along the tracks serve as visual
markers to indicate the precise location of the hornets. This
study utilizes pulse compression technique to enhance the sen-
sitivity of the system, achieving a total detection range of
approximately 500 m.

The implementation of passive harmonic tags has proven
to be an effective means of localizing buried or subterranean
objects [93], [94], [98]. As discussed in [93], a frequency-
modulated harmonic tag can adjust its modulation frequency
based on the target asset. Results from the study indicate that
the tag could be read from a depth of up to 60 cm in soil with
25% water content. Another study [94] suggests the utiliza-
tion of a 3-D printed tag attached directly to the buried asset
(e.g., plastic pipelines) for localization purposes, as shown
in Fig. 8(b). The location and orientation of the pipeline can
be determined through analysis of the polarization of the tag
antenna. Results show that the system could detect the tag
when it is buried 20 cm beneath the surface. Furthermore,
the utilization of harmonic tags has also been shown to accu-
rately track the burial depth of underground pipelines, as
discussed in [98]. By employing a genetic algorithm-based
post-processing method, the phase information of the received
harmonic signal can provide an accurate estimation of the
burial depth. This study presents a design for harmonic tags
that are capable of detecting underground pipelines at depths
up to 5 feet in various soil media with differing moisture
contents.
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Fig. 9. Application of harmonic RFID systems for (a) sensing pH of pack-
aged food products [95], (b) monitoring the occurrence of cracks [96], and
(c) determining the type (left, [92]) and volume (right, [25]) of liquid.

C. Sensing and Monitoring

Passive harmonic RFID technology has been widely
employed in various domains for wireless sensing and mon-
itoring of physical and chemical parameters, such as temper-
ature, humidity, strain, gas, and pH [95], [96], [99]. In most
application scenarios, variations in parameters to be monitored
can cause a shift or even disappearance of the backscattered
harmonic signal, thus allowing the sensing function. Here, we
thoroughly examine three representative areas of its applica-
tion: food quality monitoring [95], [100], [101], [102], crack
monitoring [96], [103], [104], and liquid monitoring [25],
[29], [92], [105], [106]. The monitoring of food quality is
of paramount importance in ensuring the quality and safety
of food products during prolonged storage. A compact and
cost-effective harmonic RFID sensor is developed in [95] for
monitoring pH levels, a critical indicator of food quality in
packaged food products such as milk and meat. As shown
in Fig. 9(a), the sensor comprises a dual-band annular ring
antenna, a harmonic generator, and a varactor-based sensing
element. The capacitance of the varactor changes with varia-
tions in pH, resulting in a shift in the resonant frequency of
the receiving antenna. The sensor demonstrates a sensitivity
of 4 MHz per pH unit change, with a pH range of 3 to 8. Its
compact size and comparable range and sensing capabilities

make it a desirable alternative to previous harmonic sensors.
Further seminal works relevant to harmonic transponder-based
food sensing can be explored in [100], [101], [102].

A frequency-doubling antenna sensor for wireless monitor-
ing of strains and cracks is proposed in [96]. This sensor
consists of two patch antennas and a diode-based frequency
multiplier [Fig. 9(b)]. The resonance frequency of the patch
antenna is highly sensitive to the length of the antenna and
the substrate surface, and thus undergoes a substantial shift
upon the occurrence of strain or crack. Further advancement
in the concept is presented in [104], by incorporating a com-
pact design for crack monitoring through the integration of
two orthogonally positioned annular slot antennas, with one
nested inside the other. Both designs exhibit enhanced inter-
rogation distance, improved sensitivity, and notably reduced
background scatters and interferences.

In the realm of liquid sensing, a recent study [92] presents
a passive harmonic sensor consisting of a reconfigurable dual-
band microstrip antenna and a passive frequency doubler, as
depicted in Fig. 9(c). The peak of the frequency hopping
spread spectrum can be modified by the dielectric properties of
liquid mixtures, allowing for the detection of the type of liquid
in the microfluidic cavity. Reference [25] employs a harmonic
transponder to accurately sense liquid volume at the micro-
liter scale. The transponder comprises a metamaterial-inspired
electrically-small antenna connected to a passive nonlinear
frequency multiplier [Fig. 9(c)]. The frequency response of the
transponder is optimized to be highly sensitive to liquid vol-
ume. With the implementation of post-processing algorithms,
a resolution of 0.4 pL and an accuracy of approximately
10% can be achieved, making the system a viable option for
economic and battery-free wireless liquid-level monitoring.

D. Biomedical and Healthcare Applications

In recent years, passive harmonic transponders have gained
popularity in the biomedical and healthcare fields due to their
economical, lightweight, fully-passive, and low-maintenance
nature. As shown in Fig. 10(a), a harmonic sensing tag is
implemented to wirelessly monitor the vital signs of animals,
including heartbeat and respiration rate [97]. The study uti-
lizes a chip-based harmonic transponder powered by energy
harvesting, which is suitable for monitoring small conscious
animals in their natural habitats. It is indicated that simul-
taneous detection of multiple tags can be achieved using a
specific reader. Importantly, this non-invasive sensor captures
the motion within and on the animal’s body without causing
harm or disrupting their circadian rhythms, ensuring animal
welfare and minimizing the potential for pain or distress. An
analogous methodology can be effectively utilized to contin-
uously monitor the vital indicators of human patients [78],
including blood pressure, heart rate, respiration rate, and breath
effort. By adopting this approach, healthcare professionals can
obtain valuable information regarding the patient’s well-being
and take prompt action to address any abnormalities. In [107],
a wireless sensing system based on harmonic backscattering
is developed to continuously monitor deep surgical wounds
during the post-operative recovery period. A reader placed
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Fig. 10. Harmonic RFID systems in biomedical and healthcare applications.
(a) Monitoring the heartbeat and respiratory rate of small conscious animals,
using harmonic RFID and near-field coherent sensing (NCS) principle [97].
(b) Monitoring cough frequency and mask-wearing status during the spread
of COVID-19 [108].

near the human body can wirelessly read out information
related to the wound status at the second harmonic frequency.
Experiments conducted using live pigs show that the system
is capable of monitoring gastric leakage, suture breakage, and
tissue micromotions. Furthermore, in rats, the system demon-
strates robust and prolonged monitoring capabilities without
negatively affecting wound healing. This innovative approach
provides a convenient and efficient means of monitoring deep
surgical wounds in real time, making it a valuable tool for
healthcare professionals and researchers.

The recent COVID-19 pandemic has sparked the develop-
ment of smart face masks. A recent study, as reported in [108],
describes the creation of a smart face mask that combines a
traditional surgical mask with a harmonic transponder. The
purpose of this mask is to wirelessly monitor coughing, a
common symptom of respiratory illnesses, and to identify
mask-wearing status in crowded indoor spaces where mask
usage is recommended [Fig. 10(b)]. The harmonic transponder
operates by detecting separation from the face, as the presence
of the human body affects the performance of the transponder
antennas. More importantly, unlike traditional harmonic tags
fabricated with rigid circuit boards, this transponder is con-
structed using conductive silver nanowires and a soft, highly
flexible, and porous substrate, providing superior wearing
comfort. The wireless smart face mask holds great potential
for curbing the transmission of respiratory diseases during pan-
demics and for enhancing health monitoring in various clinical,
biomedical, and healthcare 10T applications.

The evaluation of electromagnetic compatibility (EMC) and
specific absorption rate (SAR) is of great importance in
the field of biomedical and healthcare applications. For the
harmonic RFID systems examined in our research, the orthog-
onality between the downlink and uplink frequencies may pro-
vide them with excellent EMC performance. Moreover, these
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harmonic RFID systems are entirely passive, devoid of inte-
grated power sources, and exclusively re-emit backscattered
electromagnetic radiation originating from the interrogator.
Consequently, this leads to diminished power levels and mit-
igated SAR considerations. The highest average SAR for a
passive harmonic transponder, reported in [23], is 0.62 W/kg,
which is substantially lower than the European standard thresh-
old of 2 W/kg. It is imperative to underscore that harmonic
RFID systems intended for biomedical applications must con-
form to critical standards, including those stipulated in the
IEC/EN 60601-1 EMC standard and the IEEE/IEC 62704-4
SAR standard.

V. CHALLENGES AND FUTURE DIRECTIONS

The advent of passive harmonic RFID technology has
yielded substantial advancements in diverse industrial sectors
and applications. Compared to active RFIDs, passive harmonic
RFIDs boast low costs, long operational lifetimes, and ease
of maintenance. Additionally, passive harmonic RFIDs have
the capability to mitigate clutter, self-jamming, and multipath
interference, which are prevalent issues in conventional RFID
systems. However, despite these benefits, there remain sev-
eral challenges that must be addressed to further enhance the
performance of passive harmonic RFID systems and facilitate
their commercialization.

A. Challenges and Possible Solutions

1) Limited Read Range and Accuracy: Passive harmonic
RFID has a restricted readout range due to the absence of
an integrated power source, i.e., a battery. The tag relies
solely on the power received from the interrogator, result-
ing in a low power level that is vulnerable to interference
from factors such as antenna orientation, propagation loss,
and obstacles in the signal path. This, in turn, contributes to a
decreased read accuracy, rendering accurate readout difficult in
such circumstances. These limitations may hinder the appli-
cations of passive harmonic transponders in real-time, con-
tinuous, and long-range tracking and monitoring. To mitigate
this drawback, polarization-matched high-gain antennas and
low conversion loss harmonic generators may be employed.
Furthermore, the implementation of self-interference can-
cellation techniques and windowing techniques can reduce
background noises and interferences, thereby enhancing the
received harmonic signal and ultimately increasing both read
distance and accuracy [109].

2) Limited Data Storage Capability and Sensing
Capability: Passive RFID tags, either lacking integrated
circuits or featuring low-power, rudimentary circuitry, possess
limited data storage capacities. Even with the assistance of
digital circuitry, the maximum storage capacity of passive
tags barely reaches 128 bytes, significantly less than that
of active tags with substantial data storage and advanced
data retrieval ability. Furthermore, the sensing capabilities
of passive RFIDs are also restricted, with passive harmonic
sensors predominantly relying on monitoring the phase and
amplitude of resonance. This poses challenges when passive
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harmonic sensors are used in monitoring multiple parameters,
especially in biomedical and wearable applications. To
address this, several approaches have been proposed to
enhance the storage capacity of passive tags, such as uti-
lizing high-Q resonators and employing hybrid encoding
techniques [110]. Moreover, the simultaneous measurement
of multiple parameters has become feasible with passive
harmonic RFID systems [72], [78], [111].

3) Multi-Tag and/or Multi-Reader Collision: Harmonic
technology has effectively addressed the issue of electromag-
netic interference caused by reflection and scattering from
surrounding environments. However, reading passive harmonic
tags in areas where there are multiple tags or multiple readers
remains a significant challenge. The reader struggles to differ-
entiate between multiple tags, and the tag is unable to distin-
guish signals from different readers. To mitigate this problem,
various signal processing algorithms, including tree-based
time division multiple access [112], code division multiple
access [74], [76], fractional Fourier transform [113], and short-
time matrix pencil method [114], have been employed and
have demonstrated promising results. However, a reader with
post-processing units, as well as antennas capable of handling
both fundamental and harmonic frequencies, may prove to
be more complex and costly compared to that of traditional
systems. It is anticipated that advancements in circuit and
system design will tackle this issue in the impending future.

B. Future Directions

1) Fully Printable Harmonic RFID Tags: In recent years,
the development of fully printable RFID tags has garnered
significant attention within the research community. These
novel tags diverge from conventional RFID systems, which
typically employ substrate materials such as FR-4 and RT-
Duroid. Instead, fully printable RFID tags can be fabricated
on a diverse range of substrates, including paper [61], [62],
cloth [78], plastic [58], and a variety of soft nanomate-
rials [108]. These fully printable RFID tags involve the
utilization of conductive ink, which can be printed onto ultra-
thin, flexible substrates using advanced printing techniques,
such as gravure printing and inkjet printing [115], [116]. The
emergence of fully printable RFID tags has several notable
implications. Firstly, the adoption of these tags is likely
to result in a substantial reduction in manufacturing costs.
Secondly, the inherent flexibility and adaptability of these tags
make them particularly well-suited for wearable applications,
opening up new possibilities for integration across numer-
ous industries. The development of fully printable RFID tags
may represent a promising advancement in the field, offering
numerous potential benefits and applications.

2) Graphene Harmonic RFID Sensors: Very recently,
graphene harmonic sensing systems have surfaced as a rev-
olutionary development in this field [117], [118]. Graphene
field-effect transistors (GFETSs) possess a unique drain current-
gate voltage characteristic that manifests as a symmetric
“V-shape”. This feature endows GFETSs with the ability to con-
vert incoming RF signals to their second harmonic, thereby
serving as a simple yet effective frequency doubler capable

of operating at extremely high frequencies, reaching up to
tens of GHz. More importantly, unlike conventional frequency
multipliers that serve solely as frequency multipliers, GFETs
exhibit the capability of simultaneously acting as frequency
doublers and sensing elements. The exceptional sensitivity
of graphene’s electrical conductivity to chemical or biologi-
cal dopants has been well established [118], [119], [120]. By
utilizing a single back-gate GFET, it is feasible to attain a
frequency-doubling transponder sensor with exceptional sen-
sitivity towards variations in the doping concentrations on
the graphene surface [121]. These variations give rise to a
shift in the Dirac point, also recognized as the charge neu-
trality point, resulting in a highly responsive output signal at
the second harmonic. Nevertheless, to enable the operation
of a single-GFET-based harmonic sensor, a drain-to-source
bias may still be required. To address this constraint, dual-
ring, and quad-ring GFET circuits, coupled with antennas,
have been proposed as a promising strategy for achiev-
ing fully-passive GFET-based harmonic sensors [122], [123],
[124], [125]. These GFET sensing-modulators offer integrated
sensing, frequency modulation, and energy harvesting func-
tionalities, enabling reliable, passive harmonic sensing in a
compact, lightweight circuit. Consequently, the GFET-based
harmonic sensors hold immense potential for advancing the
field of harmonic technology towards the next generation.

3) Toward Terahertz and Optical Applications: Plasmonic
nanodevices with strong optical nonlinearity is a nascent
technology that has sparkled recently and begun making
waves. The concept of nonlinear harmonic sensor can also be
extended to the optical domain by using plasmonic nanoanten-
nas made of nonlinear nano-metals or loaded with nonlinear
optical nanoparticles [126], [127], [128], [129], [130] to gener-
ate high harmonics. This allows one to realize optical harmonic
tags based on nonlinear nanoantennas that can detect local
dielectric and molecular properties at high resolution. For
instance, the multipath scattering that occurs at the near-
field scanning optical microscopy (NSOM) tip can be greatly
suppressed. In [131], Farhat et al. have proposed an optical
harmonic sensor based on the dual-resonance gold-molecule-
silver nanodipole antenna and showed that the spectral form
of the second-harmonic scattering could sensitively reveal the
local properties of molecules. This may lead to a new route
towards optical molecular sensors and optical identification
(OPID) of biological, genetic, and medical events for the future
“Internet of Nano-Things.”

VI. CONCLUSION

In this article, we provide a thorough examination of pas-
sive harmonic RFID systems. Our analysis emphasizes the
capability of these systems to effectively suppress electromag-
netic interference and enhance overall performance compared
to conventional RFID systems. We commence with a historical
overview of conventional RFID systems, followed by a com-
parison to passive harmonic RFID systems. This comparison
highlights the cost-effectiveness, low maintenance require-
ments, and extended operational lifespan of passive harmonic
RFID systems. We delve further into the realm of passive
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harmonic RFID systems, presenting a detailed analysis of both
chipless and chip-based variants. The advantages and limi-
tations of these systems are highlighted, and a number of
examples are provided to illustrate their design. Additionally,
we present a comprehensive overview of the applications of
passive harmonic RFID systems, including object identifica-

tion,

tracking, monitoring, and recent developments in the

biomedical and healthcare sectors. The final section of the arti-
cle provides insight into the challenges and future prospects of
passive harmonic RFIDs, emphasizing the potential for further
development and improvement.

This article constitutes a valuable resource for profession-
als and practitioners in the field of passive harmonic RFID
systems and their applications. Our comprehensive analysis of
passive harmonic RFID systems, covering aspects from design,
applications to future prospects, furnishes a comprehensive
understanding of this rapidly evolving technology.
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