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Abstract

Pre-trained language models have been shown
to encode linguistic structures like parse
trees in their embeddings while being trained
unsupervised. Some doubts have been raised
whether the models are doing parsing or only
some computation weakly correlated with
it. Concretely: (a) Is it possible to explicitly
describe transformers with realistic embedding
dimensions, number of heads, etc. that are ca-
pable of doing parsing —or even approximate
parsing? (b) Why do pre-trained models cap-
ture parsing structure? This paper takes a step
toward answering these questions in the context
of generative modeling with PCFGs. We show
that masked language models like BERT or
RoBERTa of moderate sizes can approximately
execute the Inside-Outside algorithm for the
English PCFG (Marcus et al., 1993). We also
show that the Inside-Outside algorithm is
optimal for masked language modeling loss
on the PCFG-generated data. We conduct
probing experiments on models pre-trained
on PCFG-generated data to show that this not
only allows recovery of approximate parse tree,
but also recovers marginal span probabilities
computed by the Inside-Outside algorithm,
which suggests an implicit bias of masked
language modeling towards this algorithm.

1 Introduction

One of the surprising discoveries about transformer-
based language models like BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) was that
contextual word embeddings encode information
about parsing, which can be extracted using a
simple “linear probing” to yield approximately
correct dependency parse trees for the text (Hewitt
and Manning, 2019; Manning et al., 2020). Sub-
sequently, Vilares et al. (2020); Wu et al. (2020);
Arps et al. (2022) employed linear probing also to
recover information about constituency parse trees.

*Equal contribution.

Investigating the parsing capability of transformers
is of significant interest, as incorporating (the
awareness of) syntax in large language models has
been shown to enhance the final performance on
various downstream tasks (Xu et al., 2021; Bai
et al., 2021). Additionally, it can contribute to
the ongoing exploration of the “mechanistic inter-
pretability” for reverse engineering the inner work-
ings of pre-trained large language models (Elhage
et al., 2021; Olsson et al., 2022; Nanda et al., 2023).

The current paper focuses on the ability of BERT-
style transformers to do constituency parsing,
specifically for PCFGs. Prior studies (Bhattamishra
et al., 2020b; Pérez et al., 2021) established that
transformers are Turing complete, suggesting their
potential for parsing. But do they actually parse
while trying to do masked-word prediction? One
reason to be cautiously skeptical is that naive trans-
lation of constituency parsing algorithms into a
transformer results in transformers with number of
heads that scales with the size of the grammar (Sec-
tion 3.1), whereas BERT-like models have around a
dozen heads. This leads to the following question.

(Qs 1): Are BERT-like models capable of
parsing with realistic number of heads?

This is not an idle question as Maudslay and
Cotterell (2021) suggested that linear probing
relies on semantic cues for parsing. They created
syntactically correct but semantically meaningless
sentences and found a significant drop in parsing
performance compared to previous studies.

(Qs 2): Do BERT-like models trained for
masked language modeling (MLM) encode

syntax, and if so, how and why?

1.1 This paper

To address Qs 1, we construct a transformer that ex-
ecutes the Inside-outside algorithm for PCFG (Sec-
tion 3.1). If the PCFG hasN non-terminals and the
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length of the sentence is L, our constructed trans-
former has 2L layers in total, N attention heads,
and 2NL embedding dimensions in each layer.
However, this is massive compared to BERT. For
PCFG learned on Penn Treebank (PTB) (Marcus
et al., 1993), N = 1600, average L ≈ 25, which
leads to a transformer with 80k embedding dimen-
sion, depth 50, and 1.6k attention heads per layer.
By contrast, BERT has 768 embedding dimensions,
12 layers, and 12 attention heads per layer!

One potential explanation could be that BERT
does not do exact parsing but merely computes
some information related to parsing. After all,
linear probing didn’t recover complete parse trees.
It recovered trees with modest F1 score, such as
78.2% for BERT (Vilares et al., 2020) and 82.6%
for RoBERTa (Arps et al., 2022). To the best of
our knowledge, no study has investigated parsing
methods that strategically discard information to
do more efficient approximate parsing. Toward
this goal, we design an approximate version of the
Inside-Outside algorithm (Section 3.3), executable
by a transformer with 2L layers, 15 attention
heads, and 40L embedding dimensions, while
still achieving > 70% F1 score for constituency
parsing on PTB dataset (Marcus et al., 1993).

Although realistic models can capture a fair
amount of parsing information, it is unclear
whether they need to do so for masked language
modeling (MLM). After all, Maudslay and Cot-
terell (2021) suggested that linear probing picks up
on semantic information that happens to correlate
with parse trees. To further explore this, we trained
a (masked) language model on the synthetic text
generated from a PCFG tailored to English text,
separating syntax from semantics in a more rigor-
ous manner than Maudslay and Cotterell (2021).
Section 3.2 notes that given such synthetic text, the
Inside-Outside algorithm will minimize MLM loss.
Note that parsing algorithms like CYK (Kasami,
1966) could be used instead of Inside-Outside, but
they do not have an explicit connection to MLM
(Section 3.2). Experiments with pre-trained models
on synthetic PCFG data (Section 4.1) reveal the ex-
istence of syntactic information inside the models:
simple probing methods recover reasonable parse
tree structure (Section 4.2). Additionally, probes of
contextualized embeddings reveal correlations with
the information computed by the Inside-Outside
algorithm (Section 4.3). This suggests transformers
implicitly engage in a form of approximate parsing,

in particular a process related to the Inside-Outside
algorithm, to achieve low MLM loss.

2 Preliminaries

2.1 Attention
We focus on encoder-only transformers like BERT
and RoBERTa (Devlin et al., 2019; Liu et al., 2019),
which stack identical layers with an attention
module followed by a feed-forward module. Each
attention module has multiple heads, represented
by three matrices Qh,Kh,Vh ∈ Rd×d. For an
input sequence of length L, we use E(ℓ) ∈ RL×d

to denote contextual embeddings after layer ℓ’s
computations, where e(ℓ)i is the embedding of the
ith token. The output of the attention head h at
layer ℓ is v(ℓ)

i,h =
∑

j∈[L] a
h
i,jVhe

(ℓ), where ahi,j is
the attention score between ei and ej for head h:

ah
i,j = fattn(E

(ℓ)K⊤
h ,Qhe

(ℓ)
i )j . (1)

fattn is a non-linear function and is generally
used as softmax on E(ℓ)K⊤

h Qhe
(ℓ)
i . Finally, the

output of the attention module is given by
∑

h v
(ℓ)
i,h.

This is a general definition of the attention module
and captures the split and merge of the embeddings
across the attention heads used in practice.

2.2 PCFG and parsing
PCFG model A probabilistic context-free gram-
mar (PCFG) is a language generative model. It is
defined as a 5-tuple G = (N , I,P, n, p), where

• N is the set of non-terminal. I,P ⊂ N are sets
of in-terminals and pre-terminals respectively.
N = I ∪ P , and I ∩ P = ϕ.

• [n] is the set of all possible words.

• ∀A ∈ I, B,C ∈ N , there is a rule A → BC.

• For rule A → BC where A ∈ I, B,C ∈ N ,
there is a probability Pr[A → BC] satisfying for
all A,

∑
B,C Pr[A → BC] = 1.

• For all A ∈ P , w ∈ [n], a rule A → w.

• For each rule A → w where A ∈ P , w ∈ [n], a
probability Pr[A → w], which satisfies for all A,∑

w Pr[A → w] = 1.

• A non-terminal Root ∈ I.

Data generation from PCFG Strings are gen-
erated from the PCFG G = (N , I,P, n, p) as fol-
lows: we maintain a string st ∈ ([n] ∪N )∗ at step
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t with s1 = ROOT. At step t, if all characters in st
belong to [n], the generation process ends, and st is
the resulting string. Otherwise, we pick a character
A ∈ st such that A ∈ N . If A ∈ P , we replace the
character A to w with probability Pr[A → w]. If
A ∈ I, we replace the character A to two charac-
ters B,C with probability Pr[A → BC].

Parse trees and parsing For a sentence s =
w1 . . . wL with length L, a labeled parse tree rep-
resents the likely derivations of a sentence under
PCFG G. It is defined as a list of spans with non-
terminals {(A, i, j)} that forms a tree. An unla-
belled parse tree is a list of spans that forms a tree.

To find the unlabelled parse tree for a sentence s
under the PCFG model, the Labelled-Recall algo-
rithm (Goodman, 1996) is commonly used. This al-
gorithm searches for the tree T = {(i, j)} that max-
imizes

∑
(i,j)∈T score(i, j), where score(i, j) =

maxA∈N Pr[A ⇒ wiwi+1 · · ·wj ,Root ⇒
s|G] := maxA∈N µ(A, i, j) is the marginal proba-
bility of span wiwi+1 · · ·wj under non-terminal A.
Marginal probabilities are computed by Inside-

Outside algorithm (Baker, 1979), with the inside
probabilities α(A, i, j) and the outside probabili-
ties β(A, i, j) computed by the following recursion

α(A, i, j)

=
∑

B,C

j−1∑

k=i

Pr[A → BC]α(B, i, k)α(C, k + 1, j), (2)

β(A, i, j)

=
∑

B,C

i−1∑

k=1

Pr[B → CA]α(C, k, i− 1)β(B, k, j) (3)

+
∑

B,C

L∑

k=j+1

Pr[B → AC]α(C, j + 1, k)β(B, i, k)

with the base cases α(A, i, i) = Pr[A → wi]
for all A, i and β(Root, 1, L) = 1 for all A. The
marginal probabilities are then computed as

µ(A, i, j) = α(A, i, j)× β(A, i, j). (4)

Parsing performance is evaluated by two types
of unlabelled F1 scores, which depend on the
average method: Sentence F1 (average of F1 scores
for each sentence) and Corpus F1 (considers total
true positives, false positives, and false negatives).

2.3 Probing
A probe f(·) is a supervised model that predicts
a target tar(x) for a given input x (Alain and
Bengio, 2017; Hupkes et al., 2018; Conneau et al.,

2018). As an example, Hewitt and Manning (2019)
used a probe f(·) to predict the tree distance
tar(i, j) = dT (i, j) between words in a depen-
dency parse tree T . Although mathematically
equivalent, probes and supervised models have
different goals. The latter aims for high prediction
scores, while the former seeks to identify certain
intrinsic information in embeddings (Maudslay
et al., 2020; Chen et al., 2021). Probes should be
limited to only detect the desired information, with
low performance on uncontextualized embeddings
and high performance on contextualized ones.

3 Parsing using Transformers

We design transformers with moderate layers and
heads for parsing and masked language model-
ing. In Section 3.1, we prove that transform-
ers can execute the Inside-Outside algorithm for
bounded-length sentences with any PCFG. In Sec-
tion 3.2, we connect our construction with masked
language modeling and demonstrate the optimality
of the Inside-Outside algorithm for MLM on PCFG-
generated data. Finally, in Section 3.3, we demon-
strate the ability to reduce the size of these construc-
tions while retaining their parsing performance.

3.1 Transformers can execute Inside-Outside
algorithm

We first give a construction (Theorem 3.1) that
relies on hard attention, where only one of the at-
tended positions will have positive attention score.
For this construction, we define fattn : RL×d × Rd

such that the attention scores in eq. 1 are given by

ah
i,j = ReLU((Khe

(ℓ)
j )⊤Qhe

(ℓ)
i ). (5)

This is similar to softmax attention used in prac-
tice, with softmax replaced by ReLU activation.

Theorem 3.1 (Hard attention). There exists a
model with hard attention modules (5), (4|N |+1)L
embeddings, 2L − 1 layers, and 4|N | attention
heads in each layer that simulates the Inside-
Outside algorithm on all sentences with length at
most L generated by PCFG G = (N , I,P, n, p)
and embed all inside and outside probabilities.

Proof sketch. We give the proof sketch and defer
details to Appendix B.1. The core idea is to use the
first L layers to compute the inside probabilities
with the recursive eq. 2. Each layer ℓ ≤ L com-
putes α(A, i, j) for all position pairs (i, j) with
j − i = ℓ and all non-terminals A. The next L
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layers compute the outside probabilities with the
recursive eq. 3. Each layer L + ℓ > L com-
putes β(A, i, j) for all position pairs (i, j) with
j − i = L− ℓ and all non-terminals A.
At any position i in a layer ℓ ≤ L, the input

token embeds inside probabilities of all spans with
a maximum length of ℓ, starting and ending at
i: α(A, i, j) and α(A, k, i) for all non-terminals
A and position tuples (i, j, k) where j − i < ℓ,
i− k < ℓ. To compute α(A, i, i+ ℓ) at each posi-
tion i for each non-terminal A, we use an attention
head that calculates an inner product between the
embeddings at positions i and i+ℓ, weighted by the
matrix containing Pr[A → BC]B,C∈N . The token
at position i attends only to the token at i+ℓ thanks
to the position embeddings and hard attention. We
use another attention head to compute α(A, i−ℓ, i),
and store the new inside probability terms along
with the previous ones in the embeddings. We use a
similar technique to compute the outside probabili-
ties in the next L layers. In layer L+ ℓ, we use two
attention heads to compute β(A, i, i + L − ℓ) for
each non-terminalA and position i, as there are two
terms to compute in 3. We use two additional atten-
tion heads to compute β(A, i− L+ ℓ, i), resulting
in four attention heads for each non-terminal.

To further reduce embedding size and attention
heads, we introduce relative positions and use soft
attention. We introduce 2L + 1 relative position
vectors {pt ∈ Rd}−L≤t≤L, and relative position
biases {bt,ℓ ∈ R}−L≤t≤L,1≤ℓ≤2L−1 that modify
the key vectors depending on the relative position
of the query and key tokens. For an attention head
h in layer ℓ, the attention score ahi,j is given by

ah
i,j = ReLU(Khe

(ℓ)
j + pj−i − bj−i,ℓ)

⊤Qhe
(ℓ)
i . (6)

Theorem 3.2 (Relative positional embeddings).
There exists a model with attention module (6),
2|N |L+1 embeddings, 2L− 1 layers, and |N | at-
tention heads in each layer that simulate the Inside-
Outside algorithm on all sentences with length at
most L generated by PCFG G = (N , I,P, n, p)
and embed all inside and outside probabilities.
The proof is deferred to Appendix B.2. Theo-

rem 3.2 uses one attention head to compute layer-
wise inside/outside probabilities per non-terminal,
and only requires |N | heads in each layer. Once
we have the inside and outside probabilities for
spans, we can directly build the parse tree using the
Labelled-Recall algorithm, which acts as a “probe”
on the contextual representations of the model.

3.2 Masked language modeling for PCFG
The Inside-Outside algorithm not only can parse
but also has a connection to masked language mod-
eling (MLM), the pre-training loss used by BERT.
The following theorem shows that, if the language
is generated from a PCFG, then the Inside-Outside
algorithm achieves the optimal MLM loss.

Theorem 3.3. Assuming language is generated
from a PCFG, the Inside-Outside algorithm
reaches the optimal MLM loss.

The Inside-Outside algorithm optimizes MLM
loss on PCFG data, suggesting that pre-training on
such data enables implicit learning of the algorithm
or its computed quantities. Consequently, inter-
mediate layers can capture syntactic information
for parsing, potentially explaining the presence of
structural information in language models (Hewitt
and Manning, 2019; Vilares et al., 2020; Arps et al.,
2022). We validate this conjecture in Section 4.3.

3.3 Towards realistic size
For PCFG learned on the PTB training set (PTB
sections 02-21) with an average sentence length of
25 (Peng, 2021), Section 3.1 requires 1600 atten-
tion heads, 3200L embedding dimensions, and 2L
layers to simulate the Inside-Outside algorithm for
sentences of length L, which is much larger than
BERT. However, by utilizing the inherent sparsity
in the English PCFG, we can reduce the number
of attention heads and the width of the embeddings
while maintaining decent parsing performance.
The details are deferred to Appendix C.

First ingredient: finding important non-
terminals In the constructions of Theorems 3.1
and 3.2, the number of attention heads and
embedding dimensions depend on the number of
non-terminals of the PCFG. Thus if we can find
a smaller PCFG, we can make the model much
smaller. Specifically, if we only compute the prob-
abilities of a specific set of in-terminals Ĩ and pre-
terminals P̃ in eq. 2 and 3, we can reduce the num-
ber of attention heads from |N | tomax{|Ĩ|, |P̃|}.*
We sort the non-terminals in terms of their

frequency of occurrence in the PTB training set and
show that restricting the Inside-Outside computa-
tion to a few frequent non-terminals has a negli-
gible drop in performance (Table 1). The parsing

*When |P̃| < c|Ĩ|, we can simulate the computations in
the final layer using c layers with |Ĩ| heads instead of |P̃|
heads. Additionally, we can decrease the embedding size by
only storing probabilities for relevant non-terminals.
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Approximation Corpus F1 Sent F1 ppl.
No approx. 75.90 78.77 50.80

|Ĩ| = 10, |P̃| = 45 57.14 60.32 59.57
|Ĩ| = 20, |P̃| = 45 68.41 71.91 55.16
|Ĩ| = 40, |P̃| = 45 72.45 75.43 54.09

Table 1: Restricting computations of the Inside-Outside
algorithm to the most frequent in(pre)-terminal subsets
Ĩ (P̃) in the PTB sections 02-21. We report the unla-
belled F1 scores on PTB section 22 and the 1-masking
perplexity on 200 sentences generated from the PCFG.
|Ĩ| = 20, |P̃| = 45 resulted in a 8.58% increase in per-
plexity and 8.71% decrease in parsing F1 scores.

score is still highly non-trivial, since the naive base-
line, Right Branching (RB), can only get < 40%
sentence and corpus F1 scores on PTB dataset.

Second ingredient: utilizing structures across
non-terminals We still use one attention head
to represent the computation for a specific non-
terminal, which does not utilize possible underly-
ing correlations between different non-terminals.
Specifically, for Theorem 3.2, we use one attention
head at layer ℓ < L to compute the inside probabili-
ties α(A, i, j)with j−i = ℓ. If α(A, i, j) for differ-
ent non-terminals A ∈ Ĩ lie in a k(ℓ)-dimensional
subspace with k(ℓ) < |Ĩ|, we can compute all
of the inside probabilities using only k(ℓ) atten-
tion heads by computing the vector W (ℓ)α(i, j),
whereW (ℓ) ∈ Rk(ℓ)×|Ĩ| is the transformation ma-
trix and α(i, j) ∈ R|Ĩ| is the concatenation of all
inside probabilties α(A, i, j)A∈Ĩ . The same pro-
cedure can also be applied to the computation of
outside probabilities. † Although the probabili-
ties should not lie in a low dimensional subspace
in reality, we can still try to learn a transforma-
tion matrix W (ℓ) ∈ Rk(ℓ)×|Ĩ| and approximately
compute the inside probabilities by α(i, j) =
(W (ℓ))†W (ℓ)α∗(i, j) for j−i = ℓ, whereα∗(i, j)
denotes the Inside probabilities for non-terminals
in Ĩ . Please refer to Appendix C.4 for more details.

Learning the transformations For sentence
s and a span with length ℓ + 1, we compute the
marginal probabilities of this span µi,j

s ∈ R|Ĩ|, that
contains µ(A, i, j) for each non-terminal A ∈ Ĩ.
We then compute the normalized correlation ma-
trix X(ℓ) =

∑
sX

(ℓ)
s /∥X(ℓ)

s ∥F, where X
(ℓ)
s =∑

i,j:j−i=ℓ µ
i,j
s (µi,j

s )⊤, which captures the correla-
tion of Ĩ for spans with length ℓ+ 1 in the entire

†The computation for A ∈ P̃ needs |P̃| heads in the last
layer and can be simulated by several layers with fewer heads.

Approximation Corpus F1 Sent F1 ppl.
|Ĩ| = 10, |P̃| = 45 57.14 60.32 59.57
|Ĩ| = 20, |P̃| = 45 68.41 71.91 55.16

k(ℓ) = 10, |Ĩ| = 20, |P̃| = 45 61.72 65.31 57.05
k(ℓ) = 15, |Ĩ| = 20, |P̃| = 45 68.20 71.33 55.52

Table 2: Approximate Inside-Outside algorithm using
linear transformations {W (ℓ) ∈ Rk(ℓ)×|Ĩ|} on the in-
side/outside probabilities of the selected subset Ĩ. We
report the F1 scores on PTB section 22 and the 1-masking
perplexity on 200 sentences generated from the PCFG.
Applying linear transformations can further reduce the
number of attention heads in the constructed model to
15 starting from 20 frequent non-terminals subset Ĩ,
while only changing the performance by at most 1%.

corpus. We apply the Eigen-decomposition on Xℓ

and setW (ℓ) as the top k(ℓ) Eigen-vectors.
The parsing results and 1-masking perplexity

using {W (ℓ)}ℓ≤L with different k(ℓ) are shown in
Table 2. Utilizing the linear transformations, we
obtain 71.33% and 65.31% sentence F1 on PTB
with only 15 and 10 attention heads respectively,
whereas only computing probabilities for top-10
in-terminals gives 60.32% sentence F1 on PTB.
The following theorem summarizes the results.

Theorem 3.4 (Informal). There exists a model
with attention module (6), 275 + 40L embeddings,
2L+1 layers, and 15 attention heads in each layer
that can approximately execute Inside-Outside al-
gorithm on all sentences with length at most L
generated by English PCFG, introducing 8.6% in-
crease in average 1-mask perplexity and resulting
in at most 9.45% drop in the parsing performance
of Labeled-Recall algorithm.

4 Probing Masked Language Models for
Parsing Information

Section 3 shows that transformers can execute the
Inside-Outside algorithm and contain syntactic in-
formation in their intermediate states. These re-
sults are existential, and it is unclear if models pre-
trained under MLM possess similar information.
One difficulty in answering this question is

that syntactic probes on BERT-like models may
leverage semantic cues to parse. To address this
concern, we pre-train multiple RoBERTa models
on synthetic datasets derived from English PCFG
(Section 4.1), which eliminates semantic dependen-
cies. We then probe the models for parse tree con-
struction (Section 4.2) and marginal probabilities
(Section 4.3) to verify if they capture information
computed by the Inside-Outside algorithm.
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Model Training ppl. Validation ppl.
A12L12 106.16 106.68
A12L1 111.8 110.57
A12L3 108.09 105.79
A12L6 105.78 104.58
A3L12 120.52 117.39
A24L12 106.28 104.5

Table 3: Perplexity of different models trained on
synthetic PCFG data. AiLj refers to a model with i
attention heads and j layers. Except for models with
few layers (A12L1) and few attention heads (A3L12),
trained models have nearly the same perplexity.
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Different settings
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Figure 1: Comparison between different probes (linear
or a 2-layer neural net) under different settings. 2-layer
probes achieve better parsing performance, compared to
linear probes. The large performance gap of the probes
on layer 0’s embeddings from A12L12 and the best layer
shows the existence of meaningful syntactic information
in the contextualized embeddings.

4.1 Pre-training on PCFG
We pre-train RoBERTa models with varying atten-
tion heads and layers on synthetic PCFG data. We
denote the models with AiLj, where i and j indi-
cate the number of attention heads and layers, re-
spectively. Additional pre-training details are avail-
able in Appendix A.1. Table 3 shows the perplexity
for various models. We find that except for models
with too few layers (A12L1) and too few attention
heads (A3L12), other models have nearly the same
perplexity. Further increasing depth and number of
heads does not appear to improve the result.

4.2 Probing for constituency parse trees
We probe the language models pre-trained on
synthetic PCFG data and show that these models
indeed capture the “syntactic information”, in par-
ticular, the structure of the constituency parse trees.

Experiment setup We mostly follow the probing
procedure in Vilares et al. (2020) that predicts the
relative depth of common ancestors between differ-
ent token pairs and then constructs the constituency
tree. Given a sentence w1w2 . . . wL with parse tree

T , we denote depth(i, i+ 1) the depth of the least
common ancestor of wi, wi+1 in the parse tree T .
We want to find a probe f (ℓ) to predict the relative
depth tar(i) = depth(i, i+1)− depth(i− 1, i) for
position i. In Vilares et al. (2020), the probe f (ℓ)

is linear, and the input to the probe f (ℓ) at posi-
tion i is the concatenation of the embeddings at
position i and the BOS (or EOS) token. Besides
the linear probe f (ℓ), we also experiment with the
probe where f (ℓ) is a 2-layer neural network with
16 hidden neurons. We consider three settings for
probing: train and test the probe on synthetic PCFG
data (PCFG); train and test on PTB dataset (PTB); and
train on the synthetic PCFG data while test on PTB
(out of distribution, OOD). The OOD setting serves
as a baseline for a syntactic probe on PTB since se-
mantic relations do not appear in the pre-trained
model or the probe.

Experiment results Figure 1 reveals a substan-
tial difference between the probing outcomes of
layer 0 embeddings and those of the best layer in
all settings. Both probing approaches profit greatly
from the representations of subsequent layers.
Table 4 shows probing results for different

settings (PCFG, PTB, and OOD), different probes
(linear or a 2-layer neural net) on different models.
Except for A12L1 and A3L12, the linear and
neural net probes give decent parsing scores (>
70% sentence F1 for neural net probes) in both
PCFG and PTB settings. As for the OOD setting, the
performances achieved by the best layer drop by
about 5% compared with PCFG and PTB, but they
are still much better than the performance achieved
by the 0-th layer embeddings. In this setting, there
is no semantic information even in the probe itself
and thus gives a baseline for the probes on PTB
dataset that only uses syntactic information. As
a comparison, the naive baseline, Right-branching
(RB), reaches < 40% for both sentence and corpus
F1 score (Li et al., 2020) on PTB dataset, and if we
use layer 0’s embeddings to probe, the sentence F1
is< 41% in all settings for all models. Our positive
results on syntactic parsing support the claim that
pre-training language models using MLM loss can
indeed capture the structural information of the
underlying constituency parse tree.

4.3 Probing for the marginal probabilities

Section 4.2 verifies that language models can
capture structure information of the parse trees, but
we still don’t know if the model executes the Inside-
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IO A12L12 A12L1 A12L3 A12L6 A3L12 A24L12

L
in
ea
r PC

FG Sent. F1 81.61 71.34 63.16 69.96 71.23 64.71 70.76
Corpus F1 71.65 63.01 54.24 61.54 62.57 55.36 62.56

PT
B Sent. F1 78.77 69.31 62.99 68.22 68.13 61.56 68.79

Corpus F1 75.90 65.01 59.96 65.21 65.01 58.31 65.97

O
O
D Sent. F1 81.61 64.26 57.96 63.22 63.89 58.00 63.88

Corpus F1 71.65 60.98 54.29 59.79 60.58 54.39 60.62
2-
la
ye
rN

N PC
FG Sent. F1 81.61 73.71 64.80 72.62 73.60 62.55 73.27

Corpus F1 71.65 66.18 57.16 65.36 66.01 53.36 65.92
PT

B Sent. F1 78.77 71.32 64.89 70.15 70.33 63.23 70.59
Corpus F1 75.90 68.07 62.09 67.25 67.31 60.59 67.93

O
O
D Sent. F1 81.61 66.99 59.89 66.21 66.56 57.60 67.18

Corpus F1 71.65 63.89 56.74 63.30 63.81 54.60 64.54

Table 4: Parsing results for different models under different settings using Linear and 2-layer neural net probes,
when compared to Inside-Outside algorithm (IO). We report the best F1 score achieved using any of the layer’s
embeddings. Scores within 1% of the max (except IO) in each row are highlighted. Models except A12L1 and
A3L12 give decent parsing F1 scores, and models with more layers or heads tend to get better F1 scores in general.

Span
Length A12L12 A12L1 A12L3 A12L6 A3L12 A24L12

ℓ = 2 .88 / .93 .83 / .88 .88 / .91 .88 / .92 .86 / .88 .87 / .92
ℓ = 3 .79 / .90 .74 / .84 .80 / .88 .79 / .89 .77 / .84 .79 / .89
ℓ = 4 .69 / .86 .65 / .77 .69 / .82 .69 / .84 .66 / .78 .69 / .85
ℓ = 5 .62 / .79 .57 / .70 .62 / .77 .61 / .81 .58 / .69 .62 / .79
ℓ = 10 .51 / .77 .48 / .68 .51 / .75 .51 / .78 .51 / .61 .51 / .73

Table 5: Probing for the “normalized” marginal probabilities of spans at different lengths on different pre-trained
models. We report the Pearson correlation between the predicted probabilities and the span marginal probabilities
computed by the Inside-Outside algorithm on PTB datasets, for both the linear and the 2-linear net probes (separated
by /). The high correlation indicates that the MLM pre-trained models approximately encode the marginal span
probabilities of the Inside-Outside algorithm during pre-training.

Outside algorithm proposed in Sections 3.1 and 3.2.
In this subsection, we test if model representations
can be used to predict marginal probabilities
computed in the Inside-Outside algorithm.

Experiment setup We train a probe to predict the
normalized marginal probabilities for spans with
a specific length. Fix the span length ℓ, for each
sentence w1w2 . . . wL, denote e1, e2, . . . , eL the
embeddings from the last layer of the pre-trained
language model. We want to find a probe f (ℓ)

such that for each span [i, i + ℓ − 1] with length
ℓ, the probe f (ℓ)([ei; ei+ℓ−1]) predicts the normal-
ized marginal probability of span [i, i+ ℓ− 1], i.e.
tar(i, i+ ℓ− 1) = s(i, i+ ℓ− 1)/maxj,j′ s(j, j

′),
where s(i, j) = maxA µ(A, i, j) is the marginal
probability of span [i, j] and µ(A, i, j) is given by
eq. 4. The input to the probe [ei; ei+ℓ−1] ∈ R2d is
the concatenation of ei and ei+ℓ−1. To test the sen-
sitivity of our probe, we also take the embeddings
from the 0-th layer as input to the probe f (ℓ).
We give two options for the probe f (ℓ): (1)

linear, and (2) a 2-layer neural network with 16
hidden neurons, since the relation between the
embeddings and the target may not be a simple

linear function. Similar to the Section 4.2, we also
consider three settings: PCFG, PTB, and OOD.

Experiment results Figure 2a reports the
correlation between the span marginal probabilities
and the predictions of the 4 different probes for
A12L12 model. For both linear and 2-layer neural
net probes, changing the input from layer 0 to layer
12 drastically increases the predicted correlation,
which again suggests that the uncontextualized em-
beddings don’t contain enough information about
the marginal probabilities. Besides, the neural net
can predict better on layer 12 embeddings, but per-
forms nearly the same on layer 0, suggesting that
the neural network is a better probe in this setting.
Figure 2b compares the probing results under

three different settings. Surprisingly, we find
that the probe can achieve high correlation with
the real marginal probabilities under all settings.
Furthermore, we observe that there is almost no
drop in performance when changing the test dataset
from PCFG to PTB (PCFG setting and OOD setting).
This result implies that the probe, along with the
embeddings, indeed contains the syntactic infor-
mation computed by the Inside-Outside algorithm
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(a) Compare linear/2-layer NN probes under PTB setting. We
observe: (a) 2-layer NN probe has better performance, and (b)
the probes give better performance on 12th-layer embeddings.
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(b) Performance of 2-layer neural net probe on the 12-th layer
embeddings under different settings. The closer correlation
performance of the probe across settings (including OOD) indi-
cates true marginal probabilities captured by the trained probe.

Figure 2: Comparison between different probes for
marginal probabilities on the A12L12 model. The y-axis
denotes correlation between the prediction and the tar-
get, and the x-axis denotes probes for different lengths.

and is not overfitting to the training dataset.
Table 5 shows the probing results on different

pre-trained models. The results show that the neu-
ral network probe is highly correlated with the tar-
get for most pre-trained models, except for A12L1
and A3L12 models. Surprisingly, even for length
10 spans, the neural network probe still achieves an
F1 score of up to 78% for the best model. The high
correlation suggests that the pre-trained models
contain certain syntactic information computed by
the Inside-Outside algorithm. Overall, the results
indicate that MLM training may incentivize the
model to approximate the Inside-Outside algorithm,
thus validating our constructions in Section 3.

4.4 Control tasks

In probing experiments, it is crucial to ensure that
the probing performance accurately reflects the
presence of the specific information we intend to
test. Consequently, it is undesirable for the probe
to possess excessive power and be capable of learn-
ing all aspects (see Section 2 for further discus-

sions). Chen et al. (2021) utilize “sensitivity” to
assess the extent to which the probe captures the
targeted information. The “sensitivity” of a probe
is defined as the difference in probing performance
between the layer of interest and the 0-th layer. In-
tuitively, a large gap indicates that the probe fails to
perform adequately using representations from the
0-th layer but achieves better performance when
utilizing representations from a later layer, thus con-
firming the presence of the targeted information.
Hewitt and Liang (2019) introduced another

metric, known as “selectivity”, to assess the
degree to which the probe captures the targeted
information. Broadly speaking, Hewitt and Liang
(2019) devised a specific task referred to as the
“control task” to evaluate the probe’s capability
to align with specific types of random labels.
Subsequently, “selectivity” is defined as the
difference in performance between the probe for
the original task, utilizing the layer of interest, and
the probe for the control task, also utilizing the
layer of interest. Intuitively, a large gap suggests
that the probe lacks sufficient expressive power,
resulting in the performance boost originating
from the representations of the layer being probed.
Note that a probe with higher “sensitivity”

does not necessarily imply larger “selectivity”.
Nevertheless, as demonstrated in the subsequent
parts (and appendix), the metrics of “sensitivity”
and “selectivity” align for both the constituency
parsing probes and the marginal probability probes
(Appendix A.4). We sketch the control task design
and results for the constituency parsing probe, and
defer the preliminaries of control tasks in Hewitt
and Liang (2019) and the control tasks experiments
for marginal probabilities probe to Appendix A.4.

Control task for constituency parsing For the
constituency parsing in Section 4.2, we follow the
design of control task for sequence labeling prob-
lems (Hewitt and Liang, 2019). Specifically, we
have yi = tar(i) = depth(i, i+1)−depth(i−1, i)
for position i. Then for the control task, for each
word w, we uniformly sample ϕ(w) ∈ {−1, 0, 1},
and then define the labels for the control task as
ŷ1:T = [ϕ(x1), ϕ(x2), . . . , ϕ(xT )].

Selectivity is aligned with Sensitivity Table 6
provides a summary of the performance of the con-
stituency parsing probe, employing different ar-
chitectures (linear classifier and a 2-layer neural
network with 16 hidden neurons), on the original
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L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
L
in
ea
r pred. rel. depth .606 .760 .789 .796 .800 .803 .803 .803 .802 .801 .800 .800 .799

control task .758 .677 .645 .626 .620 .610 .608 .617 .599 .595 .612 .606 .608
selectivity -.152 .083 .144 .170 .180 .193 .195 .186 .203 .206 .188 .194 .191

N
N

pred. rel. depth .616 .771 .804 .810 .814 .807 .815 .802 .795 .810 .806 .803 .776
control task .861 .793 .758 .667 .728 .653 .653 .668 .678 .693 .680 .697 .687
selectivity -.245 -.022 .046 .143 .086 .154 .162 .134 .117 .117 .126 .106 .089

Table 6: Computing the selectivity of constituency parsing probes with linear and 2-layer NN architectures (see
Section 4.2 and Section 4.4). The “pred. rel. depth” rows denote the probing results for the relative depth of
common ancestors in the constituency parse tree using different layers’ representations of A12L12. We report the
predicting accuracy under the PTB setting where the probe is trained and tested on PTB dataset. The “control task”
rows denote the predicting accuracy for the control task on PTB dataset using different layers’ representations of
A12L12. The selectivity is the difference between the original task performance and the control task performance.
We can observe that for all layers representations, the probe with a linear classifier has a larger selectivity.

task, control task, as well as the selectivity.
From Table 6, the probe with a 2-layer NN

achieves slightly higher accuracy in predicting the
relative depth of common ancestors, leading to a
higher F1 score in parsing. However, its perfor-
mance on the control task surpasses that of the
probe with a linear classifier by a significant margin.
This suggests that when using the “selectivity” met-
ric, the linear probe outperforms the 2-layer neural
network probe in recovering the constituency parse
tree, aligning with the conclusions drawn using the
“sensitivity metric” (see Figure 1, where the sensi-
tivity of the linear probe is greater than that of the
2-layer NN probe). Experiment results for marginal
probability control task (Appendix A.4) also sup-
port the alignment of Selectivity and Sensitivity.

5 Related Works

(Structural) probing Several recent works
on probing have aimed to study the encoded
information in BERT-like models (Rogers et al.,
2020). Hewitt and Manning (2019); Reif et al.
(2019); Manning et al. (2020); Vilares et al. (2020);
Maudslay et al. (2020); Maudslay and Cotterell
(2021); Chen et al. (2021); Arps et al. (2022);
Jawahar et al. (2019) have demonstrated that it is
possible to predict various syntactic information
present in the input sequence, including parse
trees or POS tags, from internal states of BERT.
In contrast to existing approaches that commonly
employ a model pre-trained on natural language,
we pre-train our model under PCFG-generated
data to investigate the interplay between the data,
the MLM objective, and the architecture’s capacity
for parsing. Besides syntax, probing has also been
used to test other linguistic structures like seman-
tics, sentiment, etc. (Belinkov et al., 2017; Reif
et al., 2019; Kim et al., 2020; Richardson et al.,

2020; Vulić et al., 2020; Conia and Navigli, 2022).

Expressive power of transformers Yun et al.
(2020a,b) show that transformers are universal
sequence-to-sequence function approximators.
Later, Pérez et al. (2021); Bhattamishra et al.
(2020b) show that attention models can simulate
Turing machines, with Wei et al. (2022) propos-
ing statistically meaningful approximations of
Turing machines. To understand the behavior of
moderate-size transformer architectures, many
works have investigated specific classes of lan-
guages, e.g. bounded-depth Dyck languages (Yao
et al., 2021), modular prefix sums (Anil et al.,
2022), adders (Nanda et al., 2023), regular
languages (Bhattamishra et al., 2020a), and sparse
logical predicates (Edelman et al., 2022). Merrill
et al. (2022) relate saturated transformers with con-
stant depth threshold circuits, and Liu et al. (2022)
provide a unified theory on understanding automata
within transformers. These works study expres-
sive power under a class of synthetic language.
Compared to the prior works, our results are more
related to the natural language, as we consider not
only a class of synthetic language (PCFG), but also
a specific PCFG tailored to the natural language.

6 Conclusion

In this work, we show that MLM with moderate
size has the capacity to parse decently well. We
probe BERT-like models pre-trained (with MLM
loss) on the synthetic text generated using PCFGs
to verify that these models capture syntactic in-
formation. Furthermore, we show that the models
contain the marginal span probabilities computed
by the Inside-Outside algorithm, thus connecting
MLM and parsing. We hope our findings may yield
new insights into large language models and MLM.
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Limitation

We believe that the main limitations of our study
are the transformer architecture and size.
Due to limitations imposed by GPU resources,

we assess encoder-only models with specific limita-
tions: a maximum of 12 layers, 24 attention heads
per layer, and 768 embedding dimensions. Never-
theless, all the experiment results begin to stabilize
for smaller models and generalize to the largest
model we investigate. Hence, we believe that the
results can be generalized to even larger models.

Our central theoretical discovery (Theorem 3.3)
establishes a connection between the masked lan-
guage modeling (MLM) loss and the Inside-outside
algorithm. Extending to auto-regressive models
like GPT is an important theoretical question and
is kept for future study.
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Appendix

A More Experiment Results

In this section, we provide more experiment results
for RoBERTa pre-trained on PCFG-generated data.
In Appendix A.2, we show more structural probing
results related to the experiments in Section 4.2.
In Appendix A.5, we do some simple analysis on
the attention patterns for RoBERTa pre-trained on
PCFG-generated data, trying to gain more under-
standing of the mechanism beneath large language
models.

A.1 Details for pre-training
Experiment setup We generate 107 sentences
for the training set from the PCFG, with an average
length of 25 words. The training set is roughly
10% in size compared to the training set of the
original RoBERTa which was trained on a combi-
nation of Wikipedia (2500M words) plus BookCor-
pus (800M words). We also keep a small valida-
tion set of 5 × 104 sentences generated from the
PCFG to track the MLM loss. We follow (Izsak
et al., 2021; Wettig et al., 2022) to pre-train all
our models within a single day on a cluster of 8
RTX 2080 GPUs. Specifically, we train our models
with AdamW (Loshchilov and Hutter, 2017) opti-
mization, using 4096 sequences in a batch and hy-
perparameters (β1, β2, ϵ) = (0.9, 0.98, 10−6). We
follow a linear warmup schedule for 1380 training
steps with the peak learning rate of 2× 10−3, after
which the learning rate drops linearly to 0 (with the
max-possible training step being 2.3 × 104). We
report the performance of all our models at step
5 × 103 where the loss seems to converge for all
the models.

Architecture To understand the impact of differ-
ent components in the encoder model, we pre-train
different models by varying the number of attention
heads and layers in the model. To understand the
role of the number of layers in the model, we start
from the RoBERTa-base architecture, which has 12
layers and 12 attention heads, and vary the number
of layers to 1,3,6 to obtain 3 different architectures.
Similarily, to understand the role of the number
of attention heads in the model, we start from the
RoBERTa-base architecture and vary the number
of attention heads to 3 and 24 to obtain 2 different
architectures.

Data generation from PCFG Strings are gen-
erated from the PCFG G = (N , I,P, n, p) as fol-

lows: We always maintain a string st ∈ ([n]∪N )∗

at step t. The initial string s1 = ROOT. At step t,
if all characters in st belong to [n], the generation
process ends, and st is the resulting string. Other-
wise, we pick a character A ∈ st such that A ∈ N .
If A ∈ P , we replace the character A to w with
probability Pr[A → w]. If A ∈ I, we replace the
character A to two characters BC with probability
Pr[A → BC].

A.2 More results on constituency parsing

More details on probing experiments In Sec-
tion 4.2, we mention that there are three settings:
PCFG, PTB, and OOD. We generate two synthetic
PCFG datasets according to the PCFG generation
process: the first contains 10,000 sentences, which
serves as the training set for probes, and the second
contains 2,000 sentences, which serves as the test
set for probes. As for the PTB, the training set for
the probes consists of the first 10,000 sentences
from sections 02-21, and we use PTB section 22 as
the test set for the probes. In the PCFG setting, we
train on the PCFG training set we generated, and
test on the PCFG test set. In the PTB setting, we
train on the PTB training set (10,000 sentences in
sections 02-21) and test on the PTB test set (sec-
tion 22). In the OOD setting, we train on the PCFG
training set, while test on the PTB test set (section
22).
For the linear probe, we directly use Scikit-

learn (Pedregosa et al., 2011). For the 2-layer
NN probe, we train the neural net with Adam opti-
mizer with learning rate 1e − 3. We optimize for
800 epochs, and we apply a multi-step learning
rate schedule with milestones 200, 400, 600 and
decreasing factor 0.1. The batch size for Adam is
chosen to be 4096.

Probing on embeddings from different layers
In Section 4.2, we show the probing results on the
embeddings either from 0-th layer or from the best
layer (the layer that achieves the highest F1 score)
of different pre-trained models. In this section,
we show how the F1 score changes with different
layers.
Figure 3 shows sentence F1 scores for linear

probes f(·) trained on different layers’ embeddings
for different pre-trained models. We show the re-
sults under the PCFG and PTB settings. From Fig-
ure 3, we observe that using the embeddings from
the 0-th layer can only get sentence F1 scores close
to (or even worse than) the naive Right-branching
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baseline for all the pre-trained models. However,
except for model A3L12, the linear probe can get
at least 60% sentence F1 using the embeddings
from layer 1. Then, the sentence F1 score increases
as the layer increases, and gets nearly saturated at
layer 3 or 4. The F1 score for the latter layers may
be better than the F1 score at layer 3 or 4, but the
improvement is not significant. The observations
still hold if we change the linear probe to a neural
network, consider the OOD setting instead of PCFG
and PTB, or change the measurement from sentence
F1 to corpus F1.
Our observations suggest that most of the con-

stituency parse tree information can be encoded
in the lower layers, and a lot of the parse tree in-
formation can be captured even in the first layer.
Although our constructions (Theorems 3.1 and 3.2)
and approximations (Theorems 3.4 and C.2) try
to reduce the number of attention heads and the
number of embedding dimensions close to the real
language models, we don’t know how to reduce
the number of layers close to BERT or RoBERTa
(although our number is acceptable since GPT-3
has 96 layers). More understanding of how lan-
guage models can process such information in such
a small number of layers is needed.

Comparison with probes using other input struc-
tures In Section 4.2, we train a probe f(·) to
predict the relative depth tar(i) = depth(i, i +
1) − depth(i − 1, i), and the input to the probe
f is the concatenation of the embedding e

(ℓ)
i at

position i and the embedding e
(ℓ)
EOS for the EOS

token at some layer ℓ. Besides taking the con-
catenation [e

(ℓ)
i ; e

(ℓ)
EOS] as the input structure of

the probe, it is also natural to use the concatena-
tion [e

(ℓ)
i−1; e

(ℓ)
i ; e

(ℓ)
i+1] to predict the relative depth

tar(i). In this part, we compare the performances of
probes with different input structures. We use EOS
to denote the probe that takes [e(ℓ)i ; e

(ℓ)
EOS] as the in-

put and predicts the relative depth, while ADJ (Ad-
jacent embeddings) to denote the probe the takes
[e

(ℓ)
i−1; e

(ℓ)
i ; e

(ℓ)
i+1] as input.

Figure 4 shows the probing results on A12L12,
the model with 12 attention heads and 12 layers.
We compare the probes with different inputs struc-
ture (EOS or ADJ), and the input embeddings come
from different layers (the 0-th layer or the layer that
achieves the best F1 score). We observe that: (1)
the probes using ADJ input structure have better
parsing scores than the probes using EOS input

structure, and (2) the sentence F1 for the probes
using the ADJ input structure is high even if the
input comes from layer 0 of the model (> 55% for
linear f(·) and > 60% for neural network f(·)).
Although the probe using ADJ has better parsing
scores than the probe using EOS, it is harder to
test whether it is a good probe, since the concatena-
tion of adjacent embeddings [e(0)i−1; e

(0)
i ; e

(0)
i+1] from

layer 0 is already contextualized, and it is hard to
find a good baseline to show that the probe is sen-
sitive to the information we want to test. Thus,
we choose to follow Vilares et al. (2020); Arps
et al. (2022) and use the probe with input structure
[e

(ℓ)
i ; e

(ℓ)
EOS] in Section 4.2.

Nonetheless, the experiment results for probes
taking [e

(0)
i−1; e

(0)
i ; e

(0)
i+1] as input are already sur-

prising: by knowing three adjacent word identities
and their position (the token embedding e

(0)
i con-

tains both the word embedding and the positional
embedding) and train a 2-layer neural network on
top of that, we can get 62.67%, 63.91%, 57.02%
sentence F1 scores under PCFG, PTB, and OOD set-
tings respectively. As a comparison, the probe tak-
ing [e

(ℓ)
i ; e

(ℓ)
EOS] as input (Vilares et al., 2020; Arps

et al., 2022) only get 39.06%, 39.31%, 33.33% sen-
tence F1 under PCFG, PTB, and OOD settings re-
spectively. It shows that lots of syntactic informa-
tion (useful for parsing) can be captured by just
using adjacent words without more context.

More discussion on probing measurement (Un-
labelled) F1 score is the default performance mea-
surement in the constituency parsing and syntactic
probing literature. However, we would like to point
out that only focusing on the F1 score may cause
some bias. Because all the spans have equal weight
when computing the F1 score, and most of the
spans in a tree have a short length (if the parse tree
is perfectly balanced, then length 2 spans consist
of half of the spans in the parse tree), one can get
a decently well F1 score by only getting correct
on short spans. Besides, we also show that by tak-
ing the inputs [e(0)i−1; e

(0)
i ; e

(0)
i+1] from layer 0 of the

model (12 attention heads and 12 layers), we can
already capture a lot of the syntactic information
useful to recover the constituency parse tree (get
a decently well F1 score). Thus, the F1 score for
the whole parse tree may cause people to focus
less on the long-range dependencies or long-range
structures, and focus more on the short-range de-
pendencies or structures.
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(a) Comparison under PCFG setting. We compare the models
with different number of layers.
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(b) Comparison under PCFG setting. We compare the models
with different number of attention heads.
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(c) Comparison under PTB setting. We compare the models
with different number of layers.
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(d) Comparison under PTB setting. We compare the models
with different number of attention heads.

Figure 3: Sentence F1 for linear probes f(·) trained on different layers’ embeddings for different pre-trained models.
We show the results under PCFG and PTB settings. AiLj denotes the pre-trained model with i attention heads and j
layers.

To mitigate this problem, Vilares et al. (2020)
computed the F1 score not only for the whole parse
tree, but also for each length of spans. Vilares et al.
(2020) showed that BERT trained on natural lan-
guage can get a very good F1 score when the spans
are short (for length 2 spans, the probing F1 is over
80%), but when the span becomes longer, the F1
score quickly drops. Even for spans with length 5,
the F1 score is less than 70%, and for spans with
length 10, the F1 score is less than 60%. Our ex-
periments that probe the marginal probabilities for
different lengths of spans (Section 4.3) can also be
viewed as an approach to mitigate the problem.

A.3 More results on probing marginal
probabilities

In Section 4.3, we conduct probing experiments to
demonstrate the predictability of the "normalized
marginal probabilities" computed by the Inside-

Outside algorithm using transformer representa-
tions. Our objective is to establish a strong correla-
tion, measured through the Pearson correlation co-
efficient. However, we have not provided a compre-
hensive explanation for our preference for Pearson
correlation over alternative metrics such as Spear-
man correlation. In the following section, we show
the experiment results measured by the Spearman
correlation, and give an explanation of why we
prefer the Pearson correlation over the Spearman
correlation.

Measure with Spearman correlation Table 7
summarizes the correlations between the predicted
probabilities and the span marginal probabilities
computed by the Inside-Outside algorithm on PTB
datasets for the 2-linear net probes. It is evident that
the Spearman correlation is significantly lower than
the Pearson correlation, indicating that the probe
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(a) Comparison of different inputs under different settings
when the probe f(·) is linear.
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(b) Comparison of different inputs under different settings
when the probe f(·) is a 2-layer neural network.

Figure 4: Comparison of the probes with different inputs under different settings. We probe the model with 12
attention heads and 12 layers, and report the scores with f(·) taking embeddings from layer 0 or the embeddings
from the best layer. EOS denotes the probe that takes [e(ℓ)i ; e

(ℓ)
EOS] as input and predicts the relative depth tar(i), and

ADJ (Adjacent embeddings) denotes the probe that takes [e(ℓ)i−1; e
(ℓ)
i ; e

(ℓ)
i+1] as input.

Span
Length A12L12 A12L1 A12L3 A12L6 A3L12 A24L12

ℓ = 2 .71 / .93 .69 / .88 .75 / .93 .71 / .93 .76 / .86 .75 / .92
ℓ = 5 .59 / .82 .54 / .64 .47 / .79 .49 / .79 .54 / .71 .48 / .79
ℓ = 10 .43 / .78 .48 / .68 .59 / .73 .45 / .75 .33 / .62 .39 / .72

Table 7: Probing for the “normalized” marginal probabilities of spans at different lengths on different pre-trained
models. We report the Spearman and Pearson correlations (separated by /) between the predicted probabilities and
the span marginal probabilities computed by the Inside-Outside algorithm on PTB datasets for the 2-linear net probe.

(a) Span length to probe: ℓ = 2. (b) Span length to probe: ℓ = 5. (c) Span length to probe: ℓ = 10.

Figure 5: The predicted probability versus true normalized marginal probability plot for different span lengths ℓ
using 2-layer NN probe with the 12-th layer’s representations from A12L12 model. In each figure, we sample 200
points (each point corresponds to a span) to plot from the test set. The y-axis denotes the predicted probabilities and
the x-axis denotes the true normalized marginal probabilities. The line shows the best linear fit for all the spans in
the test set. We can observe that there are lots of points that have very small normalized marginal probabilities, and
it is very hard to predict their rank correctly, thus resulting in a low Spearman correlation.
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primarily captures "linear" correlations rather than
rank-based relationships.
In order to investigate the underlying cause of

this phenomenon, we plot the predicted probabili-
ties against the true normalized marginal probabili-
ties, as shown in Figure 5. Numerous points have
extremely small normalized marginal probabilities,
particularly when the probe length ℓ is large (e.g.,
ℓ = 5, 10). This observation aligns with the intu-
ition that the probability of a randomly selected
span existing in the constituency parse tree is low.
However, accurately predicting the exact rank

for the points clustered near the origin proves to
be extremely challenging, leading to a relatively
low Spearman correlation. In contrast, when con-
sidering the Pearson correlation, the noise associ-
ated with predicting spans having low normalized
marginal probabilities is relatively small compared
to the overall "variance" of the data points. Further-
more, it is evident that the probe exhibits greater
efficacy in capturing the "influential spans" charac-
terized by large normalized marginal probabilities.
Achieving relatively accurate predictions for these
influential spans accounts for a significant portion
of the observed variation, leading to a relatively
high Pearson correlation.

A.4 More details on control tasks

In this section, we present more details for the
design of the control task in (Hewitt and Liang,
2019), and also show the control task experiment
for the marginal probability probes (Section 4.3).

Control task Hewitt and Liang (2019) consid-
ered control task for sequence labeling problems:
Given a sentence x1:T , the goal is to label each
word y1:T . For example, the Part-of-speech tag-
ging problem and the dependency parsing all be-
long to the sequence labeling category, since for
Part-of-speech tagging, yi is the POS tag of xi, and
for dependency parsing, yi is the parent of xi in
the parse tree. For a sequence labeling problem,
the control task for this sequence labeling problem
consists of two key components:

1. Structure: the output ŷi of a word xi is a de-
terministic function of xi, i.e., ŷi = ϕ(xi).

2. Randomness: The output ŷi for each word xi
is sampled independently at random.

Then, the goal of the control task is to fit the
labels ŷ1:T using the probe with the input h1:T

where h1:T denote the hidden representations of
the specific layer of the transformer. Please refer
to Section 2 of Hewitt and Liang (2019) for more
details and examples on control task.

Control task for marginal probability probe
For the marginal probability probe in Section 4.3,
we need to generalize the original control task from
sequence labeling problem to span labeling prob-
lem. Given a span xi:j , the original goal is to pre-
dict the normalized marginal probability yi,j =
tar(i, j) = s(i, j)/maxj1,j2 s(j1, j2) where s(i, j)
is the marginal probability for span i : j com-
puted by the Inside-Outside algorithm. Now for
each pair of words w1, w2, we uniformly sample
ϕ(w1, w2) ∈ [0, 1]. Then for the sequence x1:T , we
have the label for the control task ŷi,j = ϕ(xi, xj).

Selectivity is aligned with Sensitivity for marginal
probability probes In Section 4.4, we design the
control task for constituency parsing probes and
show that selectivity is aligned with sensitivity (Ta-
ble 6). In this part, we show that selectivity is
aligned with sensitivity for the marginal probability
probes. Table 8 provides a summary of the perfor-
mance of the constituency parsing probe and the
marginal probability probes, employing different
architectures (linear classifier and a 2-layer neural
network with 16 hidden neurons), on the original
task, control task, as well as the selectivity.
Based on the information presented in Table 8,

it is evident that the probe utilizing a 2-layer neu-
ral network demonstrates superior performance in
predicting span probabilities for the control task.
Nonetheless, compared to the linear probe, the 2-
layer neural network probe achieves significantly
better results on the original task, resulting in a
larger “selectivity”. Analyzing Figure 2a, we ob-
serve that the 2-layer NN probe exhibits signifi-
cantly stronger predictive correlation than the linear
probe at the 12-th layer of A12L12, while display-
ing similar performance at the 0-th layer, which
contributes to a higher “sensitivity”. Consequently,
the “selectivity” metric aligns with the “sensitivity”
metric for marginal probability probes, indicating
that 2-layer NN probes capture a relatively greater
amount of syntactic information.

A.5 Analysis of attention patterns

In Section 4.2, we probe the embeddings of the
models pre-trained on synthetic data generated
from PCFG and show that model training on MLM
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Probe span length 2 3 4 5 10

L
in
ea
r pred. marginal prob. .88 .79 .69 .62 .51

control task .62 .55 .53 .60 .58
selectivity .26 .24 .16 .02 -.07

N
N

pred. marginal prob. .93 .90 .86 .79 .77
control task .66 .66 .69 .66 .68
selectivity .27 .24 .17 .13 .09

Table 8: Computing the selectivity of marginal probability probes with linear and 2-layer NN architectures (see
Section 4.3 and Appendix A.4). The “pred. marginal prob.” rows denote the probing results for the “normalized”
marginal probabilities of spans at different lengths using the 12-th layer of A12L12. We report the Pearson
correlation between the predicted probabilities and the span marginal probabilities computed by the Inside-Outside
algorithm on PTB dataset. The “control task” rows denote the Pearson correlation between the predicted probabilities
and the probabilities generated from the control task on PTB dataset using the 12-th layer of A12L12. The selectivity
is the difference between the original task performance and the control task performance. We can observe that for
spans with all lengths tested, the probe with 2-layer NN has a larger selectivity, especially when the probe length is
large.

indeed captures syntactic information that can re-
cover the constituency parse tree. Theorem 3.3
builds the connection betweenMLM and the Inside-
Outside algorithm, and the connection is also ver-
ified in Section 4.3, which shows that the em-
beddings also contain the marginal probability in-
formation computed by the Inside-Outside algo-
rithm. However, we only build up the correlation
between the Inside-Outside algorithm and the at-
tention models, and we still don’t know the mecha-
nism inside the language models: the model may
be executing the Inside-Outside algorithm (or some
approximations of the Inside-Outside algorithm),
but it may also use some mechanism far from the
Inside-Outside algorithm but happens to contain
the marginal probability information. We leave for
future work the design of experiments to interpret
the content of the contextualized embeddings and
thus “reverse-engineer” the learned model. In this
section, we take a small step to understand more
about the mechanism of language models: we need
to open up the black box and go further than prob-
ing, and this section serves as one step to do so.

General idea The key ingredient that distin-
guishes current large language models and the fully-
connected neural networks is the self-attention
module. Thus besides probing for certain informa-
tion, we can also look at the attention score matrix
and discover some patterns. In particular, we are
interested in how far an attention head looks at,
which we called the "averaged attended distance".

Averaged attended distance For a model and a
particular attention head, given a sentence s with
length Ls, the head will generate an Ls×Ls matrix
A containing the pair-wise attention score, where

each row of A sums to 1. Then we compute the
following quantity “Averaged attended distance”

ADs =
1

Ls

∑

1≤i,j≤Ls

|i− j| ·Ai,j ,

which can be intuitively interpreted as “the aver-
age distance this attention head is looking at”. We
then take the average of the quantity for all sen-
tences. We compute “Averaged attended distance”
for three models on the synthetic PCFG dataset and
PTB dataset. The models all have 12 attention heads
in each layer but have 12, 6, 3 layers respectively.

Experiment results Figure 6 shows the results of
the “Averaged attented distance” for each attention
head in different models. Figures 6a, 6c and 6e
show the results on the synthetic PCFG dataset, and
Figures 6b, 6d and 6f show the results on the PTB
dataset. We sort the attention heads in each layer
according to the “Averaged attended distance”.

From Figures 6a, 6c and 6e, we can find that for
all models, there are several attention heads in the
first layer that look at very close tokens (“Averaged
attended distance” less than 3). Then as the layer
increases, the “Averaged attended distance” also in-
creases in general, meaning that the attention heads
are looking at further tokens. Then at some layer,
there are some attention heads looking at very far
tokens (“Averaged attended distance” larger than
12).‡ This finding also gives some implication that
the model is doing something that correlates with
our construction: it looks longer spans as the layer

‡Note that the average length of the sentences in the syn-
thetic PCFG dataset is around 24, if the attention head gives 0.5
attention score to the first and the last token for every token,
the “Averaged attended distance” will be 12.

16530



increases. However, different from our construc-
tion that the attention head only looks at a fixed
length span, models trained using MLM look at
different lengths of spans at each layer, which can-
not be explained by our current construction, and
suggests a further understanding of the mechanism
of large language models.

Besides, we can find that the patterns are nearly
the same for the synthetic PCFG dataset and PTB
dataset, and thus the previous finding can also be
transferred to the PTB dataset.

B Missing Proofs in Section 3

In this section, we show the detailed proof for The-
orem 3.1, Theorem 3.2, and Theorem 3.3.

B.1 Proof of Theorem 3.1
Proof. The first L−1 layers simulate the recursive
formulation of the Inside probabilities from eq. 2,
and the last L − 1 layers simulate the recursive
formulation of the outside probabilities from eq. 3.
The model uses embeddings of size 4|N |L + L,
where the last L coordinates serve as one-hot posi-
tional embeddings and are kept unchanged through-
out the model.

Notations: For typographical simplicity, we will
divide our embeddings into 5 sub-parts. We will
use the first 2|N |L coordinates to store the in-
side probabilities, the second 2|N |L coordinates
to store the outside probabilities, and the final
L coordinates to store the one-hot positional en-
codings. For every position i and span length
ℓ+ 1, we store the inside probabilities {α(A, i, i+
ℓ)}A∈N after computation in its embedding at co-
ordinates [|N |ℓ, |N |(ℓ + 1)). Similarly we store
{α(A, i−ℓ, i)}A∈N at [|N |(L+ℓ), |N |(L+ℓ+1)),
{β(A, i, i + ℓ)}A∈N at [|N |(2L + ℓ), |N |(2L +
ℓ + 1)), and {β(A, i − ℓ, i)}A∈N at [|N |(3L +
ℓ), |N |(3L + ℓ + 1)) respectively. For simplic-
ity of presentation, we won’t handle cases where
i+ ℓ or i− ℓ is outside the range of 1 to L - those
coordinates will be fixed to 0.

Token Embeddings: The initial embeddings for
each token w will contain Pr[A → w] for all A ∈
P . This is to initiate the inside probabilities of all
spans of length 1. Furthermore, the tokens will
have a one-hot encoding of their positions in the
input in the last L coordinates.

Inside probabilities: The contextual embed-
dings at position i after the computations of any

layer ℓ < L contains the inside probabilities of all
spans of length at most ℓ+1 starting and ending at
position i, i.e. α(A, i, i+ k) and α(A, i− k, i) for
all A ∈ N and k ≤ ℓ. The rest of the coordinates,
except the position coordinates, contain 0.

Layer 1 ≤ ℓ < L: At each position i, this layer
computes the inside probabilities of spans of length
ℓ+ 1 starting and ending at i, using the recursive
formulation from eq. 2.
For every non-terminal A ∈ N , we will use

a unique attention head to compute α(A, i, i + ℓ)
at each token i. Specifically, the attention head
representing non-terminal A ∈ N will represent
the following operation at each position i:

α(A, i, j)

=
∑

B,C∈N

j−1∑

k=i

Pr[A → BC] · α(B, i, k) · α(C, k + 1, j)

=
∑

B,C∈N

∑

ℓ1,ℓ2≥0
ℓ1+ℓ2=ℓ−1

Pr[A → BC]

· α(B, i, i+ ℓ1) · α(C, j − ℓ2, j), (7)

where j = i+ ℓ. In the final step, we modified
the formulation to represent the interaction of spans
of different lengths starting at i and ending at j. We
represent this computation as the attention score
ai,j using a key matrixK(ℓ)

A and query matrixQ(ℓ)
A .

Computing Eq. 7 We set the Key matrix K
(ℓ)
A

as I . The Query matrix Q
(ℓ)
A is set such that if

we define PA ∈ R|N |×|N | that contains {Pr[A →
BC]}B,C∈N , PA appears at positions (|N |(L +
ℓ2), |N |ℓ1) for all ℓ1, ℓ2 ≥ 0 with ℓ1 + ℓ2 = ℓ −
1. Finally, Q(ℓ)

A contains Qp ∈ RL×L at position
(4|N |L, 4|N |L), such that Qp[i, i + ℓ] = 0 for
0 ≤ i < L, with the rest set to −ζ for some large
constant ζ. The rest of the blocks are set as 0. We
give an intuition behind the structure ofQ(ℓ)

A below.

Intuition behind Q
(ℓ)
A : For any position i and

range ℓ1 ≤ ℓ, e(ℓ−1)
i contains the inside proba-

bilities {α(C, i − ℓ1, i)}C∈N in the coordinates
[|N |(L+ ℓ1), |N |(L+ ℓ1 + 1)), while it contains
the inside probabilities {α(B, i, i+ℓ1)}B∈N in the
coordinates [|N |ℓ1, |N |(ℓ1 + 1)). Hence, if we set
the block at position (|N |(L+ ℓ2), |N |ℓ1) in Q(ℓ)

A

to PA for some 0 ≤ ℓ1, ℓ2 ≤ ℓ, with the rest set to
0, we can get for any two positions i, j,

(K
(ℓ)
A e

(ℓ−1)
j )⊤Q(ℓ)

A e
(ℓ−1)
i
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(a) 12 attention heads and 12 layers, PCFG dataset.
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(b) 12 attention heads and 12 layers, PTB dataset.
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(c) 12 attention heads and 6 layers, PCFG dataset.
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(d) 12 attention heads and 6 layers, PTB dataset.
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(e) 12 attention heads and 3 layers, PCFG dataset.
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(f) 12 attention heads and 3 layers, PTB dataset.

Figure 6: “Averaged attented distance” of each attention heads for different models on PCFG and PTB datasets.
Figures 6a, 6c and 6e show the results on the synthetic PCFG dataset, and Figures 6b, 6d and 6f show the results on
the PTB dataset.

=
∑

B,C∈N
Pr[A → BC] · α(B, i, i+ ℓ1) · α(C, j − ℓ2, j).

Because we want to involve the sum over all
ℓ1, ℓ2 pairs with ℓ1+ ℓ2 = ℓ−1, we will set blocks
at positions {(|N |(L+ ℓ2), |N |ℓ1)}ℓ1,ℓ2:ℓ1+ℓ2=ℓ−1

to PA, while setting the rest to 0. This gives us

(K
(ℓ)
A e

(ℓ−1)
j )⊤Q(ℓ)

A e
(ℓ−1)
i

=
∑

B,C∈N

∑

ℓ1,ℓ2≥0
ℓ1+ℓ2=ℓ−1

Pr[A → BC] · α(B, i, i+ ℓ1)
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· α(C, j − ℓ2, j).

However, we want (K(ℓ)
A e

(ℓ−1)
j )⊤Q(ℓ)

A e
(ℓ−1)
i to

compute α(A, i, j) iff j = i + ℓ and 0 otherwise,
so we will use the final block inQ

(ℓ)
A that focuses

on the one-hot position encodings of i and j to dif-
ferentiate the different location pairs. Specifically,
the final block Qp will return 0 if j = i+ ℓ, while
it returns −ζ for some large constant ζ if j ̸= i+ ℓ.
This gives us

(K
(ℓ)
A e

(ℓ−1)
j )⊤Q(ℓ)

A e
(ℓ−1)
i

=ζ(I[j − i = ℓ]− 1) +
∑

B,C∈N

∑

ℓ1,ℓ2≥0
ℓ1+ℓ2=ℓ−1

Pr[A → BC]

· α(B, i, i+ ℓ1) · α(C, j − ℓ2, j). (8)

With the inclusion of the term ζ(I[j − i = ℓ] −
1), we make (K(ℓ)

A e
(ℓ−1)
j )⊤Q(ℓ)

A e
(ℓ−1)
i positive if

j − i = ℓ, and negative if j − i ̸= ℓ. Applying a
ReLU activation on top will zero out the unneces-
sary terms, leaving us with α(A, i, i + ℓ) at each
location i.

Similarly, we use another |N | attention heads to
compute α(A, i−ℓ, i). In the end, we use the resid-
ual connections to copy the previously computed
inside probabilities α(A, i−ℓ′, i) and α(A, i, i+ℓ′)
for ℓ′ < ℓ.

Outside probabilities: In addition to all the in-
side probabilities, the contextual embeddings at
position i after the computations of any layer
(2L − 1) − ℓ (≥ L) contain the outside probabil-
ities of all spans of length at least ℓ + 1 starting
and ending at position i, i.e. β(A, i, i + k) and
β(A, i − k, i) for all A ∈ N and k ≥ ℓ. The rest
of the coordinates, except the position coordinates,
contain 0.

Layer L In this layer, we initialize the out-
side probabilities β(ROOT, 1, L) = 1 and
β(A, 1, L) = 0 for A ̸= ROOT. Furthermore, we
move the inside probabilities α(A, i+1, i+k) from
position i+ 1 to position i, and α(A, i− k, i− 1)
from position i− 1 to position i using 2 attention
heads.

Layer L + 1 ≤ ℓ̃ := (2L − 1) − ℓ ≤ 2L − 1:
At each position i, this layer computes the outside
probabilities of spans of length ℓ+ 1 starting and
ending at i, using the recursive formulation from
eq. 3. The recursive formulation for β(A, i, i+ ℓ)
for a non-terminal A ∈ N has two terms, given by

β(A, i, j) =β1(A, i, j) + β2(A, i, j), with

β1(A, i, j) =
∑

C,B∈N

i−1∑

k=1

Pr[B → CA]

· α(C, k, i− 1)β(B, k, j), and (9)

β2(A, i, j) =
∑

B,C∈N

L∑

k=j+1

Pr[B → AC]

· α(C, j + 1, k)β(B, i, k), (10)

where j = i+ ℓ. For each non-terminal A ∈ N ,
we will use two unique heads to compute β(A, i, i+
ℓ) , each representing one of the two terms in the
above formulation. We outline the construction for
β1; the construction for β2 follows similarly.

Computing Eq. 9 We build the attention head in
the same way we built the attention head to repre-
sent the inside probabilities in eq. 8. Similar to 8,
we modify the formulation of β1 to highlight the
interaction of spans of different lengths.

β1(A, i, j) =
∑

B,C∈N

∑

ℓ1,ℓ2≥0
ℓ2−ℓ1=ℓ

Pr[B → CA]

· α(C, i− ℓ1, i− 1)β(B, j − ℓ2, j), (11)

where j = i+ ℓ. We represent this computation
as the attention score ai,i+ℓ using a key matrix

K
(ℓ̃)
A,1 and query matrixQ(ℓ̃)

A,1. First, we set the Key

matrix K
(ℓ̃)
A,1 as I . If we define PA,r ∈ R|N |×|N |

as a matrix that contains {Pr[B → CA]}B,C∈N ,
which is the set of all rules where A appears as the

right child, Q(ℓ̃)
A,1 is set such that PA,r appears at

positions [|N |(3L+ ℓ2), |N |(L+ ℓ1)) for all 0 ≤
ℓ1, ℓ2 ≤ L that satisfy ℓ2 − ℓ1 = ℓ. Finally, Q(ℓ̃)

A,1

containsQp ∈ RL×L at position (4|N |L, 4|N |L),
such thatQp[i, i+ ℓ] = 0 for 0 ≤ i < L, with the
rest set to−ζ for some large constant ζ . The rest of
the blocks are set as 0. We give an intuition behind

the structure ofQ(ℓ̃)
A,1 below.

Intuition forQ(ℓ̃)
A,1: For position i and any ranges

1 ≤ ℓ1 < L, ℓ + 1 ≤ ℓ2 ≤ L, e(ℓ̃−1)
i contains

the inside probabilities {α(C, i− ℓ1, i− 1)}C∈N
in the coordinates [|N |(L + ℓ1), |N |(L + ℓ1 +
1)), while it contains the outside probabilities
{β(B, i−ℓ2, i)}B∈N in the coordinates [|N |(3L+
ℓ2), |N |(3L+ ℓ2 + 1)). Hence, if we set the block
at position (|N |(3L+ ℓ2), |N |(L+ ℓ1)) to PA for
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some 0 ≤ ℓ1 ≤ L, ℓ + 1 ≤ ℓ2 ≤ L, with the rest
set to 0, we can get for any two positions i, j,

(K
(ℓ̃)
A e

(ℓ̃−1)
j )⊤Q(ℓ̃)

A e
(ℓ̃−1)
i

=
∑

B,C∈N
Pr[B → CA] · α(C, i− ℓ1, i− 1) · β(B, j − ℓ2, j).

Because we want to include the sum over ℓ1, ℓ2
pairs with ℓ2 − ℓ1 = ℓ, we will only set blocks
at positions [|N |(3L + ℓ2), |N |(L + ℓ1)) for all
0 ≤ ℓ1, ℓ2 ≤ L that satisfy ℓ2 − ℓ1 = ℓ to PA,r,
while setting the rest to 0. This gives us

(K
(ℓ̃)
A e

(ℓ̃−1)
j )⊤Q(ℓ̃)

A e
(ℓ̃−1)
i

=
∑

B,C∈N

∑

ℓ1,ℓ2≥0
ℓ2−ℓ1=ℓ

Pr[B → CA]

· α(C, i− ℓ1, i− 1) · β(B, j − ℓ2, j).

Because we want (K(ℓ̃)
A e

(ℓ̃−1)
j )⊤Q(ℓ̃)

A e
(ℓ̃−1)
i to

compute β1(A, i, j) with j = i+ℓ and 0 otherwise,
we will use the final block inQ

(ℓ)
A that focuses on

the one-hot position encodings of i and j to differ-
entiate the different location pairs. Specifically, the
final block Qp will return 0 if j = i + ℓ, while it
returns −ζ for some large constant ζ, if j ̸= i+ ℓ.
This gives us

(K
(ℓ̃)
A e

(ℓ̃−1)
j )⊤Q(ℓ̃)

A e
(ℓ̃−1)
i

=ζ(I[j − i = ℓ]− 1) +
∑

B,C∈N

∑

ℓ1,ℓ2≥0
ℓ2−ℓ1=ℓ

Pr[B → CA]

· α(C, i− ℓ1, i− 1) · β(B, j − ℓ2, j)

With the inclusion of the term ζ(I[j − i =

ℓ] − 1), we make (K
(ℓ̃)
A e

(ℓ̃−1)
j )⊤Q(ℓ̃)

A e
(ℓ̃−1)
i posi-

tive if j−i = ℓ, and negative if j−i ̸= ℓ. Applying
a ReLU activation on top will zero out the unneces-
sary terms, leaving us with β1(A, i, i+ ℓ) at each
location i.
Besides, we also need 2|N | additional heads

for the outside probabilities β(A, i − ℓ, i). In the
end, we use the residual connections to copy the
previously computed inside probabilities β(A, i−
ℓ′, i) and α(A, i, i+ ℓ′) for ℓ′ > ℓ.

B.2 Proof of Theorem 3.2
Similar to the proof of Theorem 3.1, the first L− 1
layers simulate the recursive formulation of the
Inside probabilities from eq. 2, and the last L− 1
layers simulate the recursive formulation of the

outside probabilities from eq. 3. The model uses
embeddings of size 2|N |L and uses 4L+2 relative
position embeddings.

Notations: For typographical simplicity, we will
divide our embeddings into 2 sub-parts. We will
use the first |N |L coordinates to store the inside
probabilities, and the second |N |L coordinates to
store the outside probabilities. For every position
i and span length ℓ + 1, we store the inside prob-
abilities {α(A, i− ℓ, i)}A∈N after computation in
its embedding at coordinates [|N |ℓ, |N |(ℓ + 1)),
where the coordinates for embeddings start from
0. Similarly we store {β(A, i, i + ℓ)}A∈N at
[|N |(L+ℓ), |N |(L+ℓ+1)). For simplicity of pre-
sentation, we won’t handle cases where i+ℓ or i−ℓ
is outside the range of 1 to L - those coordinates
will be fixed to 0.

Token Embeddings: The initial embeddings for
each token w will contain Pr[A → w] for all A ∈
P . This is to initiate the inside probabilities of all
spans of length 1.

Relative position embeddings: We introduce
2L + 1 relative position vectors {pt ∈
R2|N |L}−L≤t≤L, that modify the key vectors de-
pending on the relative position of the query and
key tokens. Furthermore, we introduce (2L −
1)L relative position-dependent biases {bt,ℓ ∈
R}−L≤t≤L,1≤ℓ≤2L−1. We introduce the structures
of the biases in the contexts of their intended uses.

Structure of {pt}−L≤t≤L: For t < 0, we de-
fine pt such that all coordinates in [|N |(−t −
1), |N |(−t)) are set to 1, with the rest set to 0.
For t > 0, we define pt such that all coordinates in
[|N |(L+ t− 1), |N |(L+ t)) are set to 1, with the
rest set to 0. p0 is set as all 0s.

Attention formulation: At any layer 1 ≤ ℓ ≤
2L− 1 except L, we define the attention score ahi,j
between e(ℓ−1)

i and e(ℓ−1)
j for any head h with Key

and Query matricesK(ℓ)
h and Q

(ℓ)
h as

ah
i,j = ReLU(K(ℓ)

h e
(ℓ−1)
j + pj−i − bj−i,ℓ)

⊤Q(ℓ)
h e

(ℓ−1)
i .

(12)

For layer L, we do not use the relative position
embeddings, i.e. we define the attention score ahi,j
between e

(L−1)
i and e

(L−1)
j for any head h with

Key and Query matrices K(L)
h andQ(L)

h as

ah
i,j = ReLU(K(L−1)

h e
(L−1)
j −bj−i,L)

⊤Q(ℓ)
h e

(L−1)
i . (13)
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Inside probabilities: The contextual embed-
dings at position i after the computations of any
layer ℓ < L contains the inside probabilities of all
spans of length at most ℓ+ 1 ending at position i,
i.e. α(A, i − k, i) for all A ∈ N and k ≤ ℓ. The
rest of the coordinates contain 0.

Structure of {bt,ℓ}−L≤t≤L,1≤ℓ≤L−1: For any
1 ≤ ℓ ≤ L − 1, for all t ≥ 0 and t < −ℓ, we
set bt,ℓ as ζ for some large constant ζ. All other
biases are set as 1.

Layer 1 ≤ ℓ < L: At each position i, this layer
computes the inside probabilities of spans of length
ℓ+ 1 ending at i, using the recursive formulation
from eq. 2.
For every non-terminal A ∈ N , we will use

a unique attention head to compute α(A, i − ℓ, i)
at each token i. Specifically, the attention head
representing non-terminal A ∈ N will represent
the following operation at each position i:

α(A, i− ℓ, i)

=
∑

B,C∈N

i−1∑

j=i−ℓ

Pr[A → BC]α(B, i− ℓ, j)α(C, j + 1, i)

=

i−1∑

j=i−ℓ

∑

B,C∈N
Pr[A → BC]α(B, i− ℓ, j)α(C, j + 1, i).

(14)

In the final step, we swapped the order of the
summations to observe that the desired computa-
tion can be represented as a sum over individual
computations at locations j < i. That is, we rep-
resent

∑
B,C∈N Pr[A → BC] · α(B, i − ℓ, j) ·

α(C, j + 1, i) as the attention score ai,j for all
i − ℓ ≤ j ≤ i, while α(A, i − ℓ, i) will be repre-
sented as

∑
i−ℓ≤j<i−1 ai,j .

Structure ofQ(ℓ)
A and K

(ℓ)
A to compute Eq. 14:

1. K(ℓ)
A is a rotation matrix such that inK(ℓ)

A e
(ℓ)
i ,

for all ℓ1 ≤ ℓ, the inside probabilities
{α(B, i − ℓ1, i)}B∈N appears in the coordi-
nates [|N |(ℓ−ℓ1), |N |(ℓ−ℓ1+1)). Note that
K

(ℓ)
A are the same for different A, and only

depend on ℓ.

2. The Query matrix Q
(ℓ)
A is a block diagonal

matrix, such that if we define PA ∈ R|N |×|N |

that contains {Pr[A → BC]}B,C∈N , PA ap-
pears in the first ℓ blocks along the diago-
nal, i.e. it occurs at all positions starting at
(|N |ℓ1, |N |ℓ1) for all ℓ1 < ℓ. The rest of the
blocks are set as 0s.

Intuition behind Q
(ℓ)
A , K(ℓ)

A , the relative posi-
tion embeddings and the biases: For any po-
sition i and range ℓ1 < ℓ, e(ℓ−1)

i contains the
inside probabilities {α(C, i − ℓ1, i)}C∈N in the
coordinates [|N |ℓ1, |N |(ℓ1+1)). With the applica-
tion ofK(ℓ)

A ,K(ℓ)
A e

(ℓ−1)
i contains the inside prob-

abilities {α(C, i − ℓ1, i)}C∈N in the coordinates
[|N |(ℓ − 1 − ℓ1), |N |(ℓ − ℓ1)). Hence, if we set
the block at position (|N |ℓ1, |N |ℓ1) in Q(ℓ)

A to PA

for some 0 ≤ ℓ1 < ℓ, with the rest set to 0, we can
get for any two positions i, j,

(K
(ℓ)
A e

(ℓ−1)
j )⊤Q(ℓ)

A e
(ℓ−1)
i

=
∑

B,C∈N
Pr[A → BC] · α(B, i− ℓ1, i)

· α(C, j − (ℓ− 1− ℓ1), j).

Setting the first ℓ diagonal blocks in Q(ℓ)
A to PA

can get for any two positions i, j,

(K
(ℓ)
A e

(ℓ−1)
j )⊤Q(ℓ)

A e
(ℓ−1)
i

=
∑

ℓ1≤ℓ−1

∑

B,C∈N
Pr[A → BC] · α(B, i− ℓ1, i)

· α(C, j − (ℓ− ℓ1 − 1), j).

However, for α(A, i− ℓ, i), the attention score
above should only contribute with ℓ1 = i − j −
1. Moreover, we also want the above sum to be
0 if j ≥ i or j ≤ i − ℓ − 1. Hence, we will
use the relative position vector pj−i, bias bj−i,ℓ

and the ReLU activation to satisfy the following
conditions:

1. i− ℓ ≤ j ≤ i− 1.

2. The portion containing {α(C, j − (ℓ − ℓ1 −
1), j)}C∈N inK

(ℓ)
A e

(ℓ−1)
j is activated only if

ℓ1 = i− j − 1.

For any positions i, j and ℓ1 < ℓ, K(ℓ)
A e

(ℓ−1)
j +

pj−i − bj−i,ℓ will contain {α(C, j − (ℓ − ℓ1 −
1), j)+ I[ℓ1 = i− j−1]−1− ζI[j < i− ℓ or j >
i − 1]}C∈N in coordinates [|N |ℓ1, |N |(ℓ1 + 1)),
which will give us

ReLU(K(ℓ)
A e

(ℓ−1)
j + pj−i − bj−i,ℓ)

⊤Q(ℓ)
A e

(ℓ−1)
i

=
∑

B,C∈N
Pr[A → BC] · α(B, j + 1, i) · α(C, i− ℓ, j),

if i − ℓ ≤ j ≤ i − 1 and 0 otherwise. Summing
over all locations j gives us α(A, i− ℓ, i).
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Outside probabilities: In addition to all the in-
side probabilities, the contextual embeddings at
position i after the computations of any layer
(2L− 1)− ℓ (≥ L) contain the outside probabili-
ties of all spans of length at least ℓ+ 1 starting at
position i, i.e. β(A, i, i + k) for all A ∈ N and
k ≥ ℓ. The rest of the coordinates contain 0.

Layer L In this layer, we initialize the out-
side probabilities β(ROOT, 1, L) = 1 and
β(A, 1, L) = 0 for A ̸= ROOT. Furthermore,
we move the inside probabilities α(A, i− k, i− 1)
from position i− 1 to position i using 1 attention
head. For the attention head, b−1,L is set as 0, while
the rest are set as ζ for some large constant ζ so
that the attention heads only attend to position i−1
at any position i.

Layer L + 1 ≤ ℓ̃ := (2L − 1) − ℓ ≤ 2L − 1:
At each position i, this layer computes the outside
probabilities of spans of length ℓ+ 1 starting at i,
using the recursive formulation from eq. 3. The
recursive formulation for β(A, i, i + ℓ) for a non-
terminal A ∈ N has two terms, given by

β(A, i, i+ ℓ) =β1(A, i, i+ ℓ) + β2(A, i, i+ ℓ), with

(15)

β1(A, i, i+ ℓ) =

i−1∑

j=1

∑

C,B∈N
Pr[B → CA]

· α(C, j, i− 1)β(B, j, i+ ℓ), and
(16)

β2(A, i, i+ ℓ) =

L∑

j=i+ℓ+1

∑

B,C∈N
Pr[B → AC]

· α(C, i+ ℓ+ 1, j)β(B, i, j). (17)

For each non-terminal A ∈ N , we will use a
single unique head to compute β(A, i, i+ ℓ) with

query matrix Q
(ℓ̃)
A and key matrix K

(ℓ̃)
A . Combin-

ing the operations of both β1 and β2 in a single
attention head is the main reason behind the de-
crease in the number of necessary attention heads,
compared to Theorem 3.1.

Structure of {bt,ℓ}−L≤t≤L,L+1≤ℓ≤2L−1: For
any L + 1 ≤ ℓ ≤ 2L − 1, for 0 ≤ t ≤ ℓ + 1,
bt,ℓ is set as ζ for some large constant ζ. All other
biases are set as 1.

Structure of Query and key matrices:

1. K(ℓ̃)
A is a rotation matrix such that inK(ℓ̃)

A e
(ℓ)
i ,

for all L > ℓ1 > ℓ, the outside probabilities

{β(B, i, i + ℓ1)}B∈N appears in the coordi-
nates [|N |(ℓ1 − ℓ− 1), |N |(ℓ1 − ℓ)). Further-
more, for all 0 ≤ ℓ1 ≤ L− ℓ− 2, the inside
probabilities {α(C, i − 1 − ℓ1, i − 1)}C∈N
appears in the coordinates [|N |(L+ ℓ+ ℓ1 +

1), |N |(L + ℓ + ℓ1 + 2)). Note that K(ℓ̃)
A is

same for all A, and only depends on ℓ.

2. The Query matrix Q
(ℓ̃)
A is a block diagonal

matrix. If we define PA,r ∈ R|N |×|N | as a
matrix that contains {Pr[B → CA]}B,C∈N ,
which is the set of all rules where A appears
as the right child, PA,r appears at positions
(|N |ℓ1, |N |ℓ1) for all ℓ1 < L, which is the set
of the first L blocks along the diagonal. Fur-
thermore, if we define PA,l ∈ R|N |×|N | as a
matrix that contains {Pr[B → AC]}B,C∈N ,
which is the set of all rules where A appears
as the left child, P⊤

A,l appears at positions
(|N |ℓ1, |N |ℓ1) for all ℓ1 ≥ L+ ℓ+ 1, which
is a set of L− ℓ− 2 blocks along the diagonal
located towards the end.

Intuition behindQ
(ℓ̃)
A ,K(ℓ̃)

A , the relative position
embeddings and the biases: Considering any lo-
cation i, we split the computation of β(A, i, i+ ℓ)
with the attention head into the computation of
β1 (eq. 16) and β2 (eq. 17). For β1, we ex-
press each term

∑
C,B∈N Pr[B → CA]α(C, j, i−

1)β(B, j, i+ ℓ) as the attention score ai,j and then
express β1 as

∑
j≤i−1 ai,j . Similarly, for β2, we

express each term
∑

B,C∈N Pr[B → AC]α(C, i+
ℓ + 1, j)β(B, i, j) as the attention score ai,j and
then express β1 as

∑
j≥i+ℓ+1 ai,j . The relative po-

sition vectors and biases help to differentiate the
operations on the left and right-hand sides of i, as
we showcase below.

Computing β1 (eq. 16): For any position i

and ℓ1 ≥ 0, e(ℓ̃−1)
i contains the inside probabilities

{α(C, i − 1 − ℓ1, i − 1)}C∈N in the coordinates

[|N |ℓ1, |N |(ℓ1+1)). With the application ofK(ℓ̃)
A ,

for ℓ1 > ℓ, K(ℓ̃)
A e

(ℓ̃−1)
i contains the outside prob-

abilities {β(B, i, i + ℓ1)}B∈N in the coordinates
[|N |(ℓ1− ℓ−1), |N |(ℓ1− ℓ)). Hence, if we set the
block at position (|N |ℓ1, |N |ℓ1) in Q

(ℓ)
A to PA,r

for some L > ℓ1 ≥ 0, with the rest set to 0, we can
get for any two positions i, j,

(K
(ℓ̃)
A e

(ℓ̃−1)
j )⊤Q(ℓ̃)

A e
(ℓ̃−1)
i

=
∑

B,C∈N
Pr[B → CA] · α(C, i− 1− ℓ1, i− 1)
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· β(B, j, j + ℓ+ ℓ1 + 1).

Setting the first L diagonal blocks in Q
(ℓ̃)
A to

PA,r can get for any two positions i, j,

(K
(ℓ̃)
A e

(ℓ̃−1)
j )⊤Q(ℓ̃)

A e
(ℓ̃−1)
i

=
∑

ℓ1≥0

∑

B,C∈N
Pr[B → CA] · α(C, i− 1− ℓ1, i− 1)

· β(B, j, j + ℓ+ ℓ1 + 1).

However, for β1(A, i, i+ ℓ), the attention score
above should only contribute with ℓ1 = i− j − 1.
Moreover, we also want the above sum to be 0 if
j ≥ i. Hence, we will use the relative position
vector pj−i, bias bj−i,ℓ̃ and the ReLU activation to
satisfy the following conditions:

1. j < i.

2. The portion containing {β(B, j, j + ℓ+ ℓ1 +

1)}C∈N in K
(ℓ̃)
A e

(ℓ̃−1)
j is activated only if

ℓ1 = i− j − 1.

For any positions i, j and 0 ≤ ℓ1 ≤ L,

K
(ℓ̃)
A e

(ℓ̃−1)
j +pj−i−bj−i,ℓ̃ will contain {β(B, j, j+

ℓ+ ℓ1 + 1) + I[ℓ1 = i− j − 1]− 1− ζI[i ≤ j ≤
i + ℓ]}B∈N in coordinates [|N |ℓ1, |N |(ℓ1 + 1)),
which will give us

ReLU(K(ℓ̃)
A e

(ℓ̃−1)
j + pj−i − bj−i,ℓ̃)

⊤Q(ℓ̃)
A e

(ℓ̃−1)
i

=
∑

C,B∈N
Pr[B → CA]α(C, j, i− 1)β(B, j, i+ ℓ),

iff j < i and 0 otherwise. Summing over all
locations gives us β1(A, i, i+ ℓ).

Computing β2 (eq. 17): For any position i

and L > ℓ1 > ℓ, e(ℓ̃−1)
i contains the outside prob-

abilities {β(B, i, i + ℓ1)}B∈N in the coordinates
[|N |(L+ ℓ1), |N |(L+ ℓ1 + 1)). With the applica-

tion of K(ℓ̃)
A , for L > ℓ1 > ℓ, K(ℓ̃)

A e
(ℓ̃−1)
i contains

the inside probabilities {α(C, i−1−ℓ1, i−1)}C∈N
in the coordinates [|N |(L+ ℓ+ ℓ1 + 1), |N |(L+
ℓ + ℓ1 + 2)). Hence, if we set the block at po-

sition (|N |ℓ1, |N |ℓ1) in Q
(ℓ̃)
A to P⊤

A,l for some
ℓ1 ≥ L + ℓ + 1, with the rest set to 0, we can
get for any two positions i, j,

(K
(ℓ̃)
A e

(ℓ̃−1)
j )⊤Q(ℓ̃)

A e
(ℓ̃−1)
i

=
∑

B,C∈N
Pr[B → AC] · α(C, j − ℓ1 + ℓ+ L, j − 1)

· β(B, i, i+ ℓ1 − L).

Setting diagonal blocks at positions

{(|N |ℓ1, |N |ℓ1)}ℓ1≥L+ℓ+1 in Q
(ℓ̃)
A to P⊤

A,l

can get for any two positions i, j,

(K
(ℓ̃)
A e

(ℓ̃−1)
j )⊤Q(ℓ̃)

A e
(ℓ̃−1)
i

=
∑

ℓ1≥ℓ+1

∑

B,C∈N
Pr[B → AC] · α(C, j − ℓ1 + ℓ, j − 1)

· β(B, i, i+ ℓ1).

However, for β1(A, i, i+ ℓ), the attention score
above should only contribute with ℓ1 = j − i− 1.
Moreover, we also want the above sum to be 0 if
j ≤ i+ ℓ. We will use the relative position vector
pj−i, bias bj−i,ℓ̃ and the ReLU activation to satisfy
the following conditions:

1. j > i+ ℓ.

2. The portion containing {α(C, j − ℓ1 + ℓ, j −
1)}C∈N in K

(ℓ̃)
A e

(ℓ̃−1)
j is activated only if

ℓ1 = j − i− 1.

Thus, for any positions i, j and 0 ≤ ℓ1 ≤ L,

K
(ℓ̃)
A e

(ℓ̃−1)
j + pj−i − bj−i,ℓ̃ will contain {α(C, j−

ℓ1+ ℓ, j− 1)+ I[ℓ1 = i− j− 1]− 1− ζI[i ≤ j ≤
i + ℓ]}C∈N in coordinates [|N |ℓ1, |N |(ℓ1 + 1)),
which will give us

ReLU(K(ℓ̃)
A e

(ℓ̃−1)
j + pj−i − bj−i,ℓ̃)

⊤Q(ℓ̃)
A e

(ℓ̃−1)
i

=

L∑

j=i+ℓ+1

∑

B,C∈N
Pr[B → AC]α(C, i+ ℓ+ 1, j)β(B, i, j),

iff j > i+ ℓ+1 and 0 otherwise. Summing over
all locations gives us β2(A, i, i+ ℓ).

Computing β1 + β2 (eq. 15): From our con-
struction, β1 requires the dot product of the inside
probabilities stored at the query vector and the out-
side probabilities stored at the key vector. However,
β2 requires the dot product of the outside proba-
bilities stored at the query vector and the inside
probabilities stored at the key vector. Since β1 and
β2 are computed on the left and the right-hand side
of the query respectively, we use the relative po-
sition embeddings to separate the two operations.
The vector pj−i activates only the outside proba-
bilities in the key vector when j > i and activates
only the inside probabilities in the key vector when
j < i. Thus, we can compute β1 + β2 as the sum
of the attention scores of a single head, where the
computation of β1 and β2 have been restricted to
the left and the right-hand side of the query respec-
tively.
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B.3 Proof of Theorem 3.3
Proof of Theorem 3.3. We first focus on 1-mask
predictions, where given an input of tokens
w1, w2, · · · , wL, and a randomly selected index
i, we need to predict the token at position i given
the rest of the tokens, i.e. Pr{w|w−i}. Under the
generative rules of the PCFG model, we have

Pr[w|w−i]

=
∑

A

Pr[A → w] · Pr[A generates word at pos i|w−i]

=
∑

A

Pr[A → w] · β(A, i, i)∑
B β(B, i, i)

. (18)

Note that Pr[A → w] can be extracted from the
PCFG and {β(B, i, i)}B∈N can be computed by
the Inside-outside algorithm. Thus, Inside-outside
can solve the 1-masking problem optimally.
Now we consider the case where we randomly

mask m% (e.g., 15%) of the tokens and predict
these tokens given the rest. In this setting, if
the original sentence is generated from PCFG
G = (N , I,P, n, p), one can modify the PCFG
to get G′ = (N , I,P, n + 1, p′) with n + 1 de-
note the mask token text[MASK] and for each
preterminal A ∈ P , p′(A → [MASK]) = m%
and p′(A → w) = (1 − m%)p(A → w), for all
w ̸= [MASK]. Then, the distribution of the ran-
domly masked sentences follows the distribution
of sentences generated from the modified PCFG G′.
Similar to the 1-masking setting, we can use the
Inside-outside algorithm to compute the optimal
token distribution at a masked position.

C Omitted Details in Section 3.3

In Section 3.3, we claim that it is possible to ap-
proximately execute the Inside-Outside algorithm
for PCFG learned on PTB dataset, and can dras-
tically reduce the size of our constructed model
with minimal impact on the 1-masking predictions
and parsing performance (Theorem 3.4) by apply-
ing two ingredients: restricting the computations
to few non-terminals and utilizing the underlying
low-rank structure between the non-terminals. This
section is organized as follows: In Appendix C.1,
we show more intuition and experiment results
on why we can restrict the computation of the
inside-outside algorithm to a small subset of non-
terminals. In Appendix C.2, we add more discus-
sions on the second ingredient (utilizing the low-
rank structure). Then in Appendix C.3, we show

the details why restricting the computations of few
non-terminals can reduce the size of the attention
model. In Appendix C.4, we show the detailed
proof of Theorem 3.4. Finally in Appendix C.5, we
show the experiment details in Section 3.3.

C.1 More discussions on computation with
few non-terminals

We hypothesize that we can focus only on a few
non-terminals while retaining most of the perfor-
mance.

Hypothesis C.1. For the PCFG G =
(N , I,P, n, p) learned on the English cor-
pus, there exists Ĩ ⊂ I, P̃ ⊂ P with
|Ĩ| ≪ |I|, |P̃| ≪ |P|, such that simulating
Inside-Outside algorithm with Ĩ ∪ P̃ non-terminals
introduces small error in the 1-mask perplexity and
has minimal impact on the parsing performance of
the Labeled-Recall algorithm.

To find candidate sets Ĩ, P̃ for our hypothesis,
we check the frequency of different non-terminals
appearing at the head of spans in the parse trees of
the PTB (Marcus et al., 1993) training set. We con-
sider the Chomsky-transformed (binarized) parse
trees for sentences in the PTB training set, and col-
lect the labeled spans {(A, i, j)} from the parse
trees of all sentences. For all non-terminals A,
we compute freq(A), which denotes the number
of times non-terminal A appears at the head of a
span. Figure 7 shows the plot of freq(A) for in-
terminals and pre-terminals, with the order of the
non-terminals sorted by the magnitude of freq(·).
We observe that an extremely small subset of non-
terminals have high frequency, which allows us to
restrict our computation for the inside and outside
probabilities to the few top non-terminals sorted
by their freq scores. We select the top frequent
non-terminals as possible candidates for forming
the set Ñ .
We verify the effect of restricting our computa-

tion to the frequent non-terminals on the 1-mask
perplexity and the unlabeled F1 score of the approx-
imate Inside-Outside algorithm in Table 1. Recall
from Theorem 3.3, the 1-mask probability distribu-
tion for a given sentence w1, · · · , wL at any index
i is given by Equation (18), and thus we can use
Equation (18) to compute the 1-mask perplexity
on the corpus. To measure the impact on 1-mask
language modeling, we report the perplexity of the
original and the approximate Inside-Outside algo-
rithm on 200 sentences generated from PCFG.
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Figure 7: Plot for the frequency distribution of in-
terminals (I) and pre-terminals (P). We compute the
number of times a specific non-terminal appears in a
span of a parse tree in the PTB training set. We then
sort the non-terminals according to their normalized fre-
quency and then show the frequency vs. index plot.

We observe that restricting the computation to
the top-40 and 45 frequent in-terminals and pre-
terminals leads to < 6.5% increase in average 1-
mask perplexity. Furthermore, the Labeled-Recall
algorithm observes at most 4.24% drop from the
F1 performance of the original PCFG. If we fur-
ther restrict the computation to the top-20 and 45
in-terminals and pre-terminals, we can still get
71.91% sentence F1 score, and the increase in aver-
age 1-mask perplexity is less than 8.6%. However,
restricting the computation to 10 in-terminals leads
to at least 15% drop in parsing performance.
Thus combining Theorem 3.2 and Table 1, we

have the following informal theorem.

Theorem C.2 (Informal). Given the PCFG G =
(N , I,P, n, p) learned on the English corpus,
there exist subsets Ĩ ⊂ I, P̃ ⊂ P with |Ĩ| =
20, |P̃| = 45, and an attention model with soft rel-
ative attention modules (6) with embeddings of size
275 + 40L, 2L+ 1 layers, and 20 attention heads
in each layer, that can simulate the Inside-Outside
algorithm restricted to Ĩ, P̃ on all sentences of
length at most L generated from G. The restriction
introduces a 9.29% increase in average 1-mask per-
plexity and 8.71% drop in the parsing performance
of the Labeled-Recall algorithm.

If we plug in the average length L ≈ 25 for
sentences in PTB, we can get a model with 20 atten-
tion heads, 1275 hidden dimension, and 51 layers.
Compared with the construction in Theorem 3.2,
the size of the model is much closer to reality. The
proof of Theorem C.2 is shown in Appendix C.3.

C.2 More discussions on low-rank
approximation

We hypothesize that we can find linear transfor-
mation matrices {W (ℓ)}ℓ≤L that can reduce the
computations while retaining most of the perfor-
mance, and our hypothesis is formalized as follow:

Hypothesis C.3. For the PCFG G =
(N , I,P, n, p) learned on the English cor-
pus, there exists transformation matrices
W (ℓ) ∈ Rk(ℓ)×|Ĩ| for every ℓ ≤ L, such that
approximately simulating the Inside-Outside
algorithm with {W (ℓ)}ℓ≤L introduces small error
in the 1-mask perplexity and has minimal impact
on the parsing performance of the Labeled-Recall
algorithm.

Table 2 verifies our hypothesis, and lead to The-
orem 3.4. Compared with the parsing results from
Theorem C.2, the corpus and sentence F1 scores
are nearly the same, and we further reduce the num-
ber of attention heads in each layer from 20 to 15.
If we only use 10 attention heads to approximately
execute the Inside-Outside algorithm, we can still
get 61.72% corpus F1 and 65.31% sentence F1 on
PTB dataset, which is still much better than the
Right-branching baseline. Theorem 3.4 shows that
attention models with a size much closer to the real
models (like BERT or RoBERTa) still have enough
capacity to parse decently well (>70% sentence F1
on PTB).
It is also worth noting that approximately exe-

cuting the Inside-Outside algorithm using the trans-
formation matrices {W (ℓ)}ℓ≤L is very different
from reducing the size of the PCFG grammar, since
we use different matrixW (ℓ) when computing the
probabilities for spans with different length. If we
choose to learn the same transformation matrix W
for all the layers ℓ, the performance drops.

More discussions on the transformation matrix
W (ℓ) We can observe that by introducing the
transformation matrix W (ℓ) generalized the first
ingredient that only computes a small set of in-
terminals Ĩ and pre-terminals P̃ , and in theory we
can directly learn the transformation matrixW (ℓ)

from the original PCFGwithout reducing the size at
first, i.e.,W (ℓ) ∈ Rk(ℓ)×|I|. However empirically,
if we directly learn W (ℓ) from all the in-terminals
I but not from the top-20 frequent in-terminals Ĩ,
the performance drops. Thus, we choose to learn
the matrix W (ℓ) starting from the most frequent
in-terminals Ĩ . One possible explanation is that the
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learning procedure is also heuristic, and certainly
may not learn the best transformation matrix.
Besides, we use the same transformation ma-

trix W (ℓ) when computing the inside and out-
side probabilities, and it is also natural to use
different transformation matrices when comput-
ing the inside and outside probabilities. Re-
call that we learn the transformation W (ℓ) by
the Eigenvalue decomposition on matrix X(ℓ),
where X(ℓ) =

∑
sX

(ℓ)
s /

∥∥∥X(ℓ)
s

∥∥∥
F
and X

(ℓ)
s =

∑
i,j:j−i=ℓ µ

i,j
s (µi,j

s )⊤. Then, we can also learn

two matrices W
(ℓ)
inside and W

(ℓ)
outside through the

Eigenvalue decomposition on matrices X(ℓ)
inside and

X
(ℓ)
outside respectively, where

X
(ℓ)
inside =

∑

s

X
(ℓ)
s,inside/

∥∥∥X(ℓ)
s,inside

∥∥∥
F
,

X
(ℓ)
s,inside =

∑

i,j:j−i=ℓ

αi,j
s (αi,j

s )⊤,

X
(ℓ)
outside =

∑

s

X
(ℓ)
s,outside/

∥∥∥X(ℓ)
s,outside

∥∥∥
F
,

X
(ℓ)
s,outside =

∑

i,j:j−i=ℓ

βi,j
s (βi,j

s )⊤.

However empirically, we also find that the perfor-
mance drops by using different transformation ma-
trices for inside and outside probabilities compu-
tation, which may also be attributed to the non-
optimality of our method to learn the transforma-
tion matrix.

C.3 Proof for Theorem C.2

Note that in both Theorem 3.1 and Theorem 3.2,
in every layer 1 ≤ ℓ ≤ L − 1, we use one at-
tention head with parameters K(ℓ)

A ,Q
(ℓ)
A ,V

(ℓ)
A to

compute all the inside probabilities α(A, i, j) for
all spans with length ℓ+1, i.e. j− i = ℓ. For layer
L + 1 ≤ ℓ ≤ 2L − 1, the model constructed in
Theorem 3.1 uses two attention heads to compute
the outside probabilities β(A, i, j) for a specific
non-terminal A for spans with length 2L− ℓ, and
the model constructed in Theorem 3.2 uses one at-
tention heads to compute the outside probabilities
β(A, i, j) for a specific non-terminal A for spans
with length 2L− ℓ. Now to show how restricting
the computations to certain non-terminals Ĩ ∪ P̃
can reduce the size of the constructed models in
Theorems 3.1 and 3.2 we classify the inside and
outside probabilities into four categories: (1) the
inside probabilities for pre-terminals, α(A, i, i) for

A ∈ P ; (2) the inside probabilities for in-terminals,
α(A, i, j) for A ∈ I; (3) the outside probabilities
for in-terminals, β(A, i, j) for A ∈ I; and (4) the
outside probabilities for pre-terminals, β(A, i, i)
for A ∈ P .

Category (1): the inside probabilities for pre-
terminals Recall that in the constructed model
in Theorems 3.1 and 3.2, the inside probabilities
for pre-terminals α(A, i, i) for A ∈ P is directly
initialized from the PCFG rules, and thus do not
need attention heads to compute. Thus, we can
just use O(|P|) dimensions to store all the inside
probabilities for pre-terminals α(A, i, i) forA ∈ P .
Although we can also only initialize the inside prob-
abilities only for the pre-terminals P̃ , i.e. initialize
α(A, i, i) for A ∈ P̃ and use less embedding di-
mensions, empirically the performance will drop
and thus we initialize all the probabilities α(A, i, i)
for A ∈ P . Although we should store the probabil-
ities for pre-terminals larger than the set P̃ , there is
indeed another technique to reduce the embedding
dimensions. Note that since in the future compu-
tations, we only compute the probabilities for the
in-terminals Ĩ, and not every pre-terminal A ∈ P
can be produced by in-terminals B ∈ Ĩ. Thus,
we only need to store the pre-terminals PĨ that
can be produced from Ĩ. Empirically, for PCFG
learned on PTB dataset, |P| = 720, but if we choose
|Ĩ| = 20, the number of pre-terminals that can be
produced from Ĩ drops to |PĨ | = 268 < 270.
Specifically for the model in Theorem 3.2, we need
|PĨ | coordinates at each position to store these in-
side probabilities.

Category (2): the inside probabilities for in-
terminals The computation of the inside proba-
bilities for in-terminals, α(A, i, j) for A ∈ I hap-
pens from layer 1 to layer L− 1 in the constructed
model in Theorems 3.1 and 3.2. Note that from
layer 1 to layer L − 1, the model only computes
the probabilities for the in-terminals, since a span
with a length larger than 1 cannot be labeled by a
pre-terminal. Thus, if we only compute the inside
probabilities for in-terminals |Ĩ|, we can reduce
the number of attention heads in layer 1 to layer
L−1 fromO(|I|) toO(|Ĩ|) since in Theorems 3.1
and 3.2 we use a constant number of attention heads
to compute the probabilities for a single in-terminal.
Specifically for the model in Theorem 3.2, we only
need |Ĩ| attention heads from layer 1 to layer L−1;
besides, we need (L − 1)|Ĩ| coordinates at each
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position to store these inside probabilities.

Category (3): the outside probabilities for in-
terminals The computation of the outside proba-
bilities for in-terminals, β(A, i, j) for A ∈ I hap-
pens from layer L to layer L− 2 in the constructed
model in Theorems 3.1 and 3.2. Note that in layer
L, we only need to initialize the outside proba-
bilities β(A, 1, L) for A ∈ I, thus do not need
attention heads for computation (however we need
attention heads to move the inside and outside prob-
abilities in this layer, which cost 2 attention heads).
Then from layerL+1 to layerL−2, the model com-
putes the outside probabilities for the in-terminals
β(A, i, j) for A ∈ Ĩ . Thus if we only compute the
outside probabilities for in-terminals |Ĩ|, we can
reduce the number of attention heads in layer 1 to
layer L − 1 from O(|I|) to O(|Ĩ|). Specifically
for the model in Theorem 3.2, we only need |Ĩ|
attention heads from layer L to layer L−2; besides,
we need (L− 1)|Ĩ| coordinates at each position to
store these outside probabilities for in-terminals Ĩ.
Category (4): the outside probabilities for
pre-terminals The outside probabilities for pre-
terminals β(A, i, i) for A ∈ P is only computed
in the final layer in Theorems 3.1 and 3.2. Thus
if we choose to compute the probabilities for only
P̃ , we can reduce the number of attention heads in
layer 2L − 1 from O(|I|) to O(|Ĩ|). Specifically
for the model in Theorem 3.2, we only need |P̃|
attention heads in layer L−1; besides, we need |P̃|
coordinates at each position to store these outside
probabilities for in-terminals P̃ . Also as mentioned
in Section 3.3, if |P̃| < c|Ĩ| for some constant c,
we can also simulate the computations in the last
layer with |P̃| heads by c layers with |Ĩ| heads. In
particular, if we choose |P̃| = 45, |Ĩ| = 20, we
can use 3 layers with 20 attention heads in each
layer to simulate the last layer with 45 attention
heads in the original construction.

Put everything together: proof of Theorem C.2
We choose |P̃| = 45, |Ĩ| = 20. We can use 20
attention heads in each layer, and we now count
the number of layers and the embedding dimension
we need. The number of layers is easy to compute,
since we just need to use 3 layers with 20 atten-
tion heads to simulate the original 1 layer with 45
attention heads, thus the total number of layers is
2L− 1+ (3− 1) = 2L+1. As for the embedding
dimension, we need

d =|PĨ |+ (L− 1)|Ĩ|+ (L− 1)|Ĩ|+ |P̃|

≤270 + (2L− 2)|Ĩ|+ |P̃|
=275 + 2L|Ĩ|
=275 + 40L.

C.4 Proof for Theorem 3.4
In this section, we show the details of how to fur-
ther reduce the number of attention heads using
structures across non-terminals, and add more dis-
cussion on how we learn the transformation matri-
ces {W (ℓ)}ℓ≤L

Reducing the number of attention heads We
focus on reducing the number of attention heads to
compute the inside and outside probabilities for the
in-terminals Ĩ, since the computation for the out-
side probabilities for pre-terminals P̃ only happens
in the final layer of the constructed model, and thus
can use multiple layers to compute as long as P̃ is
not too large.
For simplicity, we only show the details of how

to reduce the number of attention heads to com-
pute the inside probabilities for in-terminals Ĩ in
Theorem 3.2, and the technique can be easily ap-
plied to the computation of outside probabilities
for in-terminals Ĩ in Theorem 3.2, and the inside
and outside probabilities for Ĩ in Theorem 3.1.
Recall from the proof of Theorem 3.2 that we

at each layer ℓ, we use a single attention head
K

(ℓ)
A ,Q

(ℓ)
A to compute the inside probabilities

α(A, i, j) for spans with length ℓ+1, i.e., j−i = ℓ.
Specifically, for the attention head K

(ℓ)
A ,Q

(ℓ)
A at

layer ℓ, we want to compute and store the probabil-
ity α(A, i − ℓ, i) at position i. Thus we construct
K

(ℓ)
A ,Q

(ℓ)
A such that the attention score aA,(ℓ)

i,j when
the position i attends to position j satisfies

a
A,(ℓ)
i,j

=ReLU(K(ℓ)
A e

(ℓ−1)
j + pj−i − bj−i,ℓ)

⊤Q(ℓ)
A e

(ℓ−1)
i

=
∑

B,C∈N
Pr[A → BC] · α(B, j + 1, i) · α(C, i− ℓ, j),

if i − ℓ ≤ j ≤ i − 1 and 0 otherwise. Then,
summing over all locations j gives us α(A, i−ℓ, i).
Also, a key property of K(ℓ)

A is that this key matrix
does not depend on the non-terminal A, but only
depends on ℓ. Thus, if we have a set of coefficients
{ω(ℓ)

A }A∈I , we can compute the linear combination
of the inside probability

∑
A∈Ĩ ω

(ℓ)
A α(A, i − ℓ, i)

using one attention head, since if we choose

Q(ℓ) =
∑

A∈Ĩ
ω
(ℓ)
A Q

(ℓ)
A , K(ℓ) = K

(ℓ)
A , ∀A ∈ Ĩ,
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we have the attention score

a
(ℓ)
i,j

=ReLU(K(ℓ)e
(ℓ−1)
j + pj−i − bj−i,ℓ)

⊤Q(ℓ)e
(ℓ−1)
i

=ReLU(K(ℓ)e
(ℓ−1)
j + pj−i − bj−i,ℓ)

⊤

·


∑

A∈Ĩ

ω
(ℓ)
A Q

(ℓ)
A


 e

(ℓ−1)
i

=
∑

A∈Ĩ

ω
(ℓ)
A

· ReLU(K(ℓ)e
(ℓ−1)
j + pj−i − bj−i,ℓ)

⊤Q(ℓ)
A e

(ℓ−1)
i

=
∑

A∈Ĩ

ω
(ℓ)
A

· ReLU(K(ℓ)
A e

(ℓ−1)
j + pj−i − bj−i,ℓ)

⊤Q(ℓ)
A e

(ℓ−1)
i

=
∑

A∈Ĩ

ω
(ℓ)
A

·
( ∑

B,C∈N
Pr[A → BC] · α(B, j + 1, i) · α(C, i− ℓ, j)

)
,

if i − ℓ ≤ j ≤ i − 1 and 0 otherwise.
Then, summing over all locations j gives us∑

A∈Ĩ ω
(ℓ)
A α(A, i− ℓ, i). Then if we have a trans-

formation matrix W (ℓ) ∈ Rk(ℓ)×|Ĩ|, we can use
k(ℓ) attention heads to compute W (ℓ)α(i − ℓ, i),
where α(i − ℓ, i) ∈ R|Ĩ| is the vector that con-
tains α(A, i − ℓ, i) for all A ∈ Ĩ. Then after we
use k(ℓ) attention heads to compute the probabil-
ities W (ℓ)α(i − ℓ, i) and stored them in position
i’s embeddings, we can then use linear layer on
position i to recover the original probabilities by
α̃(i − ℓ, i) = (W (ℓ))†W (ℓ)α(i − ℓ, i), and use
α̃(A, i − ℓ, i) for A ∈ Ĩ for the future computa-
tions.

Put everything together: proof of Theorem 3.4
We choose k(ℓ) = 15, |P̃| = 45, |Ĩ| = 20. Note
that the embedding dimension doesn’t change if
we apply the approximation technique, and only
the number of attention heads reduces from 20 to
15. Thus, the embedding dimension is still

d =|PĨ |+ (L− 1)|Ĩ|+ (L− 1)|Ĩ|+ |P̃|
≤270 + (2L− 2)|Ĩ|+ |P̃|
=275 + 2L|Ĩ|
=275 + 40L.

Also note that |P̃| = 45 = 3 × 15, and thus we
can compute all the outside probabilities for pre-
terminals P̃ by 3 layers where each layer has 15
attention heads.

C.5 Experiment details in Section 3.3
In this section, we provide the experiment details
in Section 3.3. We use and modify the code (Peng,
2021) to learn the PCFG from the PTB dataset and
conduct the experiments with approximated com-
putations. Peng (2021) implements the spectral
learning method to learn PCFG (Cohen et al., 2012,
2014) and is under MIT licence. We follow all
the default hyperparameters in Peng (2021), and
we also follow the split of PTB: using PTB section
02-21 as the training set and PTB section 22 as the
development set.
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