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Greengenes2 unifies microbial data in a 
single reference tree

Daniel McDonald1, Yueyu Jiang2, Metin Balaban3, Kalen Cantrell4, 

Qiyun Zhu)  )5,6, Antonio Gonzalez1, James T. Morton7, Giorgia Nicolaou8, 

Donovan H. Parks)  )9, Søren M. Karst10, Mads Albertsen)  )11, 

Philip Hugenholtz)  )9, Todd DeSantis12, Se Jin Song13, Andrew Bartko)  )13, 

Aki S. Havulinna)  )14,15, Pekka Jousilahti14, Susan Cheng16,17, Michael Inouye18,19, 

Teemu Niiranen14,20, Mohit Jain21, Veikko Salomaa)  )14, Leo Lahti22, 

Siavash Mirarab)  )2 & Rob Knight)  )1,4,13,23 

Studies using 16S rRNA and shotgun metagenomics typically yield 

diferent results, usually attributed to PCR amplifcation biases. We 

introduce Greengenes2, a reference tree that unifes genomic and 16S rRNA 

databases in a consistent, integrated resource. By inserting sequences 

into a whole-genome phylogeny, we show that 16S rRNA and shotgun 

metagenomic data generated from the same samples agree in principal 

coordinates space, taxonomy and phenotype efect size when analyzed  

with the same tree.

Shotgun metagenomics and 16S rRNA gene amplicon (16S) studies are 

widely used in microbiome research, but investigators using these dif-

ferent methods typically find their results hard to reconcile. This lack 

of standardization across methods limits the utility of the microbiome 

for reproducible biomarker discovery.

A key problem is that whole-genome resources and rRNA resources 

depend on different taxonomies and phylogenies. For example, Web 

of Life (WoL)1 and the Genome Taxonomy Database (GTDB)2 provide 

whole-genome trees that cover only a small fraction of known bacteria 

and archaea, while SILVA3 and Greengenes4 are more comprehensive 

but are most often not linked to genome records.

We reasoned that an iterative approach could yield a single mas-

sive reference tree that unifies these different data layers (for example, 

genome and 16S rRNA records), which we call Greengenes2. We began 

with a whole-genome catalog of 15,953 bacterial and archaeal genomes 

that were evenly sampled from NCBI, and we reconstructed an accu-

rate phylogenomic tree by summarizing evolutionary trajectories of 

380 global marker genes using the new workflow uDance5. This work, 

namely WoL version 2 (WoL2), represents a substantial upgrade from 

the previously released WoL1 (10,575 genomes)1,6. We then added 18,356 

full-length 16S rRNA sequences from the Living Tree Project (LTP) 

January 2022 release7, 1,725,274 near-complete 16S rRNA genes from 

Received: 16 December 2022

Accepted: 25 May 2023

Published online: 27 July 2023

 Check for updates

1Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA. 2Department of Electrical and Computer Engineering, 

University of California San Diego, La Jolla, CA, USA. 3Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 

USA. 4Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA. 5School of Life Sciences, Arizona State 

University, Tempe, AZ, USA. 6Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA. 7Biostatistics & 

Bioinformatics Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 

USA. 8Halicioglu Data Science Institute, University of California San Diego, La Jolla, CA, USA. 9Australian Centre for Ecogenomics, School of Chemistry 

and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia. 10Department of Obstetrics and Gynecology, Columbia 

University, New York, NY, USA. 11Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark. 12Department of Informatics, Second 

Genome, Brisbane, CA, USA. 13Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, 

USA. 14Finnish Institute for Health and Welfare, Helsinki, Finland. 15Institute for Molecular Medicine Finland, FIMM-HiLIFE, Helsinki, Finland. 16Division 

of Cardiology, Brigham and Women’s Hospital, Boston, MA, USA. 17Cedars-Sinai Medical Center, Los Angeles, CA, USA. 18Cambridge Baker Systems 

Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia. 19Cambridge Baker Systems Genomics Initiative, Department of 

Public Health and Primary Care, University of Cambridge, Cambridge, UK. 20Division of Medicine, Turku University Hospital and University of Turku, Turku, 

Finland. 21Sapient Bioanalytics, LLC, San Diego, CA, USA. 22Department of Computing, University of Turku, Turku, Finland. 23Department of Bioengineering, 

University of California San Diego, La Jolla, CA, USA. )e-mail: robknight@eng.ucsd.edu

http://www.nature.com/naturebiotechnology
https://doi.org/10.1038/s41587-023-01845-1
http://orcid.org/0000-0002-3568-6271
http://orcid.org/0000-0001-6662-9010
http://orcid.org/0000-0002-6151-190X
http://orcid.org/0000-0001-5386-7925
http://orcid.org/0000-0002-1237-2747
http://orcid.org/0000-0002-4787-8959
http://orcid.org/0000-0001-7563-5324
http://orcid.org/0000-0001-5410-1518
http://orcid.org/0000-0002-0975-9019
http://crossmark.crossref.org/dialog/?doi=10.1038/s41587-023-01845-1&domain=pdf
mailto:robknight@eng.ucsd.edu


Nature Biotechnology | Volume 42 | May 2024 | 715–718 716

Brief Communication https://doi.org/10.1038/s41587-023-01845-1

(Fig. 1a). Our use of uDance ensured that the genome-based relation-

ships are kept fixed, and relationships between full-length 16S rRNA 

sequences are inferred. For short fragments, we kept genome and 

full-length relationships fixed and inserted fragments independently 

from each other. Following deduplication and quality control on frag-

ment placement, this yielded a tree covering 21,074,442 sequences 

from 31 different EMP Ontology 3 (EMPO3) environments, of which 

46.5% of species-level leaves were covered by a complete genome. Taxo-

nomic labels were decorated onto the phylogeny using tax2tree v1.1 

(ref. 4). The input taxonomy for decoration used GTDB r207, combined 

Karst et al.8 and the Earth Microbiome Project 500 (EMP500)9 and all 

full-length 16S rRNA sequences from GTDB r207 to the genome-based 

backbone with uDance v1.1.0, producing a genome-supported phylog-

eny with 16S rRNA explicitly represented. Finally, we inserted 23,113,447 

short V4 16S rRNA Deblur v1.1.0 (ref. 10) amplicon sequence variants 

(ASVs) from Qiita (retrieved 14 December 2021)11 and mitochondria and 

chloroplast 16S rRNA from SILVA v138 using deep-learning-enabled 

phylogenetic placement (DEPP) v0.3 (ref. 12). This final step represents 

ASVs from over 300,000 public and private samples in Qiita, includ-

ing the entirety of the EMP13 and American Gut Project/Microsetta14  

Not in SILVA 138

SILVA 138

EMPO3

0.006

0.004

B
ra

n
c

h
 l

e
n

g
th

0.002

0

PC1 (30.73%)

P
C

2
 (

5
.8

1%
)

WGS

d e f

16S

WGS

Pla
nt c

orp
us

Sedim
ent (

sa
lin

e)

Anim
al

 c
orp

us

Anim
al

 s
urf

ac
e

Anim
al

 s
ecre

tio
n

Anim
al

 (n
on-s

al
in

e)

Solid
 (n

on-s
al

in
e)

Soil 
(n

on-s
al

in
e)

W
at

er (
sa

lin
e)

Pla
nt r

hiz
osp

here

Surf
ac

e (s
al

in
e)

Ste
ril

e w
at

er b
la

nk

Sedim
ent (

non-s
al

in
e)

Anim
al

 d
is
ta

l g
ut

Pla
nt s

urf
ac

e

Aero
so

l (
non-s

al
in

e)

W
at

er (
non-s

al
in

e)

Anim
al

 p
ro

xi
m

al
 g

ut

Surf
ac

e (n
on-s

al
in

e)

16S

PC1 (48.94%)

P
C

2
 (

11
.3

4
%

)

PC1 (46.07%)

P
C

2
 (

9
.7

6
%

)

Firmicutes_D

Myxococcota_A

Nanoarchaeota

Omnitrophota

Patescibacteria

Planctomycetota

Proteobacteria

Spirochaetota

Verrucomicrobiota

Other

Chloroflexota

Cyanobacteria

Desulfobacterota_I

Firmicutes_A

Firmicutes_C

Acidobacteriota

Actinobacteriota

Bacteroidota

Bdellovibrionota_E

Chlamydiota

AGP

EMP

Both

Neither

a b

c

Fig. 1  | Greengenes2 overview and harmonization of 16S rRNA ASVs with 

shotgun metagenomic data. a, The Greengenes2 phylogeny rendered using 

Empress23, with ASV multifurcations collapsed; tip color indicates representation 

in the American Gut Project (AGP), the EMP, both or neither, with the top 20 

represented phyla depicted in the outer bar. b, The same collapsed phylogeny 

colored by the presence or absence of the best BLAST24 hit from SILVA 138. The 

bar depicts the same coloring as the tips. c, EMP samples and the amount of 

novel branch length (normalized by the total backbone branch length) added 

to the tree through ASV fragment placement. Note that sample counts are not 

even across EMPO3 categories. d, Bray–Curtis applied to paired 16S V4 rRNA 

ASVs and whole-genome shotgun samples from THDMI subset of The Microsetta 

Initiative; PC, principal coordinate. e, Same data as d but computing Bray–Curtis 

on collapsed genus data. f, Same data as d and e but using weighted UniFrac at the 

ASV and genome identifier levels.
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with the LTP January 2022 release. Taxonomy was harmonized prioritiz-

ing GTDB, including preserving the polyphyletic labels of GTDB (see 

also Methods). The taxonomy will be updated every 6 months using 

the latest versions of GTDB and LTP.

Greengenes2 is much larger than past resources in its phylogenetic 

coverage, as compared to SILVA (Fig. 1b), Greengenes (Supplementary 

Fig. 1a) and GTDB (Supplementary Fig. 1b). Moreover, because our 

amplicon library is linked to environments labeled with EMPO cat-

egories, we can easily identify the environments that contain samples 

that can fill out the tree. Because metagenome assembled genome 

(MAG) assembly efforts can only cover abundant taxa, for each EMPO 

category, we plotted the amount of new branch length added to the 

tree by taxa whose minimum abundance is 1% in each sample (Fig. 1c). 

The results show, on average, which environment types will best yield 

new MAGs and which environments harbor individual samples that 

will have a large impact when sequenced.

Past efforts to reconcile 16S and shotgun datasets have led to 

non-overlapping distributions, and only techniques such as Pro-

crustes analysis can show relationships between the results15. In 

two large human stool cohorts14,16 where both 16S and shotgun data 

were generated on the same samples, we find that Bray–Curtis17 

(non-phylogenetic) ordination fails to reconcile at the feature level  

(Fig. 1d) and is poor at the genus level (Fig. 1e and Supplementary 

Fig. 1c). However, UniFrac18, a phylogenetic method, used with our 

Greengenes2 tree provides better concordance (Fig. 1f and Supplemen-

tary Fig. 1d). To examine applicability of Greengenes2 to non-human 

environments, we next computed both Bray–Curtis and weighted 

UniFrac at the feature level on the 16S and shotgun data from the EMP9. 

As with the human data, we observe better concordance with the use 

of the Greengenes2 phylogeny (Supplementary Fig. 2) despite limited 

representation of whole genomes from non-human sources, as these 

environments are not as well characterized in general.
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Fig. 2  | Taxonomic and effect size consistency between 16S rRNA ASVs and 

shotgun metagenomic data. a–c, Per-sample taxonomy comparisons between 

16S and whole-genome shotgun profiles from THDMI. The solid bar depicts the 

50th percentile, and the dashed lines are 25th and 75th percentiles. a, Assessment 

of 16S taxonomy with SILVA 138 using the default q2-feature-classifier naive Bayes 

model (note, SILVA does not annotate at the species level); GG2, Greengenes2. 

b, Assessment of 16S taxonomy with Greengenes 13_8 (GG13_8) using the 

default q2-feature-classifier naive Bayes model. c, Assessment of 16S taxonomy 

performed by reading the lineages directly from the phylogeny or through naive 

Bayes trained on the V4 regions of the Greengenes2 backbone. d,e, Effect size 

calculations performed with Evident on paired 16S and whole-genome shotgun 

samples from THDMI. Calculations were performed at maximal resolution using 

ASVs for 16S and genome identifiers for shotgun samples. The data represented 

here are human gut microbiome samples. The stars denote variables that are 

drawn out specifically in the plot (for example, population) and were arbitrarily 

selected as comparison points to help highlight differences between d and e. 

Bray–Curtis distances (d) and weighted normalized UniFrac (e) are shown.
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We also find that the per-sample shotgun and 16S taxonomy rela-

tive abundance profiles are concordant even to the species level. We 

first computed taxonomy profiles for shotgun data using the Woltka 

pipeline19. Using a naive Bayes classifier from q2-feature-classifier 

v2022.2 (ref. 20) to compare GTDB r207 taxonomy results at each 

level down to the genus level against SILVA v138 (Fig. 2a) or down to 

the species level against Greengenes v13_8 (Fig. 2b), no species-level 

reconciliation was possible. By contrast, Greengenes2 provided excel-

lent concordance at the genus level (Pearson r)=)0.85) and good con-

cordance at the species level (Pearson r)=)0.65; Fig. 2c). Interestingly, 

the tree is now sufficiently complete such that exact matching of 16S 

ASVs followed by reading the taxonomy off the tree performs even 

better than the naive Bayes classifier (naive Bayes, Pearson r)=)0.54 at 

the species level and r)=)0.84 at the genus level).

Finally, a critical reason to assign taxonomy is downstream use of 

biomarkers and indicator taxa. Microbiome science has been described 

as having a reproducibility crisis21, but much of this problem stems from 

incompatible methods22. We initially used the The Human Diet Microbi-

ome Initiative (THDMI) dataset, which is a multipopulation expansion 

of The Microsetta Initiative14 that contains samples with paired 16S and 

shotgun preparations, to test whether a harmonized resource would 

provide concordant rankings for the variables that affect the human 

microbiome similarly. Using Greengenes2, the concordance was good 

with Bray–Curtis (Fig. 2d; Pearson r2)=)0.57), better using UniFrac with 

different phylogenies (SILVA 138 and Greengenes2; Supplementary 

Fig. 1e; Pearson r2)=)0.77) and excellent with UniFrac on the same phy-

logeny (Fig. 2e; Pearson r2)=)0.86). We confirmed these results with an 

additional cohort16 (Supplementary Fig. 1f,g). Intriguingly, the ranked 

effect sizes across different cohorts were concordant.

Taken together, these results show that use of a consistent, inte-

grated taxonomic resource dramatically improves the reproducibility 

of microbiome studies using different data types and allows varia-

bles of large versus small effect to be reliably recovered in different 

populations.
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Methods
Human research protocols
THDMI participant informed consent was obtained under University 

of California, San Diego, institutional review board protocol 141853. 

FINRISK participant informed consent was obtained under the Coordi-

nating Ethical Committee of the Helsinki and Uusimaa Hospital District 

protocol reference number 558/E3/2001.

Phylogeny construction
WoL2 (ref. 1; a tree inferred using genome-wide data) was used as the 

starting backbone. Full-length 16S sequences from the LTP7, full-length 

mitochondria and chloroplast from SILVA 138 (ref. 3), full-length 16S 

from GTDB r207 (ref. 2), full-length 16S from Karst et al.8 and full-length 

16S from the EMP500 (ref. 9; samples selected and sequenced spe-

cifically for Greengenes2) were collected and deduplicated. Sequences 

were then aligned using UPP25, and gappy sequences with less than 

1,000)base pairs were removed. The resulting set of 321,210 unique 

sequences was used with uDance v1.1.0 to update the WoL2 backbone. 

Briefly, uDance updates an existing tree with new sequences and (unlike 

placement methods) also infers the relationship of existing sequences. 

uDance has two modes, one that allows updates to the backbone and 

one that keeps the backbone fixed, where the former mode is intended 

for use with whole genomes. In our analyses, we kept the backbone tree 

(inferred using genomic data) fixed. To extend the genomic tree with 

16S data, we identified 13,249 (of 15,953 total) genomes in the WoL2 

backbone tree with at least one 16S copy and used them to train a DEPP 

model with the weighted average method detailed later to handle multi-

ple copies. We then used DEPP to insert all 16S copies of all genomes into 

the backbone and measured the distance between the genome position 

and the 16S position. We removed copies that were placed much further 

than others, as identified using a two-means approach with centroids 

equal to at least 13 branches. We repeated this process in a second round. 

For every remaining genome, we selected as its representative the copy 

with the minimum placement error and computed the consensus with 

ties. At the end, we were left with 12,344 unique 16S sequences across 

all WoL2 genomes. For tree inference, uDance used IQ-TREE2 (ref. 26) in 

fast tree search with model GTR+ � after removing duplicate sequences.

Next, we collected 16S V4 ASVs from Qiita11 using redbiom27 (query 

performed 14 December 2021) from contexts 8Deblur_2021.09-Illumina-

16S-V4-90nt-dd68759, 8Deblur_2021.09-Illumina-16S-V4-100nt-50b3a29, 

8Deblur_2021.09-Illumina-16S-V4-125nt-92f9549, 8Deblur_2021.09-Illumina-

16S-V4-150nt-ac8c0b9, 8Deblur_2021.09-Illumina-16S-V4-200nt-

0b8b489 and 8Deblur_2021.09-Illumina-16S-V4-250nt-8b2bff9 and 

aligned them to the existing 16S alignment of sequences in WoL2 using 

UPP, setting the maximum alignment subset size to 200 (to help with 

scalability). The collected 16S V4 ASVs are aligned to the V4 region of 

the existing 8backbone9 alignments. A DEPP model was then trained 

on the full-length 16S sequences from the backbone. DEPP constructs 

a neural network model that embeds sequences in high-dimensional 

spaces such that embedded points resemble the phylogeny in their 

distances. Such a model then allows insertion of new sequences into a 

tree using the distance-based phylogenetic insertion method APPLES-2 

(ref. 28). The ASVs from redbiom were then inserted into the backbone 

using the trained DEPP model. To enable analyses of large datasets, we 

used a clustering approach with DEPP. We trained an ensemble of DEPP 

models corresponding to different parts of the tree and used a classifier 

to detect the correct subtree. During training, for species with multiple 

16S, all the copies are mapped to the same leaf in the backbone tree. 

To train the DEPP models with multiple sequences mapped to a leaf, 

each site in each sequence is encoded as a probability vector of four 

nucleotides across all the copies.

Integrating the GTDB and LTP taxonomies
GTDB and LTP are not directly compatible due to differences in their 

curation. As a result, it is not always possible to map a species from 

one resource to the other because parts of a species lineage are not 

present, are described using different names or have an ambiguous asso-

ciation due to polyphyletic taxa in GTDB (for example, Firmicutes_A, 

Firmicutes_B and so on; https://gtdb.ecogenomic.org/faq#why-do- 

some-family-and-higher-rank-names-end-with-an-alphabetic-suffix). 

We integrated taxonomic data from LTP into GTDB as LTP includes spe-

cies that are not yet represented in GTDB. Additionally, GTDB is actively 

curated, while LTP generally uses the NCBI taxonomy. To account for 

these differences, we first mapped any species that had a perfect species 

name association and revised its ancestral lineage to match GTDB. Next, 

we generated lineage rewrite rules using the GTDB record metadata. 

Specifically, we limited the metadata to records that are GTDB repre-

sentatives and NCBI-type material and defined a lineage renaming from 

the recorded NCBI taxonomy to the GTDB taxonomy. These rewrite 

rules were applied from most- to least-specific taxa, and through this 

mechanism, we could revise much of the higher ranks of LTP. We then 

identified incertae sedis records in LTP that we could not map, removed 

their lineage strings and did not attempt to provide taxonomy for them, 

instead opting to rely on downstream taxonomy decoration to resolve 

their lineages. Next, any record that was ambiguous to map was split 

into a secondary taxonomy for use in backfilling in the downstream 

taxonomy decoration. Finally, we instrumented numerous consistency 

checks in the taxonomy through the process to capture inconsistent 

parents in the taxonomic hierarchy and consistent numbers of ranks in a 

lineage and to ensure that the resulting taxonomy was a strict hierarchy.

Taxonomy decoration
The original tax2tree algorithm was not well suited for a large volume 

of species-level records in the backbone, as the algorithm requires an 

internal node to place a name. If two species are siblings, the tree would 

lack a node to contain the species label for both taxa. To account for 

this, we updated the algorithm to insert 8placeholder9 nodes with zero 

branch length as the parents of backbone records, which could accept 

these species labels. We further updated tax2tree to operate directly on 

.jplace data29, preserving edge numbering of the original edges before 

adding 8placeholder9 nodes. To support LTP records that could not be 

integrated into GTDB, we instrumented a secondary taxonomy mode 

for tax2tree. Specifically, following the standard decoration, backfilling 

and name promotion procedures, we determine on a per-record basis 

for the secondary taxonomy what portion of the lineage is missing 

and place the missing labels on the placeholder node. We then issue a 

second round of name promotion using the existing tax2tree methods.

The actual taxonomy decoration occurs on the backbone tree, 

which contains only full-length 16S records and does not contain 

ASVs. This is done as ASV placements are independent, do not modify 

the backbone and would substantially increase the computational 

resources required. After the backbone is decorated, fragment place-

ments from DEPP are resolved using a multifurcation strategy using 

the balanced-parentheses library30.

Phylogenetic collapse for visualization
We are unaware of phylogenetic visualization software that can display 

a tree with over 20,000,000 tips. To produce the visualizations in Fig. 

1, we reduced the dimension of the tree by collapsing fragment multi-

furcations to single nodes, dropping the tree to 522,849 tips.

MAG target environments
A feature table for the 27,015 16S rRNA V4 90-nucleotide EMP samples 

was obtained from redbiom. The ASVs were filtered to the overlap of 

ASVs present in Greengenes2. Any feature with <1% relative abundance 

within a sample was removed. The feature table was then rarefied to 

1,000 sequences per sample. The amount of novel branch length was 

then computed per sample by summing the branch length of each ASV9s 

placement edge. The per-sample branch length was then normalized 

by the total tree branch length (excluding length contributed by ASVs).

http://www.nature.com/naturebiotechnology
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Per-sample taxonomy correlations
All comparisons used THDMI14 16S and Woltka processed shotgun 

data. These data were accessed from Qiita study 10317 and filtered 

the set of features that overlap with Greengenes2 using the QIIME 2 

(ref. 31) q2-greengenes2 plugin. The 16S taxonomy was assessed using 

either a traditional naive Bayes classifier with q2-feature-classifier 

and default references from QIIME 2 2022.2 or by reading the lineage 

directly from the phylogeny. To help improve correlations between 

SILVA and Greengenes2 and between Greengenes and Greengenes2, 

we stripped polyphyletic labelings from those data; we did not strip 

polyphyletic labels from the phylogenetic taxonomy comparison or 

the Greengenes2 16S versus Greengenes2 whole-genome shotgun 

(WGS) naive Bayes comparison. Shotgun taxonomy was determined 

by the specific observed genome records. Once the 16S taxonomy was 

assigned, those tables and the WGS Woltka WoL2 table were collapsed 

at the species, genus, family, order and class levels. We then computed 

a minimum relative abundance per sample in the dataset from THDMI. 

In each sample, we removed any feature, either 16S or WGS, below the 

per-sample minimum (that is, max(min(16S), min(WGS))), forming a 

common minimal basis for taxonomy comparison. Following filtering, 

Pearson correlation was computed per sample using SciPy32. These 

correlations were aggregated per 16S taxonomy assignment method 

and by each taxonomic rank. The 25th, 50th and 75th percentiles were 

then plotted with Matplotlib33.

Principal coordinates
THDMI Deblur 16S and Woltka processed shotgun sequencing data, 

against WoL2, were obtained from Qiita study 10317. Both feature tables 

were filtered against Greengenes2 2022.10, removing any feature not 

present in the tree. For the genus collapsed plot (Fig. 1e), both the 16S 

and WGS data features were collapsed using the same taxonomy. For 

all three figures, the 16S data were subsampled, with replacement, 

to 10,000 sequences per sample. The WGS data were subsampled, 

with replacement, to 1,000,000 sequences per sample. Bray–Curtis, 

weighted UniFrac and principal coordinates analysis were computed 

using q2-diversity 2022.2. The resulting coordinates were visualized 

with q2-emperor34.

The EMP 8EMP5009 16S and Woltka processed shotgun sequencing 

data, against WoL2, were obtained from Qiita study 13114. Both feature 

tables were filtered against Greengenes2 2022.10. The 16S data were 

subsampled, with replacement, to 1,000 sequences per sample. The 

WGS data were subsampled, with replacement, to 50,000 sequences 

per sample. The sequencing depth for WGS data was selected based 

on Supplementary Fig. 6 of Shaffer et al.9, which noted low levels of 

read recruitment to publicly available whole genomes. Bray–Curtis, 

weighted UniFrac and principal coordinates analysis were computed 

using q2-diversity 2022.2. The resulting coordinates were visualized 

with q2-emperor.

Effect size calculations
Similar to principal coordinates, data from THDMI were rarefied to 

9,000 and 2,000,000 sequences per sample for 16S and WGS, respec-

tively. Bray–Curtis and weighted normalized UniFrac were computed 

on both sets of data. The variables for THDMI were subset to those with 

at least two category values having more than 50 samples. For UniFrac 

with SILVA (Supplementary Fig. 1e), we performed fragment insertion 

using q2-fragment-insertion35 into the standard QIIME 2 SILVA refer-

ence, followed by rarefaction to 9,000 sequences per sample, and then 

computed weighted normalized UniFrac.

For FINRISK, the data were rarefied to 1,000 and 500,000 

sequences per sample for 16S and WGS, respectively. A different 

depth was used to account for the overall lower amount of sequenc-

ing data for FINRISK. As with THDMI, the variables selected were 

reduced to those with at least two category values having more than 

50 samples.

Support for computing paired effect sizes is part of the QIIME2 

Greengenes2 plugin q2-greengenes2, which performs effect size cal-

culations using Evident36.

Reporting summary
Further information on research design is available in the Nature Port-

folio Reporting Summary linked to this article.

Data availability
The official location of the Greengenes2 releases is http://ftp.microbio. 

me/greengenes_release/. The data are released under a BSD-3 clause 

license. Data from THDMI are part of Qiita study 10317 and European 

Bioinformatics Institute accession number PRJEB11419. The FINRISK 

data and including the data presented in Supplementary Fig. 1c–g are 

protected; details on data access are available in the European Genome–

Phenome Archive under accession number EGAD00001007035. The 

data presented in Supplementary Fig. 1a,b are not compatible with 

Excel. The EMP data are part of Qiita study 13114 and European Bio-

informatics Institute accession number ERP125879. Source data are 

provided with this paper.

Code availability
A QIIME 2 plugin is available to facilitate use with the resource that 

can be obtained from ref. 37 (version 2023.3; https://doi.org/10.5281/ 

zenodo.7758134). Taxonomy construction, decoration and release 

processing is part of ref. 38 (version 2023.3; https://doi.org/10.5281/ 

zenodo.7758138). uDance is available at GitHub39 (version v1.1.0; 

https://doi.org/10.5281/zenodo.7758289). Phylogeny insertion using 

DEPP is available at ref. 40 (version 0.3; https://doi.org/10.5281/ 

zenodo.7768798). The trained model can be accessed via Zenodo at 

https://doi.org/10.5281/zenodo.7416684. Code used for the figures 

in this manuscript is available in ref. 41. Finally, an interactive website 

to explore the Greengenes2 data is available at https://greengenes2. 

ucsd.edu.
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