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Abstract

In this work, we design, analyze, and optimize sequential

and shared-memory parallel algorithms for partitioned local

depths (PaLD). Given a set of data points and pairwise dis-

tances, PaLD is a method for identifying strength of pairwise

relationships based on relative distances, enabling the iden-

tification of strong ties within dense and sparse communities

even if their sizes and within-community absolute distances

vary greatly. We design two algorithmic variants that per-

form community structure analysis through triplet compar-

isons of pairwise distances. We present theoretical analy-

ses of computation and communication costs and prove that

the sequential algorithms are communication optimal, up to

constant factors. We introduce performance optimization

strategies that yield sequential speedups of up to 29⇥ over

a baseline sequential implementation and parallel speedups

of up to 26.2⇥ over optimized sequential implementations

using up to 32 threads on an Intel multicore CPU.

1 Introduction.

Partitioned local depths (PaLD) is a method for re-
vealing community structure in distance-based data [2].
Given pairwise distances (or dissimilarities) of a set of
points, PaLD computes another pairwise measure called
cohesion that measures closeness based on relative dis-
tances. By relying on relative distance, PaLD is able to
use a universal threshold to distinguish between strong
and weak ties without defining neighborhoods by a sin-
gle number of neighborhoods, neighborhood size, or ab-
solute distance threshold. In this way, PaLD can iden-
tify neighborhoods of varying size and density, making
it useful for data where the relationships among points
behave di↵erently across the space.

The input to PaLD is a distance matrix, and the
output is a cohesion matrix. As detailed in Section 2,
computing cohesion requires determining the size of the
local neighborhood of each pair of points and then com-
puting contributions to cohesion values based on neigh-
borhood sizes. In each case, the fundamental opera-
tion is a comparison of the pairwise distances among
triplets of points. Given n points, this yields an arith-

∗
Department of Computer Science, Wake Forest University.

metic complexity of O(n3). The goal of this paper is
to develop e�cient sequential and shared-memory par-
allel algorithms for scaling PaLD to datasets of size up
to O(105), making it computationally feasible to ana-
lyze ones that fit in memory on a single server. Sec-
tion 3 presents the structure of the PaLD computation
and our two main algorithmic approaches, which we call
pairwise and triplet, respectively. As an O(n3) compu-
tation, PaLD shares many similarities with dense ma-
trix multiplication (GEMM), and our algorithmic de-
sign borrows from ideas of cache-e�cient algorithms for
GEMM [3, 9, 19]. For example, the basic computation is
a comparison between distances of points x, y, z, which
involves distance matrix entries dxy, dyz, and dxz and
has an access pattern similar to the fused multiply-adds
(FMA) within GEMM. There are a few key di↵erences
between PaLD and GEMM. First, because of symmetric
distances, the order of the points is irrelevant, so rather
than requiring consideration of all n3 possible values of
x, y, z, we need consider only

�n
3

�
⇡ n

3
/6 unique triplets.

Second, while the memory access of distances is regular,
the updates of the cohesion requires branching based on
distance comparisons. Finally, the computation requires
two passes because cohesion updates depend on the sizes
of local neighborhoods. Each pass requires a varying
mix of integer and floating point operations in addition
to the branching. The pairwise and triplet approaches
navigate a tradeo↵ between exploiting symmetry and
achieving regular data access and parallelization.

In Section 4 we prove a lower bound on the cache ef-
ficiency of any PaLD algorithm, and we show that both
of our algorithms achieve optimal cache performance, up
to constant factors. By exploiting symmetry and apply-
ing cache blocking, we obtain data locality in cache and
minimize the number of reads and writes of matrix val-
ues. Section 5 details our low-level optimizations of the
two PaLD algorithms. We show that branch avoidance
has the highest impact on sequential performance given
the high cost of branch misprediction [11, 14, 15]. Along
with other optimizations including cache blocking and
vectorization, we show performance improvements over
naive sequential code of up to 29⇥. In Section 6 we de-
sign, optimize, and evaluate OpenMP parallel versions
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of the two PaLD algorithms. We show that the pair-
wise algorithm enables regular data access patterns and
loop-based parallelism that can largely avoid write con-
flicts. The triplet algorithm exploits more symmetry
to reduce arithmetic operations but requires task-based
parallelism due to more complicated data access pat-
terns and write conflicts. We also apply Non-Uniform
Memory Access (NUMA) optimizations when scaling
across sockets. We achieve strong scaling speedups up
to 26.2⇥ for pairwise and 19⇥ for triplet over their op-
timized sequential versions on 32 threads. Finally, we
describe PaLD scaling on text analysis and network data
in Section 7, demonstrating the utility of PaLD on larger
datasets, and we show a speedup of 30.3⇥ on a task with
n = 23133 using 32 threads.

2 Background.

Given a set of points and a pairwise distance metric,
partitioned local depth (PaLD) algorithms determine
the pairwise cohesion between all pairs of points in a
dataset [2]. Assuming that the dataset comprises su�-
ciently separated subsets, cohesion values are invariant
to contraction and dilation of distances within subset
distances. Community structure revealed by cohesion
values capture the concept of near neighbors based on
relative positioning, adapting to varying density. This
approach is more flexible than standard cluster labeling
or nearest neighbor approaches.

Density-based approaches (e.g. DBSCAN) [5, 6, 7]
attempt to combine points into high- and low-density
groups based on pairwise distances similar to PaLD.
However, these density-based approaches typically use
a global density thresholding parameter, fixed for all
points, which must be tuned by the user to reflect
locality and cluster size.

Approaches like k-nearest neighbor (KNN) [8] also
attempt to group points via pairwise distance compar-
isons. Unlike PaLD, KNN-based approaches fix the
neighborhood size to k nearest neighbors (in terms of
absolute distances) for a chosen point. The tuning pa-
rameter, k, is often fixed for all points. In contrast, co-
hesion values from PaLD depend on relative distances
among triplets of points, which can be more reliable
than exact numerical distances, particularly for high
dimensional, non-Euclidean data points. In addition,
PaLD requires O(n3) operations to compute cohesion
values without assumptions on underlying probability
distribution or tuning parameters.

Given a set of points S, the local focus of a pair of
points x, y 2 S is the set of all points within distance
dxy of either x or y, where dxy is the distance between
x and y: Uxy = {z 2 S | dxz  dxy or dyz  dxy}. We
let uxy = |Uxy| denote the size of the local focus.

The local depth of a point x 2 S is the probability
that, given a uniformly chosen random second point
Y 2 S and a random third point Z chosen uniformly
from the local focus UxY , Z is closer to x than Y :
(2.1)
`x = Pr [dZx < dZY | Y ⇠ U(S\{x}), Z ⇠ U(UxY )] .

The cohesion of a point z to another point x is a
part of the local depth `x and is defined as

(2.2) cxz = Pr [Z = z and dZx < dZY ] .

The random variables Y and Z in Eq. (2.2) are cho-
sen from the same distributions as in Eq. (2.1); we
drop the notation here and later. This implies that
`x =

P
z2S cxz, or that cohesion is partitioned local

depth. The cohesion matrix, C, can be used to analyze
community structure. For example, two points have
particularly strong cohesion if the impact of one of the
points to the other is more than that expected from a
random focus point of another random point.

3 PaLD Algorithms Design.

In order to compute the cohesion of all pairs of points,
we can again use the law of total probability to partition
cxz across all points y 2 S:

cxz =
X

y2S
Pr [Y = y and Z = z and dZx < dZY ] .

Using the law of conditional probability, this becomes

cxz =
X

y2S
Pr [dzx < dzy | Y = y, Z = z]

· Pr [Z = z | Y = y] · Pr [Y = y]

which implies
(3.3)

cxz =
X

y2S
Idxzdyz ·

Idxzdxy

uxy
· 1

n� 1
=

1

n� 1

X

y2S
gxyz,

where I is the indicator function and we have defined

(3.4) gxyz = Idxzdyz · Idxzdxy / uxy.

The task is then to compute gxyz for all x, y, z 2 S,
a total of n3 values. However, only approximately 1/3rd
of the gxyz values are nonzero because, given three
points with unique pairwise distance values, only one
pair has the minimum distance. For example, given
points x, y, z 2 S, if x and y are the closest pair,
then gxzy and gyzx are nonzero, but gxyz = gyxz =
gzxy = gzyz = 0. To compute the nonzero values gxzy

and gyzx, we need the values uxz and uyz. The size
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Algorithm 1 Pairwise Sequential Algorithm

Require: D 2 Rn⇥n, Distance Matrix

Ensure: C 2 Rn⇥n, Cohesion Matrix

1: for x = 1 to n� 1 do
2: for y = x+ 1 to n do
3: uxy = 0

4: for z = 1 to n do
5: if dxz < dxy or dyz < dxy then
6: uxy = uxy + 1

7: for z = 1 to n do
8: if dxz < dxy or dyz < dxy then
9: if dxz < dyz then
10: cxz = cxz + 1/uxy

11: else
12: cyz = cyz + 1/uxy

of any given local focus can be computed as uxy =P
z2S Idxzdxy or dyzdxy .

We consider two algorithmic approaches to comput-
ing the local focus sizes and the final cohesion matrix
that take advantage of the symmetry. The first ap-
proach, which we call the pairwise algorithm, considers
all

�n
2

�
pairs of points, and for each pair, first determines

the size of its local focus and then computes contribu-
tions to the cohesion matrix from all points within the
local focus. The second approach, which we call the
triplet algorithm, considers all

�n
3

�
triplets of points, and

for each triplet, determines which of the two local foci
the triplet contributes to and then (in a second pass)
determines which of the two cohesion matrix entries the
triplet contributes to. We analyze and compare the two
algorithms in Section 4.

3.1 Pairwise Algorithm. The entry-wise pairwise
algorithm is given as Algorithm 1. The idea is to
perform the computations for each pair of points x and
y. To compute gxyz for each third point z, we first must
compute the size of the local focus, uxy. This requires
a pass over all n points with two comparisons and a
possible integer increment. A second pass over all n
points determines, for points in the local focus, which
of the points x or y the third point supports, and the
cohesion matrix is updated accordingly. Note that only
one local focus size need be stored at any one time,
requiring minimal temporary memory. Algorithm 1
was first proposed in [2] with an implementation in R.
We use our C implementation of Algorithm 1 in our
experiments as the baseline.

To improve the cache locality, we block the algo-
rithm as follows: instead of considering only one pair
of points, we consider two sets of points X and Y and
consider all the pairs (x, y) 2 X ⇥ Y. In this way, we
obtain locality on the distance matrix block DX ,Y and
a temporary block of local focus sizes UX ,Y .

Distance (D)

DX ,YDX ,z

DY,z

x

y

z y

Local Focus (U)

UX ,Y
x

y

Cohesion (C)

CX ,z

CY,z

x

y

z

Figure 1: Dependency structure of the blocked pairwise
algorithm. The highlighted regions represent quantities
with temporal locality. Quantities in red correspond to
reads and ones in green correspond to writes. Orange
entries are computed and used in fast memory and then
discarded. Blue represents entry-wise dependencies
within each matrix/vector.

As in the entry-wise algorithm, the blocked algo-
rithm makes two passes over all n third points. The
first pass computes UX ,Y , a local focus size block, and
the second pass makes updates to the cohesion matrix.

Figure 1 shows the dependencies among the dis-
tance, local focus, and cohesion matrices for the blocked
(b = 4) pairwise algorithm. The red blocks correspond
to the entries of the distance matrix that are read and
re-used while processing the pair of blocks X and Y
(the pattern is the same in both passes, though DX ,Y
remains in fast memory through both passes. The or-
ange blocks represent entries of the local focus matrix
which are computed in fast memory during the first pass
and used during the second pass. The green blocks of
the cohesion matrix are re-used during the second pass
before being written back to slow memory. The blue
blocks represent dependencies between entries of D,U,

and C for one entry-wise iteration.

3.2 Triplet Algorithm. The entry-wise triplet algo-
rithm is given as Algorithm 2. In Algorithm 1, if a third
point z is in the local focus of x and y and is closer to
x, then only the support of z for x is recorded in C (cxz
is updated). If z is closer to x in a focus with y, then x

is closer to z in its focus with y. The idea of the triplet
algorithm is to minimize the number of distance com-
parisons. By performing all the updates for each triplet
of points, we can avoid redundant comparisons. How-
ever, this method requires that the local focus sizes are
pre-computed for all pairs of points within the triplet,
so it requires more temporary memory.

We can also block the triplet algorithm to obtain
better cache locality. Instead of a single triplet of
points, we consider three blocks X ,Y,Z and all triplets
(x, y, z) 2 X ⇥ Y ⇥ Z. We obtain locality on cache
blocks of all three matrices: distance, local focus, and
cohesion. Note that a first pass is required to compute
the local focus matrix in its entirety, and then blocks
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Algorithm 2 Triplet Sequential Algorithm.

Require: D 2 Rn⇥n
Distance Matrix

Ensure: C 2 Rn⇥n
Cohesion Matrix

1: Initialize U = triu(2 ⇤ ones(n), 1)
2: for x = 1 to n� 1 do
3: for y = x+ 1 to n do
4: for z = y + 1 to n do
5: if dxy < dxz and dxy < dyz then
6: // x, y is closest pair

7: uxz = uxz + 1

8: uyz = uyz + 1

9: else if dxz < dyz then
10: // x, z is closest pair

11: uxy = uxy + 1

12: uyz = uyz + 1

13: else
14: // y, z is closest pair

15: uxy = uxy + 1

16: uxz = uxz + 1

17: for x = 1 to n� 1 do
18: for y = x+ 1 to n do
19: for z = y + 1 to n do
20: if dxy < dxz and dxy < dyz then
21: cxy = cxy + 1/uxz

22: cyx = cyx + 1/uyz

23: else if dxz < dyz then
24: cxz = cxz + 1/uxy

25: czx = czx + 1/uyz

26: else
27: cyz = cyz + 1/uxy

28: czy = czy + 1/uxz

of the local focus matrix are read from slow memory
during the second pass as needed.

Figure 2 illustrates the dependencies among the
distance, local focus, and cohesion matrices for the
(blocked) triplet algorithm. In the first pass, the
blocked triplet algorithm reads 3 blocks from the
distance matrix, corresponding to the triplet pairs:
(x, y), (x, z), (y, z), and writes to the corresponding 3
blocks of the local focus matrix. Note that the distance
and local focus matrices are symmetric so only the up-
per triangular parts are required. The cohesion ma-
trix is not symmetric, thus in the second pass 6 blocks
must be updated by performing distance comparisons
(by reading DX ,Y , DX ,Z , DY,Z) and utilizing entries of
the local focus matrix (by reading UX ,Y , UX ,Z , UY,Z).

4 Sequential Algorithm Analysis.

We model performance using the model, �F + �W ,
where F and W represent an algorithm’s computation
and bandwidth costs, respectively, and � (time per oper-
ation) and � (time per word moved) represent hardware
parameters. We analyze communication cost assuming
a two-level memory hierarchy, which contains fast mem-
ory (cache) of size M words and slow memory (DRAM)

Distance (D)

DX ,Y DX ,Z

DY,Z

x

y

y z

Local Focus (U)

UX ,Y UX ,Z

UY,Z

x

y

y z

Cohesion (C)

CX ,Y CX ,Z

CY,ZCY,X

CZ,X CZ,Y

x

y

z

x y z

Figure 2: Dependency structure of the blocked triplet
algorithm. The highlighted regions represent entries
with temporal locality. Matrices in red correspond to
reads and ones in green correspond to writes. Matrices
in orange correspond to writes during the first pass and
reads during the second pass. Blue represents the entry-
wise dependencies within each matrix.

with unbounded size. We assume that computation can
only be performed on operands residing in fast memory.
If operands are in slow memory, then they must first be
read into fast memory. We limit analysis in this sec-
tion to a two-level memory hierarchy, but this memory
model can be used to analyze communication for each
adjacent pair of levels in a multi-level memory hierarchy.

4.1 Communication Lower Bounds. We use the
framework in [1] to derive communication lower bounds.
The lower bound of [1, Theorem 2.6] applies to all
three-nested-loops (3NL) computations as defined in
that paper. We reproduce the 3NL definition here
using the same notation, with sets Sa, Sb, Sc ✓ [n]⇥ [n]
where [n] = {1, 2, . . . , n} and mappings a : Sa ! M,
b : Sb ! M, c : Sc ! M, where M is slow memory.
For each (i, j) 2 Sc, we also have a set Sij ✓ [n].

Definition 1. ([1, Definition 2.4]) A computation
is considered to be three-nested-loops (3NL) if it includes
computing, for all (i, j) 2 Sc with Sij,

Mem(c(i, j)) = fij({gijk(Mem(a(i, k)),Mem(b(k, j))}k2Sij ),

where (a) mappings a, b, c are all one-to-one into
slow memory, and (b) functions fij and gijk depend
nontrivially on their arguments.

We first verify that the cohesion matrix computa-
tion defined by Eqs. (3.3) and (3.4) is 3NL when the
distance matrix is stored explicitly in memory. To sat-
isfy the first constraint, we define the mappings a, b,
and c as all mapping onto the distance matrix (that is,
each mapping is one-to-one but the three mappings are
not disjoint). Here a(x, y) maps to the distance ma-
trix entry dxy. To satisfy the second constraint, we see
that computing gxyz depends nontrivially on a(x, y) and
b(y, z), as both values must be compared with dxz to
evaluate the indicator functions, and computing cxz de-
pends nontrivially on its arguments, as it computes the
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sum over all values. As argued in Section 3, the num-
ber of 3NL operations is

P
i,j |Sij | = O(n3). Then, by

[1, Theorem 2.6], the bandwidth cost lower bound for
PaLD is W = ⌦(n3

/
p
M).

4.2 Cost Analysis. The blocked algorithms are de-
scribed in Section 3 with memory reference patterns
depicted in Figs. 1 and 2. The loop structures of the
blocked algorithms are shown (with OpenMP paral-
lelization) in Figs. 5 and 7. We focus on the sequen-
tial costs in this section and discuss parallelization in
Section 6. Since the algorithms require mixed com-
parison and arithmetic instructions, we explicitly define
the hardware parameters �cmp and �fma to represent
the time per instruction for floating-point comparisons
and FMAs, respectively. We ignore the cost of integer
arithmetic. Figure 5 shows the loop structure of the
blocked pairwise algorithm where inner loop computa-
tions match Algorithm 1. We use b to represent the
block size for the pairwise algorithm.

Theorem 4.1. The blocked pairwise algorithm has the
leading order computation and communication costs:

F = (5�cmp + 1�fma) · n
✓
n

2

◆
⇡ 3n3 flops.

W = 4
p
2

n
3

p
M

⇡ 5.7
n
3

p
M

words moved.

Proof. The blocked pairwise algorithm selects
�n/b+1

2

�

unique sets of points X ,Y with |X | = |Y| = b. A total
of nb

2 iterations are required to determine if a third
point, z, is in the local focus for each (x, y) 2 X⇥Y. The
local focus update requires 2 floating-point comparisons
followed by 1 integer accumulate into uxy. The cohesion
update requires 3 floating-point comparisons and 1
FMA, as the reciprocals of elements of UX ,Y can be pre-
computed once. When X = Y, only n

�b
2

�
iterations are

required to perform local focus and cohesion updates.
There are n/b such overlapping sets. Multiplying over
the iterations, summing the work over the local focus
and cohesion update loops, and multiplying by �cmp and
�fma yields the computation cost.

Each of the
�n/b+1

2

�
possible combinations of X ⇥Y

points requires reading the b⇥ b block DX ,Y from slow
memory. In the first pass to compute the local focus
sizes, for each third point, z, we read the two b ⇥ 1
vectors DX ,z and DY,z from slow memory. The local
focus block UX ,Y is computed and remains resident in
fast memory. Similarly, each iteration of the second
pass cohesion update requires reading the b⇥ 1 vectors
DX ,z, DY,z, CX ,z and CY,z from slow memory. After
each iteration within the second pass, CX ,z and CY,z

must be written to slow memory. We must maintain
2b2 words of data in fast memory for DX ,Y and UX ,Y ,
along with a constant number of length-b vectors, so
b 

p
M/2 to leading order. Multiplying and summing

these reads and writes over all iterations yields the
leading order communication cost 4n3

/b, and choosing
b ⇡

p
M/2 yields the result.

Figure 7 shows the loop structure of the blocked
triplet algorithm, and the inner loop computations
match Algorithm 2. The local focus sizes and cohesion
matrix updates are computed in two separate passes,
and two block sizes b̂ and b̃ can be tuned independently.

Theorem 4.2. The blocked triplet algorithm has the
leading order computation and communication costs:

F = (6�cmp + 2�fma) ·
✓
n

3

◆
⇡ 1.33n3 flops.

W =
⇣p

6 + 4
p
3
⌘

n
3

p
M

⇡ 9.4
n
3

p
M

words moved.

Proof. The blocked local focus and cohesion matrix
passes have the same loop structure, each selecting�n/b+2

3

�
triplets of sets X ,Y, and Z each of size b

points, though the value of b di↵ers in the two passes.
The triplet algorithm contains 3 types of symmetry:
X = Y = Z, X 6= Y = Z, and X = Y 6= Z. While
our implementation accounts for each type of symmetry,
we ignore it in our leading order cost analysis. The
local focus and cohesion update inner iterations each
require 3 distance comparisons to determine the pair
of points with minimum distance. The cohesion update
iteration additionally requires 2 FMAs to update entries
of the cohesion matrix. Multiplying operations by their
respective � terms and summing work over the two
passes proves the computation cost.

There are
�n/b̂+2

3

�
possible combinations of triplet

blocks in the local focus pass. The local focus update
must read 2 b̂ ⇥ b̂ blocks of D, read 2 b̂ ⇥ b̂ blocks of
U , and write 2 b̂⇥ b̂ blocks of U from/to slow memory.
Note that the block DX ,Y can be read and the block

UX ,Y read and written only
�n/b̂+1

2

�
times since they

remain fixed while blocks Z vary in the innermost loop.
The cohesion update requires reading 2 b̃ ⇥ b̃ blocks of
D and U , respectively, followed by reading and writing
4 b̃⇥ b̃ blocks of C. The blocks DX ,Y and UX ,Y are read
from slow memory and the blocks CX ,Y and CY,X can

be read and written
�n/b̃+1

2

�
times. The total I/O cost

is then n
3
/b̂ + 2n3

/b̃, assuming that all blocks can be
stored in fast memory. This requires that b̂ 

p
M/6

and b̃ 
p
M/12 to leading order. Choosing block

sizes at their approximate maximum value yields the
communication cost.
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The constants for the communication cost in Theo-
rem 4.2 can be improved by unblocking the innermost
loop over Z for the local focus and cohesion update
passes, which allows for a slightly larger block size. We
use this technique for the pairwise algorithm, and it is
useful in practice for matrix multiplication as well [19].
However, incorporating this optimization did not allow
for auto-vectorization during cohesion updates where
some updates require a stride of n. Blocking all three
loops allowed for unit-stride for all cohesion updates.
We provide more details in the following section.

We can conclude from Theorems 4.1 and 4.2 that
the pairwise variant requires more computation than
the triplet variant, but it moves less data. Both
sequential variants attain the 3NL lower bound of
⌦(n3

/
p
M) and are communication-optimal within a

constant factor. We will show in the next section how
additional performance optimizations can yield large
speedups. The optimized sequential algorithms serve
as the baselines from which we derive e�cient shared-
memory parallel algorithms.

5 Sequential Performance Optimization.

We study the performance improvements achieved by
each optimization, the tuning parameters introduced,
and performance tradeo↵s between the pairwise and
triplet variants. All algorithms were written in C
and compiled with the Intel C compiler (icc) release
2021.06. The code was compiled with the following com-
piler flags: -Ofast -mavx512 -opt-zmm-usage=high.
Experiments are performed on a single-node, dual-
socket platform with two Intel Xeon Gold 6226R CPUs
(16 cores per socket). This CPU dynamically adjusts
CPU frequency from 2.5 GHz (for 32 threads) to 3.9
GHz (for single-thread). The experiments and roofline
analysis presented in this section use a CPU frequency
of 3.9 GHz. We run 5 trials for each experiment and use
the mean to compute speedups. We observe low runtime
variance across trials, so we omit error bars for simplic-
ity. We perform experiments on randomly generated
distance matrices for powers of two n 2 {128, . . . , 4096}.
Our code can handle arbitrary square matrix sizes, but
we limit performance evaluation to powers of two.

5.1 Cache Blocking We begin performance tuning
by applying one level of blocking to Algorithm 1 (naive
pairwise) and Algorithm 2 (naive triplet). We show
speedups relative to the naive implementation in Fig. 3
with a fixed n = 2048 matrix. Overall speedup over
naive pairwise (resp. naive triplet) may be obtained
by multiplying speedups across all optimizations. Naive
triplet resulted in a speedup of 1.11⇥ over naive pairwise
due to less computation. Introducing one level of
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Blocked+NoBranches+Other

Sequential Optimization, Intel Gold 6226R

Figure 3: Speedup achieved from various performance
optimizations applied to the Pairwise and Triplet algo-
rithms. Speedups are arranged by algorithm and rela-
tive to the naive implementation.

blocking to naive pairwise led to a speedup of 1.07⇥.
Applying blocking to the triplet variant led to speedups
of 1.20⇥ over naive triplet (1.33⇥ over naive pairwise).

5.2 Branch Avoidance Algorithms 1 and 2 require
branches to correctly update U and C based on dis-
tance comparisons. Distance comparisons can be vec-
torized, but updates to U and C cannot due to branch-
ing. We avoid branches in both algorithms by com-
puting auxiliary mask variables and performing FMAs
with these explicit masks. Similar use of branch avoid-
ance is shown to be e↵ective in graph algorithms and
improve performance despite performing extra compu-
tation [10]. For Algorithm 1, we compute the masks:
r = dxz < dxy or dyz < dxy and s = dxz < dyz. The
variable r indicates that z is in the (x, y) local focus
and s determines the entry of C to update. C can be
updated via two FMAs: cxz = cxz + r · s · (1/uxy) and
cyz = cyz+(r)(1�s)(1/uxy). Assuming random labeling
of points, r = 1 (cxz or cyz is updated) with probability
2/3 and s = 1 (cxz is updated) with probability 1/2.
Branch avoidance introduces a performance tradeo↵ by
increasing computation (e.g. performing FMAs with ex-
plicit zeros) but eliminates branch misprediction over-
head. For Algorithm 1, branch avoidance enables a fixed
stride length for updates of C and facilitates compiler-
aided optimizations, such as auto-vectorization and loop
unrolling. Branch avoidance alone yielded a speedup of
1.7⇥ over naive pairwise. While branch avoidance al-
lows for vectorization, updates to cxz and cyz require
a stride length of n. After blocking, we reduce the
stride length to 1 by updating columns of C instead (see
Fig. 1). The combination achieved speedups of 20.2⇥
over naive pairwise.

Algorithm 2 must find the minimum distance
among the (dxy, dxz, dyz) triplet of pairwise distances.
Assuming random labeling of points, each branch may
be executed with a probability of 1/3. As a result,
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branch avoidance is also critical for Algorithm 2. We
avoid branches by computing three masks from three
floating point comparisons: r = dxy < dxz and dxy <

dyz, s = (1 � r)(dxz < dyz), and t = (1 � r)(1 � s). C

can then be updated using six FMAs:

cxy = cxy + r (1/uxz) , cyx = cyx + r (1/uyz) ,

cxz = cxz + s (1/uxy) , czx = czx + s (1/uyz) ,

cyz = cyz + t (1/uxy) , czy = czy + t (1/uxz) .

Applying branch avoidance to the triplet algorithm
yields a speedup of 0.98⇥ due to the stride-n updates to
C. When combined with blocking, however, we attain
speedups of 20⇥ over naive triplet. Triplet with branch
avoidance and blocking yields a speedup of 1.1⇥ over
pairwise with the same optimizations.

5.3 Other Optimizations We were able to extract
additional speedup by replacing floating point opera-
tions with integer operations during local focus updates,
and ignoring equality in pairwise/triplet distance com-
parisons. Each entry of U counts the number of points
in the local focus based on distance comparisons, with
results stored in a mask register. If U is stored as a
floating point array, then each increment to update U

requires an expensive integer mask to 32-bit floating
point cast operation. We avoid this by storing U as an
integer array during the local focus computation. This
allowed us to combine casting with computing recipro-
cals prior to cohesion updates.

The theoretical formulation of PaLD [2] allows for
ties in pairwise distances (e.g., dxz == dyz). When ties
occur, support is split between cohesion entries cxz and
cyz (i.e. cxz = cxz+r ·s ·(0.5/uxy)). In finite arithmetic,
floating point equality is unlikely due to round-o↵ and
truncation. Avoiding ties is critical for Algorithm 2
which contains more distance tie permutations than
pairwise. Introducing these additional optimizations
yields self-relative speedups (over naive) of 25.5⇥ and
26.2⇥ for pairwise and triplet, respectively. Overall,
optimized triplet achieves a speedup of 1.14⇥ over
optimized pairwise for n = 2048.

We also perform block size tuning for each algo-
rithm. We experiment with (powers of two) block sizes
in the range [25, 210]. Optimized pairwise attains a max-
imum speedup of 25.5⇥ for n = 2048 after tuning.

For optimized triplet, updates to U require storing 3
distinct blocks of D and 3 distinct blocks of U in cache.
Updates to C require 3 distinct blocks of D, 3 distinct
blocks of U , and 6 distinct blocks of C in cache. This
suggests that di↵erent block sizes may be better than
a fixed block size. Figure 4 (bottom) illustrates the
speedups observed (over Algorithm 2) for various block
size combinations for the optimized triplet algorithm.
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Figure 4: Speedup achieved from block size tuning for
pairwise (top) and triplet (bottom) for n = 2048.

n Pairwise Optimized Triplet Optimized

128 0.00117 (1.58⇥) 0.00185

256 0.00497 (1.34⇥) 0.00665

512 0.0188 (1.18⇥) 0.0221

1024 0.1274 0.1208 (1.05⇥)
2048 0.9942 0.8734 (1.14⇥)
4096 8.3623 6.6111 (1.26⇥)

Table 1: Running time in seconds (and speedup) com-
parison of pairwise and triplet algorithms.

We observe a maximum speedup of 26.2⇥ over naive
triplet with b̂ = 256 and b̃ = 128. In Table 1 we compare
running times (and speedups) of optimized pairwise and
optimized triplet over a range of input matrix sizes. For
small matrix sizes, where D,U and C all fit in cache,
optimized pairwise is fastest (e.g. speedup of 1.58⇥ over
triplet at n = 128). This is because n/b is a small integer
where lower order terms dominate (see Theorem 4.2).
For larger matrices, optimized triplet performs better
(speedup of 1.26⇥ over pairwise at n = 4096) due to
lower computation cost. In practice, we expect triplet to
be the better sequential variant for most applications of
PaLD. If distances ties must be handled correctly, then
pairwise is the better variant due to fewer branches.

The combination of all optimizations achieves
speedups of 25.5⇥ and 29⇥ for pairwise and triplet,
respectively, over naive pairwise (for n = 2048). We
observe speedups of 23⇥ and 26.2⇥ over naive triplet.

5.4 Roofline Analysis We show in this section that
the optimized pairwise implementation attains 27.7% of
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hardware peak at n = 2048 and optimized triplet attains
28% at n = 8192. Our Intel CPU has a single-core, sin-
gle precision peak of 249.6 Gflops/sec. Single precision
comparisons on our CPU have a cycles-per-instruction
(CPI) of 1 while all other single precision ops have a
CPI of 0.5. Thus, floating point comparisons are twice
as expensive. The optimized sequential pairwise algo-
rithm requires 2 comparisons during local focus update
to determine if a point, z, is in the neighborhood. The
local focus matrix is incremented based on these com-
parisons. However, since U is stored in integer format,
we ignore the cost of integer increments during the local
focus pass. The cohesion update requires 3 comparisons:
2 comparisons to compute mask r which determines if
a point z is in the local focus and 1 comparison to com-
pute mask s which determines the column entry of C
to update. Since results of floating point comparisons
are stored in unsigned (integer) format, r and s must
be cast to 32-bit floats before FMAs. This requires 2
unsigned int to floating point cast operations. Finally,
2 FMAs (each FMA requires two instructions) can be
used to update cxz and cyz. We explicitly compute both
entries and accumulate with an explicit zero, as this
avoids branching. The total number of operations for
sequential pairwise can be computed as follows:

F = (5�cmp + 2 · 2�fma + 2�cast) · n
✓
n

2

◆

On our Intel Xeon Gold 6226R CPU, floating point
comparisons have a CPI of 1 whereas FMAs and casting
each have a CPI of 0.5. Since comparisons are twice
as expensive, we normalize our operation count to be
relative to FMA/cast. After normalization, the total
number of operations become:

F = 16� · n
✓
n

2

◆
⇡ 8n3 ops.

Finally, percentage of peak can be calculated by:

1

249.6
· F

109 · tn
(5.5)

where tn is the runtime time (in seconds) obtained
empirically from executing the optimized sequential
pairwise algorithm on a matrix of size n and 249.6
Gflops/sec is the single precision, single core machine
peak of our Intel CPU. The setting n = 2048 and
tn = 0.994 seconds (averaged over 5 trials) yields 27.7%
of peak. The optimized sequential triplet algorithm
makes two passes: one to compute U in its entirety and
one to compute C. The triplet algorithm, which ignores
ties, requires 6 comparisons across the two passes to
uniquely determine the pair of points in a triplet with

minimum pairwise distance. The local focus pass and
cohesion pass must compute these distances. Once
again, we ignore integer increments in the local focus
pass. The remaining instructions are 3 casting and 6
FMA operations to update entries of C.

F = (12�cmp + 2 · 6�fma + 3�cast) ·
✓
n

3

◆
⇡ 6.5n3

.

Setting F = 6.5n3
, n = 8192 and tn = 51.16 seconds

in (5.5) yields 28% of peak. For reference, sequential
SGEMM attains 80.5% of peak for n = 2048.

6 Shared-Memory Parallel Algorithms

This section presents the OpenMP parallelization of the
optimized sequential pairwise and triplet algorithms.
Figure 5 shows the OpenMP version of the blocked pair-
wise algorithm. The blocked pairwise algorithm first
computes UX ,Y with a pass over all n points z. The lo-
cal focus z-loop can be parallelized across p threads us-
ing the OpenMP parallel for construct. All threads
must write to UX ,Y so a sum-reduction is required to re-
solve write conflicts. The cohesion update pass requires
the quantities 1/uxy 8 (x, y) 2 X⇥Y, which can be
parallelized without write conflicts. Cohesion updates
are within each column of C to entries of CX ,z and CY,z.
The cohesion pass can be parallelized without write con-
flicts by splitting the z-loop across p threads. Figure 6
illustrates the write patterns for optimized OpenMP
pairwise for n = 16, b = 4, and p = 8. Updates to
entries of C requires corresponding entries from D, so
D can also be partitioned column-wise. The pairwise
algorithm is amenable to NUMA optimizations due to
the regular data dependencies.

Figure 7 shows the OpenMP version of the blocked
triplet algorithm. The triplet approach requires reading
all of D for local focus and cohesion update passes.
Blocking is performed over triplets of points, X ,Y,Z,
and updates to U and C become irregular. We use
the OpenMP tasking model [18] for parallelism. Each
triplet block, X ⇥ Y ⇥ Z, is a new task that can be
executed by any available thread. Tasks in the local
focus pass write to 3 blocks of U . C is not symmetric,
so the cohesion update pass writes to 6 blocks. Write
conflicts arise when multiple tasks need to update
the same blocks of U or C. We resolve conflicts by
annotating dependencies using the depend clause with
the inout modifier. Figure 8 shows the write conflicts
for the local focus pass. Each vertex represents one of
the

�n/b+2
3

�
tasks and is labeled by X ,Y,Z block values,

and edges represent conflicts. The degree for each vertex
varies based on the symmetry in the block. This leads to
irregular dependencies which we will show in Section 6.1
are not as amenable to NUMA optimizations.
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for(xb = 0; xb < n/b; ++xb)

for(yb = 0; yb <= xb; ++yb)

#pragma omp parallel for \
reduction(+:U[X ,Y])

for(z = 0; z < n; ++z)

for(x = 0; x < b; ++x)

y_start = (xb==yb) ? (x+1) : 0;

for(y = y_start; y < b; ++y)

// update uxy.

#pragma omp parallel for

for(i = 0; i < b*b; ++i)

U[i] = 1/U[i];

#pragma omp parallel for

for(z = 0; z < n; ++z)

for(x = 0; x < b; ++x)

y_start = (xb==jb) ? (x+1) : 0;

for(y = y_start; y < b; ++y)

// update cxz and cyz.

Figure 5: Blocked OpenMP pairwise Algorithm.

X

p0, . . . , p7

Y

Local Focus (U)

z

X

Y

Distance (D)/Cohesion (C)
p0 p1 p2 p3 p4 p5 p6 p7

Figure 6: Distance matrix reads and Local Focus/Co-
hesion writes for parallel pairwise code with n = 16,
b = 4, and p = 8. All threads have write conflicts to the
U block for each pair X ,Y (in red), so synchronization
is required via reductions. Only one U block is needed
in fast memory at any given point in time. Writes to C

are within one column, so column blocks can be parti-
tioned across threads without write conflicts.

6.1 OpenMP Performance. We use OpenMP ver-
sion 4.5 and test the OpenMP algorithms on ran-
domly generated dense distance matrices with n 2
{2048, 4096, 8192}. We incorporate NUMA optimiza-
tions into the pairwise algorithm by controlling thread
a�nity via the OMP_PROC_BIND and OMP_PLACES envi-
ronment variables. We map OpenMP threads to phys-
ical cores, by assigning OpenMP thread ids 0 to 16 to
CPU 0 and threads 17 to 31 to CPU 1. Finally, we
disabled dynamic CPU frequency adjustment and fixed
the frequency to 2.5 GHz, which corresponds to the max
frequency at 32 threads, for experiments in this section.

A static loop schedule yields best performance
due to the pairwise algorithm’s regular dependencies.
Each thread reads columns of D and C from thread-
local fast memory so updates to C are spatially local.
Thread binding ensures that accesses are temporally

#pragma omp single

for(xb = 0; xb < n/b; ++xb)

for(yb = xb; yb < n/b; ++yb)

for(zb = yb; xb < n/b; ++zb)

x_end=(xb==yb && yb==zb)?(b-1):b

#pragma omp task untied depend(inout,

U[X ,Y],U[X ,Z],U[X ,Z])

for(x = 0; x < x_end; ++x)

y_start =(xb==yb) ? (x+1) : 0;

for(y = y_start; y < b; ++y)

z_start =(yb==zb) ? (y+1) : 0;

for(z = z_start; z < zb; ++z)

// update uxy , uxz , uyz.

#pragma omp parallel for

for(i = 0; i < n*n; ++i){

U[i] = 1/U[i];

}

#pragma omp single

for(xb = 0; xb < n/b; ++xb)

for(yb = xb; yb < n/b; ++yb)

for(zb = zb; xb < n/b; ++zb)

x_end=(xb==yb && yb==zb)?(b-1):b

#pragma omp task untied depend(inout,

C[X ,Y],C[X ,Z],C[Y,Z],

C[Y,X],C[Z,X],C[Z,Y])

for(x = 0; x < xend; ++x)

y_start =(xb==yb) ? (i+1) : 0;

for(y = ystart; y < b; ++y)

z_start =(yb==zb) ? (y+1) : 0;

for(z = z_start; z < zb; ++z)

// update cxy , cxz , cyz,
// update cyx, czx, czy.

Figure 7: Blocked OpenMP triplet Algorithm.

local by assigning fixed column blocks of D/C to
threads. OpenMP allocates memory pages using a first-
touch policy by default. If a single thread allocates D,
then D resides in the memory hierarchy of the thread’s
CPU. D is typically computed outside the scope of the
OpenMP algorithms, so we also study the e↵ects of
partitioning D across sockets (i.e. memory binding).

Figure 9 shows the speedup achieved by introduc-
ing thread binding only and thread + memory binding
into the OpenMP pairwise algorithm across three ma-
trix sizes, n 2 {2048, 4096, 8192}. We use the OpenMP
pairwise algorithm without NUMA-aware optimizations
as our baseline and report speedups for 32 OpenMP
threads. When we use thread binding only, we ob-
serve average speedups of 1.4⇥, 1.5⇥, and 1.13⇥ for
n = 2048, 4098, and 8192, respectively. Thread bind-
ing with memory binding yields average speedups of
speedup of 1.7⇥, 1.69⇥, and 1.2⇥ over the baseline. We
did not perform TLB optimizations, therefore, we ob-
serve decreasing speedups for large matrix sizes. We also
found that NUMA optimizations are useful at smaller
thread counts, 2  p  16, by mapping half the threads
to CPU 0 and the other half to CPU 1. This map-
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Figure 8: Task diagram for parallel triplet with n/b = 4,
where nodes are labeled by their X ,Y,Z block values.
Edges represent write conflicts for U between tasks.
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Figure 9: OpenMP pairwise speedup from NUMA
optimizations with n 2 {2048, 4096, 8192} and p = 32.

ping provides access to the fast memory hierarchies on
both CPUs. We observe speedups ranging from 1.05⇥
(n = 4096, p = 2) to 1.33⇥ (n = 2048, p = 16) when
splitting threads (where p  16) across sockets. We ex-
perimented with thread binding for the OpenMP triplet
algorithm but not memory binding due to the irregular
data dependencies. However, we did not observe signifi-
cant performance improvements over the baseline, so we
omit these results from Fig. 9. We obtain best OpenMP
scaling when using the untied clause, which allows sus-
pended tasks to be resumed on any available thread.
Suspended tasks may cause additional reads from slow
memory after restart. Hence, we do not expect NUMA
optimizations to be helpful. We perform strong scaling
experiments in Fig. 10 of the OpenMP variants under
the same settings as for Fig. 9 and report self-relative ef-
ficiency achieved. We report e�ciencies with and with-
out NUMA optimizations. The pairwise algorithm
without NUMA optimizations achieves e�ciencies of
39.7%, 43.8%, and 63.7% at p = 32 for n = 2048, 4096
and 8192, respectively. Including NUMA optimiza-
tions yields e�ciencies of 57.5%, 73.0%, and 82.0% for
p = 32. The triplet algorithm achieves e�ciencies of
36.6%, 40.2%, and 54.3% without NUMA optimizations
and 50.8%, 46.8%, and 59.2% with NUMA optimiza-
tions for p = 32. The triplet algorithm is the faster
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Figure 10: Self-relative strong scaling e�ciency of
OpenMP Pairwise (top) and Triplet (bottom).

sequential baseline, hence the OpenMP triplet e�cien-
cies are lower than those reported for OpenMP pair-
wise. We also study weak scaling of the two algo-
rithms with and without NUMA optimizations. We fix
n
3
/p over the range of p tested. We use the matrix

sizes n1 2 {2048, 4096, 8192}, where n1 is the matrix
size at p = 1. Figure 11 shows the results of the weak
scaling experiments. The pairwise algorithm without
NUMA optimizations attains weak scaling e�ciencies of
78.5%, 78.8%, and 83.3% for n1 = 2048, 4096, and 8192,
respectively at 32 threads. With NUMA optimizations,
the e�ciencies increase to 78.5%, 87.9%, and 91.5% for
each of the matrix size settings at p = 32. Triplet with-
out NUMA optimizations achieves weak scaling e�cien-
cies of 59.0%, 69.0%, and 67.7% and 63.1%, 68.9%, and
67.1% with NUMA optimizations at p = 32. For ref-
erence, MKL SGEMM attained 43.1% strong scaling
e�ciency at p = 32 for n = 2048 with OpenMP thread
binding. The optimized sequential variants of PaLD at-
tain up to 28% of peak hardware peak which is lower
than sequential MKL SGEMM. PaLD strong scaling ef-
ficiencies are higher as a result.

7 Experiments with Application Data

7.1 Text Analysis We demonstrate the utility of
PaLD on larger datasets than previously considered [2]
for semantic analysis of words extracted from Shake-
speare sonnets [12]. Words are converted to vectors us-
ing the pre-trained fastText word embedding [4, 13],
yielding a dataset of 2712 words. We compute Eu-
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Figure 11: Self-relative weak scaling e�ciency of
OpenMP Pairwise (top) and Triplet (bottom).
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Figure 12: Word clouds from PaLD analysis (left
column) and distance analysis (right column) of the
words guilt and halt. Font size is proportional to
cohesion values and inverse distances.

clidean distance between embedding vectors and gener-
ate the cohesion matrix C using the OpenMP pairwise
algorithm. Figure 12 shows words associated with guilt
and halt obtained from PaLD and from analyzing only
the distance matrix D. PaLD is parameter-free, with
strong ties determined by a universal threshold (see [2]),
whereas analysis using D requires a user-tuned distance
or neighbor-count cuto↵. Note the di↵ering sizes of
strong-tie neighborhoods between the two words. PaLD
finds 20 words with strong ties to guilt and 5 words for
halt. The 20 closest words to guilt based on distance cor-
respond to a cuto↵ of 2.26. We observe significant over-
lap between the two sets, though PaLD reports stronger
ties to expiate and conscience. PaLD finds 5 words with
strong ties to halt. To illustrate the pitfalls of tuning an
absolute distance threshold, we apply the distance cut-

Dataset n sequential p = 32

ca-GrQc 5242 31.56 1.186 (26.6⇥)

ca-HepPh 12008 381.1 13.35 (28.5⇥)

ca-CondMat 23133 2827 93.25 (30.3⇥)

Table 2: Pairwise runtimes (in sec.) and maximum
speedup over pairwise sequential on SNAP datasets.

o↵ 2.26 for halt, which yields 23 words including several
unrelated ones (e.g. just and say). This suggests that
absolute distance thresholds are not robust to varying
density and distance scales within word neighborhoods.
A distance cuto↵ of 2.14 is required for halt to match
results obtained from PaLD. Applying the cuto↵ to guilt
identifies only 8 related words, missing several words like
expiate. We attain a speedup of 21⇥ using the NUMA
optimized OpenMP pairwise algorithm at p = 32 and
an overall run time of 0.211 seconds.

7.2 Scaling on SNAP Datasets. We also perform
scaling experiments on large datasets obtained from the
SNAP data repository [17] to illustrate PaLD scalability
on collaboration networks. We obtain distance matrices
by computing all-pairs shortest path distances. Table 2
reports the running times (in seconds) and speedup
achieved at p = 32 for the pairwise algorithm. We
use the optimized sequential pairwise algorithm as our
baseline. We achieve speedups of 26.6⇥, 28.5⇥ and
30.3⇥ on the ca-GrQC, ca-HepPh, and ca-CondMat
datasets [16], respectively. For ca-CondMat, we are able
to reduce the running time of computing C from 47
minutes (optimized pairwise sequential) to 93 seconds
(OpenMP pairwise with p = 32).

8 Conclusion

This paper presents several sequential and shared-
memory parallel algorithms for PaLD [2]. We prove
that sequential variants are communication-optimal, up
to constant factors. We illustrate that branch avoid-
ance is critical to attaining high performance; achieving
a speedup of up to 29⇥ over naive sequential variants.
Based on our theoretical and empirical studies, we con-
clude that the triplet variant is the faster sequential
algorithm for large matrices due to less computation.
However, we show that the pairwise algorithm is more
amenable to parallelization due to regular data depen-
dencies and load balance. We observe strong scaling
speedups up to 26.2⇥ (63.7% e�ciency), and weak scal-
ing e�ciencies of up to 82.0% at p = 32. With the per-
formance achieved on the text analysis and graph appli-
cations, we show that PaLD can be scaled to nearly any
dataset with a distance matrix that fits in the memory
of a single server.
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