
SIAM J. SCI. COMPUT. © 2024 Society for Industrial and Applied Mathematics
Vol. 46, No. 2, pp. A1186–A1213

PARALLEL RANDOMIZED TUCKER DECOMPOSITION
ALGORITHMS⇤

RACHEL MINSTER†, ZITONG LI‡, AND GREY BALLARD†

Abstract. The Tucker tensor decomposition is a natural extension of the singular value decom-
position (SVD) to multiway data. We propose to accelerate Tucker tensor decomposition algorithms
by using randomization and parallelization. We present two algorithms that scale to large data and
many processors, significantly reduce both computation and communication cost compared to pre-
vious deterministic and randomized approaches, and obtain nearly the same approximation errors.
The key idea in our algorithms is to perform randomized sketches with Kronecker-structured random
matrices, which reduces computation compared to unstructured matrices and can be implemented
using a fundamental tensor computational kernel. We provide probabilistic error analysis of our
algorithms and implement a new parallel algorithm for the structured randomized sketch. Our ex-
perimental results demonstrate that our combination of randomization and parallelization achieves
accurate Tucker decompositions much faster than alternative approaches. We observe up to a 16X
speedup over the fastest deterministic parallel implementation on 3D simulation data.

Key words. Tucker decompositions, tensors, randomized algorithms, parallel algorithms, low-
rank, multilinear algebra

MSC codes. 15A69, 15A18, 15B52, 65F99, 68W10, 68W15, 68W20

DOI. 10.1137/22M1540363

1. Introduction. Tucker decompositions are low-rank tensor approximations
capable of approximating multidimensional data with large compression rates while
maintaining high accuracy. Large scale multidimensional data arises from many ap-
plications such as simulations of partial di↵erential equations, data mining, facial
recognition, and imaging. Processing these data requires computationally e�cient
methods. Randomized algorithms have been used to e�ciently compute Tucker de-
compositions in works such as [1, 4, 9, 11, 25, 27, 30, 33], but the growing size of data
is outpacing even randomized algorithms. Scaling these methods to handle large data
calls for e�cient parallelization. Many high-performance implementations of deter-
ministic algorithms have been developed for Tucker decompositions [3, 7, 21, 12, 24].
We develop both sequential and parallel randomized algorithms that e�ciently com-
pute Tucker decompositions of large-scale multidimensional data by reducing both
computation and communication compared to previous work.

As we review in section 2, there are two dominant computational kernels to
computing a Tucker decomposition: computing matrix singular value decompositions
(SVD) and computing tensor-times-matrix (TTM) products. For the deterministic
algorithms HOSVD [14] (Algorithm 2.1) and STHOSVD [29] (Algorithm 2.2), com-
puting the SVD is the typical bottleneck, and various methods trade o↵ accuracy
for reduced computational complexity. Our goal is to reduce the complexity of the
SVD computation via randomization and remove it as the dominant cost without
sacrificing too much accuracy. Existing randomized Tucker approaches, discussed in

⇤Submitted to the journal’s Numerical Algorithms for Scientific Computing section December 12,
2022; accepted for publication (in revised form) November 27, 2023; published electronically April
2, 2024.

https://doi.org/10.1137/22M1540363
Funding: This work is supported by the National Science Foundation under grant CCF-1942892.

†Wake Forest University, Winston-Salem, NC 27109 USA (minsterr@wfu.edu, ballard@wfu.edu).
‡University of California Irvine, Irvine, CA 92697 USA (zitongl5@uci.edu).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A1186

D
ow

nl
oa

de
d

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/22M1540363
mailto:minsterr@wfu.edu
mailto:ballard@wfu.edu
mailto:zitongl5@uci.edu

PARALLEL RANDOMIZED TUCKER ALGORITHMS A1187

section 3, apply low-rank matrix approximation algorithms in place of matrix SVDs.
These matrix algorithms include randomized range finder [17] (see Algorithm 2.3),
which computes part of the low-rank approximation and involves a slight overesti-
mate of the target rank, or randomized SVD [17] (RandSVD: see Algorithm 2.4),
which involves a second pass over the data to obtain the final approximation with the
exact target rank.

We propose two randomized algorithms in section 4, one based on HOSVD and
one based on STHOSVD, which have comparable accuracies and running times. In our
algorithms, we use the randomized range finder approach with Kronecker-structured
random matrices, which reduces the computational complexity of the sketch com-
pared to previous randomized approaches. As a significant added practical benefit,
the Kronecker structure reduces the amount of random number generation compared
to unstructured random matrices such as Gaussian. Furthermore, we propose a deter-
ministic truncation of the resulting core (with overestimated ranks) in order to achieve
the exact target ranks, obtaining the same e↵ect as RandSVD-based approaches at
much lower cost. We show that our HOSVD-based algorithm can be as computa-
tionally e�cient as our STHOSVD-based algorithm by employing a dimension tree
optimization to avoid recomputation across sketches using memoization.

To accompany our algorithms, we develop probabilistic error guarantees in
section 5 for a randomized matrix algorithm using a Kronecker product of random
matrices. We use the matrix results to obtain theoretical guarantees for our Tucker
algorithms. Our bounds di↵er from previous results by accounting for the Kronecker
structure and rank truncation in our algorithms and by reducing the amplification
factors.

In section 6, we describe the parallelization of our proposed algorithms for dis-
tributed memory using the TuckerMPI library [3], allowing us to scale the algorithms
to large datasets that cannot be processed on a single server. While previous work
has combined randomization and parallelization, our implementation is the first to
parallelize the randomized sketch, which significantly reduces the computational cost.
Moreover, in exploiting the Kronecker structure of our sketch, we implement a new
parallel algorithm that communicates less data than the algorithm used by TuckerMPI
and in fact minimizes interprocessor communication for the computation [2].

Our experimental results are presented in section 7. We validate the error guar-
antees of section 5 and show empirically that our structured random matrices are
just as accurate as standard Gaussian random matrices. Using synthetic data as well
as two large simulation datasets, we demonstrate that our parallel randomized algo-
rithms given in section 6 scale well to thousands of cores and outperform alternative
deterministic and randomized algorithms, achieving speedups of up to 16⇥ over the
state-of-the-art implementation of the best deterministic algorithm.

2. Background. We first review the relevant background on tensors and ran-
domized algorithms for matrices. For more details on tensors, see [22], and for more
details on randomized algorithms, see [17].

2.1. Tensor notation and operations. A tensor X 2Rn1⇥n2⇥···⇥nd is a d-way
array. We can unfold a d-mode tensor along each of its modes, or dimensions; the
mode-j unfolding, denoted X(j), is a matrix with columns formed as the mode-j fibers
of the tensor. Let k ·k denote the tensor norm, which generalizes the matrix Frobenius
norm. Since the following products will be frequently used to describe the sizes and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A1188 RACHEL MINSTER, ZITONG LI, AND GREY BALLARD

ranks of a tensor, we define the following notations: n~ =
Qd

k=1 nk, n
4
i =

Qi�1
k=1 nk,

n5
i =

Qd
k=i+1 nk, n

↵
i =

Q
k 6=i nk.

One key operation for tensors is the TTM product. A tensor X 2Rn1⇥n2⇥···⇥nd

is multiplied along mode j by a matrix A 2 Rm⇥nj , denoted by X ⇥j A, to obtain
a tensor Y 2 Rn1⇥···⇥nj�1⇥m⇥nj+1⇥···⇥nd . This product can also be expressed in
terms of its mode-j unfolding as Y(j) = AX(j). We can also multiply a tensor X 2
Rn1⇥···⇥nd by up to d matrices Aj 2 Rmj⇥nj , j = 1, . . . , d, across distinct modes to
obtain Y =X ⇥1 A1 ⇥2 A2 ⇥ · · ·⇥d Ad 2 Rm1⇥···⇥md . We call this product a multi-
TTM; it is also known as a multilinear multiplication. If unfolded along mode j,
we have Y(j) =AjX(j) (Ad ⌦ · · ·⌦Aj+1 ⌦Aj�1 ⌦ · · ·⌦A1)

> , where ⌦ is the matrix
Kronecker product.

2.2. Tucker decomposition. The Tucker decomposition of a given tensor X 2
Rn1⇥···⇥nd of multirank r= (r1, . . . , rd), where rj = rank(X(j)) for each j, represents
X as the product of a core tensor G 2 Rr1⇥···⇥rd and d factor matrices Uj 2 Rnj⇥rj

such that X =G⇥1 U1⇥ · · ·⇥d Ud. We can also obtain a low-rank approximation to
X in the Tucker form by taking the target rank (r1, . . . , rd), or size of the core tensor
G, to be less than the ranks of the unfoldings in each mode.

Higher-order SVD (HOSVD) and Sequentially Truncated HOSVD. Two algo-
rithms that compute low-rank Tucker decompositions of tensors are the higher-order
SVD (HOSVD) [14] and sequentially truncated HOSVD (STHOSVD) [29]. The
HOSVD algorithm forms each factor matrix Uj from the first rj left singular vectors
of the mode unfolding X(j), and once all the factor matrices are computed, computes
the core tensor as G =X ⇥1 U>

1 ⇥ · · ·⇥d U>
d (see Algorithm 2.1).

The STHOSVD algorithm is similar to HOSVD, but instead of handling all modes
independently, it processes the modes in a predetermined sequence. After the first
factor matrix is computed from the first rj left singular vectors of X(j), we truncate
in that mode by computing a partially truncated core tensor via a TTM with the
factor matrix, G ⇥j U>

j . We then use the partially truncated core G for the next
mode instead of the full tensor X , as shown in Algorithm 2.2.

Algorithm 2.1 HOSVD [14].

1: function [G,{Uj}] = HOSVD(X ,r)
2: for j = 1 : d do
3: Uj = first rj left sing. vecs. of X(j)

4: end for
5: G =X ⇥1 U>

1 ⇥ · · ·⇥d U>
d

6: end function

Algorithm 2.2 STHOSVD [29].

1: function [G,{Uj}] = STHOSVD(X ,r)
2: G =X
3: for j = 1 : d do
4: Uj = first rj left singular vecs. of G(j)

5: G =G ⇥j U>
j

6: end for
7: end function

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

PARALLEL RANDOMIZED TUCKER ALGORITHMS A1189

Algorithm 2.3 Randomized Range Finder [17].

1: function Q= RandRangeFinder(M,⌦)
2: Y=M⌦
3: Compute thin QR Y=QR
4: end function

Algorithm 2.4 Randomized SVD [17].

1: function [U,⌃,V] = RandSVD(M, r,⌦)
2: Q= RandRangeFinder(M,⌦)
3: B=Q>M
4: Compute thin SVD B= Û⌃V>

5: U=QÛ(:,1 : r)
6: Truncate ⌃= (1 : r,1 : r), V=V(:,1 : r)
7: end function

2.3. Randomized matrix algorithms. The algorithm, made popular by [17]
and shown in Algorithm 2.3, e�ciently computes a low-rank representation of a matrix
M 2 Rm⇥n. Given a target rank r and oversampling parameter p, we multiply M
by a random matrix ⌦ 2 Rn⇥` with ` = r + p such that ` < m, to form Y 2 Rm⇥`,
a matrix made up of random linear combinations of the columns of M. We then
compute a thin QR decomposition of Y to obtain a matrix Q2Rm⇥` whose range is
a good estimate of the range of M. Projecting M onto the range of Q gives us the
low-rank approximation M ⇡ QQ>M. We can choose any random distribution for
random matrix⌦. In this paper, we will consider both subsampled random Hadamard
transform (SRHT) and standard Gaussian matrices.

Note that the resulting approximation from Algorithm 2.3 is actually rank-`. If we
seek a rank-r approximation, further truncation is necessary. One way of truncating
is to take a thin SVD of Q>M, which is the process taken in the randomized SVD
algorithm in [17], reproduced in Algorithm 2.4. We will adapt this truncation method
in the algorithms developed in later sections.

3. Related work. Our work builds on three di↵erent categories of previous
work, namely, randomized algorithms for Tucker decompositions, probabilistic analy-
sis of randomized algorithms, and parallel algorithms for tensor computations.

Randomized algorithms. There has been much previous work on randomized algo-
rithms for Tucker decompositions; a good survey of this work can be found in [1]. The
basic algorithms for randomized HOSVD and randomized STHOSVD are proposed
in [33], while later work improves on the algorithms in various ways. One important
distinction among randomized algorithms is the rank of the output approximation.
In [30, 33], the approximation has rank ` = r + p as the (Algorithm 2.3) is used
without additional truncation. Other algorithms, such as those presented in [9, 27]
do not oversample at all, limiting the potential accuracy of their methods. In [11],
the authors use the, but truncate by only taking the first rj columns of each factor
matrix. The randomized SVD algorithm (Algorithm 2.4) can be applied instead to
both oversample and more accurately obtain the desired rank-r approximation, which
is done in [4, 25]. Our approach is most similar to the randomized SVD approach,
but we apply it in a holistic manner, as discussed in section 4.1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A1190 RACHEL MINSTER, ZITONG LI, AND GREY BALLARD

Another common improvement to the basic randomized algorithms comes from
exploiting structure in the random matrices used to reduce storage and/or computa-
tional costs, as well as the number of random entries generated. Khatri–Rao products
of random matrices are used in [9, 27], compact random matrices are employed in [4],
and Kronecker products of random matrices are used in [10, 11]. Our work is most sim-
ilar to [11] as we also employ Kronecker products, but our algorithms improve upon
those in [11] by truncating to the desired target rank in a more accurate manner.
Kronecker product structure has also been exploited in other tensor decompositions
besides Tucker decompositions: in [5, 19], Kronecker products of random matrices are
used to accelerate algorithms for CP decompositions; while in [13], Kronecker product
structure was exploited in the context of the tensor-train decomposition. We also dis-
cuss how to implement our algorithms on distributed systems and provide improved
probabilistic analysis.

Error analysis. To accompany the discussed randomized algorithms, other work
has developed probabilistic error analysis. Analysis for the standard version of ran-
domized HOSVD is presented in [16, 25], and for the standard randomized STHOSVD
algorithm in [9, 25] for Khatri–Rao products of Gaussian matrices and dense Gaussian
random matrices, respectively. Previous error analysis has been done for a random-
ized STHOSVD algorithm employing Kronecker products of subsampled randomized
Fourier transform (SRFT) matrices in [11], but we make several improvements on this
work. Our error bound, for our algorithms with Kronecker products of the real-valued
equivalent of SRFTs, i.e., SRHT matrices, has an improved error constant.

Parallel algorithms. Our parallel algorithms and implementation, described in
section 6, are built upon the foundation of TuckerMPI [3] and its improvements
[24]. TuckerMPI is a C++/MPI library that implements the STHOSVD algorithm
to compute Tucker decompositions of large dense tensors that are distributed across
machines. It implements many other utilities such as file I/O and subroutines such as
parallel TTM, that we use in our algorithms and experiments. Other parallel imple-
mentations of Tucker algorithms have been developed for both dense [7] and sparse
[21] tensors. The work most similar to ours combines parallelism and randomization
to compute Tucker decompositions of dense tensors [12]. The approach taken by Choi,
Liu, and Chakaravarthy [12] is to employ STHOSVD (Algorithm 2.2) and compute the
SVD of G(j) by computing its Gram matrix in parallel and then sequentially applying
randomized SVD (Algorithm 2.4) to the Gram matrix. Our approach di↵ers in that
we parallelize the randomized algorithm and avoid the Gram matrix computation; we
provide a more detailed comparison in section 6.4.

We propose a novel implementation of a parallel algorithm for the multi-TTM
computation in section 6.1. Communication lower bounds for this computation and
theoretical algorithms that achieve those lower bounds are presented in [2]. The
multi-TTM algorithm that we present in this paper can be seen as a specialization
of [2, Algorithm 8.1], but our implementation is novel. We also highlight previous
optimizations of tensor computations using dimension trees, a memoization technique.
First introduced in [26] in the context of computing gradients of the CP decomposition
optimization problem, dimension trees have also been used for Tucker decompositions.
For example, the higher-order orthogonal iteration (e.g., [15]) benefits from storing
and reusing intermediate quantities across tensor modes as demonstrated in [20]. We
use the dimension tree approach in a di↵erent context in one of our randomized
algorithms; this process is described in section 4.4.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

PARALLEL RANDOMIZED TUCKER ALGORITHMS A1191

4. Sequential algorithms. We present our novel sequential algorithms before
discussing how they may be implemented in parallel. There are several di↵erent
variations of algorithms we will present, and we provide a hierarchy diagram for how
they relate in Figure 1. The first optimizations we show, using sequential truncation
and randomization, have been developed in previous work. We then progress to
using a Kronecker product of random matrices within the randomized algorithms,
and then finally reusing Kronecker factors in the HOSVD case. The two most e�cient
algorithms we present are in the leftmost boxes of the two main subtrees: randomized
STHOSVD with Kronecker products (Algorithm 4.3) and randomized HOSVD with
reused Kronecker factors (Algorithm 4.4).

In all the algorithms presented in this section, we employ a holistic truncation
approach. Given a tensor X , target rank r= (r1, . . . , rd), and oversampling parameter
p, and letting `j = rj + p for j = 1, . . . , d, we first apply the randomized range
finder algorithm (Algorithm 2.3) to each mode unfolding, and obtain an initial core
Ĝ 2 R`1⇥···⇥`d . We then apply the truncation phase of Algorithm 2.4 by computing
a deterministic STHOSVD of Ĝ such that Ĝ ⇡ G ⇥1 V1 ⇥ · · · ⇥d Vd. The rank-r
representation of X is then X ⇡G ⇥1 Û1V1 ⇥ · · ·⇥d ÛdVd.

4.1. Randomized HOSVD/STHOSVD. The first algorithms we present are
the basic form of randomized algorithms on which we improve throughout the paper.
Algorithms 4.1 and 4.2 are similar to other randomized projection algorithms for
Tucker decompositions found in [1, 25] except for the truncation approach. Instead
of directly applying the randomized SVD algorithm (Algorithm 2.4) to each mode

HOSVD
(Alg. 2.1)

STHOSVD
(Alg. 2.2)

rSTHOSVD
(Alg. 4.2)

rSTHKron
(Alg. 4.3)

rHOSVD
(Alg. 4.1)

rHKron
(Alg. SM1.1)

rHKron-re
(Alg. 4.4)

Seq
. T

run
c.

Not

Not

Ra
nd
om
ize
dNot

R
an
do
m
iz
ed

N
ot

Kr
on
eck

er Not

K
ro
ne
ck
er

NotRe
us
e

Fa
cto

rs

Fig. 1. Hierarchy of algorithms, with most e�cient algorithms highlighted in gray.

Algorithm 4.1 Randomized HOSVD.

1: function [G,{Uj}] = rHOSVD(X ,r, p)
2: for j = 1 : d do

3: Draw ⌦2Rn↵
j ⇥`j

4: Ûj = RandRangeFinder(X(j),⌦)
5: end for
6: Ĝ =X ⇥1 Û>

1 ⇥ · · ·⇥d Û>
d

7: [G,{Vj}] = STHOSVD(Ĝ,r)
8: Uj = ÛjVj for j = 1, . . . , d
9: end function

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A1192 RACHEL MINSTER, ZITONG LI, AND GREY BALLARD

Algorithm 4.2 Randomized STHOSVD.

1: function [G,{Uj}] = rSTHOSVD(X ,r, p)
2: Ĝ =X
3: for j = 1 : d do

4: Draw ⌦2Rr4
j n5

j ⇥`j

5: Ûj = RandRangeFinder(Ĝ(j),⌦)
6: Ĝ = Ĝ ⇥j Û>

j

7: end for
8: [G,{Vj}] = STHOSVD(Ĝ,r)
9: Uj = ÛjVj for j = 1, . . . , d
10: end function

Algorithm 4.3 Randomized STHOSVD with Kronecker product.

1: function [G,{Uj}] = rSTHKron(X ,r, p)
2: Ĝ =X
3: Compute matrix of subranks S
4: for j = 1 : d do
5: Draw d� 1 random matrices �j,k 2Rsj,k⇥`k for k < j and �j,k 2Rsj,k⇥nk for

k > j
6: Y Ĝ ⇥1 �j,1 ⇥ · · ·⇥j�1 �j,j�1 ⇥j+1 �j,j+1 ⇥ · · ·⇥d �j,d

7: Compute thin QR Y(j) = ÛjR
8: Ĝ = Ĝ ⇥j ÛT

j

9: end for
10: [G,{Vj}] = STHOSVD(Ĝ,r)
11: Uj = ÛjVj for j = 1, . . . , d
12: end function

unfolding, we take the holistic approach described above. We can use this technique
both with HOSVD, shown in Algorithm 4.1, and STHOSVD, shown in Algorithm 4.2.

4.2. Randomized HOSVD/STHOSVD with Kronecker product. Our
main algorithm combines the HOSVD/STHOSVD algorithms with a special case
of the randomized range finder algorithm used on each mode unfolding. Within
the randomized range finder, we will represent the random matrix ⌦ as a Kron-
ecker product of random matrices each with a small number of columns instead
of a single large ⌦. This allows us both to employ a multi-TTM operation in-
stead of matrix multiplication, reducing the computational complexity, and to ex-
ploit properties of tall-and-skinny matrices in our parallel algorithms. Specifically, for
a tensor X 2 Rn1⇥···⇥nd , rank r = (r1, . . . , rd), and oversampling parameter p with

`j = rj + p, define ⌦j 2 Rn↵
j ⇥`j as⌦j = (�j,d ⌦ · · ·⌦�j,j+1 ⌦�j,j�1 ⌦ · · ·⌦�j,1)

T

with �j,k 2Rsj,k⇥nk a random matrix from some distribution (e.g., Gaussian, SRHT,
etc.), and S 2 Nd⇥d a matrix of subranks. We define S to have entries sj,k the kth
subrank for mode j, where k 6= j, and diagonal entries sj,j = 1 for j = 1, . . . , d,
such that the row products

Qd
k=1 sj,k = `j for j = 1, . . . , d. We summarize the steps

for our algorithm in STHOSVD form in Algorithm 4.3 (rSTHKron), and include an
HOSVD version in Algorithm SM2.1. Note that lines 5 to 7 in Algorithm 4.3 consist of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

PARALLEL RANDOMIZED TUCKER ALGORITHMS A1193

applying randomized range finder to the current mode unfolding using the Kronecker
product as our random matrix.

Choosing subranks. The restriction on the subranks S is that
Qd

k 6=j sj,k = `j =
rj+p for each row j = 1, . . . d. In practice, we can actually choose the subranks so thatQd

k 6=j sj,k � `j . Satisfying this looser condition means we are essentially increasing
the oversampling we are already doing through parameter p. This frees us to use
heuristics to choose the subranks. We choose each row of S to be composed of d� 1
integer factors of `j . In the case that `j does not have exactly d�1 integer factors, we
adjust the oversampling parameter until we can obtain the correct number of factors.

4.3. Randomized HOSVD with Kronecker factor reuse. An additional
adaptation we make to reduce the number of random values generated and compu-
tation is to reuse the components of the Kronecker product ⌦. Instead of generating
d � 1 random matrices for each mode as in Algorithm 4.3, we generate d random
matrices {�j} once, and use di↵erent combinations of d� 1 of those same matrices
in each mode. This approach is summarized in Algorithm 4.4. One benefit of this
approach is that we generate significantly fewer random entries. We can also, as will
be addressed in section 6, implement dimension trees to reduce computational cost.
This variation only works for the HOSVD approach as the size of each �j remains
the same, while it would change after each mode in an STHOSVD approach.

Choosing subranks. Note that in this case we compute only one vector of subranks
s 2 Nd, instead of a matrix as in Algorithm 4.3. We compute these subranks heuris-
tically as well, and in this case in a straightforward manner, deriving the formula
si = d(

Qd
j=1 `j)

1

d�1 /`ie, from the conditions s 2 Nd and
Qd�1

k=1 sk � `j for j = 1, . . . , d.
This formula, while more straightforward, is more constricting than the method we
use to compute subranks for Algorithm 4.3 because sj`j is approximately fixed for
each mode j. This can create problems when computing with tensors with skewed
modes and ranks, so we recommend not reusing Kronecker factors in these cases.

4.4. Dimension tree optimization. In line 5 of Algorithm 4.4, we perform
a multi-TTM to compute the sketch tensor Y for each mode, resulting in d multi-
TTM products. Notice, however, that the d � 1 random matrices that we use in
each multi-TTM are drawn from the same set of d random matrices {�1, . . . ,�d}.
Thus a significant number of computations in each multi-TTM are repeated and
can be reused. The dimension tree concept, which has been employed to reduce
computational complexity in other algorithms [7, 20], also applies in this situation.

Algorithm 4.4 Randomized HOSVD with Kronecker product reusing factors.

1: function [G,{Uj}] = rHKron(X ,r, p)
2: Compute subranks s
3: Draw d random matrices �k 2Rsk⇥nk for k= 1, . . . , d
4: for j = 1 : d do
5: Y X ⇥1 �1 ⇥ · · ·⇥j�1 �j�1 ⇥j+1 �j+1 ⇥ · · ·⇥d �d

6: Compute thin QR Y(j) =UjR
7: end for
8: Ĝ =X ⇥1 Û>

1 ⇥ · · ·⇥d Û>
d

9: [G,{Vj}] = STHOSVD(Ĝ,r)
10: Uj = ÛjVj for j = 1, . . . , d
11: end function

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A1194 RACHEL MINSTER, ZITONG LI, AND GREY BALLARD

X

X⇥3 �3 ⇥4 �4 X⇥1 �1 ⇥2 �2

X⇥3 �3 ⇥4 �4 ⇥2 �2 X⇥3 �3 ⇥4 �4 ⇥1 �1 X⇥1 �1 ⇥2 �2 ⇥4 �4 X⇥1 �1 ⇥2 �2 ⇥3 �3

Fig. 2. Dimension tree for computing the sketches of a 4-way tensor X in Algorithm 4.4.

Table 1
Complexity reduction examples that can be achieved using dimension trees.

With dimTree Without dimTree

d= 3 2(2rn3 + 3r2n2) 2(3rn3 + 3r2n2)
d= 4 2(2rn4 + 2r2n3 + 4r3n2) 2(4rn4 + 4r2n3 + 4r3n2)
d= 5 2(2rn5 + 2r2n4 + 3r3n3 + 5r4n2) 2(5rn5 + 5r2n4 + 5r3n3 + 5r4n2)

In our implementation, we use a binary tree with d leaf nodes for a d-way tensor. For
example, given a 4-way tensor X and four random matrices {�1,�2,�3,�4}, the 4
multi-TTM operations that would be carried out without a dimension tree are shown
in the four leaf nodes of Figure 2. The dimension tree provides an e�cient way to
perform the computations shared between each pair of adjacent leaf nodes and store
the results in memory to reduce computation. For a d-way tensor X 2 Rn⇥···⇥n and
d random matrices {�j} each of size r⇥n, the cost of using dimension trees to sketch
every unfolding of X is shown in Table 1. When r⌧ n, both costs are approximated
by the first terms in the summations. As d increases, the cost reduction that comes
from using a dimension tree increases proportionally to d/2.

4.5. Computational complexity. To analyze the computational cost of our
algorithms, we consider the notationally simpler case with a d-mode tensor X 2

Rn⇥···⇥n, target rank (r, . . . , r), and oversampling parameter p, letting `= r+ p. We
will also let the subranks {sj,k} and {sk} all be the same value, which we denote as
s= `d�1. Assume s < r⌧ n.

There are two dominant costs for each algorithm presented: computing an SVD
for each mode, and forming the core tensor via a multi-TTM or a series of TTMs
(in the STHOSVD case). We show the leading terms of both dominant steps for the
standard algorithms, Algorithms 2.1 and 2.2, and compare to those for Algorithms 4.1
to 4.4 in Table 2. More details on the cost analysis for Algorithms 2.1 and 2.2 can
be found in [29], while more details on the analysis for Algorithms 4.1 and 4.2 can be
found in [25]. Based on the terms shown in Table 2, we advocate the use of either
Algorithm 4.3 or Algorithm 4.4, and we show more detailed analysis on these two
algorithms in section SM2.

4.6. Comparison with previous work. We compare our sequential algo-
rithms with previous approaches, in particular those based on the use of random-
ized SVD [25] and Kronecker-structured random matrices [11]. As summarized in
[1], randomization can be used in multiple ways to compute Tucker approximations of
tensors. The most similar approaches to Algorithms 4.1 and 4.2 are [25, Algs. 3.1 and
3.2]. These algorithms replace the deterministic SVD within Algorithms 2.1 and 2.2
with randomized SVD (Algorithm 2.4). The randomized SVD requires computing

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

PARALLEL RANDOMIZED TUCKER ALGORITHMS A1195

Table 2
Computational cost of sequential algorithms.

Leading term

Algorithm SVD TTM

HOSVD (2.1) dnd+1 2rnd

STHOSVD (2.2) nd+1 2rnd

rHOSVD (4.1) 2d`nd 2`nd

rSTHOSVD (4.2) 2`nd 2`nd

rSTHOSVDkron (4.3) 2`
1

d�1 nd 2`nd

rHOSVDkronreuse (4.4) 4`
1

d�1 nd 2`nd

the thin SVD of the projection of the approximate column space; it increases the
computational cost compared to randomized range finder by a constant factor greater
than 2. Because Algorithms 4.1 and 4.2 use randomized range finder (Algorithm 2.3),
they involve only one operation with the input (the random sketch) at the expense
of working with the oversampled rank ` rather than the target rank r until the final
core truncation step. The oversampled ranks are only slightly larger than the target
ranks, so Algorithms 4.1 and 4.2 are computationally cheaper than [25, Algorithms
3.1 and 3.2].

The Kronecker-structured random sketches of Algorithms 4.3 and 4.4 are similar
to [11, Algorithm 3.1]. This algorithm uses an SRFT to sketch each mode’s matri-
cization within STHOSVD. Besides using a complex-valued random matrix, the key
di↵erence with Algorithm 4.3 is the truncation strategy: after computing the thin QR
decomposition of the sketched matrix with ` columns, all but the first r columns are
truncated. As we demonstrate in section 7.1, our truncation strategy using a deter-
ministic STHOSVD of the core tensor computes a more accurate approximation.

To the best of our knowledge, reusing Kronecker factors and exploiting the possi-
ble memoization of temporary quantities as presented in subsections 4.3 and 4.4 have
not been considered before.

5. Error analysis. We now present error guarantees for Algorithms 4.3 and 4.4.
Let T = G ⇥1 U1 ⇥ · · · ⇥d Ud be the approximation from either algorithm, and
T̂ = Ĝ⇥1 Û1⇥ · · ·⇥d Ûd be the intermediate rank-` approximation. The overall form
of the error is

"total = kX � T k  kX � T̂ k+ kT̂ � T k= "rand + "core,

where "rand represents the error from forming the rank-` approximation, and "core
represents the error in truncating the approximation to rank r. The component "core
is equivalent to the error in computing the STHOSVD of Ĝ, which we can see from

"core = k
⇣
Ĝ �G ⇥1 V1 ⇥ · · ·⇥d Vd

⌘
⇥1 Û1⇥ · · ·⇥d Ûdk= kĜ�G⇥1V1⇥ · · ·⇥dVdk,

where the second equality follows from the orthonormality of {Ûj}. We can then
apply the error bound for STHOSVD [29, Theorem 6.5] to the initial core Ĝ, i.e,

"2core 
Pd

j=1

P`j
i=rj+1 �

2
i

⇣
Ĝ(j)

⌘
, where �i(A) denotes the ith singular value of A.

Then, as Ĝ is a random quantity, we need to relate the singular values of Ĝ(j)

to the singular values of X(j) to get a deterministic upper bound. Because matrices
{Ûj} are orthonormal, the modewise singular values of Ĝ cannot be larger than those
of X . A formal proof of this fact can be found in section SM3. Thus, we have

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A1196 RACHEL MINSTER, ZITONG LI, AND GREY BALLARD

(5.1) "2core 
dX

j=1

`jX

i=rj+1

�2
i

�
X(j)

�
.

The rest of this section considers the component "rand. Starting with an error
bound for randomized range finder (Algorithm 2.3) using a Kronecker product of
SRHT matrices, we extend the results to an error bound for our HOSVD-type algo-
rithm (Algorithm 4.4) and discuss how to adapt the proof for our STHOSVD-type
algorithm (Algorithm 4.3).

5.1. Matrix bound.
Random matrix. Let n=

Qq
j=1 nj and `=

Qq
j=1 sj . We will consider a Kronecker

product of SRHT matrices of the form

(5.2) ⌦=D(H1 ⌦H2 ⌦ · · ·⌦Hq)2Rn⇥`,

where D 2 Rn⇥n is a diagonal matrix with independent and identically distributed
(i.i.d.) entries from the Rademacher distribution, i.e., either 1 or �1 with equal
probability, and for each j = 1, . . . , q, Hj 2Rnj⇥sj is formed from sj randomly sampled
columns of an nj ⇥ nj Walsh–Hadamard matrix scaled by 1p

nj
. Due to this scaling,

⌦ is orthonormal. Also note that the {Hj} matrices are generated independently.
Notation. We now introduce the setup and notation for our main theorem. Fol-

lowing the notation of [17], let X = U⌃V> be the SVD of matrix X 2 Rm⇥n with
m n. Fix target rank r, and partition the SVD as

(5.3) X=U


⌃1

⌃2

�
V>

1

V>
2

�

with ⌃1 2 Rr⇥r,⌃2 2 R(m�r)⇥(m�r),V1 2 Rn⇥r, and V2 2 Rn⇥(m�r) such that V1

and V2 have orthonormal columns. Now let ⌦2Rn⇥` be the random matrix defined
in (5.2), and define

(5.4) ⌦1 =V>
1 ⌦, ⌦2 =V>

2 ⌦.

We are interested in bounding the largest singular values of ⌦†
1 and ⌦2. We will

use the orthonormality of ⌦2 to bound its largest singular values, but the argument
is more complicated for ⌦1. Here we will adapt the approach in [31], allowing for the
application to a Kronecker product of independent SRHT matrices. This bound is
stated in Lemma 5.1, which we will then use to prove our approximation error bound.
We prove Lemma 5.1 in Appendix A.

Lemma 5.1. Let ⌦1 2 Rr⇥` be as defined in (5.4) with ⌦ 2 Rn⇥` the Kronecker
product of q SRHT matrices as defined in (5.2), where n=

Qq
j=1 nj and `=

Qq
j=1 sj.

If there exist real numbers ↵,� > 1 that satisfy

(5.5) min
k

{sk}�
↵2�

(↵� 1)2
(r2 + r),

then 1
�2

min
(⌦1)


↵n
` with probability at least 1� 1

� .

Remark 5.2. The bound in Lemma 5.1 contains a factor of n, the number of
rows of Kronecker product ⌦. This factor is not present in singular value bounds for
Gaussian random matrices, and is a consequence of using SRHT matrices, as seen
in bounds involving a single SRHT matrix in [28]. In the empirical results shown in
section 7.1, we see that using SRHT matrices produces similar accuracy to Gaussian
matrices; we anticipate that future work in random matrix theory will be able to
improve this factor.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

PARALLEL RANDOMIZED TUCKER ALGORITHMS A1197

Theorem 5.3. Let X̂ = QQ>X be the approximation given by the randomized
range finder of matrix X 2 Rm⇥n with target rank r, oversampling parameter p such
that ` = r + p  min{m,n}, and random sampling matrix ⌦ as defined in (5.2). If
there exist real numbers ↵,� > 1 that satisfy (5.5), then with probability at least 1� 1

� ,

kX�QQ>XkF 

0

@
⇣
1 +

↵n

`

⌘min{m,n}X

i=r+1

�2
i (X)

1

A
1/2

.

Proof. Immediately from [17, Theorem 9.1] and recalling the partitioning from
(5.3) and (5.4), we have

(5.6)
kX�QQ>Xk2F = k(I�QQ>)Xk2F  k⌃2k

2
F + k⌃2⌦2⌦

†
1k

2
F



⇣
1 + k⌦2k

2
2k⌦

†
1k

2
2

⌘
k⌃2k

2
F .

We can apply the singular value bounds from Lemma 5.1 to obtain the bounds for
k⌦†

1k
2
2. With probability at least 1� 1

� , k⌦
†
1k

2
2 =

1
�2

min
(⌦1)


↵n
` . For k⌦2k

2
2, we use

properties of both V2 and ⌦: k⌦2k2 = kV>
2 ⌦k2  k⌦k2 = 1, as V>

2 has orthonormal
rows, and ⌦ has orthonormal columns as the Kronecker product of matrices with or-
thonormal columns. Combining these bounds, we obtain k⌦2k

2
2k⌦

†
1k

2
2 

↵n
` with prob-

ability at least 1� 1
� . From (5.6), we now have kX�QQ>Xk2F 

�
1 + ↵n

`

�
k⌃2k

2
F =

�
1 + ↵n

`

�Pmin{m,n}
i=r+1 �2

i (X), and the result follows.

This error bound can also be expressed in the form "rand 
p
1 + ↵n

` "best, where
"best is the best possible error in a rank-r approximation.

5.2. Tensor bound. To generalize the result from Theorem 5.3 to higher di-
mensions, we first need a result that expresses the error in a Tucker decomposition in
terms of the error in each mode.

Lemma 5.4 ([29, Theorem 5.1]). Let X 2 Rn1⇥···⇥nd and let Pj 2 Rnj⇥nj for
j = 1, . . . , d be a sequence of orthogonal projectors. Then

�����X �X
d

⇥
j=1

Pj

�����

2

=
dX

j=1

�����X
j�1

⇥
i=1

Pi ⇥j (I�Pj)

�����

2



dX

j=1

kX �X ⇥j Pjk
2.

Recall the notation n↵
j =

Qd
k 6=j nk. We present our main error bound result in

Theorem 5.5, which we frame as the error bound for Algorithm 4.4. This result can
be adapted to also apply to Algorithm 4.3 by following similar techniques to [25,
Theorem 3.2]. We include the details for completeness in section SM4.

Theorem 5.5. Let T = G ⇥1 U1 ⇥ · · · ⇥d Ud be the approximation given by
Algorithm 4.4 to X 2 Rn1⇥···⇥nd with target rank r = (r1, . . . , rd) and oversampling
parameter p. Let `j = rj + p for j = 1, . . . , d. Then, if there exist sequences {↵j}

d
j=1

and {�j}
d
j=1 satisfying (5.5) for each {`j}dj=1, then the following bound holds with

probability at least 1�
Pd

j=1
1
�j
:

kX � T k 

0

@
dX

j=1

1 +

↵jn
↵
j

`j

! njX

i=rj+1

�2
i (X(j))

1

A
1/2

+

0

@
dX

j=1

`jX

i=rj+1

�2
i

�
X(j)

�
1

A
1/2

.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A1198 RACHEL MINSTER, ZITONG LI, AND GREY BALLARD

Proof. Using (5.1) to bound "core, we need only to bound "rand. From Lemma
5.4, we have for T̂ = Ĝ ⇥1 Û1 ⇥ · · · ⇥d Ûd computed as the intermediate rank-`
approximation,

kX�T̂ k2 =
�����X �X

d

⇥
j=1

ÛjÛ
>
j

�����

2



dX

j=1

kX�X⇥jÛjÛ
>
j k

2=
dX

j=1

kX(j)�ÛjÛ
>
j X(j)k

2
F ,

where the last equality comes from unfolding the tensor along the jth mode for
j = 1, . . . d. We now apply the matrix bound from Theorem 5.3 on each term in

this sum, which gives kX(j) � ÛjÛ>
j X(j)k

2
F 

✓
1 +

↵jn
↵
j

`j

◆Pnj

i=rj+1 �
2
i (X(j)), except

with failure probability at most 1
�j
. Then the failure probability for the entire sum is

the union of all d failure probabilities for each mode, which is bounded above by the
sum of those probabilities by the union bound. Thus,

(5.7) kX � T̂ k2 
dX

j=1

kX(j) � ÛjÛ
>
j X(j)k

2
F 

dX

j=1

1 +

↵jn
↵
j

`j

! njX

i=rj+1

�2
i (X(j)),

except with probability at most
Pd

j=1
1
�j
. Then, taking square roots gives "rand.

Combining (5.7) and (5.1), the total error in approximation is

"total 

0

@
dX

j=1

1 +

↵jn
↵
j

`j

! njX

i=rj+1

�2
i (X(j))

1

A
1/2

+

0

@
dX

j=1

`jX

i=rj+1

�2
i

�
X(j)

�
1

A
1/2

with probability at least 1�
Pd

j=1
1
�j
.

We consider this result pessimistic due to the factor of n↵
j that comes directly

from our analysis of SRHT matrices, but does not appear in our accuracy experiments
in section 7.1. We anticipate that this factor could be improved in future analysis.
Also note that the result of Theorem 5.5 di↵ers from [11, Theorem 4.2] in two main
ways, and our constant in "rand is smaller as we divide by `j for each j, and we
use a di↵erent diagonal matrix that is not a Kronecker product to ensure we have
independence where needed.

6. Parallel algorithms. We design and develop parallel implementations for
all the randomized algorithms listed in Table 2 using C++/MPI. Our implementa-
tions are based on TuckerMPI [3], which uses the STHOSVD algorithm. Similarly to
TuckerMPI, our implementations leverage distributed-memory clusters to e�ciently
compute the Tucker decomposition of large multidimensional datasets. We employ
the following data distribution scheme, proposed in [3], in our implementations. To
distribute a d-way input tensor, the processors are organized in a d-way processor
grid denoted by P , the dimensions of which are user determined. We use the function
ProcID(P) within our parallel pseudocode to specify a processor’s multidimensional
index or rank within the processor grid. Each processor owns a subtensor of the input
tensor. For example, for an 8⇥6⇥2 tensor and a 2⇥3⇥1 processor grid, each processor
owns a 4 ⇥ 2 ⇥ 2 subtensor. All matrices involved in our algorithms are stored re-
dundantly by every processor. Communication occurs via collective operations across
fibers and slices of the processor grid. In mode j, the processor with index (p1, . . . , pd)
is part of fiber F = P(p1, . . . , pj�1, :, pj+1 . . . , pd) and slice S = P(:, . . . , :, pj , :, . . . , :).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

PARALLEL RANDOMIZED TUCKER ALGORITHMS A1199

In addition, in the following algorithms, bars over letters denote local data owned by
the current processor.

In the following sections we describe two optimizations for computing the sketch
tensor via multi-TTMs as well as parallel implementations of the two algorithms from
section 4 with the smallest computational cost, Algorithms 4.3 and 4.4. We also
compare our implementations with previous work from [12].

6.1. All-at-once multi-TTM. The multi-TTM operation is one of the most
expensive kernels of our algorithms and appears twice; we compute a multi-TTM both
to form the sketch tensor Y and to form the core tensor Ĝ (e.g,. in line 5 of Algorithm
4.4). More specifically, in both places, we multiply the tensor with matrices on all but
its jth mode. In this section we introduce a new parallel algorithm that can optimize
this operation.

A parallel implementation of a single TTM is proposed in [3]. One way to im-
plement the multi-TTM is to simply perform this existing TTM algorithm multiple
times, as shown in Algorithm 6.1; we call this approach the in-sequence multi-TTM
or IS-mTTM. In this in-sequence approach, a reduce-scatter is performed at the end
of each TTM operation, reducing the amount of data each processor owns so that the
computation cost in the next TTM is also reduced. Generally, this approach performs
additional communications to obtain lower computational cost. However, depending
on the size of the local tensor, the reduction in computational cost may not justify
the increased communication cost.

Our algorithm is shown in Algorithm 6.2, which we call the all-at-once multi-
TTM or AAO-mTTM. In this approach, we avoid communication until all matrices
have been multiplied with the local tensor. This strategy reduces communication by
increasing the cost of storage and computation.

Algorithm 6.1 IS-mTTM.

1: function Ŷ = IS-mTTM(X̄ , j,{Mj},P)
2: (p1, . . . , pd) = procID(P)
3: Ȳ = X̄
4: for i= 1 : d and i 6= j do
5: F =P(p1, . . . , pi�1, :, pi+1, . . . , pd)
6: T̄(i) = M̄iȲ(i)

7: Ȳ(i)=Reduce-Scatter(T̄(i), F)
8: end for
9: end function

Algorithm 6.2 AAO-mTTM.

1: function Ŷ = AAO-mTTM(X̄ , j,{Mj},P)
2: (p1, . . . , pd) = procID(P)
3: T̄ = X̄
4: for i= 1 : d and i 6= j do
5: T̄(i) = M̄iT̄(i)

6: end for
7: S =P(:, . . . , :, pj , :, . . . , :)
8: Ȳ(j) = Reduce-Scatter(T̄(j),S)
9: end function

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A1200 RACHEL MINSTER, ZITONG LI, AND GREY BALLARD

The most significant di↵erence between Algorithms 6.1 and 6.2 is that at the
end of any iteration i of the in-sequence approach, we form the intermediate result
Y = X ⇥1 M1 ⇥ · · ·⇥i Mi; in the all-at-once approach, each processor stores a con-
tribution to Y until all iterations are completed and the all-reduce at the end of the
algorithm forms the final result.

6.1.1. Cost analysis. To simplify the notation, we assume that the input ten-
sor is a d-way cubic tensor X 2 Rn⇥···⇥n, that the processor tensor is size q in each
mode (qd = P processors in total), and that the input matrices {Mi}

d
i=1 are of the

same size s⇥ n with s < n. With this notation, we analyze the per-processor com-
puation and communication costs of performing the multi-TTM X ⇥1 M1⇥ · · ·⇥j�1

Mj�1⇥j+1 Mj+1⇥ · · ·⇥d Md using Algorithm 6.2 and compare it with that of using
Algorithm 6.1.

The computational cost of Algorithm 6.1 can be written as

(6.1) Cin-sequence = 2

✓
snd

qd
+

s2nd�1

qd
+ · · ·+

sdn

qd

◆
= 2

dX

i=1

sind�i+1

qd

!
,

and the computational cost of Algorithm 6.2 can be written as

(6.2) Call-at-once = 2

✓
snd

qd
+

s2nd�1

qd�1
+ · · ·+

sdn

q

◆
= 2

dX

i=1

sind�i+1

qd�i+1

!
.

The ith terms of the summations in both (6.2) and (6.1) represent the cost of
multiplying the local factor matrix M̄i of size s⇥ n

q and the ith mode unfolding of
tensor Ȳ = X̄ ⇥1 M̄1⇥ · · ·⇥i�1 M̄i�1. In Algorithm 6.1, due to the reduce-scatter at
each iteration, Ȳ(i) is of size

n
q ⇥

si�1nd�i

qd�1 . In Algorithm 6.2, M̄i is of the same size.

However, since the reduction is delayed until the last mode, Ȳ(i) is of size
n
q ⇥

si�1nd�i

qd�i .
Comparing (6.1) and (6.2), it is easy to see that the computational cost of an AAO-
mTTM is always higher than that of an IS-mTTM because each of the summands
in (6.2) is at least as large as the corresponding term in (6.1). This increase can be
small, however, in certain cases. Note that the two series of summands are geometric
and have the same leading term. For (6.1), the ratio of the series is s

n while the ratio
of the series in (6.2) is sq

n . As the subranks become smaller compared to the tensor
dimensions (i.e., s⌧ n), the sums of the two series get closer to their first terms and
thus their di↵erence becomes smaller.

Using the same notations and the ↵-�-� model [8], we can express the communi-
cation cost of Algorithms 6.1 and 6.2. In Algorithm 6.2, there is only one communi-
cation step at the end where all P processors communicate their local tensor T̄ . T̄ is
a d-way tensor with size s for all of its modes except for the jth mode which has size
n
q . Therefore, the communication cost for each processor is ↵O(logP)+�O

⇣
sd�1n

q

⌘
.

The communication cost of Algorithm 6.1 is more complicated because there are d�1
communication steps and each one involves T̄(i), which is changing in size. At the

ith iteration of the for loop, T̄(i) has size s⇥ si�1nd�i

qd�1 . Therefore, the communication

cost can be written as ↵O(d log q) + �O
⇣Pd�1

i=1
sind�i

qd�1

⌘
= ↵O(logP) + �O

⇣
snd�1

qd�1

⌘
.

We obtain the right-hand side of the equation using the assumption that s ⌧ n so
that the summation is approximated by its first summand. When sq < n, the com-
munication cost of AAO-mTTM is smaller. As the ratio n

sq increases, the benefits of
using AAO-mTTM become more substantial. A summary of these costs is presented
in Table 3.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

PARALLEL RANDOMIZED TUCKER ALGORITHMS A1201

Table 3
Comparison of computation and communication cost per processor. More details can be found

in section SM5.

Form {U} Form {U} Form G Form G
Algorithm Comp cost Comm cost Comp cost Comm cost

STHOSVD [3] nd+1

P ↵O(dP 1/d) + �O(n
d

P) 2 rnd

P ↵O(logP) + �O(rnd�1

P1�1/d)

[12] nd+1

P ↵O(dP) + �O(n
d

P) 2 rnd

P -

Algorithm 6.4 2 r1/(d�1)nd

P ↵O(d logP) + �O(drn
P1/d) 2 rnd

P ↵O(logP) + �O(rnd�1

P1�1/d)

Algorithm 6.5 4 r1/(d�1)nd

P ↵O(d logP) + �O(drn
P1/d) 2 rnd

P ↵O(logP) + �O(rnd�1

P1�1/d)

Algorithm 6.3 All modes multi-TTM using the dimension tree optimization and
AAO-mTTM.

1: function {Yj}=All-Modes-Multi-TTM(X̄ , {�̄j}, m, n, P)
2: (p1, . . . , pd) = procID(P)
3: Ȳ = X̄
4: for i2 n do
5: Ȳ(i) = �̄iȲ(i)

6: end for
7: if m only contains 1 integer, j then
8: S =P(:, . . . , pj , . . . , :)
9: Ȳj = Reduce-Scatter(Ȳ ,S)
10: else
11: split m in equal half m1 and m2

12: All-Modes-Multi-TTM(Ȳ , {�̄j}, m1, m2, P)
13: All-Modes-Multi-TTM(Ȳ , {�̄j}, m2, m1, P)
14: end if
15: end function

6.2. Dimension tree optimization. In section 4.4, we discuss how dimension
trees can be used to make the randomized sketches less expensive for Algorithm 4.4.
In Algorithm 6.3, we present an implementation using AAO-mTTM. Here, m and
n are sets of integers in the range [1, d]. This algorithm returns Yj , the sketch of
X(j) in tensor format, for all integers j 2 [1, d]. Since dimension trees are a tool for
reusing only local intermediate results, Algorithm 6.3 can also be modified to use
IS-mTTM.

6.3. Principal algorithms. We now combine the discussed multi-TTM ap-
proaches and the dimension tree optimization within parallel implementations of our
two best algorithms, Algorithms 4.3 and 4.4. The pseudocode is provided in Algo-
rithms 6.4 and 6.5, respectively. Note that for both of these algorithms, when the size
of core Ĝ is large, it is better to perform the IS-mTTM as described in Algorithm 6.1
to produce a distributed Ĝ so that the parallel STHOSVD can be used to reduce cost.
When Ĝ is very small, performing STHOSVD in parallel can be counterproductive
as the communication cost will dominate; it is better in this case to perform an all-
gather among all processors after the IS-mTTM, producing Ĝ redundantly on every
processor and then use the sequential STHOSVD.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A1202 RACHEL MINSTER, ZITONG LI, AND GREY BALLARD

Algorithm 6.4 Parallel algorithm for Algorithm 4.3.

1: function rSTHKron(X , r, p, P) . X is distributed, the local part of X is
denoted as X̄

2: Ĝ =X
3: Redundantly compute matrix of subranks S
4: for i=1:d do
5: for j=1:d and j 6= i do
6: Redundantly draw d� 1 random matrices �i,j 2Rnj⇥si,j

7: end for
8: Ŷ AAO-mTTM(Ĝ, i, {�i,1 . . .�i,d}, P) . Can also use IS-mTTM
9: Y = All-Gather(Ŷ ,P)
10: Ûi = QR(Y(i)) . QR is serial as every processor owns global Y
11: Ĝ TTM(Ĝ, ÛT

i , i) . For a single TTM we use the implementation
proposed in [3]

12: end for
13: [G,{Vi}] = STHOSVD(Ĝ,r)
14: for i= 1, . . . , d do
15: Ui = ÛiVi . Computed with local matrix multiplication
16: end for
17: end function

Algorithm 6.5 Parallel algorithm for Algorithm 4.4 with AAO-mTTM and dimen-
sion trees.

1: function rHKron-re(X , r, p, P)
2: Compute subranks s
3: for i=1:d do
4: Redundantly draw d� 1 random matrices �i 2Rsi⇥ni

5: end for
6: {Y(1), . . . ,Y(d)

}= All-Modes-Multi-TTM(X̄ ,{�1, . . . ,�d},{1, . . . , d},;,P)
7: for i=1:d do

8: Ûi =QRY(i)
(i) . Serial QR decomposition of the mode i unfolding of Y(i)

9: end for
10: Ĝ = IS-mTTM(X̄ ,;,{ÛT

1 , . . . , Û
T
d},P)

11: [G,{Vj}] = STHOSVD(Ĝ,r)
12: for i= 1, . . . , d do
13: Ui = ÛiVi . Computed with local matrix multiplication
14: end for
15: end function

6.4. Comparison to previous work. We compare our parallel algorithms with
previous approaches, namely, the parallel STHOSVD algorithm in [3] and the ap-
proach from [12]. Assume that the input tensor is a d-way tensor X 2Rn⇥···⇥n with
rank (r, r, . . . , r) and that each mode of the d-way processor tensor has size q. We
also assume that s < r < l⌧ n, where s is the subrank for each mode and ` = r + p
with p the oversampling parameter. Here s = `1/(d�1)

⇡ r1/(d�1). In [12], Choi, Liu,
and Chakaravarthy proposed a data distribution scheme and a tensor matricization

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

PARALLEL RANDOMIZED TUCKER ALGORITHMS A1203

strategy that reduces the communication costs of the Gram and TTM kernels. More
specifically, in this new method, before the Gram computation, communication is per-
formed every other mode to redistribute the tensor unfolding from a 2-dimensional
distribution to a block-column 1-dimensional distribution, which can avoid the com-
munication cost of the later TTM operations required to form the core tensor. This
method is shown to achieve speedup over the parallel implementation proposed in [3].
However, these optimizations are not suitable for our randomized algorithms for the
following reason. Instead of computing the Gram matrix of each mode unfolding, we
compute each mode sketch with a multi-TTM. Since each sketch is much smaller at
the end of the multi-TTM, it is beneficial to delay communicating the sketches as
much as possible before all multi-TTM’s are completed. However, the redistribution
proposed by [12] requires every processor to communicate the entire uncompressed
local tensor before the computation. While [12] also uses randomization to reduce
computation, their focus is on reducing the cost of computing the eigenvectors of the
Gram matrix, which is achieved by using a modified randomized SVD to replace the
eigendecomposition.

To illustrate the benefit of using Kronecker-structured random matrices, we also
compare Algorithms 6.4 and 6.5 with the parallel version of Algorithm 4.2, which uses
dense Gaussian random matrices. The parallelized Algorithm 4.2 is very similar to
Algorithm 6.4 with the only di↵erence being that we use the parallel multi-TTM to
apply the Kronecker-structured random matrices to the input tensor while in paral-
lelized Algorithm 4.2 we use a single parallel TTM operation to apply each of the
dense Gaussian random matrices.

7. Experimental results. We now demonstrate the numerical benefits of our
algorithms by considering the accuracy of our sequential algorithms in section 7.1,
the performance of the multi-TTM and dimension tree optimizations in subsections
7.2 and 7.3, respectively, and the performance of the parallel implementations of our
randomized algorithms on synthetic data in section 7.4 and on two real datasets in
subsections 7.5 and 7.6.

Computing platform. The results shown in section 7.1 are generated by running
MATLAB implementations of the sequential algorithms on a single node server. The
experiments on parallel performance of our C++/MPI implementation (sections 7.2
to 7.6) are run on the Andes cluster at Oak Ridge Leadership Computing Facility.
The system consists of 704 compute nodes with 2 AMD EPYC 7302 16-core CPUs
and 256GB of RAM. We directly call OpenBLAS and the Netlib implementation of
LAPACK for local linear algebra kernels, which are the only available libraries on
Andes.

7.1. Accuracy results. We present an experiment on a synthetic tensor that
demonstrates the accuracy of our algorithms compared to existing deterministic and
randomized algorithms. In this experiment, we use both SRHT and Gaussian ran-
dom matrices to compare numerical accuracy to the theoretical results we derived in
section 5.

We construct a synthetic 3-way tensor X 2 R500⇥500⇥500 by forming a (super-)
diagonal tensor with geometrically decreasing entries and multiplying that tensor by
a random orthogonal matrix along each mode. We set the largest entry of the original
tensor to be 1 and choose the rate at which the core entries decrease to be 0.4 so that
the 40th entry is approximately machine precision. In our experiment, we compress
this tensor to rank (10,10,10) using an oversampling parameter of p = 5. We show

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A1204 RACHEL MINSTER, ZITONG LI, AND GREY BALLARD

Al
g.
4.
1

Al
g.
4.
2

Al
g.
4.
3

Al
g.
4.
41

1.05

1.1

1.15

1.2
·10�4 Gaussian Random Matrices

STHOSVD

Al
g.
4.
3

Al
g.
4.
41

1.05

1.1

1.15

1.2
·10�4 SRHT Random Matrices

Al
g.
4.
3

[1
1]
tr
un
c.

0

1

2

3

4

·10�3 Truncation Comparison (Gaussian)

Fig. 3. Boxplots of relative errors for our randomized algorithms using Gaussian random ma-
trices (left) and SRHT random matrices (center) compared to the relative error for STHOSVD for
the synthetic tensor with geometrically decreasing values. We also compare the truncation methods
we use to those used in [11] (right). Note: color appears only in the online article.

boxplots of the relative error over 100 trials in Figure 3, comparing results from all
our algorithms (Algorithms 4.1 to 4.4) using Gaussian random matrices as well as
our principal algorithms (Algorithms 4.3 and 4.4) using SRHT random matrices. We
also compare our truncation strategy to the strategy in [11], and compare the relative
error from all randomized algorithms to the relative error obtained from deterministic
STHOSVD, Algorithm 2.2.

In Figure 3, we see that the relative errors for all our randomized algorithms
deviate from the deterministic relative error by at most 10% for the given rank (the
medians are within 1%). Also, the relative errors for each trial are very close together
with each algorithm, as even the outliers are within the same order of magnitude,
with a standard deviation of 1.9 ⇥ 10�5. Regardless of random matrix distribution
or whether we reuse �j matrices or generate new matrices for each mode, we do not
lose significant accuracy compared to either the deterministic or standard randomized
approaches. We can also see that the truncation strategy we employ in Algorithms
4.1 to 4.4 is much more consistently accurate than the strategy in [11].

We show an additional accuracy experiment in section SM4.1. Overall, we see
comparable relative error for Algorithms 4.3 and 4.4 to both deterministic STHOSVD
and existing randomized approaches. While our theoretical results (Theorem 5.5) ap-
ply only to SRHT matrices, these experimental results suggest that Gaussian matrices
perform comparably in terms of accuracy. We note also that e�cient application of
Hadamard matrices may require padding to powers-of-two dimensions, which can par-
tially o↵set the computational cost savings from using the Hadamard structure. Our
parallel performance experiments use Gaussian matrices exclusively.

7.2. In-sequence TTM versus all-at-once TTM. To compare the perfor-
mance of the two TTM approaches we discuss in section 6.1, we conduct an experiment
performing an IS-mTTM and an AAO-mTTM of a 3-way tensor X 2 R800⇥800⇥800

with matrices U,V,W 2Rs⇥800 with varying s. For this experiment, we use 64 cores
(2 nodes) arranged in a 4⇥ 4⇥ 4 processor grid. The results of this experiment are
shown in Figure 4(a), where we can see that when the matrices have relatively few
rows (when sq ⌧ n), the AAO-mTTM is much more communication-e�cient. We
observe speedups ranging from 27% to over 2⇥. This fits our prediction in section
6.1. However, when n

sq is very large (i.e., the s= 5 case), both algorithms are cheap
and communication is not as dominant. When n

sq is small, AAO-mTTM has increased
computational cost, and also loses its advantage in communication cost. In this case,
IS-mTTM is preferred to AAO-mTTM. For this reason, we think the all-at-once

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

PARALLEL RANDOMIZED TUCKER ALGORITHMS A1205

(a) Comparing the performance of all-at-
once multi-TTM and in-sequence multi-
TTM by multiplying a 800 ⇥ 800 ⇥ 800
synthetic tensor with an s ⇥ 800 matrix
on all modes (s 2 [5, 160]). The processor
grid used is 4⇥4⇥4. The labels on top of
bars indicate the overall speedup achieved
by all-at-once multi-TTM compared to in-
sequence multi-TTM.

(b) Performance gain by using the dimension
tree optimization for Alg. 4.4. We compute the
sketch of a cubic synthetic n-way tensor where
each mode has the same size n, resulting in a
cubic d-way core tensor with each mode having
the same size s. The labels on top of the bars
show speedup gained by using dimension trees.

Fig. 4. Performance benefits of our multi-TTM and dimension tree optimizations. Note: color
appears only in the online article.

optimization is more suitable for the sketching phase where the random matrices
tend to have very few rows.

Note that the gray bars in Figure 4(a) represent overhead costs. For IS-mTTM,
this overhead mainly comes from reorganizing the data in memory before and after
communication (MPI collectives). Since AAO-mTTM avoids those communication
steps, it also avoids those reorganizing costs. For higher dimensions, the benefits of
AAO-mTTM still depend on n

sq being large. If this ratio is fixed, AAO-mTTM will
continue to outperform IS-mTTM.

7.3. Dimension tree optimization. To demonstrate the benefits of using di-
mension trees, we run Algorithm 4.4 with and without dimension trees on synthetic
tensors with an increasing number of modes such that the total size of the input ten-
sor and its rank are kept close to constant. We benchmark the time it takes for both
methods to apply the random matrices {�} to the input tensor and present the results
in Figure 4(b). This computation corresponds to line 5 of Algorithm 4.4. Since the
communication and overhead costs are low, we see that the practical speedup from
using dimension trees aligns closely with the theoretical prediction, with a computa-
tional reduction of d/2 as described in section 4.4.

7.4. Strong scaling on synthetic data. In this experiment we benchmark
four variations of our randomized algorithms and STHOSVD as a baseline, scaling
from 2 nodes (64 cores) to 32 nodes (1024 cores) on a fixed problem size. The in-
put tensor is a 410 ⇥ 410 ⇥ 410 ⇥ 410 single-precision synthetic tensor (⇡ 113GB)
constructed from multiplying a 20⇥ 20⇥ 20⇥ 20 randomly generated core with four
410⇥ 20 random matrices. No noise is added to this synthetic tensor so it is exactly
low rank. This size is close to the largest tensor we can fit in the memory of 2 nodes,
which makes the timing results more consistent and less influenced by noise in the
system. Any order of modes used to compute the multi-TTM will not a↵ect the per-
formance as the tensor size and rank are the same across modes. All six algorithms are

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A1206 RACHEL MINSTER, ZITONG LI, AND GREY BALLARD

Fig. 5. Strong scaling of di↵erent algorithm variants. Note: color appears only in the online
article.

given target ranks (20,20,20,20) and the randomized ones use oversampling parameter
p= 3.

The results are presented in Figure 5, where we see that all six algorithms pre-
sented scale well to 1024 cores. All randomized algorithms outperform the determinis-
tic STHOSVD, and the randomized algorithms that use Kronecker-structured random
matrices outperform the parallel version of Algorithm 4.2. A noticeable speedup of
3–4⇥ is achieved by using Algorithm 6.4 compared to STHOSVD. The second-best
algorithm is Algorithm 6.5 with the dimension tree optimization achieving 2–3⇥
speedup. Note that the use of AAO-mTTM provided little improvement over
IS-mTTM in this case, because the compression ratio is very high so the multi-TTMs
are not bottlenecks. We can also see that the dimension tree optimization does provide
noticeable and consistent speedup for Algorithm 6.5.

7.5. Miranda dataset. The Miranda dataset [6, 32] contains 3-dimensional
simulation data of the density ratios of a nonreacting flow of viscous/di↵usive fluids.
This dataset is 3072⇥3072⇥3072. Its values are in single precision and range between
1 and 3. We show visualizations for this dataset in section SM6.1.

In this experiment, we compare five variations of our randomized algorithms as
well as the deterministic STHOSVD algorithm using the Miranda dataset. We use 4
nodes (128 cores) organized as a 1⇥8⇥16 tensor. The target rank we choose for this
run is (502, 504, 361), which corresponds to a 10�2 reconstruction error (estimated
using precomputed singular values of the unfolding of the data tensor for each mode).
The subrank matrix we used for Algorithm 6.4 is

2

4
1 39 13
30 1 17
6 61 1

3

5 .

For Algorithm 6.5, the subrank vector we used is (20, 20, 26). The relative error
achieved by STHOSVD is 0.0094, while the relative errors of the randomized algo-
rithms Algorithms 4.2, 6.4, and 6.5 are 0.0234, 0.0194, and 0.0189, respectively, which
are all within 2.5⇥ the deterministic error.

The performance results are recorded in Figure 6(a), and we visualize recon-
structed tensors from Algorithms 2.2, 4.2, and 6.5 in section SM6.1. First, we note
that STHOSVD is particularly slow when compared to the randomized algorithms, in
this case partly because the Miranda dataset has fewer modes and each mode is large.
As a result, the Gram matrices are large and the eigendecompositions of those Gram
matrices are expensive. Moreover, the eigendecompositions are carried out redun-
dantly on every processor due to the TuckerMPI assumption of small individual mode

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

PARALLEL RANDOMIZED TUCKER ALGORITHMS A1207

(a) Comparing the performance of all al-
gorithms on Miranda dataset .

(b) Comparing the performance of all al-
gorithms on SP dataset.

Fig. 6. Performance breakdown of all algorithms on our two real datasets. Note: color appears
only in the online article.

dimensions. (More details on the parallel implementation of STHOSVD can be found
in [3]). The randomized algorithms, on the other hand, can avoid this expensive step
completely, and we see up to a 16⇥ speedup, comparing Algorithm 6.4 to STHOSVD.
In the next section, we compare the performance of all the algorithms again with
a higher-order tensor, where each mode is relatively small. In that case, the Gram
matrices are smaller and the eigendecompositions are cheaper, so the deterministic
algorithm appears more competitive.

Also note that random number generation (forming the random matrices {⌦})
in Algorithm 4.2 takes up a large percentage of the total time. These results demon-
strate the benefits of generating fewer random numbers by using Kronecker-structured
random matrices. Now, comparing the computation cost (red bar) of Algorithm 4.2
with that of the following algorithms to the right, we can see that using Kronecker-
structured random matrices further reduces the computation cost of forming the factor
matrices as we have predicted. Among the algorithms that use Kronecker-structured
random matrices, Algorithms 6.4 and 6.5 achieve the best performance. Comparing
multi-TTM methods, we see that using either IS-mTTM or AAO-mTTM in Algo-
rithm 6.4 results in very similar performance. Although AAO-mTTM achieved a 3⇥
speedup in the communication cost of forming the factor matrices (pink bar) over
IS-mTTM, the absolute speedup is not significant because the communication cost
using IS-mTTM is already very small. This is mostly due to the subranks being very
small compared to the size of the input tensor. Finally, we note that with our op-
timizations, applying the factor matrices to truncate the input tensor (the blue and
light blue bars) now becomes the bottleneck of the algorithm.

7.6. Stats-Planar dataset. The Stats-Planar dataset is generated from the
simulation of a statistically stationary planar (SP) methane-air flame [23]. The data
have dimensions 500 ⇥ 500 ⇥ 500 ⇥ 11 ⇥ 400 with the first 3 modes representing a
3-dimensional spatial grid, the 4th mode representing 11 variables, and the 5th mode
representing time steps. These data have been used in previous studies such as [3]

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A1208 RACHEL MINSTER, ZITONG LI, AND GREY BALLARD

to demonstrate the e↵ectiveness of Tucker decomposition algorithms. In this work,
we use the single-precision-max-normalized version of this dataset. We visualize the
250th slice for each of the first three modes of the SP tensor in Figure SM4.

Similarly to the experiment on the Miranda dataset, we compare five variations
of the randomized algorithm and the deterministic STHOSVD algorithm using 1024
cores (32 nodes). The target rank we use is (31, 38, 35, 6, 11). The subrank vector we
used for Algorithm 6.5 is

⇥
2 2 2 3 4

⇤
and the subrank matrix used for Algorithm

6.4 is
2

66664

0 3 3 2 2
3 0 4 2 2
2 5 0 2 2
2 2 2 0 2
2 2 2 2 0

3

77775
.

The relative error achieved by STHOSVD on this dataset is 0.0028, while the relative
errors of the randomized algorithms Algorithms 4.2, 6.4, and 6.5 are 0.0050, 0.0079,
and 0.0079, respectively, which are all within 3⇥ of the deterministic error.

The performance results are shown in Figure 6(b). The speedup of the randomized
algorithms appears less dramatic compared to the results from the Miranda dataset,
which is mainly due to the di↵erence in dimensions of these two datasets. Recall that
compared to the Miranda dataset, the SP tensor is of higher order but has a smaller
size in each mode. As a result, the sequential eigendecomposition in the STHOSVD
algorithm is no longer as expensive. We also see that Algorithms 6.4 and 6.5 are
still the best-performing algorithms. Algorithm 4.2 su↵ers from slow random number
generation, similarly to the experiments on the Miranda dataset. Finally, forming the
factor matrices is no longer a bottleneck for tensors with more cubical dimensions. In
this case, accelerating the computations applying these factor matrices to derive the
core tensor will become a more important issue.

8. Conclusions and future work. We develop new randomized algorithms
using a Kronecker product of random matrices that significantly decrease the com-
putational cost in computing a Tucker decomposition. By accelerating the sketching
step using Kronecker products, we remove the SVD as the dominant computational
bottleneck. Our algorithms also reduce the number of random entries generated,
which, as shown in our experimental results, could result in significant savings in the
runtime compared to standard randomized algorithms. As the SVD step is no longer
the dominant computation, future directions include accelerating the TTM compu-
tation, the other dominant portion of computing a Tucker decomposition, perhaps
through a one-pass approach similar to [27]. We develop probabilistic error bounds
for our algorithms using SRHT matrices as they generalize to Kronecker products
better than Gaussian matrices. The empirical results comparing Gaussian and SRHT
matrices show that the error incurred from using SRHT matrices is not any worse
than using Gaussian matrices. Our theoretical bounds are pessimistic in comparison,
so there is room for improvement in the analysis, another potential future direction.
We implement our new randomized algorithms in parallel, developing a new algorithm
that parallelizes the most expensive SVD component. Previous approaches such as
[12] parallelize other components, leaving the most expensive part to be computed
locally. Overall, we show in this work that choosing a random matrix that fits the
structure of our problem is beneficial. The dense Gaussian matrix typically used
in RandSVD in particular is not required, and performance is greatly improved by
exploiting appropriate structure.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

PARALLEL RANDOMIZED TUCKER ALGORITHMS A1209

Appendix A. Proof of Lemma 5.1.

Proof. Let W = V>
1 2 Rr⇥n for notational simplicity, and recall that ⌦ =

D(H1 ⌦ · · · ⌦Hq) is the Kronecker product of independent SRHT matrices, where
D 2 Rn⇥n and Hj 2 Rnj⇥sj for every j, given n =

Qq
j=1 nj and ` =

Qq
j=1 sj . Define

G= (W⌦)(W⌦)> 2Rr⇥r. Note that W⌦ is equivalent to ⌦1 2Rr⇥`.
Our approach will focus on the elementwise representation of G and will be com-

posed of 3 main steps: first, we will express the elements of G in terms of two
summands M and N that can be bounded more easily; second, we will obtain a de-
terministic bound for kMk2 and then bound E[N2

ij], which is the bulk of the proof;
and third, we use our result from the previous step in conjunction with Markov’s in-
equality to obtain a concentration inequality for kNk2. Combining all these pieces will
then give us the desired bound. Note that our three main steps follow the approach
of [31], which analyzes the case where ⌦ is a single SRHT matrix.

Define H = H1 ⌦H2 ⌦ · · · ⌦Hq, letting the Kronecker product of subsampled
Hadamard matrices be H for ease of notation. Then we have another way to express
G as

(A.1) G= (W⌦)(W⌦)> =WDHH>DW> =WDFDW>,

letting F = HH>. There are some important properties of D and F we will need,
which we now explore. The diagonal matrix D has i.i.d. entries drawn from the
Rademacher distribution so that EDa = 0 and D2

a = 1 for a= 1, . . . , n.
Each element of F can be written as a product of the entries of individual Gram

matrices HjH>
j . Specifically, Fab = (H1H>

1)i1j1(H2H>
2)i2j2 · · · (HqH>

q)iqjq with a the
linear index with respect to i1, . . . , iq and b the linear index with respect to j1, . . . , jq.
This representation allows us to break dependent expressions down into their inde-
pendent parts, as each Hi is independent from Hj when i 6= j. We can then write the
expectation of Fab as

(A.2) EFab =E(H1H
>
1)i1j1E(H2H

>
2)i2j2 · · ·E(HqH

>
q)iqjq .

Note that the expectation on the left is taken over all the
Pq

j=1 sj samples from the
Hadamard factor matrices. From [31, eq. 38], we have that E(HkH>

k)ikjk = 0 for
ik 6= jk. If a 6= b, then ik 6= jk for at least one k. Combining this and (A.2), we can
say that EFab = 0 for a 6= b. Now consider the case where a = b. From [31, eq. 37],
we have that (HkH>

k)ikik = sk/nk deterministically. Then,

(A.3) Faa =
qY

k=1

sk
nk

=
`

n
.

The last piece we will need is E[F 2
ab]. From [31, eq. 39], E[(HkH>

k)
2
ikjk] = sk/n2

k for
ik 6= jk, and E[(HkH>

k)
2
ikik] = s2k/n

2
k from above. If a 6= b, then ik0 6= jk0 for at least

one k0. Combining this and (A.2),

(A.4) E[F 2
ab]

sk0

n2
k0

qY

k=1
k 6=k0

s2k
n2
k

=
`2

sk0n2


`2

mink{sk}n2
=

`2

s⇤kn
2
,

letting s⇤k =mink{sk}.
With all these pieces in mind, we begin the main steps of the proof, which follow

[31]. We start with an elementwise representation of G, using the form in (A.1), with

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A1210 RACHEL MINSTER, ZITONG LI, AND GREY BALLARD

Gij =
nX

a,b=1

WiaDaFabDbWjb

=
nX

a=1

WiaWjaD
2
aFaa +

nX

a=1

WiaDa

nX

b=1
b 6=a

WjbDbFab

for 1  i, j  r. Consider the first term, where we have isolated the case a = b.
As the rows of W are orthonormal, D2

a = 1 and Faa = `/n, Gij can be written as
Gij =

`
n�ij +

Pn
a=1WiaDa

Pn
b=1
b 6=a

WjbDbFab, where �ij is the Kronecker delta which is

1 when i= j and 0 otherwise. Defining M2Rr⇥r to be `
nI, and letting N2Rr⇥r be

the matrix with entries Nij =
Pn

a=1WiaDa
Pn

b=1
b 6=a

WjbDbFab, we have G=M+N.

We immediately have kMk2 = `/n. Bounding kNk is trickier; our approach will
be to use the fact EkNk22 EkNk2F =

Pr
i,j=1E[N2

ij] and first bound E[N2
ij]. We start

by expanding the product

(A.5)

E[N2
ij] =E

0

B@
nX

a=1

WiaDa

nX

b=1
b 6=a

WjbDbFab

1

CA

0

BB@
nX

c=1

WicDc

nX

f=1
f 6=c

WjfDfFcf

1

CCA

=E
nX

a=1

W 2
ia

0

B@
nX

b=1
b 6=a

WjbDbFab

1

CA

2

+E
nX

a,c=1
a 6=c

WiaWicDaDc

nX

b=1
b 6=a

WjbDbFab

nX

f=1
f 6=c

WjfDfFcf ,

which we have separated into the terms where a = c and a 6= c. Consider the first
term of (A.5), where a = c. As W is a deterministic matrix, the expectation only
a↵ects the terms with Db and Fab, so we have

(A.6) E
nX

a=1

W 2
ia

0

B@
nX

b=1
b 6=a

WjbDbFab

1

CA

2

=
nX

a=1

W 2
iaE

0

B@
nX

b=1
b 6=a

WjbDbFab

1

CA

2

.

Now consider the expectation portion of (A.6) for a fixed 1 a n. We can expand
this product and distribute the expectation as

E

0

B@
nX

b=1
b 6=a

WjbDbFab

1

CA

2

=E
nX

b=1
b 6=a

WjbDbFab

nX

f=1
f 6=a

WjfDfFaf

=
nX

b,f=1
b,f 6=a

WjbWjfE[DbDfFabFaf] =
nX

b=1
b 6=a

W 2
jbE[F 2

ab] +
nX

b,f=1
b,f 6=a
b 6=f

WjbWjfE[DbDfFabFaf],

where the last equality separates terms into where b= f and where b 6= f , respectively.
From (A.4) and as the rows of W are normalized, we can write the term where
b = f as

Pn
b=1
b 6=a

W 2
jbE[F 2

ab] 
Pn

b=1W
2
jb

`2

s⇤kn
2 = `2

s⇤kn
2 . The term where b 6= f can be

written as
Pn

b,f=1
b,f 6=a
b 6=f

WjbWjfE[DbDfFabFaf] =
Pn

b,f=1
b,f 6=a
b 6=f

WjbWjfEDbEDfE[FabFaf] = 0

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

PARALLEL RANDOMIZED TUCKER ALGORITHMS A1211

from EDb = 0. These two results can be combined into the expectation portion of

(A.6) to obtain
Pn

a=1W
2
iaE
✓Pn

b=1
b 6=a

WjbDbFab

◆2


Pn

a=1W
2
ia

`2

s⇤kn
2 = `2

s⇤kn
2 .

We now focus on the second term of (A.5), where a 6= c. We split up both of the
last two sums to extract the terms where b= c and where f = a, giving

E
nX

a,c=1
a 6=c

WiaWicDaDc

nX

b=1
b 6=a

WjbDbFab

nX

f=1
f 6=c

WjfDfFcf

= E
nX

a,c=1
a 6=c

WiaWicDaDc

0

B@WjcDcFac+
nX

b=1
a 6=b 6=c

WjbDbFab

1

CA

0

BB@WjaDaFca+
nX

f=1
a 6=f 6=c

WjfDfFcf

1

CCA .

We expand this product into four terms we can bound separately, as

E
nX

a,c=1
a 6=c

WiaWicDaDc

0

B@WjcDcFac+
nX

b=1
a 6=b 6=c

WjbDbFab

1

CA

0

BB@WjaDaFca+
nX

f=1
a 6=f 6=c

WjfDfFcf

1

CCA

=E
nX

a,c=1
a 6=c

WiaWicDaDcWjcWjaDcDaFacFca(A.7a)

+E
nX

a,c=1
a 6=c

WiaWicDaDc

nX

b=1
a 6=b 6=c

WjbDbFab

nX

f=1
a 6=f 6=c

WjfDfFcf(A.7b)

+E
nX

a,c=1
a 6=c

WiaWicDaDcWjcDcFac

nX

f=1
a 6=f 6=c

WjfDfFcf(A.7c)

+E
nX

a,c=1
a 6=c

WiaWicDaDcWjaDaFca

nX

b=1
a 6=b 6=c

WjbDbFab.(A.7d)

Consider (A.7a). As D2
k = 1 and F is symmetric, the expectation is just a↵ected by

F 2
ac. We then have

E
nX

a,c=1
a 6=c

WiaWicDaDcWjcWjaDcDaFacFca =
nX

a,c=1
a 6=c

WiaWicWjcWjaE[F 2
ac]


`2

s⇤kn
2

nX

a,c=1
a 6=c

WiaWicWjcWja 
`2

s⇤kn
2

nX

a,c=1

WiaWicWjcWja

=
`2

s⇤kn
2

nX

a=1

WiaWja

!2

=
`2

s⇤kn
2

h
WW>

i2
ij
= �ij

`2

s⇤kn
2
.

In all three of the remaining parts, (A.7b), (A.7c), and (A.7d), distributing the ex-
pectation to the independent random components gives us the expectation of the
product of independent Rademacher entries. This means all three of these parts are
equal to 0. With all these pieces, we now have E[N2

ij] 
`2

s⇤kn
2 + �ij

`2

s⇤kn
2 . With the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A1212 RACHEL MINSTER, ZITONG LI, AND GREY BALLARD

bound on E[N2
ij], we can now bound the expectation of the norm of N: EkNk22 

EkNk2F = E
Pr

i,j=1N
2
ij 

`2

s⇤kn
2

Pr
i,j=1(1 + �ij) = (r2 + r) `2

s⇤kn
2 . Then, using Markov’s

inequality, kNk2 
�`
n

q
(r2+r)

s⇤k
with probability at least 1� 1

� .

Now consider the term kG†
k2. Recalling that G = M + N, we can express

this instead as G = (I + NM�1)M. Then we can write G† = M�1(I + NM�1)†.
Taking norms, we have kG†

k2  kM�1
k2k(I+NM�1)†k2 

n
`

P1
k=0 kNM�1

k
k
2 , where

we use the Taylor expansion (I + NM�1)† =
P1

k=0(�NM�1)k (see [18, Corollary

5.6.16] for more details). We can then write kG†
k2 

n
`

P1
k=0

�
kNk2kM�1

k2

�k
.

We now consider kNk2kM�1
k2 before the entire expression. As kM�1

k2 = n/`,

kNk2kM�1
k2 

q
�2(r2+r)

s⇤k
 1 � 1

↵ with probability at least 1 � 1
� , where the last

inequality comes from (5.5). Then, kG†
k2 

n
`

P1
k=0

�
1� 1

↵

�k
= n↵

` . Our smallest
singular value is then 1

�2

min
(W⌦)

= kG†
k2 

↵n
` , with probability at least 1� 1

� . Taking
the square root, we obtain the desired result.

REFERENCES

[1] S. Ahmadi-Asl, S. Abukhovich, M. G. Asante-Mensah, A. Cichocki, A. H. Phan, T.
Tanaka, and I. Oseledets, Randomized algorithms for computation of Tucker decom-
position and higher order SVD (HOSVD), IEEE Access, 9 (2021), pp. 28684–28706,
https://doi.org/10.1109/ACCESS.2021.3058103.

[2] H. Al Daas, G. Ballard, L. Grigori, S. Kumar, and K. Rouse, Communication lower
bounds and optimal algorithms for multiple tensor-times-matrix computation, SIAM J
Matrix Anal. Appl., 45 (2024), pp. 450–477, https://doi.org/10.1137/22M1510443.

[3] G. Ballard, A. Klinvex, and T. G. Kolda, TuckerMPI: A parallel C++/MPI software
package for large-scale data compression via the Tucker tensor decomposition, ACM Trans.
Math. Software, 46 (2020), 13, https://doi.org/10.1145/3378445.

[4] K. Batselier, W. Yu, L. Daniel, and N. Wong, Computing low-rank approximations of large-
scale matrices with the tensor network randomized SVD, SIAM J. Matrix Anal. Appl., 39
(2018), pp. 1221–1244, https://doi.org/10.1137/17M1140480.

[5] C. Battaglino, G. Ballard, and T. G. Kolda, A practical randomized CP tensor de-
composition, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 876–901, https://doi.org/
10.1137/17M1112303.

[6] W. H. Cabot and A. W. Cook, Reynolds number e↵ects on Rayleigh–Taylor instability
with possible implications for type Ia supernovae, Nature Phys., 2 (2006), pp. 562–568,
https://doi.org/10.1038/nphys361.

[7] V. T. Chakaravarthy, J. W. Choi, D. J. Joseph, X. Liu, P. Murali, Y. Sabharwal,
and D. Sreedhar, On optimizing distributed Tucker decomposition for dense tensors, in
2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), IEEE,
Piscataway, NJ, 2017, pp. 1038–1047, https://doi.org/10.1109/IPDPS.2017.86.

[8] E. Chan, M. Heimlich, A. Purkayastha, and R. van de Geijn, Collective communication:
Theory, practice, and experience, Concurr. Comput. Pract. Exp., 19 (2007), pp. 1749–1783,
https://doi.org/10.1002/cpe.1206.

[9] M. Che and Y. Wei, Randomized algorithms for the approximations of Tucker and the ten-
sor train decompositions, Adv. Comput. Math., 45 (2019), pp. 395–428, https://doi.org/
10.1007/s10444-018-9622-8.

[10] M. Che, Y. Wei, and H. Yan, The computation of low multilinear rank approximations of
tensors via power scheme and random projection, SIAM J. Matrix Anal. Appl., 41 (2020),
pp. 605–636, https://doi.org/10.1137/19M1237016.

[11] M. Che, Y. Wei, and H. Yan, An e�cient randomized algorithm for computing the ap-
proximate Tucker decomposition, J. Sci. Comput., 88 (2021), pp. 1–29, https://doi.org/
10.1007/s10915-021-01545-5.

[12] J. Choi, X. Liu, and V. Chakaravarthy, High-performance dense Tucker decomposition
on GPU clusters, in SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis, IEEE, 2018, pp. 543–553, https://doi.org/10.1109/
SC.2018.00045.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1109/ACCESS.2021.3058103
https://doi.org/10.1137/22M1510443
https://doi.org/10.1145/3378445
https://doi.org/10.1137/17M1140480
https://doi.org/10.1137/17M1112303
https://doi.org/10.1137/17M1112303
https://doi.org/10.1038/nphys361
https://doi.org/10.1109/IPDPS.2017.86
https://doi.org/10.1002/cpe.1206
https://doi.org/10.1007/s10444-018-9622-8
https://doi.org/10.1007/s10444-018-9622-8
https://doi.org/10.1137/19M1237016
https://doi.org/10.1007/s10915-021-01545-5
https://doi.org/10.1007/s10915-021-01545-5
https://doi.org/10.1109/SC.2018.00045
https://doi.org/10.1109/SC.2018.00045

PARALLEL RANDOMIZED TUCKER ALGORITHMS A1213

[13] H. A. Daas, G. Ballard, P. Cazeaux, E. Hallman, A. MiE¬dlar, M. Pasha, T. W. Reid,
and A. K. Saibaba, Randomized algorithms for rounding in the tensor-train format , SIAM
J Sci. Comput., 45 (2023), pp. A74–A95.

[14] L. De Lathauwer, B. De Moor, and J. Vandewalle, A multilinear singular
value decomposition, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1253–1278,
https://doi.org/10.1137/S0895479896305696.

[15] L. De Lathauwer, B. De Moor, and J. Vandewalle, On the best rank-1 and rank-
(R1,R2,. . . ,Rn) approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., 21
(2000), pp. 1324–1342, https://doi.org/10.1137/S0895479898346995.

[16] N. B. Erichson, K. Manohar, S. L. Brunton, and J. N. Kutz, Randomized CP tensor
decomposition, Mach. Learn. Sci. Technol., 1 (2020), 025012, https://doi.org/10.1088/2632-
2153/ab8240.

[17] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53
(2011), pp. 217–288, https://doi.org/10.1137/090771806.

[18] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge,
2012.

[19] R. Jin, T. G. Kolda, and R. Ward, Faster Johnson–Lindenstrauss transforms via
Kronecker products, Inf. Inference, 10 (2021), pp. 1533–1562, https://doi.org/10.1093/
imaiai/iaaa028.

[20] O. Kaya and Y. Robert, Computing dense tensor decompositions with optimal
dimension trees, Algorithmica, 81 (2019), pp. 2092–2121, https://doi.org/10.1007/s00453-
018-0525-3.

[21] O. Kaya and B. Uçar, High performance parallel algorithms for the Tucker decomposition
of sparse tensors, in 45th International Conference on Parallel Processing (ICPP ’16),
IEEE Computer Society, Los Alamitos, CA, 2016, pp. 103–112, https://doi.org/
10.1109/ICPP.2016.19.

[22] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51
(2009), pp. 455–500, https://doi.org/10.1137/07070111X.

[23] H. Kolla, X.-Y. Zhao, J. H. Chen, and N. Swaminathan, Velocity and reactive scalar
dissipation spectra in turbulent premixed flames, Combust. Sci. Technol., 188 (2016), pp.
1424–1439, https://doi.org/10.1080/00102202.2016.1197211.

[24] Z. Li, Q. Fang, and G. Ballard, Parallel Tucker decomposition with numerically accurate
SVD , in 50th International Conference on Parallel Processing, ICPP ’21, ACM, New York,
2021, 49, https://doi.org/10.1145/3472456.3472472.

[25] R. Minster, A. K. Saibaba, and M. E. Kilmer, Randomized algorithms for low-rank tensor
decompositions in the Tucker format , SIAM J. Math. Data Sci., 2 (2020), pp. 189–215,
https://doi.org/10.1137/19M1261043.

[26] A.-H. Phan, P. Tichavsky, and A. Cichocki, Fast alternating LS algorithms for high order
CANDECOMP/PARAFAC tensor factorizations, IEEE Trans. Signal Process., 61 (2013),
pp. 4834–4846, https://doi.org/10.1109/TSP.2013.2269903.

[27] Y. Sun, Y. Guo, C. Luo, J. Tropp, and M. Udell, Low-rank Tucker approximation
of a tensor from streaming data, SIAM J. Math. Data Sci., 2 (2020), pp. 1123–1150,
https://doi.org/10.1137/19M1257718.

[28] J. A. Tropp, Improved analysis of the subsampled randomized Hadamard transform, Adv.
Adapt. Data Anal., 3 (2011), pp. 115–126, https://doi.org/10.1142/S1793536911000787.

[29] N. Vannieuwenhoven, R. Vandebril, and K. Meerbergen, A new truncation strategy for the
higher-order singular value decomposition, SIAM J. Sci. Comput., 34 (2012), pp. A1027–
A1052, https://doi.org/10.1137/110836067.

[30] A. S. J. W. Wolf, Low Rank Tensor Decompositions for High Dimensional Data Approxima-
tion, Recovery and Prediction, Ph.D. thesis, Technical University of Berlin, Berlin, 2019,
https://doi.org/10.14279/depositonce-8109.

[31] F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert, A fast randomized algorithm for the
approximation of matrices, Appl. Comput. Harmon. Anal., 25 (2008), pp. 335–366.

[32] K. Zhao, S. Di, X. Lian, S. Li, D. Tao, J. Bessac, Z. Chen, and F. Cappello, SDR-
Bench: Scientific data reduction benchmark for lossy compressors, in 2020 IEEE Interna-
tional Conference on Big Data (Big Data), IEEE, Piscataway, NJ, 2020, pp. 2716–2724,
https://doi.org/10.1109/BigData50022.2020.9378449.

[33] G. Zhou, A. Cichocki, and S. Xie, Decomposition of Big Tensors with Low Multilinear Rank ,
preprint, arXiv:1412.1885, 2014.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/S0895479896305696
https://doi.org/10.1137/S0895479898346995
https://doi.org/10.1088/2632-2153/ab8240
https://doi.org/10.1088/2632-2153/ab8240
https://doi.org/10.1137/090771806
https://doi.org/10.1093/imaiai/iaaa028
https://doi.org/10.1093/imaiai/iaaa028
https://doi.org/10.1007/s00453-018-0525-3
https://doi.org/10.1007/s00453-018-0525-3
https://doi.org/10.1109/ICPP.2016.19
https://doi.org/10.1109/ICPP.2016.19
https://doi.org/10.1137/07070111X
https://doi.org/10.1080/00102202.2016.1197211
https://doi.org/10.1145/3472456.3472472
https://doi.org/10.1137/19M1261043
https://doi.org/10.1109/TSP.2013.2269903
https://doi.org/10.1137/19M1257718
https://doi.org/10.1142/S1793536911000787
https://doi.org/10.1137/110836067
https://doi.org/10.14279/depositonce-8109
https://doi.org/10.1109/BigData50022.2020.9378449
https://arxiv.org/abs/1412.1885

	Introduction
	Background
	Tensor notation and operations
	Tucker decomposition
	Randomized matrix algorithms

	Related work
	Sequential algorithms
	Randomized HOSVD/STHOSVD
	Randomized HOSVD/STHOSVD with Kronecker product
	Randomized HOSVD with Kronecker factor reuse
	Dimension tree optimization
	Computational complexity
	Comparison with previous work

	Error analysis
	Matrix bound
	Tensor bound

	Parallel algorithms
	All-at-once multi-TTM
	Cost analysis

	Dimension tree optimization
	Principal algorithms
	Comparison to previous work

	Experimental results
	Accuracy results
	In-sequence TTM versus all-at-once TTM
	Dimension tree optimization
	Strong scaling on synthetic data
	Miranda dataset
	Stats-Planar dataset

	Conclusions and future work
	References
	Appendix A. Appendix A

