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COMMUNICATION LOWER BOUNDS AND OPTIMAL
ALGORITHMS FOR MULTIPLE TENSOR-TIMES-MATRIX

COMPUTATION⇤
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KATHRYN ROUSEk

Abstract. Multiple tensor-times-matrix (Multi-TTM) is a key computation in algorithms for
computing and operating with the Tucker tensor decomposition, which is frequently used in multidi-
mensional data analysis. We establish communication lower bounds that determine how much data
movement is required (under mild conditions) to perform the Multi-TTM computation in parallel.
The crux of the proof relies on analytically solving a constrained, nonlinear optimization problem.
We also present a parallel algorithm to perform this computation that organizes the processors into
a logical grid with twice as many modes as the input tensor. We show that, with correct choices of
grid dimensions, the communication cost of the algorithm attains the lower bounds and is therefore
communication optimal. Finally, we show that our algorithm can significantly reduce communi-
cation compared to the straightforward approach of expressing the computation as a sequence of
tensor-times-matrix operations when the input and output tensors vary greatly in size.
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1. Introduction. The Tucker tensor decomposition is a low-rank representation
or approximation that enables significant compression of multidimensional data. The
Tucker format consists of a core tensor, which is much smaller than the original
data tensor, along with a factor matrix for each mode, or dimension, of the data.
Computations involving Tucker-format tensors, such as tensor inner products, often
require far fewer operations than with their full-format, dense representations. As a
result, the Tucker decomposition is often used as a dimensionality reduction technique
before other types of analysis are done, including computing a CP decomposition [8],
for example.
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COMMUNICATION LOWER BOUNDS FOR MULTI-TTM 451

A 3-way Tucker-format tensor can be expressed using the tensor notation T =
G⇥1A(1)⇥2A(2)⇥3A(3), where G is the 3-way core tensor, A(n) is a tall-skinny factor
matrix corresponding to mode n, and ⇥n denotes the tensor-times-matrix (TTM)
operation in the nth mode [18]. Here, T is the full-format representation of the tensor
that can be constructed explicitly by performing multiple TTM operations. We call
this collective operation the multiple TTM (Multi-TTM) computation, which is the
focus of this work.

Multi-TTM is a fundamental computation in the context of Tucker-format ten-
sors. When the Tucker decomposition is used as a data compression tool, Multi-TTM
is exactly the decompression operation, which is necessary when the full format is
required for visualization [19], for example. In the case of full decompression, the
input tensor is small and the output tensor is large. One of the quasi-optimal algo-
rithms for computing the Tucker decomposition is the truncated higher-order SVD
algorithm [29, 20], in which each factor matrix is computed as the leading left sin-
gular vectors of a matrix unfolding of the tensor. In this algorithm, the smaller core
tensor is computed via Multi-TTM involving the larger data tensor and the computed
factor matrices. When the computational costs of the matrix SVDs are reduced us-
ing randomization via sketching, Multi-TTM becomes the overwhelming bottleneck
computation [24, 27]. Recent work [23] has proposed a randomized algorithm for com-
puting Tucker decompositions in which the sketches themselves are performed using
Multi-TTM with a very large ratio of input to output tensor size.

Since the overall size of multidimensional data grows quickly, there have been
many recent e↵orts to parallelize the computation of the Tucker decomposition and
the operations on Tucker-format tensors [2, 9, 22, 11, 4]. There has also been recent
progress in establishing lower bounds on the communication costs of parallel algo-
rithms for tensor computations, including the matricized-tensor times Khatri–Rao
product (MTTKRP) [5, 6, 30] and symmetric tensor contractions [26]. However, to
our knowledge, no communication lower bounds have been previously established for
computations relating to Tucker-format tensors. In this work, we prove communi-
cation lower bounds for a class of Multi-TTM algorithms. Additionally, we provide
a parallel algorithm that attains the lower bound to within a constant factor and is
therefore communication optimal.

To minimize the number of arithmetic operations in a Multi-TTM computation,
the TTM operations should be performed in sequence, forming temporary interme-
diate tensors after each step. A single TTM corresponds to a matrix multiplication
along a particular mode of the tensor; therefore, a series of matrix multiplications
is performed in the sequence approach to compute the final result. One of the key
observations of this work is that when Multi-TTM is performed in parallel, this ap-
proach may communicate more data than necessary, even if communication-optimal
algorithms are used for each individual TTM. By considering the Multi-TTM com-
putation as a whole, we devise an atomic

1 parallel algorithm that communicates less
than this TTM-in-Sequence approach when the input and output tensors vary greatly
in size, often with negligible increase in computation.
The main contributions of this paper are to

• establish communication lower bounds for the parallel atomic Multi-TTM
computation;

• propose a communication optimal parallel algorithm; and

1See Definition 3.2.
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452 AL DAAS, BALLARD, GRIGORI, KUMAR, AND ROUSE

• show that in many typical scenarios, the straightforward approach based on
a sequence of TTM operations communicates more than performing Multi-
TTM as a whole.

The rest of the paper is organized as follows. Section 2 describes previous work on
communication lower bounds for matrix multiplication and some tensor operations.
In section 3, we present our notations and preliminaries for the general Multi-TTM
computation. To reduce the complexity of notations, we first focus on 3-dimensional
(3D) Multi-TTM computation for which we present communication lower bounds and
a communication optimal algorithm in section 4 and section 5, respectively. In section
6, we validate the optimality of the proposed algorithm and show that it significantly
reduces communication compared to the TTM-in-Sequence approach with negligible
increase in computation in many practical cases. We present our general results in
sections 7 and 8 and propose conclusions and perspectives in section 9.

2. Related work. A number of studies have focused on communication lower
bounds for matrix multiplication, starting with the work by Hong and Kung [15]
to determine the minimum number of input/output operations for sequential ma-
trix multiplication using the red-blue pebble game. Irony, Toledo, and Tiskin [16]
extended this work for the parallel case. Demmel et al. [14] studied memory inde-
pendent communication lower bounds for rectangular matrix multiplication based on
aspect ratios of matrices. Recently, Smith et al. [25] and Al Daas et al. [1] have
tightened communication lower bounds for matrix multiplication. Ballard et al. [3]
extended communication lower bounds of the matrix multiplication for any computa-
tions that can be written as 3 nested loops. Christ et al. [12] generalized the method
to prove communication lower bounds of 3 nested loop computations for arbitrary
loop nesting. We apply their approach to our Multi-TTM definition.

There is limited work on communication lower bounds for tensor operations.
Solomonik, Demmel, and Hoefler [26] proposed communication lower bounds for sym-
metric tensor contraction algorithms. Ballard, Knight, and Rouse [5] proposed com-
munication lower bounds for MTTKRP computation with cubical tensors. This work
is extended in [6] to handle varying tensor dimensions. A sequential lower bound for
tile-based MTTKRP algorithms is proved by Ziogas et al. [30]. We use some results
from [5, 6] to prove communication lower bounds for Multi-TTM.

3. Notations and preliminaries. In this section, we present our notations and
basic lemmas for d-dimensional Multi-TTM computation. In sections 4 to 6, we focus
on d = 3, i.e., Y = X⇥1 A(1)T ⇥2 A(2)T ⇥3 A(3)T. We present our general results in
sections 7 and 8.

We use boldface uppercase Euler script letters to denote tensors (X) and boldface
uppercase letters with superscripts to denote matrices (A(1)). We use lowercase letters
with subscripts to denote sizes (n1) and add the prime symbol to them to denote
the indices (n0

1). We use one-based indexing throughout and [d] to denote the set
{1,2, · · · , d}. To improve the presentation, we denote the product of elements having
the same lowercase letter with all subscripts by the lowercase letter only (n1, . . . , nd

by n and r1, . . . , rd by r). We denote the product of the i rightmost terms with the
capital letter with subscript i, Ni =

Qd
j=d�i+1 nj , and Ri =

Qd
j=d�i+1 ri; thus, n=Nd,

and nd =N1.
Let Y 2 Rr1⇥···⇥rd be the d-mode output tensor, X 2 Rn1⇥···⇥nd be the d-mode

input tensor, and A(k) 2 Rnk⇥rk be the matrix of the kth mode. Then the Multi-
TTM computation can be represented as Y=X⇥1 A(1)T · · ·⇥d A(d)T. Without loss
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COMMUNICATION LOWER BOUNDS FOR MULTI-TTM 453

of generality and to simplify notation, we consider that the input tensor X is larger
than the output tensor Y, or n� r. This corresponds to computing the core tensor of
a Tucker decomposition given computed factor matrices, for example. However, the
opposite relationship where the output tensor is larger (e.g., X=Y⇥1A(1) · · ·⇥dA(d))
is also an important use case, corresponding to forming an explicit representation of
a (sub)tensor of a Tucker-format tensor. Our results extend straightforwardly to this
case. We consider d-dimensional input and output tensors and therefore assume ni � 2
and ri � 2 for 1  i  d. We also assume without loss of generality that the tensor
modes are ordered in such a way that n1r1  n2r2  · · · ndrd.

Definition 3.1. Let X be an n1 ⇥ · · ·⇥ nd tensor, Y be an r1 ⇥ · · ·⇥ rd tensor,

and A(j)
be an nj ⇥ rj matrix for j 2 [d]. Multi-TTM computes

Y=X⇥1 A
(1)T · · ·⇥d A

(d)T
,

where for each (r01, . . . , r
0
d)2 [r1]⇥ · · ·⇥ [rd],

(3.1) Y(r01, . . . , r
0
d) =

X

{n0
k2[nk]}k2[d]

X(n0
1, . . . , n

0
d)
Y

j2[d]

A(j)(n0
j , r

0
j).

Let us consider an example when d = 2. In this scenario, the input and output
tensors are in fact matrices X,Y, and Y=A(1)TXA(2). As mentioned earlier, Multi-
TTM computation can be performed as a sequence of TTM operations, in this case
two matrix multiplications. However, we define the Multi-TTM to perform all the
products at once for each term of the summation of (3.1). Our definition comes at
greater arithmetic cost, as partial (d+1)-ary multiplies are not computed and reused,
but we will see that this approach can reduce communication cost. We describe how
the extra computation can often be reduced to a negligible cost in subsection 5.1 and
compare it to the computation cost of TTM-in-Sequence in subsection 6.2.2.

We can write pseudocode for the Multi-TTM with the following:

for n0
1 = 1:n1, . . ., for n0

d = 1:nd,

for r01 = 1:r1, . . ., for r0d = 1:rd,

Y(r01, . . . , r
0
d) +=X(n0

1, . . . , n
0
d) ·A(1)(n0

1, r
0
1) · · ·A(d)(n0

d, r
0
d).

Definition 3.2. A parallel atomic Multi-TTM algorithm computes each term of

the summation of (3.1) atomically on a unique processor, but it can distribute the nr

terms over processors in any way.

Here atomic computation of a single (d+1)-ary multiplication for a parallel al-
gorithm means that all the multiplications of this operation are performed on only
one processor; i.e., all d + 1 inputs are accessed on that processor in order to com-
pute the single output value. This assumption is necessary for our communication
lower bounds. Processors can reorganize their local atomic operations to reduce com-
putational costs without changing the communication or violating parallel atomicity.
However it is reasonable for an algorithm to break this assumption in order to improve
arithmetic costs by reusing partial results across processors, and we compare against
such algorithms in section 6.

3.1. Parallel computation model. We consider that the computation is dis-
tributed across P processors. Each processor has its own local memory and is con-
nected to all other processors via a fully connected network. Every processor can
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454 AL DAAS, BALLARD, GRIGORI, KUMAR, AND ROUSE

operate on data in its local memory and must communicate to access data of other
processors. Hence, communication refers to send and receive operations that transfer
data from local memory to the network and vice versa. Communication cost mainly
depends on two factors: the amount of data communicated (bandwidth cost) and the
number of messages (latency cost). Latency cost is dominated by bandwidth cost
for computations involving large messages, so we focus on bandwidth cost in this
work and refer it as communication cost throughout the text. We assume the links of
the network are bidirectional and that the communication cost is independent of the
number of pairs of processors that are communicating. Each processor can send and
receive at most one message at the same time. In our model, the communication cost
of an algorithm refers to the cost along the critical path.

3.2. Existing results. Our work relies on two fundamental results. The first,
a geometric result on lattices, allows us to relate the volume of computation to the
amount of data accessed by determining the maximum data reuse. The result is a
specialization of the Hölder–Brascamp–Lieb inequalities [7]. This result has previously
been used to derive lower bounds for tensor computations [5, 6, 12, 17] in a similar
way to the use of the Loomis–Whitney inequality [21] in derivations of communication
lower bounds for several linear algebra computations [3]. The result is proved in [12],
but we use the statement from [5, Lemma 4.1]. Here 1 represents a vector of all ones
and � relation between vectors applies elementwise.

Lemma 3.3. Consider any positive integers ` and m and any m projections �j :
Z` !Z`j (`j  `), each of which extracts `j coordinates Sj ✓ [`] and forgets the `� `j

others. Define C =
�
s = [s1 · · · sm]T : 0  si  1 for i = 1,2, . . . ,m and � · s � 1

 
,

where the ` ⇥m matrix � has entries �i,j = 1 if i 2 Sj and �i,j = 0 otherwise. If

[s1 · · · sm]T 2 C, then 8F ✓Z`
,

|F |
Y

j2[m]

|�j(F )|sj .

The second result, a general constrained optimization problem, allows us to cast
the communication cost of an algorithm as the objective function in an optimization
problem where the constraints are imposed by properties of the computation within
the algorithm. A version of the result is proved in [6, Lemma 5.1] and used to derive
the general communication lower bound for MTTKRP.

Theorem 3.4. Consider the constrained optimization problem:

min
X

j2[d]

xj

such that

nr

P

Y

j2[d]

xj and 0 xj  kj 8 1 j  d

for some positive constants k1  k2  · · · kd with
Q

j2[d] kj = nr. Then the minimum

value of the objective function is

I (KI/P )1/I +
X

j2[d�I]

kj ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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COMMUNICATION LOWER BOUNDS FOR MULTI-TTM 455

where we use the notation KI =
Qd

j=d�I+1 kj and 1  I  d is defined such that

LI  P <LI+1.

Here Lj =
Kj

(kd�j+1)j
for 1 j  d and Ld+1 =1.

The minimum is achieved at the point x⇤
defined by xj

⇤ = kj for 1  j  d � I,

x`
⇤ = (KI/P )1/I for d� I < ` d.

While Theorem 3.4 can be straightforwardly derived from the previous work, we
provide an alternate proof in an extended version [13]. We represent it in this form
to be directly applicable to all the constrained optimization problems in this paper.
The constraints nr/P 

Q
j2[d] xj and

Q
j2[d] kj = nr are derived from the Multi-

TTM computation. The equality constraint on
Q

j2[d] kj implies that there is always
a feasible solution to the optimization problem for P � 1. We calculate the ranges of
P for each I in Corollaries 4.1, 4.2, and 7.1.

4. Lower bounds for 3D Multi-TTM. We obtain the lower bound results for
3D tensors in this section, presented as Theorem 4.3. The lower bound is independent
of the size of the local memory of each processor, similar to previous results for matrix
multiplication [1, 14] and MTTKRP [5, 6], and it varies with respect to the number
of processors P relative to the matrix and tensor dimensions of the problem.

The proof focuses on a processor that performs 1/P th of the computation and
owns at most 1/P th of the data. It reduces the problem of finding a lower bound on the
amount of data the processor must communicate to solve a constrained optimization
problem: we seek to minimize the number of elements of the matrices and tensors that
the processor must access or partially compute in order to execute its computation
subject to structure constraints of Multi-TTM. The most important constraint derives
from Lemma 3.3, which relates a subset of the computation within a Multi-TTM
algorithm to the data it requires. The other constraints provide upper bounds on
the data required from each array. The upper bounds are necessary to establish the
tightest lower bounds in the cases where P is small. We show that the optimization
problem can be separated into two independent problems, one for the matrix data and
one for the tensor data. Corollaries 4.1 and 4.2 state the two constrained optimization
problems, along with their analytic solutions, both of which follow from Theorem 3.4.
That is, setting d= 3, k1 = n1r1, k2 = n2r2, and k3 = n3r3 in Theorem 3.4, we obtain
Corollary 4.1. Similarly, setting d = 2 with k1 = r and k2 = n, we obtain Corollary
4.2. We recall here that r= r1r2r3 and n= n1n2n3.

Corollary 4.1. Consider the following optimization problem:

min
x,y,z

x+ y+ z

such that

nr

P
 xyz,

0 x  n1r1,

0 y  n2r2,

0 z  n3r3,

where n1r1  n2r2  n3r3, and n1, n2, n3, r1, r2, r3, P � 1. The optimal solution

(x⇤
, y

⇤
, z

⇤) depends on the relative values of the constraints, yielding three cases:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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456 AL DAAS, BALLARD, GRIGORI, KUMAR, AND ROUSE

1. if P <
n3r3
n2r2

, then x
⇤ = n1r1, y

⇤ = n2r2, z
⇤ = n3r3

P ;

2. if n3r3
n2r2

 P <
n2n3r2r3

n2
1r

2
1

, then x
⇤ = n1r1, y

⇤ = z
⇤ =

�
n2n3r2r3

P

� 1
2
;

3. if n2n3r2r3
n2
1r

2
1

 P , then x
⇤ = y

⇤ = z
⇤ =

�
nr
P

� 1
3
,

which can be visualized as follows.

P1 n3r3
n2r2

n2n3r2r3
n2
1r

2
1x⇤ = n1r1

y⇤ = n2r2
z⇤ = n3r3

P

x⇤ = n1r1
y⇤ = z⇤ =

�
n2n3r2r3

P

�1/2
x⇤ = y⇤ = z⇤ =�

nr
P

�1/3

Corollary 4.2. Consider the following optimization problem:

min
u,v

u+ v

such that

nr

P
 uv,

0 u  r,

0 v  n,

where n � r, and n, r,P � 1. The optimal solution (u⇤
, v

⇤) depends on the relative

values of the constraints, yielding two cases:

1. if P <
n
r , then u

⇤ = r, v
⇤ = n

P ;

2. if n
r  P , then u

⇤ = v
⇤ =

�
nr
P

� 1
2
,

which can be visualized as follows.

P1 n
ru⇤ = r

v⇤ = n
P

u⇤ = v⇤ =
�
nr
P

�1/2

4.1. Communication lower bounds for Multi-TTM. We now state the
lower bounds for 3D Multi-TTM. After this, we also present a corollary for cubical
tensors.

Theorem 4.3. Any computationally load-balanced atomic Multi-TTM algorithm

that starts and ends with one copy of the data distributed across processors involving

3D tensors with dimensions n1, n2, n3 and r1, r2, r3 performs at least A+ B � ( n
P +

r
P +

P3
j=1

njrj
P ) sends or receives where

A=

8
>><

>>:

n1r1 + n2r2 +
n3r3
P if P <

n3r3
n2r2

,

n1r1 + 2
�
n2n3r2r3

P

� 1
2

if
n3r3
n2r2

 P <
n2n3r2r3

n2
1r

2
1

,

3
�
nr
P

� 1
3

if
n2n3r2r3

n2
1r

2
1

 P,

B =

(
r+ n

P if P <
n
r ,

2
�
nr
P

� 1
2

if
n
r  P .

Proof. Let F be the set of loop indices associated with the 4-ary multiplication
performed by a processor. As we assumed the algorithm is computationally load
balanced, |F | = nr/P . We define �X(F ), �Y(F ), and �j(F ) to be the projections of
F onto the indices of the arrays X,Y, and A(j) for 1 j  3 which correspond to the
elements of the array that must be accessed or partially computed by the processor.
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We use Lemma 3.3 to obtain a lower bound on the number of array elements that
must be accessed or partially computed by the processor. The computation involves
5 arrays (2 tensors and 3 matrices) with 6 loop indices (see the atomic Multi-TTM
definition in section 3); hence, the 6⇥5 matrix corresponding to the projections above
is given by

�=


I3⇥3 13 03

I3⇥3 03 13

�
.

Here 13 and 03 represent the 3D vectors of all ones and zeros, respectively, and I3⇥3

represents the 3⇥ 3 identity matrix. We recall from Lemma 3.3 that �i,j = 1 if loop
index i is used to access array j and �i,j = 0 otherwise. The first three columns of
� correspond to matrices and the remaining two columns correspond to tensors. In
this case, we have

C =
�
s= [s1 · · · s5]T : 0 si  1 for i= 1,2, . . . ,5 and � · s� 1

 
.

Recall that 1 represents a vector of all ones. Here � is not full rank, therefore,
we consider all vectors v 2 C such that � · v = 1. Such a vector v is of the form
[a a a 1-a 1-a], where 0 a 1. Therefore, we obtain

nr

P

 
Y

j2[3]

|�j(F )|
!a
�
|�X(F )||�Y(F )|

�1-a 8 0 a 1.

The above constraint is equivalent to nr
P 

Q
j2[3] |�j(F )| and nr

P  |�X(F )||�Y(F )|.
To see this equivalence, note that the forward direction is implied by setting a = 0
and a = 1. For the opposite direction, taking the first of the two constraints to the
power a and the second to the power 1� a then multiplying the two terms yields the
original.

Clearly a projection onto an array cannot be larger than the array itself, thus
|�X(F )| n, |�Y(F )| r, and |�j(F )| njrj for 1 j  3.

As the constraints related to projections of matrices and tensors are disjoint, we
solve them separately and then sum the results to get a lower bound on the set of
elements that must be accessed or partially computed by the processor. We obtain a
lower bound on A, the number of relevant elements of the matrices by using Corollary
4.1, and a lower bound on B, the number of relevant elements of the tensors by using
Corollary 4.2. By summing both, we get the positive terms of the lower bound.

To bound the sends or receives, we consider how much data the processor could
have had at the beginning or at the end of the computation. Assuming there is
exactly one copy of the data at the beginning and at the end of the computation,
there must exist a processor which owns at most 1/P of the elements of the arrays at
the beginning or at the end of the computation. By employing the previous analysis,
this processor must access or partially compute A + B elements of the arrays, but
can only own n

P + r
P +

P
j2[3]

njrj
P elements of the arrays. Thus it must perform the

specified amount of sends or receives.

We denote the lower bound of Theorem 4.3 by LB and use it extensively in
subsection 5.2 while analyzing the communication cost of our parallel algorithm.

We also state the result for 3D Multi-TTM computation with cubical tensors,
which is a direct application of Theorem 4.3 with n1 = n2 = n3 = n

1
3 and r1 = r2 =

r3 = r
1
3 .
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Corollary 4.4. Any computationally load-balanced atomic Multi-TTM algo-

rithm that starts and ends with one copy of the data distributed across processors

involving 3D cubical tensors with dimensions n
1
3 ⇥ n

1
3 ⇥ n

1
3 and r

1
3 ⇥ r

1
3 ⇥ r

1
3 (with

n� r) performs at least

3
⇣
nr

P

⌘ 1
3
+ r� 3(nr)

1
3 + r

P

sends or receives when P <
n
r and at least

3
⇣
nr

P

⌘ 1
3
+ 2

⇣
nr

P

⌘ 1
2 � n+ 3(nr)

1
3 + r

P

sends or receives when P � n
r .

In particular, we note that the lower bound for cubical atomic Multi-TTM algo-
rithms is smaller than that of a TTM-in-Sequence approach for many typical scenarios
in the case P <n/r, as we discuss further in section 6.

5. Parallel algorithm for 3D Multi-TTM. We organize P processors into
a 6-dimensional p1 ⇥ p2 ⇥ p3 ⇥ q1 ⇥ q2 ⇥ q3 logical processor grid. We arrange the
grid dimensions such that p1, p2, p3, q1, q2, q3 evenly distribute n1, n2, n3, r1, r2,
r3, respectively. A processor coordinate is represented as (p01, p

0
2, p

0
3, q

0
1, q

0
2, q

0
3), where

1 p
0
k  pk, 1 q

0
k  qk for k= 1,2,3. To be consistent with our notation, we denote

p1p2p3 and q1q2q3 by p and q.
Xp0

1p
0
2p

0
3
denotes the subtensor of X owned by processors (p01, p

0
2, p

0
3,⇤,⇤,⇤). Simi-

larly, Yq01q
0
2q

0
3
denotes the subtensor of Y owned by processors (⇤,⇤,⇤, q01, q02, q03). A

(1)
p0
1q

0
1
,

A(2)
p0
2q

0
2
and A(3)

p0
3q

0
3
denote submatrices of A(1), A(2), and A(3) owned by processors

(p01,⇤,⇤, q01,⇤,⇤), (⇤, p02,⇤,⇤, q02,⇤), and (⇤,⇤, p03,⇤,⇤, q03), respectively.
We impose that there is one copy of data in the system at the start and end of the

computation, and every array is distributed evenly among the sets of processors whose
coordinates are di↵erent for the corresponding dimensions of the variable. For exam-
ple, X111 = X(1 : n1

p1
,1 : n2

p2
,1 : n3

p3
) is owned by processors (1,1,1,⇤,⇤,⇤). Similarly,

A(1)
12 = A(1)(1 : n1

p1
,
r1
q1

+ 1 : 2 r1
q1
) is owned by processors (1,⇤,⇤,2,⇤,⇤). We assume

that data inside these sets of processors is also evenly distributed. For example, in
the beginning, processor (1,1,1,2,1,3) owns 1

P th portion of each input variable: p
P th

portion of X111,
p1q1
P th portion of A(1)

12 ,
p2q2
P th portion of A(2)

11 , and
p3q3
P th portion

of A(3)
13 . Figure 1 illustrates examples of our data distribution model for two of the

arrays.

X

X231

n1

n2

n 3

A(2)

A(2)
31

r2

n2

Fig. 1. Subtensor X231 is distributed evenly among processors (2,3,1,⇤,⇤,⇤). Similarly, sub-

matrix A
(2)
31 is distributed evenly among processors (⇤,3,⇤,⇤,1,⇤).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



COMMUNICATION LOWER BOUNDS FOR MULTI-TTM 459

Algorithm 5.1. Parallel atomic 3D Multi-TTM.

Require: X, A(1), A(2), A(3), p1 ⇥ p2 ⇥ p3 ⇥ q1 ⇥ q2 ⇥ q3 logical processor grid

Ensure: Y such that Y=X⇥1 A(1)T ⇥2 A(2)T ⇥3 A(3)T

1: (p01, p
0
2, p

0
3, q

0
1, q

0
2, q

0
3) is my processor id

2: //All-gather input tensor X
3: Xp0

1p
0
2p

0
3
= All-Gather(X, (p01, p

0
2, p

0
3,⇤,⇤,⇤))

4: //All-gather input matrices

5: A(1)
p0
1q

0
1
= All-Gather(A(1), (p01,⇤,⇤, q01,⇤,⇤))

6: A(2)
p0
2q

0
2
= All-Gather(A(2), (⇤, p02,⇤,⇤, q02,⇤))

7: A(3)
p0
3q

0
3
= All-Gather(A(3), (⇤,⇤, p03,⇤,⇤, q03))

8: //Local computations in a temporary tensor T

9: T = Local-Multi-TTM(Xp0
1p

0
2p

0
3
, A(1)

p0
1q

0
1
, A(2)

p0
2q

0
2
, A(3)

p0
3q

0
3
)

10: //Reduce-scatter the output tensor in Yq01q
0
2q

0
3

11: Reduce-Scatter(Yq01q
0
2q

0
3
, T, (⇤,⇤,⇤, q01, q02, q03))

X
n1

n2

n 3

(a) Perform
All-Gather
on processors
(2, 1, 1, ⇤, ⇤, ⇤)
to obtain X211.

A(1)

n1

r1

(b) Perform
All-Gather
on processors
(2, ⇤, ⇤, 1, ⇤, ⇤)
to obtain A(1)

21 .

A(2)

n2

r2

(c) Perform
All-Gather
on processors
(⇤, 1, ⇤, ⇤, 3, ⇤)
to obtain A(2)

13 .

A(3)

n3

r3

(d) Perform
All-Gather
on processors
(⇤, ⇤, 1, ⇤, ⇤, 1)
to obtain A(3)

11 .

Y
r1

r2

r 3

(e) Perform lo-
cal Multi-TTM
to compute par-
tial Y131.

Y
r1

r2

r 3

(f) Perform
Reduce-Scatter
on processors
(⇤, ⇤, ⇤, 1, 3, 1)
to com-
pute/distribute
Y131.

Fig. 2. Steps of Algorithm 5.1 for processor (2,1,1,1,3,1), where p1 = p2 = p3 = q1 = q2 = q3 =
3. Highlighted areas correspond to the data blocks on which the processor is operating. The dark red
highlighting represents the input/output data initially/finally owned by the processor, and the light
red highlighting corresponds to received/sent data from/to other processors in All-Gather/Reduce-
Scatter collectives to compute Y131.

Algorithm 5.1 presents a parallel algorithm to compute 3D Multi-TTM. When it
completes, Yq01q

0
2q

0
3
is distributed evenly among processors (⇤, ⇤, ⇤, q01, q02, q03). Figure

2 shows the steps of the algorithm for a single processor in a 3⇥3⇥3⇥3⇥3⇥3 grid.

5.1. Cost analysis. Now we analyze computation and communication costs of
the algorithm. The dimension of the local tensorXp0

1p
0
2p

0
3
is n1

p1
⇥ n2

p2
⇥ n3

p3
, the dimension

of the local matrix A(k)
p0
kq

0
k
is ni

pi
⇥ ri

qi
for i= 1,2,3, and the dimension of the temporary

tensor T is r1
q1

⇥ r2
q2

⇥ r3
q3
. For simplicity of analysis, we assume that the numerator is

divisible by the denominator for each cost expression.
The local Multi-TTM computation in line 9 can be performed as a sequence of

TTM operations to mininimize the number of arithmetic operations. Assuming the
TTM operations are performed in their order, first with A(1), then with A(2), and

in the end with A(3), then each processor performs 2
⇣

n1n2n3r1
p1p2p3q1

+ n2n3r1r2
p2p3q1q2

+ n3r1r2r3
p3q1q2q3

⌘

operations to perform the local computation.
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Communication occurs only in the All-Gather and Reduce-Scatter collectives in
lines 3, 5, 6, 7, and 11. Each processor is involved in one All-Gather involving the input
tensor, three All-Gathers involving input matrices, and one Reduce-Scatter involving
the output tensor. Therefore, the communication cost of the algorithm along the
critical path is the sum of communication costs of these five collectives. Lines 3, 5, 6,
and 7 specify p, p1q1, p2q2, and p3q3 All-Gathers over disjoint sets of P

p ,
P

p1q1
, P

p2q2
,

and P
p3q3

processors, respectively. Similarly, line 11 specifies q Reduce-Scatters over

disjoint sets of P
q processors.

For simplicity of discussion, we consider that the number of processors involved in
the collectives is a power of 2. We also assume that communication-optimal collective
algorithms are used. The optimal latency and bandwidth costs of both collectives on
Q processors are log2(Q) and (1� 1

Q )w, respectively, where w denotes the words of
data in each processor after All-Gather or before Reduce-Scatter collectives. Each
processor also performs (1� 1

Q )w computations for the Reduce-Scatter collective. We
point the reader to [28, 10] for more details on e�cient algorithms for collectives.

Hence the bandwidth costs of lines 3, 5, 6, 7 in Algorithm 5.1 are (1 � p
P )np ,

(1� p1q1
P )n1r1

p1q1
, (1� p2q2

P )n2r2
p2q2

, (1� p3q3
P )n3r3

p3q3
, respectively, to accomplish All-Gather

operations, and the bandwidth cost of performing the Reduce-Scatter operation in
line 11 is (1� q

P ) rq . Thus the overall bandwidth cost of Algorithm 5.1 is

(5.1)
n

p
+

n1r1

p1q1
+

n2r2

p2q2
+

n3r3

p3q3
+

r

q
�
✓
n+ n1r1 + n2r2 + n3r3 + r

P

◆
.

The latency costs of lines 3, 5, 6, 7, 11 are log2(
P
p ), log2(

P
p1q1

), log2(
P

p2q2
),

log2(
P

p3q3
), log2(

P
q ), respectively. Thus the overall latency cost of Algorithm 5.1 is

log2(
P
p ) + log2(

P
p1q1

) + log2(
P

p2q2
) + log2(

P
p3q3

) + log2(
P
q ) = log2(

P 5

p2q2 ) = 3 log2(P ).
Due to the Reduce-Scatter operation, each processor also performs (1 � q

P ) rq
computations, which is dominated by the computations of line 9 (as n3 � p3).

5.2. Selection of pi and qi in Algorithm 5.1. We must select the processor
dimensions carefully such that Algorithm 5.1 is communication optimal.

We attempt to select the processor dimensions pi and qi in such a way that
the terms in the communication cost match the optimal solutions of Corollaries 4.1
and 4.2. In other words, we want to select pi and qi such that n1r1

p1q1
= x

⇤, n2r2
p2q2

= y
⇤,

and n3r3
p3q3

= z
⇤ from Corollary 4.1, and n

p = v
⇤
,
r
q = u

⇤ from Corollary 4.2.
We need to fix two or three processor grid dimensions for each equation, and each

processor grid dimension appears in two equations. In general, we are able to set the
processor grid dimensions in a way that is consistent with these equations. However,
they are subject to additional constraints that are not imposed by the optimization
problem. Specifically, we have 1  pi  ni and 1  qi  ri for 1  i  3. The
lower bounds are imposed because processor grid dimensions must be at least 1. The
upper bounds are imposed to ensure that each processor performs its fair share of
the computations. We assume that P  nr, so that every processor has at least
one 4-ary multiplication term to compute. For simplicity, we assume that the final
grid dimensions are integers and perfectly divide the corresponding input and output
dimensions. However, we also discuss how to handle noninteger grid dimensions for a
specific set of inputs in subsection 6.3.1.

In order to define processor grid dimensions, we begin by determining a set of
values that match the lower bound terms and denote these by p̂i, q̂i with their products
denoted p̂ and q̂. Then, we will consider how to adapt p̂i and q̂i so that the additional
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COMMUNICATION LOWER BOUNDS FOR MULTI-TTM 461

constraints are met. During the adaption, we maintain the tensor communication
costs, modify the matrix communication costs, and then bound the additional costs
in terms of communication lower bounds of tensors.

As X and Y are 3D tensors, we have ni, ri � 2 8 1 i 3. For better readability,

we use the notation O =
P

j2[3] njrj+r+n

P , the amount of data owned by a single
processor at the beginning and end of the algorithm.

Theorem 5.1. There exist pi, qi with 1  pi  ni,1  qi  ri for i = 1,2,3 such

that Algorithm 5.1 is communication optimal to within a constant factor.

Proof. We break our analysis into 2 scenarios which are further broken down into
cases. In each case, we obtain p̂i and q̂i such that the terms in the communication
cost match the corresponding lower bound terms and also satisfy at least one of the
two constraints: 8i,1  p̂i  ni,1  q̂i or 8i,1  q̂i  ri,1  p̂i. We handle all cases
from both scenarios together in the end, and adapt these values to get pi and qi which
respect both lower and upper bounds.
• Scenario I (P <

n
r ): This scenario corresponds to the first case of the tensor term

in LB. Thus, we set p̂i, q̂i in such a way that the tensor terms in the communication
cost match the tensor terms of LB:

(5.2) p̂= P, q̂= 1.

This implies q̂i = 1 for 1 i 3. We break this scenario into 3 cases, each correspond-
ing to a case in the matrix term of LB.
Case 1. P <

n3r3
n2r2

: Setting the matrix communication costs to the matrix terms in
the corresponding case of LB yields

(5.3)
n1r1

p̂1q̂1
= n1r1,

n2r2

p̂2q̂2
= n2r2,

n3r3

p̂3q̂3
=

n3r3

P
.

Thus, we set p̂1 = p̂2 = q̂1 = q̂2 = q̂3 = 1 and p̂3 = P to satisfy (5.2) and (5.3).
Case 2. n3r3

n2r2
 P <

n2n3r2r3
n2
1r

2
1

: Setting the matrix communication costs to the matrix
terms in the corresponding case of LB yields

(5.4)
n1r1

p̂1q̂1
= n1r1,

n2r2

p̂2q̂2
=

n3r3

p̂3q̂3
=
⇣
n2n3r2r3

P

⌘1/2
.

We set p̂1 = q̂1 = q̂2 = q̂3 = 1, p̂2 = n2r2(
P

n2n3r2r3
)

1
2 , and p̂3 = n3r3(

P
n2n3r2r3

)
1
2 to

satisfy (5.2) and (5.4). n3r3
n2r2

 P implies p̂2 � 1 and p̂3 � 1.
Case 3. n2n3r2r3

n2
1r

2
1

 P : Setting the matrix communication costs to match the matrix
terms in the corresponding case of LB yields

(5.5)
n1r1

p̂1q̂1
=

n2r2

p̂2q̂2
=

n3r3

p̂3q̂3
=
⇣
nr

P

⌘1/3
.

Thus we set q̂1 = q̂2 = q̂3 = 1, p̂1 = n1r1

�
P
nr

� 1
3
, p̂2 = n2r2

�
P
nr

� 1
3
, and p̂3 = n3r3

�
P
nr

� 1
3

to satisfy (5.2) and (5.5). n2n3r2r3
n2
1r

2
1

 P implies p̂i � 1 for 1 i 3.
Note that in all the cases of this scenario we have 1  q̂i = 1 < ri,1  p̂i for

1  i  3, but we cannot ensure p̂i  ni for each i. We will adapt processor grid
dimensions for both scenarios in the end as they require the same steps.
• Scenario II (nr  P ): This scenario corresponds to the second case of the tensor
term in LB. Thus, we set p̂i, q̂i in such a way that

(5.6)
n

p̂
=

r

q̂
=
⇣
nr

P

⌘1/2
.
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Again, we break this scenario into 3 cases, each corresponding to a case in the matrix
term of LB.
Case 1. P <

n3r3
n2r2

: Setting the matrix communication costs to the matrix terms in
the corresponding case of LB yields

(5.7)
n1r1

p̂1q̂1
= n1r1,

n2r2

p̂2q̂2
= n2r2,

n3r3

p̂3q̂3
=

n3r3

P
.

Thus we set p̂1 = q̂1 = p̂2 = q̂2 = 1, p̂3 = n
�

P
nr

�1/2
, and q̂3 = r

�
P
nr

�1/2
to satisfy (5.6)

and (5.7). As n
r  P  nr and r  n, we have 1 p̂3  n and 1 q̂3  r, but cannot

ensure p̂3  n3 or q̂3  r3. However, p̂3q̂3 = P <
n3r3
n2r2

implies that at least one is
satisfied. Therefore, we have 8i,1 p̂i  ni,1 q̂i, and/or 8i,1 p̂i,1 q̂i  ri.
Case 2. n3r3

n2r2
 P <

n2n3r2r3
n2
1r

2
1

: Setting the matrix communication costs to the matrix
terms in the corresponding case of LB yields

(5.8)
n1r1

p̂1q̂1
= n1r1,

n2r2

p̂2q̂2
=

n3r3

p̂3q̂3
=
⇣
n2n3r2r3

P

⌘1/2
.

We set p̂1 = q̂1 = 1. Equations (5.6) and (5.8) do not uniquely determine p̂2, p̂3, q̂2,

and q̂3. The following is one possible solution: p̂2 = n2(
n1P
n2n3r

)1/4, p̂3 = n3(
n1P
n2n3r

)1/4,

q̂2 = r2(
r1P
nr2r3

)1/4, and q̂3 = r3(
r1P
nr2r3

)1/4. Note that P <
n2n3r2r3

n2
1r

2
1

implies that p̂2 <n2,

p̂3 < n3, q̂2 < r2, and q̂3 < r3. We are not able to ensure p̂2, p̂3, q̂2, q̂3 are all at least
1 in this case. We will handle both Case 2 and Case 3 together as they require the
same analysis.
Case 3. n2n3r2r3

n2
1r

2
1

 P : Setting the matrix communication costs to the matrix terms
in the corresponding case of LB yields

(5.9)
n1r1

p̂1q̂1
=

n2r2

p̂2q̂2
=

n3r3

p̂3q̂3
=
⇣
nr

P

⌘ 1
3
.

Similar to Case 2, (5.6) and (5.9) do not uniquely determine p̂i, q̂i for 1  i  3. We
choose a cubical distribution, namely, n1

p1
= n2

p2
= n3

p3
= r1

q1
= r2

q2
= r3

q3
and obtain the

following solution: p̂i = ni

�
P
nr

�1/6
, q̂i = ri

�
P
nr

�1/6
for 1  i  3. As P  nr we have

p̂i  ni and q̂i  ri for 1 i 3. Again we are not able to ensure p̂i and q̂i are all at
least 1 for 1 i 3.

Now we handle Case 2 and Case 3 of Scenario II here. We have p̂i  ni and
q̂i  ri for 1  i  3 in both cases. The communication cost for the obtained set
of values matches the lower bound, and each term in the lower bound is at least 1;
therefore, 1  niri

p̂iq̂i
 niri for 1  i  3, 1  n

p̂  n, and 1  r
q̂  r. This implies that

1 p̂iq̂i  niri for 1 i 3, 1 p̂ n, and 1 q̂ r. For 1 i 3, at most, one of p̂i
and q̂i can be smaller than one. In such a case, we multiply the largest by the smallest
(say epi = p̂i · q̂i) and set the smallest to one (eqi = 1) so that their product remains
the same (epi · eqi = p̂i · q̂i). After doing that, the products ep and eq might change. Let
f = eq/q̂ be the rate of change, and suppose f > 1. As q̂ = eq/f � 1, we can factor
f = f1 · f2 · f3 with fi � 1 so that q̂i := eqi/fi � 1 and p̂i := epifi � 1. We can obtain the
factors fi by the following iterative procedure:

1. for i = 1 : 3
2. if eqi � f then fi = f , f = 1, (p̂i, q̂i) := (epifi, eqi/fi)
3. else fi = eqi, f = f/fi, (p̂i, q̂i) := (epifi, 1)
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It is straightforward to verify that at the end of this process we have 1 q̂i  ri,
and 1 p̂i. If f < 1, the process is applied by exchanging the p’s and the q’s so that
we end up with the inequalities 1 p̂i  ni, and 1 q̂i.

Now we consider all the cases of both scenarios. It remains to adapt p̂i and q̂i such
that p̂i  ni and q̂i  ri. We can note that due to our particular selections of pi and qi

in each case, @i, j 2 [3] such that p̂i >ni and q̂j > rj . We will use this fact while assess-
ing the additional communication cost. We now obtain p1, p2, p3, q1, q2, q3 from p̂i, q̂i

such that both lower and upper bounds are respected, and p1p2p3 = p̂ and q1q2q3 = q̂.
The intuition is to maintain the tensor communication terms in the lower bound.

Initially we set pi = p̂i, qi = q̂i for 1  i  3. If 1  q̂i  ri, 1  p̂i for 1  i  3,
and p̂l > nl for some index l. We represent the other two indices with j and k. As
p̂  n, therefore p̂j  nj and/or p̂k  nk. Without loss of generality, we assume that
p̂k  nk. Now we first update pl, and then pj , and in the end, pk with the following
expressions: pl := nl, pj := min{nj ,

p̂
pkpl

}, pk := p̂
plpj

. We note that the product is
unchanged by these updates as pkplpj = p̂. The same update can be done to qi’s if
1 p̂i  ni, 1 q̂i for 1 i 3, and q̂l > rl for some l.

Now we assess how much additional communication is required for the matrices.
If @i 2 [3] such that p̂i > ni or q̂i > ri, then

P
i2[3]

niri
piqi

=
P

i2[3]
niri
p̂iq̂i

. We can note
that due to our particular selections of p̂i and q̂i, @i, j 2 [3] such that p̂i > ni and
q̂j > rj . Suppose 9i2 [3] such that p̂i >ni, then p̂ > 2 and

i2[3]

niri

piqi


i2[3]

max
niri

p̂iq̂i
,
ri

q̂i
qi = q̂i, and pi � p̂i or pi = ni

=
i2[3]

niri

p̂iq̂i
+

ri

q̂i
�min

niri

p̂iq̂i
,
ri

q̂i
max{a, b} = a+ b�min{a, b}

<

i2[3]

niri

p̂iq̂i
+

ri

q̂i
� 2 p̂iq̂i  niri and q̂i  ri


i2[3]

niri

p̂iq̂i
+

r

q̂
8ai � 1, a1 + a2 + a3-2  a1a2a3

<

i2[3]

niri

p̂iq̂i
+ 2

r

q̂
� r

p̂q̂

=
i [3]

niri

p̂iq̂i
+ 2

r

q̂
� r

P
.

We have used 8ai � 1, a1 + a2 + a3 � 2  a1a2a3 in the fourth line above. It can be
proved in the following way: 8ai � 1, a1a2a3 = (1 + a1 � 1)(1 + a2 � 1)(1 + a3 � 1)�
1 + (a1 � 1) + (a2 � 1) + (a3 � 1) = a1 + a2 + a3 � 2.

Similarly, if q̂i > ri for some i then
P

i2[3]
niri
piqi

is bounded by
P

i2[3]max{niri
p̂iq̂i

,
ni
p̂i
}

and we can obtain
P

i2[3]
niri
piqi

<
P

i2[3]
niri
p̂iq̂i

+ 2
�
n
p̂ � n

P

�
.

Therefore, in all situations,
P

i2[3]
niri
piqi

+ r
q +

n
p �O 3(

P
i2[3]

niri
p̂iq̂i

+ r
q̂ +

n
p̂ �O)

= 3LB.

6. Simulated evaluation. In this section, we verify our theoretical claims on
particular sets of 3D tensor dimensions with a simulated evaluation. We use (5.1) to
calculate the communication cost of Algorithm 5.1. In subsection 6.1, we demonstrate
that the communication cost of Algorithm 5.1 matches the lower bound of Theorem
4.3, and we provide intuition for relationships among the communication costs of
the individual tensors and matrices. In subsection 6.2, we compare the approach of
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464 AL DAAS, BALLARD, GRIGORI, KUMAR, AND ROUSE

Algorithm 5.1 for evaluating Multi-TTM with a TTM-in-Sequence approach, demon-
strating realistic scenarios when Algorithm 5.1 communicates significantly less data
and performs a small amount of extra computation.

Throughout this section, we restrict to cases where all tensor dimensions and
numbers of processors are powers of 2. We vary the number of processors P from 2 to
Pmax =min{n1r1, n2r2, n3r3, n, r}, which ensures that each processor owns some data
of every tensor and matrix. Some of these P values may be practically unrealistic for
a particular experiment. However, we also consider them in simulations to understand
general characteristics of the cost functions of both approaches.

We note that Tucker decomposition has been employed on datasets that range
into the terabytes [2, 4, 11], justifying consideration of values of n on the order of 240.
Likewise, Multi-TTM has been performed in the context of randomized sketching in
cases where the output tensor dimensions are smaller than the ranks of the Tucker
approximation [23], justifying consideration of values of n/r on the order of 232. We
expect available parallelism and tensor dataset sizes to continue to grow, so we model
the behavior of the various Multi-TTM approaches beyond the limits of the current
state of the art.

The costs of Algorithm 5.1 depend on the processor grid, and in these experiments
we perform an exhaustive search for the best configuration. We describe in subsection
6.3.1 how to adapt the processor grid selection scheme described in subsection 5.2 to
obtain integer-valued processor grid dimensions, and we show that we can obtain
nearly optimal configurations without exhaustive search.

6.1. Verifying optimality of Algorithm 5.1. Theorem 5.1 states that Algo-
rithm 5.1 attains the communication lower bound to within a constant factor, and in
this section we verify the result in a variety of scenarios. Recall from Theorem 4.3
that the lower bound is A+B �O, where

A=

8
>><

>>:

n1r1 + n2r2 +
n3r3
P if P <

n3r3
n2r2

,

n1r1 + 2
�
n2n3r2r3

P

� 1
2 if n3r3

n2r2
 P <

n2n3r2r3
n2
1r

2
1

,

3
�
nr
P

� 1
3 if n2n3r2r3

n2
1r

2
1

 P,

B =

(
r+ n

P if P <
n
r ,

2
�
nr
P

� 1
2 if n

r  P .

O=
n1r1 + n2r2 + n3r3 + r+ n

P
.

Here, A corresponds to the matrix entries accessed, B corresponds to the tensor
entries accessed or partially computed, and O corresponds to the data owned by a
single processor. The costs of Algorithm 5.1 are given by (5.1), which we rewrite
here as

n1r1

p1q1
+

n2r2

p2q2
+

n3r3

p3q3
+

n

p
+

r

q
�O,

where {pi} and {qi} specify the processor grid dimensions. The first three terms
correspond to matrix entries and the middle two terms correspond to tensor entries.

Figure 3 shows both components, matrix and tensor communication costs, for
three distinct input sizes as we vary the number of processors. In these plots, we
show both algorithmic costs (upper bounds) and lower bounds, but they are indis-
tinguishable because the largest di↵erences in overall costs we observe are 9% for
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(c) n1 = n2 = n3 = 215, and
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Fig. 3. Matrix and tensor communication costs in LB and Algorithm 5.1 for di↵erent config-
urations. The sum of LB(Matrix) and LB(Tensor) equals to the lower bound LB, and the sum
of Algorithm 5.1 (matrix) and Algorithm 5.1 (tensor) equals to the upper bound (Algorithm 5.1).
Lower bounds are almost indistinguishable from the corresponding upper bounds.

Figure 3(a) at P = 212, 12% for Figure 3(b) at P = 2, and 13% for Figure 3(c) at
P = 2, verifying Theorem 4.3 for these scenarios.

In Figure 3(a), the input and output tensors have varying dimensions: the input
tensor is 29 ⇥ 210 ⇥ 214 and the output is 25 ⇥ 29 ⇥ 28. We choose these dimensions
so that all five cases of the values of A and B are represented. For these inputs, the
tensor communication cost dominates the matrix communication for all values of P
considered. When P < 23, the first cases for A and B apply, and the algorithm selects
a processor grid such that p3 = P , implying that only one tensor and two matrices are
communicated. In this case, both expressions simplify to (r+n1r1 +n2r2)(1� 1/P ),
which is why we see initial increase as P increases at the left end of the plot. For
23  P < 211, the second case for A and the first case for B apply, and the algorithm
selects a processor grid with p2 > 1 and p3 > 1. Here, the matrix communication begins
to decrease, but it is dominated by the tensor communication, which is maintained
at r(1 � 1/P ). For 211  P , the second case for B applies, and we see that tensor
communication decreases as P increases (proportional to P

�1/2 as we see from the
lower bound). In this regime, the algorithm is selecting grids with both p > 1 and q > 1
and communicating both tensors. Another transition occurs at P = 213, switching
from the second to third case ofA, but this change in matrix cost has a negligible e↵ect.

Figure 3(b) demonstrates a scenario where the matrix costs dominate the tensor
costs: the input tensor is cubical with dimension 28 and the output tensor is cubical
with dimension 23. Here we scale P only up to 29, the number of entries in the output
tensor. Because the tensors are cubical, the lower bounds simplify as in Corollary
4.4, and the algorithm chooses processor grids that are as cubical as possible. For all
values of P in this experiment, the third case of A and the first case of B apply, and
the algorithm selects p1 ⇡ p2 ⇡ p3 and q= 1. We see that the overall cost is deceasing
proportional to P

�1/3 until the tensor communication cost starts to contribute more
significantly.

Figure 3(c) considers cubical tensors with larger dimensions to show a more gen-
eral pattern. For tensor dimensions ni = 215 and ri = 26, we observe a transition
point where tensor communication overtakes matrix communication. Similar to the
case of Figure 3(b), matrix costs dominate for small P and scale like P�1/3. However,
for P � 214, the tensor costs dominate the matrix costs and therefore communication
costs scale less e�ciently. We emphasize that for all three of these experiments, the
algorithmic costs match the lower bounds nearly exactly for all values of P .
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466 AL DAAS, BALLARD, GRIGORI, KUMAR, AND ROUSE

6.2. Comparing Algorithm 5.1 with TTM-in-Sequence. As mentioned
previously, a Multi-TTM computation may be performed as a sequence of TTM op-
erations. In this TTM-in-Sequence approach, a single matrix is multiplied with the
tensor and an intermediate tensor is computed and stored. For each remaining matrix,
single-matrix TTMs are performed in sequence until the final result is computed. This
approach can reduce the number of arithmetic operations compared to direct evalu-
ation of atomic expression given in Definition 3.1. The computational cost depends
(often significantly) on the order of the TTMs performed. The TTM-in-Sequence
approach is parallelized in the TuckerMPI library [4]. We note that Theorem 4.3 does
not apply to this parallelization, as it violates the parallel atomicity assumption.

In this section, we provide a comparison between Algorithm 5.1 and the TTM-in-
Sequence approach to show that our approach can significantly reduce communication
in important scenarios without performing too much extra computation. In particular,
we observe the greatest benefit of Algorithm 5.1 when r is very small relative to n

(or vice versa) and P is small relative to the ratio of n and r. These scenarios occur
in the context of computing and using Tucker decompositions for highly compressible
tensors that exhibit small multilinear ranks.

The computational cost of TuckerMPI’s algorithm with cubical tensors is the
same for all possible orderings of the TTMs. In our comparison, we consider that the
TTMs are performed in increasing mode order. While no single communication lower
bound exists for parallel TTM-in-Sequence algorithms, we show in subsection 6.3.2
that TuckerMPI’s algorithm attains nearly the same cost as tight matrix multiplica-
tion lower bounds [1] applied to each TTM it chooses to perform. Thus, no other
parallelization of the TTM-in-Sequence approach can reduce communication without
breaking the assumptions of the matrix multiplication lower bounds (e.g., using fast
matrix multiplication).

The TuckerMPI parallelization uses a 3D logical processor grid with dimensions
p̃1 ⇥ p̃2 ⇥ p̃3. When the TTMs are performed in increasing mode order, the overall
communication cost of their algorithm is

r1n2n3

p̃2p̃3
+

n1r1

p̃1
+

r1r2n3

p̃1p̃3
+

n2r2

p̃2
+

r1r2r3

p̃1p̃2
+

n3r3

p̃3
(6.1)

� r1n2n3 + r1r2n3 + r1r2r3 + n1r1 + n2r2 + n3r3

P
,

as specified in [4, section 6.3], though we include the cost of communicating the ma-
trices (their analysis assumes the matrices are already redundantly distributed). We
use exhaustive search to determine the processor grid that minimizes the cost of (6.1)
in our comparisons.

6.2.1. Communication cost. To compare communications costs, we perform
four experiments involving cubical tensors. The first three simulated evaluations
consider strong scaling and are presented in Figure 4. Two of these experiments
use the same tensor dimensions as the two cubical examples in Figure 3. The first
experiment involves an input tensor of dimension ni = 28 and output dimension ri = 23

(Figure 4(a)), the second has dimensions ni = 211 and ri = 25 (Figure 4(b)), and the
third has the largest dimensions, ni = 215 and ri = 26 (Figure 4(c)).

Figure 4(a) shows that Algorithm 5.1 performs less communication than TTM-
in-Sequence for P  29 <n/r. The largest communication reduction occurs at P = 29

and is approximately 2⇥. In the second experiment, we see cases where TTM-in-
Sequence performs less communication than Algorithm 5.1 and in fact beats the lower
bound of Theorem 4.3 (which is possible because it breaks the atomicity assumption).
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Fig. 4. Communication cost comparison of Algorithm 5.1 and TTM-in-Sequence [4]. Comp-
Overhead shows the percentage of computational overhead of Algorithm 5.1 with respect to the
TTM-in-Sequence approach.
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Fig. 5. Comparison of Algorithm 5.1 and the TTM-in-Sequence approach for fixed r1 = r2 =
r3 = 24 and P = 26.

Algorithm 5.1 is more communication e�cient for P  214, achieving a speedup of
approximately 2⇥, but communicates more for larger P . In the third experiment
with larger tensors, Figure 4(c) demonstrates similar qualitative behavior to the first,
with Algorithm 5.1 outperforming TTM-in-Sequence and a maximum communication
reduction of approximately 5⇥ at P = 216.

In the fourth experiment, with results shown in Figure 5, we fix the output tensor
dimension ri = 24 and the number of processors P = 26 and vary the input tensor
dimension ni. We observe that for 24  ni < 28, the TTM-in-Sequence approach
communicates less data than Algorithm 5.1. For ni � 28, Algorithm 5.1 communicates
less data, and the factor of improvement is maintained at approximately 2⇥ as ni

scales up.

6.2.2. Computation cost. Assuming TuckerMPI uses increasing mode order,
the parallel computational cost is

2 · r1n1n2n3 + r1r2n2n3 + r1r2r3n3

P
= 2

✓
r
1/3

n

P
+

r
2/3

n
2/3

P
+

rn
1/3

P

◆
,

where the right-hand side is simplified under the assumption of cubical tensors. In
these experiments where n� r, Algorithm 5.1 selects a processor grid such that q= 1
and p1 ⇡ p2 ⇡ p3. In this case the computation cost given in subsection 5.1 simplifies to
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Fig. 6. Communication cost comparison of Algorithm 5.1 using best processor grid against fast
method and of the TTM-in-Sequence approach implemented by TuckerMPI against the lower bounds.
Algorithm 5.1 (fast) and Algorithm 5.1 (best) are the same for all the configurations.
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Note that this cost is much smaller than 4nr/P , the cost of evaluating (3.1) directly
with computational load balance, and it is achieved by performing local computation
using a TTM-in-Sequence approach.

While the starting terms of the two computational cost expressions match, we
observe greater computational cost from Algorithm 5.1 in the second and third terms.
These terms are lower order when P ⌧ n/r, in which case the extra computational
cost of Algorithm 5.1 is often negligible. This is also validated by Figure 4 for the
first three experiments. When P = n/r, the ratio of computational costs of Algorithm
5.1 and the TTM-in-Sequence approach is no more than 3⇥.

In the first three experiments, when our approach reduces communication, the
extra computational costs were at most 27%, 35%, and 13%, respectively. The extra
computation required for the greatest reductions in communication in those experi-
ments were 27%, 5%, and 6%. For the fourth experiment, the extra computation is
approximately 23% at ni = 28, where Algorithm 5.1 provides communication reduc-
tion and decreases as ni increases.

In all these experiments, we see that when Algorithm 5.1 provides a reduction in
communication costs, the extra computational costs often remain negligible.

6.3. Details for evaluation of our algorithm. Here we provide more details
for the simulated evaluation of our algorithm and its comparison to the TTM-in-
Sequence approach. The analysis of the communication optimality of Algorithm 5.1
did not consider integrality constraints on the processor grid dimensions. The sim-
ulated evaluation in the previous subsection considered all possible processor grid
configurations using exhaustive search; we explain in subsection 6.3.1 a more e�cient
process for determining an optimal grid when P is a power of two. In the previous
subsection, we also compare Algorithm 5.1 against an implementation of the TTM-in-
Sequence approach as implemented by TuckerMPI [4]. We argue in subsection 6.3.2
that this implementation is nearly communication optimal given the computation that
it performs, validating our comparison against it. Figure 6 presents results relevant
to both subsections 6.3.1 and 6.3.2.
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6.3.1. Obtaining integral processor grids for Algorithm 5.1. In order to
determine the communication cost of Algorithm 5.1, one must determine the processor
grid. Obtaining pi and qi from the procedure in section 5 may yield noninteger values.
The following procedure allows us to convert these to integers under our assumption
that all parameters are powers of 2. Recall that we consider P = pq with p= p1p2p3

and q= q1q2q3.
If blog2(p) + 0.5c = blog2(p)c, then we set p = 2blog2(p)c; otherwise we set p =

2dlog2(p)e, distributing the modification evenly between p1, p2, and p3. Now, we keep
p = p1p2p3 constant and convert each pi to an integer. We set p1 = 2blog2(p1)+0.5c,
distributing the changes evenly among p2 and p3. To see that our new value of p1
must still be smaller than n1, we note that our original p1 was less than n1 which is
a power of 2 by our assumption. If we increased p in our first step, then distributing
the modifications evenly between p1, p2, and p3 increased them by at most 21/6. Thus
p1  n1 will imply that blog2(p1 · 21/6) + 0.5c  log2(n1). Note that this most recent
modification to p1 changes p2 and p3. Then, we set p2 = 2blog2(p2)+0.5c and adapt p3
accordingly. A similar argument to what is used for p1 will show that p2 and p3 are
also not larger than their corresponding dimensions. Having completed our work on
the processor dimensions associated with the first tensor, we set q = P

p , distributing
the changes evenly among the qi, then force each qi to be an integer following the
same procedure as for the pi.

We denote the communication cost of Algorithm 5.1 for the grid determined using
this method by Algorithm 5.1 (fast) and the communication cost using exhaustive
search by Algorithm 5.1 (best). We note that this procedure can increase the total
number of accessed elements of any variable at most 4 times, but we see in Figure 6
that the communication costs of both procedures are exactly the same for the examples
we consider. These problems match those presented in Figure 4.

6.3.2. TTM-in-Sequence Lower Bounds. Here we discuss communication
lower bounds for the TTM-in-Sequence approach with cubical tensors. There has not
been any proven bound for this approach other than individual bounds for each TTM
(a single matrix multiply) computation, assuming the sequence of TTMs has been
specified. The sum of individual bounds provides a communication lower bound for
this approach. We obtain the tightest (and obtainable) lower bound for each TTM
from [1], which depends on the relative matrix dimensions and number of processors,
and represent the sum by CLB(TTM-in-Seq). We also note that CLB(TTM-in-Seq)

may not be always attainable as data distributions for two successive TTMs may be
noncompatible and require extra communication. When the input tensor dimensions
are much larger than the output tensor dimensions, most of the computation and
communication occur in the first TTM, so we also consider the communication lower
bound of only that matrix multiplication, which also provides a valid lower bound for
the entire TTM-in-Sequence computation. Recall that we obtain the algorithmic cost
of TTM-in-Sequence by exhaustively searching for the best processor grid configura-
tion given the communication costs specified by (6.1). Figure 6 shows a comparison
of TTM-in-Seq and CLB(TTM-in-Seq) for the tensor dimensions presented in Fig-
ure 4. We can see that the communication costs of TTM-in-Seq are very close to
CLB(TTM-in-Seq), the largest di↵erences are 14% for Figure 6(a) at P = 24, 25% for
Figure 6(b) at P = 25, and 9% for Figure 6(c) at P = 216. Comparing CLB(1st TTM)

and CLB(TTM-in-Seq), we see that for these examples at least half the communica-
tion of the entire TTM-in-Sequence is required by the first TTM, and it is completely
dominated by the first TTM when P is large.
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470 AL DAAS, BALLARD, GRIGORI, KUMAR, AND ROUSE

7. Lower Bounds of general Multi-TTM. We present our lower bound re-
sults for d-dimensional tensors in this section. Similar to the 3D lower bound proof,
we consider a single processor that performs 1/P th of the computation and owns at
most 1/P th of the data. We again seek to minimize the number of elements of the
matrices and tensors that the processor must access or partially compute in order to
execute its computation subject to the constraints of the structure of Multi-TTM by
solving two independent problems, one for the matrix data and one for the tensor
data.

7.1. General constrained optimization problems. Here we present a gen-
eralization of Corollary 4.1 for d dimensions. As before, this corollary is a direct result
of Theorem 3.4. Recall the notation Ni =

Qd
j=d�i+1 nj and Ri =

Qd
j=d�i+1 ri.

Corollary 7.1. Consider the following optimization problem:

min
x

X

i2[d]

xi

such that

nr

P

Y

i2[d]

xi and 0 xi  niri 8 1 i d,

where ni, ri, P � 1 and niri  ni+1ri+1. The optimal solution x = [x1
⇤ · · · xd

⇤]
depends on the values of constants, yielding d cases.

P1 N1R1
nd�1rd�1

N2R2
(nd�2rd�2)2

Nd�2Rd�2

(n2r2)d�2
Nd�1Rd�1

(n1r1)d�1x1
⇤ = n1r1
...

xd�1
⇤ = nd�1rd�1

xd
⇤ = N1R1

P

x1
⇤ = n1r1
...

xd�2
⇤ = nd�2rd�2

xd�1
⇤ = xd

⇤=
�
N2R2
P

�1/2

x1
⇤ = n1r1

x2
⇤ = · · · = xd

⇤ =�Nd�1Rd�1

P

� 1
d�1

x1
⇤ = · · · = xd

⇤=�
NdRd

P

�1/d

• If P <
N1R1

nd�1rd�1
, then

xj
⇤ = njrj for 1 j  d� 1 and xd

⇤ =
N1R1

P
.

• If
Ni�1Ri�1

(nd+1�ird+1�i)i�1  P <
NiRi

(nd�ird�i)i
for some i= 2, . . . , d� 1, then

xj
⇤ = njrj for 1 j  d� i and xd+1�i

⇤ = · · ·= xd
⇤ = (NiRi/P )1/i .

• If
Nd�1Rd�1

(n1r1)d�1  P , then

x1
⇤ = · · ·= xd

⇤ = (NdRd/P )1/d .

7.2. Communication Lower Bounds. We now present the lower bounds for
the general Multi-TTM computation. We prove this by applying Corollaries 4.2
and 7.1 and extending the arguments of Theorem 4.3 in a straightforward way (though
with more complicated notation).

Theorem 7.2. Any computationally load-balanced atomic Multi-TTM algorithm

that starts and ends with one copy of the data distributed across processors and in-

volves d-dimensional tensors with dimensions n1, n2, . . . , nd and r1, r2, . . . , rd performs

at least A+B � ( n
P + r

P +
Pd

j=1
njrj
P ) sends or receives, where
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A=

8
>>>><

>>>>:

Pd-1
j=1 njrj +

N1R1
P if P <

N1R1
nd-1rd-1

,

P(d-i)
j=1 njrj + i

�
NiRi
P

� 1
i

if
Ni-1Ri-1

(nd+1-ird+1-i)i-1
 P <

NiRi
(nd-ird-i)i

,

for some 2 i d� 1,

d
�
NdRd

P

� 1
d

if
Nd-1Rd-1

(n1r1)d-1
 P ,

B =

(
r+ n

P if P <
n
r ,

2
�
nr
P

� 1
2

if
n
r  P .

Proof. Let F be the set of loop indices associated with the (d+1)-ary multiplica-
tions performed by a processor. As we assumed the algorithm is computationally load
balanced, |F | = nr/P . We define �X(F ), �Y(F ), and �j(F ) to be the projections of
F onto the indices of the arrays X,Y, and A(j) for 1 j  d which correspond to the
elements of the arrays that must be accessed or partially computed by the processor.

We use Lemma 3.3 to obtain a lower bound on the number of array elements that
must be accessed or partially computed by the processor. The matrix corresponding
to the projections above is given by

�=


Id⇥d 1d 0d

Id⇥d 0d 1d

�
.

Here 1d and 0d denote the d-dimensional vectors of all ones and zeros, respectively,
and Id⇥d denotes the d⇥ d identity matrix. As before, we define

C =
�
s= [s1 · · · sd+2]

T : 0 si  1 for i= 1,2, . . . , d+ 2 and � · s� 1
 
.

We recall that 1 represents a vector of all ones. As in the proof of Theorem 4.3,
� is not full rank, so we again consider each vector v 2 C such that � ·v= 1. Such a
vector v is of the form

⇥
a · · · a 1� a 1� a

⇤
, where 0 a 1. Thus, we obtain

nr

P


0

@
Y

j2[d]

|�j(F )|

1

A
a

�
|�X(F )||�Y(F )|

�1-a
.

Similar to the 3D case, the above constraint is equivalent to nr
P 

Q
j2[d] |�j(F )|

and nr
P  |�X(F )||�Y(F )|.
Clearly a projection onto an array cannot be larger than the array itself, thus

|�X(F )| n, |�Y(F )| r, and |�j(F )| njrj for 1 j  d.
As the constraints related to the projections of matrices and tensors are disjoint,

we solve them separately and then sum the results to get a lower bound on the number
of elements that must be accessed or partially computed by the processor. We obtain a
lower bound on A, the number of relevant elements of the matrices by using Corollary
7.1, and a lower bound on B, the number of relevant elements of the tensors by using
Corollary 4.2. By summing both, we get the positive terms of the lower bound.

To bound the sends or receives, we consider how much data the processor could
have had at the beginning or at the end of the computation. Assuming there is
exactly one copy of the data at the beginning and at the end of the computation,
there must exist a processor which owns at most 1/P of the elements of the arrays at
the beginning or at the end of the computation. By employing the previous analysis,
this processor must access or partially compute A + B elements of the arrays, but
can only own n

P + r
P +

P
j2[d]

njrj
P elements of the arrays. Thus it must perform the

specified amount of sends or receives.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/2

3/
24

 to
 1

52
.1

7.
15

0.
95

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



472 AL DAAS, BALLARD, GRIGORI, KUMAR, AND ROUSE

Algorithm 8.1. Parallel atomic d-dimensional Multi-TTM.

Require: X, A(1), . . ., A(d), p1 ⇥ · · ·⇥ pd ⇥ q1 ⇥ · · ·⇥ qd logical processor grid

Ensure: Y such that Y=X⇥1 A(1)T · · ·⇥d A(d)T

1: (p01, . . . , p
0
d, q

0
1, . . . , q

0
d) is my processor id

2: //All-gather input tensor X
3: Xp0

1···p0
d
= All-Gather(X, (p01, . . . , p

0
d,⇤, . . . ,⇤))

4: //All-gather all input matrices
5: for i= 1, . . . , d do

6: A(i)
p0
iq

0
i
= All-Gather(A(i), (⇤, . . . ,⇤, p0i,⇤, . . . ,⇤, q0i,⇤))

7: end for
8: //Perform local computations in a temporary tensor T

9: T = Local-Multi-TTM(Xp0
1···p0

d
, A(1)

p0
1q

0
1
,. . ., A(d)

p0
dq

0
d
)

10: //Reduce-scatter the output tensor in Yq01···q0d
11: Reduce-Scatter(Yq01···q0d , T, (⇤, . . . ,⇤, q

0
1, . . . , q

0
d))

8. Parallel algorithm for general Multi-TTM. We present a parallel algo-
rithm to compute d-dimensional Multi-TTM in Algorithm 8.1, which is analogous to
Algorithm 5.1. We organize P processors into a 2d-dimensional logical processor grid
with dimensions p1 ⇥ · · ·⇥ pd ⇥ q1 ⇥ · · ·⇥ qd. As before, we consider that 8i 2 [d], pi
and qi evenly divide ni and ri, respectively. A processor coordinate is represented as
(p01, . . . , p

0
d, q

0
1, . . . , q

0
d), where 8i2 [d], 1 p

0
i  pi and 1 q

0
i  qi.

Here we discuss our data distribution model for Algorithm 8.1, which is similar
to that of Algorithm 5.1. Xp0

1···p0
d
and Yq01···q0d denote the subtensors of X and Y

owned by processors (p01, . . . , p
0
d,⇤, . . . ,⇤) and (⇤, . . . ,⇤, q01, . . . , q0d), respectively. A(i)

p0
iq

0
i

denotes the submatrix of A(i) owned by processors (⇤, . . . ,⇤, p0i,⇤, . . . ,⇤, q0i,⇤, . . . ,⇤).
We impose that there is one copy of data in the system at the beginning and the
end of the computation, and each subarray is distributed evenly among the set of
processors which own the data.

When Algorithm 8.1 completes, Yq01···q0d is distributed evenly among processors

(⇤, . . . ,⇤, q01, . . . , q0d). We recall that
Qd

i=1 pi and
Qd

i=1 qi are denoted by p and q,
respectively.

8.1. Cost analysis. Now we analyze computation and communication costs of
the algorithm. As before, the local Multi-TTM computation in line 9 can be performed
as a sequence of TTM operations to mininimize the number of arithmetic operations.
Assuming the TTM operations are performed in their order, first with A(1), then with
A(2), and so on until the last is performed with A(d), then each processor performsPd

k=1(2
Qk

i=1
ri
qi

Qd
j=k

nj

pj
) operations. In line 11, each processor also performs (1� q

P ) rq
computations due to the Reduce-Scatter operation.

Communication occurs only in All-Gather and Reduce-Scatter collectives in lines
3, 6, and 11. Line 3 specifies p All-Gathers over disjoint sets of P

p processors, line 6

specifies piqi All-Gathers over disjoint sets of P
piqi

processors in the ith loop iteration,

and line 11 specifies q Reduce-Scatters over disjoint sets of P
q processors. Each proces-

sor is involved in one All-Gather involving the input tensor, d All-Gathers involving
input matrices, and one Reduce-Scatter involving the output tensor.
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As before, we assume bandwidth and latency optimal algorithms are used for the
All-Gather and Reduce-Scatter collectives. Hence the bandwidth costs of the All-
Gather operations are (1� p

P )np for line 3 and
Pd

i=1(1�
piqi
P )niri

piqi
for the d iterations

of line 6. The bandwidth cost of the Reduce-Scatter operation in line 11 is (1� q
P ) rq .

Hence the overall bandwidth cost of Algorithm 8.1 along the critical path is n
p + r

q +Pd
i=1

niri
piqi

� (
n+r+

Pd
i=1 niri

P ). The latency costs are log2(
P
p ) and log2(

P
q ) for lines 3

and 11, respectively, and
Pd

i=1 log2(
P

piqi
) for the d iterations of line 6. Thus the overall

latency cost of Algorithm 8.1 along the critical path is log2(
P
p ) +

Pd
i=1 log2(

P
piqi

) +

log2(
P
q ) = d log2(P ).

The existence of pi, qi with 1  pi  ni,1  qi  ri for i = 1, . . . , d such that
Algorithm 8.1 is communication optimal to within a constant factor is shown by an
extension of the arguments of Theorem 5.1 [13].

8.2. Simulated evaluation. Similar to section 6, we compare communica-
tion costs of our algorithm and a TTM-in-Sequence approach implemented in the
TuckerMPI library. We again restrict to cases where all dimensions are powers of
2, and vary the number of processors P from 2 to Pmax in multiples of 2, where
Pmax =min{n1r1, . . . , ndrd, n, r}.

Like section 6, we consider n and n/r on the order of 240 and 232, respectively.
We look at all possible processor grid dimensions and represent the minimum commu-
nication costs of our algorithm and TuckerMPI algorithm by Algorithm 8.1 (best) and
TTM-in-Seq, respectively. The TTM-in-Sequence approach described in [4] organizes
P in a d-dimensional p̃1 ⇥ · · ·⇥ p̃d logical processor grid. Assuming TTMs are per-
formed in increasing mode order, the overall communication cost of this algorithm is

r1n2 · · ·nd
P
p̃1

+
r1r2n3 · · ·nd

P
p̃2

+ · · ·+ r1r2 · · · rd
P
p̃d

� r1n2 · · ·nd + r1r2n3 · · ·nd + · · ·+ r1r2 · · · rd
P

+
n1r1

p̃1
+ · · ·+ ndrd

p̃d
� n1r1 + · · ·+ ndrd

P
.

The first two lines correspond to tensor communication and the third line corresponds
to matrix communication. As mentioned earlier, the TTM-in-Sequence approach
forms a tensor after each TTM computation. Each term of the first line corresponds to
the number of entries of such a tensor partially computed by a processor in TuckerMPI.

We again look at cases where the input tensors are large and the output tensors
are small. Figure 7 shows comparison of Algorithm 8.1 (best) and TTM-in-Seq with
our communication lower bounds for 3/4/5-dimensional Multi-TTM computations.
For P = 2, both approaches perform the same amount of communication. After that,
the total number of accessed elements in both approaches decreases; however, the
rate of owned elements decreases at the faster rate. Hence we see slight increase in
both curves. This behavior continues roughly till 2ni�ri processors for TTM-in-Seq

curve. In this region, the TTM-in-Sequence approach selects p̃1 = · · ·= ˜pd�1 = 1 and
p̃d = P , and our algorithm selects p1 ⇡ · · ·⇡ pd and q1 = · · ·= qd = 1. These processor
grid dimensions result in the same tensor communication cost for both approaches.
However our approach reduces matrix communication cost roughly (1� 1

d )P
1
d times;

hence it is better than the TTM-in-Sequence approach. Figure 8 shows the distri-
bution of matrix and tensor communication costs in both approaches. In general,
our approach significantly minimizes the matrix communication costs in all the plots
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(a) n1 = n2 = n3 = 29, r1 =
r2 = r3 = 23
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Fig. 7. Communication cost comparison of Algorithm 8.1 and the TTM-in-Sequence approach
implemented by the TuckerMPI library. Note that LB is a communication lower bound for atomic
Multi-TTM algorithms, not for the TTM-in-Sequence approach. Communication cost of our ap-
proach (Algorithm 8.1 (best)) is very close to LB.
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Fig. 8. Matrix and tensor communication costs in Algorithm 8.1 and the TTM-in-Sequence
approach.

and is better when the number of the entries in the output tensor is less than that
of the matrices. When the communication cost is dominated by the output tensor,
our approach is outperformed by the TTM-in-Sequence approach, which is the case
in Figure 7(c).

The parallel computational cost of TuckerMPI with cubical tensors is

2
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P
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dn
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!
.

When n � r, Algorithm 8.1 selects a processor grid such that q = 1 and p1 ⇡ p2 ⇡
· · ·⇡ pd. In this case the computation cost given in subsection 8.1 simplifies to
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While the starting terms of the two computational cost expressions match, we
observe greater computational cost from Algorithm 8.1 in the remaining terms. These
terms are lower order when P ⌧ n/r, in which case the extra computational cost of
Algorithm 8.1 is often negligible. We plot computational overheads of our algorithm,
with Comp-Overhead label, in Figure 7. We can note that the overheads are less
than 13% for the considered experiments.

Our results are consistent with what we observe for 3D Multi-TTM computations
in section 6. When the input tensor is much larger than the output tensor and the
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number of entries in the output tensor is less than that of the matrices, our algorithm
significantly reduces communication compared to the TTM-in-Sequence approach.
As in the 3D case, when P ⌧ n/r, the extra computation is often negligible when
the TTM-in-Sequence approach is used locally to reduce computation.

9. Conclusions. In this work, we establish communication lower bounds for
the parallel Multi-TTM computation and present an optimal parallel algorithm that
organizes the processors in a 2d-dimensional grid for d-dimensional tensors. By
judiciously selecting the processor grid dimensions, we prove that our algorithm
attains the lower bounds to within a constant factor. To verify the theoretical
analysis, we simulate Multi-TTM computations using a variety of values for the
number of processors, P , the dimension, d, and sizes, ni and ri; we compute the
communication costs of our algorithm corresponding to each simulation; and we
compute the optimal communication cost provided by the theoretical lower bound.
These simulations show that the communication costs of the proposed algorithm
are close to optimal. When one of the tensors is much larger than the other tensor,
which is typical in compression algorithms based on the Tucker decomposition, our
algorithm significantly reduces communication costs over the conventional approach
of performing the computation as a sequence of TTM operations.

Motivated by the simulated communication cost comparisons, our next goal is
to implement the parallel atomic algorithm and verify the performance improvement
in practice. Further, because neither the atomic or TTM-in-sequence approach is
always superior in terms of communication, we wish to explore hybrid algorithms to
account for significant dimension reduction in some modes but modest reduction in
others. Given the computation and communication capabilities of a parallel platform,
it would also be interesting to study the computation-communication tradeo↵ for these
two approaches and how to minimize the overall execution time in practice. Finally,
this work considers that each processor has enough memory. A natural extension
is to study communication lower bounds for Multi-TTM computations with limited
memory sizes.
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