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Studies using 16S rRNA and shotgun metagenomics typically yield
different results, usually attributed to PCR amplification biases. We
introduce Greengenes2, a reference tree that unifies genomic and 16S rRNA
databases in a consistent, integrated resource. By inserting sequences

into awhole-genome phylogeny, we show that 16S rRNA and shotgun
metagenomic data generated from the same samples agree in principal
coordinates space, taxonomy and phenotype effect size when analyzed

with the same tree.

Shotgun metagenomics and 16S rRNA gene amplicon (16S) studies are
widely used inmicrobiome research, but investigators using these dif-
ferent methods typically find their results hard to reconcile. This lack
of standardization across methods limits the utility of the microbiome
for reproducible biomarker discovery.

Akey problemis thatwhole-genomeresources and rRNA resources
depend on different taxonomies and phylogenies. For example, Web
of Life (WoL)! and the Genome Taxonomy Database (GTDB)? provide
whole-genome trees that cover only asmall fraction of known bacteria
and archaea, while SILVA® and Greengenes* are more comprehensive
but are most often not linked to genome records.

We reasoned that an iterative approach could yield a single mas-
sivereference tree that unifies these different data layers (for example,
genome and 16S rRNA records), which we call Greengenes2. We began
withawhole-genome catalog of 15,953 bacterial and archaeal genomes
that were evenly sampled from NCBI, and we reconstructed an accu-
rate phylogenomic tree by summarizing evolutionary trajectories of
380 global marker genes using the new workflow uDance’. This work,
namely WoL version 2 (WolL2), represents a substantial upgrade from
the previously released WoL1(10,575 genomes)*. We then added 18,356
full-length 16S rRNA sequences from the Living Tree Project (LTP)
January 2022 release’, 1,725,274 near-complete 16S rRNA genes from
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Fig.1|Greengenes2 overview and harmonization of 16S rRNA ASVs with
shotgun metagenomic data. a, The Greengenes2 phylogeny rendered using
Empress®, with ASV multifurcations collapsed; tip color indicates representation
inthe American Gut Project (AGP), the EMP, both or neither, with the top 20
represented phyla depicted in the outer bar. b, The same collapsed phylogeny
colored by the presence or absence of the best BLAST** hit from SILVA138. The
bar depicts the same coloring as the tips. ¢, EMP samples and the amount of

novel branch length (normalized by the total backbone branch length) added

to the tree through ASV fragment placement. Note that sample counts are not
even across EMPO3 categories. d, Bray-Curtis applied to paired 16S V4 rRNA
ASVs and whole-genome shotgun samples from THDMI subset of The Microsetta
Initiative; PC, principal coordinate. e, Same data as d but computing Bray-Curtis
on collapsed genus data. f, Same data as d and e but using weighted UniFrac at the
ASV and genome identifier levels.

Karst et al.® and the Earth Microbiome Project 500 (EMP500)° and all
full-length 16S rRNA sequences from GTDB r207 to the genome-based
backbone withuDance v1.1.0, producing agenome-supported phylog-
eny with16SrRNA explicitly represented. Finally, we inserted 23,113,447
short V4 16S rRNA Deblur v1.1.0 (ref. 10) amplicon sequence variants
(ASVs) from Qiita (retrieved 14 December 2021)" and mitochondria and
chloroplast 16S rRNA from SILVA v138 using deep-learning-enabled
phylogenetic placement (DEPP) v0.3 (ref.12). This final step represents
ASVs from over 300,000 public and private samples in Qiita, includ-
ing the entirety of the EMP" and American Gut Project/Microsetta™

(Fig. 1a). Our use of uDance ensured that the genome-based relation-
ships are kept fixed, and relationships between full-length 16S rRNA
sequences are inferred. For short fragments, we kept genome and
full-length relationships fixed and inserted fragments independently
from each other. Following deduplication and quality control on frag-
ment placement, this yielded a tree covering 21,074,442 sequences
from 31 different EMP Ontology 3 (EMPO3) environments, of which
46.5% of species-level leaves were covered by acomplete genome. Taxo-
nomic labels were decorated onto the phylogeny using tax2tree v1.1
(ref.4). Theinput taxonomy for decoration used GTDB r207, combined

Nature Biotechnology | Volume 42 | May 2024 | 715-718

716


http://www.nature.com/naturebiotechnology

Brief Communication

https://doi.org/10.1038/s41587-023-01845-1

a SILVA 138 naive Bayes versus GG2 WGS
c
i)
kS
® 06 N~ ===
15
(5]
S 04
2
@
[0
o 0.2
9]
Class Order Family Genus
b GG 13_8 naive Bayes versus GG2 WGS
c
kel
T
T
I}
o
C
I}
4
©
o}
[a
o]
Class Order Family Genus Species
Cc GG2 16S versus GG2 WGS
c
i)
kS
o
15
(5]
c
o
2
@
[}
a 0.2 — Naive Bayes
= Phylogenetic taxonomy
9]
Class Order Family Genus Species

Fig.2 | Taxonomic and effect size consistency between 16S rRNA ASVs and
shotgun metagenomic data. a-c, Per-sample taxonomy comparisons between
16S and whole-genome shotgun profiles from THDMI. The solid bar depicts the
50th percentile, and the dashed lines are 25th and 75th percentiles. a, Assessment
of16S taxonomy with SILVA 138 using the default q2-feature-classifier naive Bayes
model (note, SILVA does not annotate at the species level); GG2, Greengenes2.

b, Assessment of 16S taxonomy with Greengenes 13_8 (GG13_8) using the

default q2-feature-classifier naive Bayes model. ¢, Assessment of 16S taxonomy
performed by reading the lineages directly from the phylogeny or through naive
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Bayes trained on the V4 regions of the Greengenes2 backbone. d, e, Effect size
calculations performed with Evident on paired 16S and whole-genome shotgun
samples from THDMI. Calculations were performed at maximal resolution using
ASVs for 16S and genome identifiers for shotgun samples. The data represented
here are human gut microbiome samples. The stars denote variables that are
drawn out specifically in the plot (for example, population) and were arbitrarily
selected as comparison points to help highlight differences betweend and e.
Bray-Curtis distances (d) and weighted normalized UniFrac (e) are shown.

withthe LTPJanuary 2022 release. Taxonomy was harmonized prioritiz-
ing GTDB, including preserving the polyphyletic labels of GTDB (see
also Methods). The taxonomy will be updated every 6 months using
the latest versions of GTDB and LTP.

Greengenes2is muchlarger than past resourcesinits phylogenetic
coverage, as compared to SILVA (Fig. 1b), Greengenes (Supplementary
Fig.1a) and GTDB (Supplementary Fig. 1b). Moreover, because our
amplicon library is linked to environments labeled with EMPO cat-
egories, we can easily identify the environments that contain samples
that can fill out the tree. Because metagenome assembled genome
(MAG) assembly efforts can only cover abundant taxa, for each EMPO
category, we plotted the amount of new branch length added to the
tree by taxawhose minimum abundanceis 1% in each sample (Fig. 1c).
Theresults show, on average, which environment types will best yield
new MAGs and which environments harbor individual samples that
will have alarge impact when sequenced.

Past efforts to reconcile 16S and shotgun datasets have led to
non-overlapping distributions, and only techniques such as Pro-
crustes analysis can show relationships between the results®. In
two large human stool cohorts'' where both 16S and shotgun data
were generated on the same samples, we find that Bray-Curtis"”
(non-phylogenetic) ordination fails to reconcile at the feature level
(Fig. 1d) and is poor at the genus level (Fig. 1e and Supplementary
Fig. 1c). However, UniFrac'®, a phylogenetic method, used with our
Greengenes2 tree provides better concordance (Fig. 1fand Supplemen-
tary Fig. 1d). To examine applicability of Greengenes2 to non-human
environments, we next computed both Bray-Curtis and weighted
UniFracatthe feature level on the 16S and shotgun data from the EMP.
As with the human data, we observe better concordance with the use
ofthe Greengenes2 phylogeny (Supplementary Fig. 2) despite limited
representation of whole genomes from non-human sources, as these
environments are not as well characterized in general.
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We also find that the per-sample shotgun and 16S taxonomy rela-
tive abundance profiles are concordant even to the species level. We
first computed taxonomy profiles for shotgun data using the Woltka
pipeline'. Using a naive Bayes classifier from q2-feature-classifier
v2022.2 (ref. 20) to compare GTDB r207 taxonomy results at each
level down to the genus level against SILVA v138 (Fig. 2a) or down to
the species level against Greengenes v13_8 (Fig. 2b), no species-level
reconciliation was possible. By contrast, Greengenes2 provided excel-
lent concordance at the genus level (Pearson r = 0.85) and good con-
cordance at the species level (Pearson r = 0.65; Fig. 2¢). Interestingly,
the tree is now sufficiently complete such that exact matching of 16S
ASVs followed by reading the taxonomy off the tree performs even
better than the naive Bayes classifier (naive Bayes, Pearson r = 0.54 at
the specieslevel and r = 0.84 at the genus level).

Finally, acritical reason to assign taxonomy is downstream use of
biomarkers and indicator taxa. Microbiome science has been described
ashavingareproducibility crisis®, but much of this problem stems from
incompatible methods*. We initially used the The Human Diet Microbi-
ome Initiative (THDMI) dataset, whichisamultipopulation expansion
of The Microsetta Initiative' that contains samples with paired 16S and
shotgun preparations, to test whether a harmonized resource would
provide concordant rankings for the variables that affect the human
microbiome similarly. Using Greengenes2, the concordance was good
with Bray-Curtis (Fig. 2d; Pearson r? = 0.57), better using UniFrac with
different phylogenies (SILVA 138 and Greengenes2; Supplementary
Fig. le; Pearson r* = 0.77) and excellent with UniFrac on the same phy-
logeny (Fig. 2e; Pearson r* = 0.86). We confirmed these results withan
additional cohort'® (Supplementary Fig. 1f,g). Intriguingly, the ranked
effect sizes across different cohorts were concordant.

Taken together, these results show that use of a consistent, inte-
grated taxonomic resource dramatically improves the reproducibility
of microbiome studies using different data types and allows varia-
bles of large versus small effect to be reliably recovered in different
populations.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41587-023-01845-1.
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Methods

Human research protocols

THDMI participant informed consent was obtained under University
of California, San Diego, institutional review board protocol 141853.
FINRISK participantinformed consent was obtained under the Coordi-
nating Ethical Committee of the Helsinki and Uusimaa Hospital District
protocol reference number 558/E3/2001.

Phylogeny construction
WoL2 (ref. 1; a tree inferred using genome-wide data) was used as the
starting backbone. Full-length16S sequences from the LTP’, full-length
mitochondria and chloroplast from SILVA 138 (ref. 3), full-length 16S
from GTDB r207 (ref. 2), full-length 16S from Karst et al.® and full-length
16S from the EMP500 (ref. 9; samples selected and sequenced spe-
cifically for Greengenes2) were collected and deduplicated. Sequences
were then aligned using UPP*, and gappy sequences with less than
1,000 base pairs were removed. The resulting set of 321,210 unique
sequences was used withuDance v1.1.0 to update the WoL.2 backbone.
Briefly, uDance updates an existing tree with new sequences and (unlike
placement methods) alsoinfers the relationship of existing sequences.
uDance has two modes, one that allows updates to the backbone and
onethatkeepsthebackbone fixed, where the former modeis intended
for use withwhole genomes. In our analyses, we kept the backbone tree
(inferred using genomic data) fixed. To extend the genomic tree with
16S data, we identified 13,249 (of 15,953 total) genomes in the WolL2
backbonetree with atleast one16S copy and used themto traina DEPP
model withthe weighted average method detailed later to handle multi-
ple copies. We then used DEPPtoinsert all16S copies of allgenomes into
the backbone and measured the distance between the genome position
andthe16S position. We removed copies that were placed much further
than others, as identified using a two-means approach with centroids
equaltoatleast13 branches. We repeated this processinasecond round.
For every remaining genome, we selected asits representative the copy
with the minimum placementerror and computed the consensus with
ties. At the end, we were left with 12,344 unique 16S sequences across
allWoL2genomes. For tree inference, uDance used IQ-TREE2 (ref. 26) in
fasttree search withmodel GTR+T after removing duplicate sequences.
Next, we collected 16S V4 ASVs from Qiita" using redbiom* (query
performed 14 December 2021) from contexts ‘Deblur_2021.09-lllumina-
16S-V4-90nt-dd6875’, ‘Deblur_2021.09-1llumina-16S-V4-100nt-50b3a2’,
‘Deblur_2021.09-1llumina-16S-V4-125nt-92f954’,‘Deblur 2021.09-lllumina-
16S-V4-150nt-ac8cOb’, ‘Deblur_2021.09-1llumina-16S-V4-200nt-
0b8b48’ and ‘Deblur_2021.09-Illumina-16S-V4-250nt-8b2bff” and
aligned them to the existing 16S alignment of sequences in WoL2 using
UPP, setting the maximum alignment subset size to 200 (to help with
scalability). The collected 16S V4 ASVs are aligned to the V4 region of
the existing ‘backbone’ alignments. A DEPP model was then trained
onthe full-length16S sequences from the backbone. DEPP constructs
aneural network model that embeds sequences in high-dimensional
spaces such that embedded points resemble the phylogeny in their
distances.Suchamodel thenallows insertion of new sequencesintoa
tree using the distance-based phylogeneticinsertion method APPLES-2
(ref.28). The ASVs from redbiom were theninserted into the backbone
using the trained DEPP model. To enable analyses of large datasets, we
used aclustering approach with DEPP. We trained an ensemble of DEPP
models corresponding to different parts of the tree and used a classifier
todetectthe correctsubtree. Duringtraining, for species with multiple
16S, all the copies are mapped to the same leaf in the backbone tree.
To train the DEPP models with multiple sequences mapped to a leaf,
each site in each sequence is encoded as a probability vector of four
nucleotides across all the copies.

Integrating the GTDB and LTP taxonomies
GTDB and LTP are not directly compatible due to differences in their
curation. As aresult, it is not always possible to map a species from

one resource to the other because parts of a species lineage are not
present, are described using different names or have anambiguous asso-
ciation due to polyphyletic taxa in GTDB (for example, Firmicutes_A,
Firmicutes_B and so on; https://gtdb.ecogenomic.org/faq#why-do-
some-family-and-higher-rank-names-end-with-an-alphabetic-suffix).
Weintegrated taxonomic datafrom LTPinto GTDBas LTPincludes spe-
ciesthatarenotyet represented in GTDB. Additionally, GTDBisactively
curated, while LTP generally uses the NCBI taxonomy. To account for
these differences, we first mapped any species that had a perfect species
name association and revised its ancestral lineage to match GTDB. Next,
we generated lineage rewrite rules using the GTDB record metadata.
Specifically, we limited the metadata to records that are GTDB repre-
sentatives and NCBI-type material and defined alineage renaming from
the recorded NCBI taxonomy to the GTDB taxonomy. These rewrite
rules were applied from most- to least-specific taxa, and through this
mechanism, we could revise much of the higher ranks of LTP. We then
identified incertae sedis recordsin LTP that we could not map, removed
their lineage strings and did not attempt to provide taxonomy for them,
instead opting to rely on downstream taxonomy decoration toresolve
their lineages. Next, any record that was ambiguous to map was split
into a secondary taxonomy for use in backfilling in the downstream
taxonomy decoration. Finally, weinstrumented numerous consistency
checks in the taxonomy through the process to capture inconsistent
parentsinthe taxonomichierarchy and consistent numbers of ranksina
lineage and to ensure that the resulting taxonomy was a strict hierarchy.

Taxonomy decoration
The original tax2tree algorithm was not well suited for alarge volume
of species-level records in the backbone, as the algorithm requires an
internalnode to place aname. If two species are siblings, the tree would
lack a node to contain the species label for both taxa. To account for
this, we updated the algorithm toinsert ‘placeholder’ nodes with zero
branchlength as the parents of backbone records, which could accept
these specieslabels. We further updated tax2tree to operate directly on
.jplace data®, preserving edge numbering of the original edges before
adding ‘placeholder’ nodes. To support LTP records that could not be
integrated into GTDB, we instrumented a secondary taxonomy mode
fortax2tree. Specifically, following the standard decoration, backfilling
and name promotion procedures, we determine on aper-record basis
for the secondary taxonomy what portion of the lineage is missing
and place the missing labels on the placeholder node. We thenissue a
second round of name promotion using the existing tax2tree methods.
The actual taxonomy decoration occurs on the backbone tree,
which contains only full-length 16S records and does not contain
ASVs. Thisis done as ASV placements are independent, do not modify
the backbone and would substantially increase the computational
resourcesrequired. After thebackboneis decorated, fragment place-
ments from DEPP are resolved using a multifurcation strategy using
the balanced-parentheses library®.

Phylogenetic collapse for visualization

We are unaware of phylogenetic visualization software that can display
atree with over 20,000,000 tips. To produce the visualizationsin Fig.
1, wereduced the dimension of the tree by collapsing fragment multi-
furcations to single nodes, dropping the tree to 522,849 tips.

MAG target environments

Afeaturetable for the 27,01516S rRNA V4 90-nucleotide EMP samples
was obtained from redbiom. The ASVs were filtered to the overlap of
ASVspresentin Greengenes2. Any feature with <1% relative abundance
within a sample was removed. The feature table was then rarefied to
1,000 sequences per sample. The amount of novel branch length was
then computed per sample by summingthe branchlength ofeachASV’s
placement edge. The per-sample branch length was then normalized
by thetotal tree branchlength (excluding length contributed by ASVs).
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Per-sample taxonomy correlations

All comparisons used THDMI' 16S and Woltka processed shotgun
data. These data were accessed from Qiita study 10317 and filtered
the set of features that overlap with Greengenes2 using the QIIME 2
(ref.31) g2-greengenes2 plugin. The 16S taxonomy was assessed using
either a traditional naive Bayes classifier with q2-feature-classifier
and default references from QIIME 2 2022.2 or by reading the lineage
directly from the phylogeny. To help improve correlations between
SILVA and Greengenes2 and between Greengenes and Greengenes2,
we stripped polyphyletic labelings from those data; we did not strip
polyphyletic labels from the phylogenetic taxonomy comparison or
the Greengenes2 16S versus Greengenes2 whole-genome shotgun
(WGS) naive Bayes comparison. Shotgun taxonomy was determined
by the specific observed genome records. Once the 16S taxonomy was
assigned, those tables and the WGS Woltka WoL 2 table were collapsed
atthespecies, genus, family, order and class levels. We then computed
aminimum relative abundance per samplein the dataset from THDMI.
Ineachsample, we removed any feature, either 16S or WGS, below the
per-sample minimum (that is, max(min(16S), min(WGS))), forming a
common minimal basis for taxonomy comparison. Following filtering,
Pearson correlation was computed per sample using SciPy*. These
correlations were aggregated per 16S taxonomy assignment method
and by each taxonomic rank. The 25th, 50th and 75th percentiles were
then plotted with Matplotlib®.

Principal coordinates

THDMI Deblur 16S and Woltka processed shotgun sequencing data,
against Wol.2, were obtained from Qiitastudy 10317. Both feature tables
were filtered against Greengenes2 2022.10, removing any feature not
presentinthetree. For the genus collapsed plot (Fig. 1e), both the 16S
and WGS data features were collapsed using the same taxonomy. For
all three figures, the 16S data were subsampled, with replacement,
to 10,000 sequences per sample. The WGS data were subsampled,
with replacement, to 1,000,000 sequences per sample. Bray-Curtis,
weighted UniFrac and principal coordinates analysis were computed
using q2-diversity 2022.2. The resulting coordinates were visualized
with q2-emperor®,

The EMP ‘EMP500’16S and Woltka processed shotgun sequencing
data, against WoL2, were obtained from Qiita study 13114. Both feature
tables were filtered against Greengenes2 2022.10. The 16S data were
subsampled, with replacement, to 1,000 sequences per sample. The
WGS data were subsampled, with replacement, to 50,000 sequences
per sample. The sequencing depth for WGS data was selected based
on Supplementary Fig. 6 of Shaffer et al.’, which noted low levels of
read recruitment to publicly available whole genomes. Bray-Curtis,
weighted UniFrac and principal coordinates analysis were computed
using q2-diversity 2022.2. The resulting coordinates were visualized
with g2-emperor.

Effect size calculations

Similar to principal coordinates, data from THDMI were rarefied to
9,000 and 2,000,000 sequences per sample for 16S and WGS, respec-
tively. Bray-Curtis and weighted normalized UniFrac were computed
onbothsetsof data. The variables for THDMI were subset to those with
atleast two category values having more than 50 samples. For UniFrac
with SILVA (Supplementary Fig. 1e), we performed fragmentinsertion
using q2-fragment-insertion® into the standard QIIME 2 SILVA refer-
ence, followed by rarefaction to 9,000 sequences per sample, and then
computed weighted normalized UniFrac.

For FINRISK, the data were rarefied to 1,000 and 500,000
sequences per sample for 16S and WGS, respectively. A different
depthwas used to account for the overall lower amount of sequenc-
ing data for FINRISK. As with THDMI, the variables selected were
reduced to those with at least two category values having more than
50 samples.

Support for computing paired effect sizes is part of the QIIME2
Greengenes2 plugin q2-greengenes2, which performs effect size cal-
culations using Evident®.

Reporting summary
Furtherinformation onresearch designis availablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The official location of the Greengenes2 releasesis http://ftp.microbio.
me/greengenes_release/. The data are released under a BSD-3 clause
license. Data from THDMI are part of Qiita study 10317 and European
Bioinformatics Institute accession number PRJEB11419. The FINRISK
dataandincluding the data presented in Supplementary Fig.1c-gare
protected; detailsondataaccessare availablein the European Genome-
Phenome Archive under accession number EGAD0O0001007035. The
data presented in Supplementary Fig. 1a,b are not compatible with
Excel. The EMP data are part of Qiita study 13114 and European Bio-
informatics Institute accession number ERP125879. Source data are
provided with this paper.

Code availability

A QIIME 2 plugin is available to facilitate use with the resource that
can be obtained fromref. 37 (version 2023.3; https://doi.org/10.5281/
zenodo.7758134). Taxonomy construction, decoration and release
processing is part of ref. 38 (version 2023.3; https://doi.org/10.5281/
zenodo.7758138). uDance is available at GitHub*® (version v1.1.0;
https://doi.org/10.5281/zenodo.7758289). Phylogeny insertion using
DEPP is available at ref. 40 (version 0.3; https://doi.org/10.5281/
zenodo.7768798). The trained model can be accessed via Zenodo at
https://doi.org/10.5281/zenodo.7416684. Code used for the figures
inthis manuscriptis available in ref. 41. Finally, an interactive website
to explore the Greengenes2 data is available at https://greengenes2.
ucsd.edu.
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Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Full length 16S operons were collected from Qjita (https://qiita.ucsd.edu)
THDMI, EMP and FINRISK data were collected from Qiita (https://giita.ucsd.edu)
Amplicon sequence variants were collected from redbiom (v0.3.7)
GTDB r207 SSU sequences were obtained from their FTP
SILVA 138 sequences were obtained from their FTP
The LTP 01.2022 sequences and taxonomy were obtained from their FTP
Web of Life 2 was obtained directly, these data are now available by FTP (http://ftp.microbio.me/pub/wol2/)

Data analysis Figure 1A used a multifurcation collapse, implemented in g2-greengenes? (v2022.10; https://github.com/biocore/q2-greengenes?), and
Empress (v1.2.0; https://github.com/biocore/empress) for visualization.
Figure 1B, S1A-B used the same multifurcation collapse in 1A, and also used BLAST 2.12.0
Figure 1C used custom code, available under (https://github.com/knightlab-analyses/greengenes?2)
Figures 1D-F, S1C-D, S2 used QIIME 2 2022.11 g2-diversity and g2-emperor. 1E, S1C-D also used g2-taxa
Figure 2A-C used custom code, available under (https://github.com/knightlab-analyses/greengenes?)
Figure 2D-E, S1E-G used custom code now part of q2-greengenes?2

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The official location of the Greengenes2 releases is http://ftp.microbio.me/greengenes_release/. The data are released under a BSD-3 clause license. A QIIME 2
plugin is available to facilitate use with the resource that can be obtained from https://github.com/biocore/q2-greengenes2/ (version 2023.3; DOI: 10.5281/
zenodo.7758134). Taxonomy construction, decoration, and release processing is part of https://github.com/biocore/greengenes? (version 2023.3; DOI: 10.5281/
zenodo.7758138). uDance is available at GitHub: https://github.com/balabanmetin/uDance (version v1.1.0; DOI: 10.5281/zenodo.7758289). Phylogeny insertion
using DEPP is available at https://github.com/yueyujiang/DEPP (version 0.3; DOI: 10.5281/zenodo.7768798); the trained model accessioned with Zenodo at
10.5281/zenodo.7416684. The THDMI data are part of Qjita study 10317, and EBI accession PRIEB11419. The FINRISK data are available under EGADO0001007035.
Finally, an interactive website to explore the Greengenes2 data is available at https://greengenes2.ucsd.edu.
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Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender The examination of human data was for technical consistency between two different types of sequence preparations. The
focus of analyses in this manuscript was not on specific data associated with human participants.

Neither sex nor gender was considered in the effect size correlations of the THDMI data, the exclusion was unintentional. Sex
was included in effect size correlations with the FINRISK data but not examined specifically.

Reporting on race, ethnicity, or  We used a socially constructed variable, THDMI_cohort, to denote what country participants of THDMI took part from.
other socially relevant

groupings

Population characteristics n/a

Recruitment Participants in THDMI were recruited primarily through social media. There is likely a self selection bias for those interested
in their own diets. FINRISK recruitment is described at https://thl.fi/en/web/thlfi-en/research-and-development/research-
and-projects/the-national-finrisk-study

Ethics oversight Participants in THDMI are part of the American Gut Project covered by UC San Diego HRPP protocol 141853. Details on the

FINRISK ethical oversight are outlined in https://academic.oup.com/ije/article/47/3/696/4641873

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We used all available paired 16S and WGS samples from the THDMI, EMP500 and FINRISK datasets.
Data exclusions  n/a

Replication We demonstrate an ability to integrate 16S and WGS datasets using two independent human sample sets, as well as with environmental
samples.

Randomization n/a

Blinding n/a




Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|:| Antibodies |:| ChiIP-seq
|:| Eukaryotic cell lines |Z |:| Flow cytometry
|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging

|:| Animals and other organisms
[] clinical data

[ ] pual use research of concern

[] Plants

)
Q
=
C
=
()
5o
o
Et\
o
=
—
®
5o,
o
=
)
@
wm
C
=
=
Q
=
<

XXX XXX X 5




