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Abstract 

Recent advances in quantitative tools for examining urban morphology enable the development 

of morphometrics that can characterize the size, shape, and placement of buildings; the 

relationships between them; and their association with broader patterns of development. 

Although these methods have the potential to provide substantial insight into the ways in which 

neighborhood morphology shapes the socioeconomic and demographic characteristics of 

neighborhoods and communities, this question is largely unexplored. Using building footprints 

in five of the ten largest U.S. metropolitan areas (Atlanta, Boston, Chicago, Houston, and Los 

Angeles) and the open-source R package, foot, we examine how neighborhood morphology 

differs across U.S. metropolitan areas and across the urban-exurban landscape.  Principal 

components analysis, unsupervised classification (K-means), and Ordinary Least Squares 

regression analysis are used to develop a morphological typology of neighborhoods and to 

examine its association with the spatial, socioeconomic, and demographic characteristics of 

census tracts. Our findings illustrate substantial variation in the morphology of neighborhoods, 

both across the five metropolitan areas as well as between central cities, suburbs, and the 
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urban fringe within each metropolitan area. We identify five different types of neighborhoods 

indicative of different stages of development and distributed unevenly across the urban 

landscape: these include low-density neighborhoods on the urban fringe; mixed use and high-

density residential areas in central cities; and uniform residential neighborhoods in suburban 

cities. Results from regression analysis illustrate that the prevalence of each of these forms is 

closely associated with variation in socioeconomic and demographic characteristics such as 

population density, the prevalence of multifamily housing, and income, race/ethnicity, 

homeownership, and commuting by car. We conclude by discussing the implications of our 

findings and suggesting avenues for future research on neighborhood morphology, including 

ways that it might provide insight into issues such as zoning and land use, housing policy, and 

residential segregation.  

Introduction 

A decades-long shift in how geographers and planners analyze urban form has 

emphasized how bottom-up and uncoordinated local decision-making gives rise to large-scale, 

coordinated, morphological patterns that define the size and shape of cities in predictable ways 

[1].  Urban morphology – the systematic study of the form and configuration of human 

settlements with an eye toward uncovering the principles and rules of development and design 

[2]– has been used for centuries to understand, evaluate, and intervene in urban processes [3]. 

However, the growth of high-resolution satellite imagery, big data, and new computational 

tools opens up new avenues to document, evaluate, and monitor urban form. The result has 

been an increased effort to quantify urban form by identifying the morphological metrics of 
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development [4–7]. Morphological understandings of urban spatial organization and evolution 

can identify underlying mechanisms and characteristics of urban development, to better plan 

for and manage increasingly complex urban areas [8]. Drawing on methods from data science, 

urban morphologists have developed new tools and approaches [9] for characterizing street 

networks [3,10] as well as the form of buildings [9,11]. New data, tools, and techniques mean 

researchers are not limited to small case studies which have been common in urban 

morphology studies. Recent research using building footprints has used morphological analysis 

to characterize patterns of development at the neighborhood level [7]. For example, Jochem 

and Tatem use publicly available spatial datasets of building footprints to define their 

constituent elements (size, shape, and placement of structures) in England, Scotland and Wales 

and to examine the extent to which typologies of neighborhoods derived from unsupervised 

classification using building footprint morphometrics align with census-defined classifications 

for rural and urban areas of various types [7].  

We adapt and extend this analysis to the U.S. context to analyze the dimensions and 

distribution of development inscribed in the morphology of neighborhoods in five of the ten 

largest U.S metropolitan areas and to develop a typology of U.S. neighborhoods based on their 

morphological characteristics. In doing so, we combine the tools of urban morphology with the 

theoretical contributions from a vast literature in urban studies, sociology, and planning that 

has explored how neighborhoods are a key mechanism that structures ecological, political and 

social outcomes in metro regions. Distinct types of neighborhoods (e.g., suburban enclaves, 

urban cores, rural districts) vary markedly in the characteristics of their population and the 

opportunities they provide [12–14].  Little is known, however, about whether the morphological 
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characteristics measured by building footprints align with these pre-existing conceptual 

understandings of neighborhoods and the characteristics of residents in them. We address this 

gap in this study by answering three primary research questions: Can neighborhood-level 

estimates of building morphology be used to create a useful typology of U.S. neighborhoods 

that maps onto conceptual understandings of urban form? How does neighborhood 

morphology vary across the country and across central cities, suburban areas, and the urban 

fringe? Do neighborhoods with distinct building morphologies differ in regard to key socio-

demographic characteristics?  

We employ the recently developed R foot package, a set of open-source tools for 

calculating morphology metrics for building footprints, which Jochem and Tatem (2021) use to 

identify the constituent elements of building footprints and settlement patterns across all 

buildings in Great Britain. Using the foot package, we calculate morphometrics summarizing the 

characteristics of building footprints in census blocks across five major U.S. metropolitan areas 

with different development and land use histories to examine how the morphology of 

neighborhoods differs across urban-exurban space and between U.S. metros. We measure 

neighborhood morphology through physical form, specifically the features of building 

footprints, including the size, shape, and placement of buildings and their relations to each 

other. We use unsupervised classification to identify five primary classes of neighborhoods 

based on building morphology: these include central-city residential neighborhoods, business 

and commercial districts, first suburbs, late suburbs, and rural areas. We examine the 

prevalence and variation of neighborhood types across urban space (from central cities to the 

urban fringes). Finally, we explore whether and how the physical morphology of neighborhoods 
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corresponds with neighborhood-level spatial and social conditions, including population density, 

the prevalence of multifamily housing, and income, race/ethnicity, homeownership, and 

commuting by car. 

Background 

A wide body of literature in the geographic sciences has focused hhas sought to use 

morphological analysis to examine urban phenomena [15-18], including the variegated 

character of urban development [19] and neighborhood-scale distinctions between settlement 

types [20]. Yet a large portion of quantitative urban morphological research remains focused on 

definitions of urban vs non-urban by characterizing rates of urbanization [6], differentiating 

urbanized and non-urbanized areas [5,21] or distinguishing different degrees of compactness 

and sprawl [4,22]. Others pay attention to more nuanced variation across urban areas. For 

example, Xingye et al. (2021) apply multifractal analysis to remote sensed imagery and show 

how three types of urban clusters (urban core areas, medium-sized urban settlements, and 

small villages and towns) dominate the urban spatial organization of Beijing. 

Our analysis draws on a large literature from the fields of urban studies, sociology, and 

urban planning that has demonstrated that neighborhoods matter for a range of social, 

political, and ecological processes and outcomes (see van Ham and Manely 2012 and Sharkey 

and Faber 2014 for reviews). Our analysis examines how neighborhood morphology maps on to 

varying spatial and sociodemographic characteristics of place. Fine-grained morphological 

analysis that distinguishes between neighborhood types can elucidate patterns of development 

across a broader typology of urban development, including in peri-urban neighborhoods where 
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socially vulnerable populations often reside [20]. The availability of large spatial datasets of 

building footprint polygons enables more nuanced analysis of variation in the built environment 

within and across urban areas. Morphology metrics can characterize the size, shape, and 

placement of buildings and the relationships between them, which can in turn be correlated 

with or indicative of different neighborhood or settlement types [7].  

Morphological analysis using building footprints can identify neighborhood types within 

single urban areas and classify development patterns across different metropolitan regions. 

Analysis of urban morphology can provide insight into historical patterns of development, but it 

requires contextual interpretation [23]. In the U.S. context for instance, the dominant 

residential building pattern is suburban, as historians of U.S. development have noted [24]. Yet, 

suburbs are not a monolith. Suburbanization followed multiple waves from the earliest 

Victorian “first suburbs,” to later railroad suburbs, to car-centered suburban sprawl, to 

“technoburbs” enabled by contemporary revolutions in communications [25]. Taking suburbs as 

an example, there are various corresponding economic, demographic, planning, and Census-

based definitions of neighborhood types. In a departure from these socioeconomic or 

regulatory definitions of neighborhood types, a morphological typology of neighborhoods 

would codify elements of the built environment that distinguish and define the form of U.S. 

neighborhoods, allowing for more systematic comparison across time and space [26].  

Data and methods 

Given the computational intensity of creating building footprint-based measures of 

neighborhood morphology, in this analysis of neighborhood morphology in the U.S. we focus on 
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a handful of metropolitan areas. To examine potential variation in morphology across different 

contexts (urban/rural, older/newer, weakly/strictly regulated), we examine five of the ten 

largest Combined Metropolitan Statistical Areas (CMSAs) in the country. These five metros 

represent a range of development and planning histories that are representative of U.S. 

jurisdictions more broadly. Development patterns are intricately linked to local governments’ 

decisions on how to regulate land, which determines density, the supply and characteristics of 

buildings, the socio-demographics of populations, the nature of sprawl and the relation of 

places to the natural environments within and around them [27]. In short, the character of local 

land use regulations determines the physical character of places in the U.S. These five metros 

cover all of the four orders that Pendall, Puentes, and Martin (2006) identify as characteristic of 

U.S. land use regulatory regimes nationally, which they define as: Traditional (Atlanta, Chicago), 

Exclusionary (Boston), Wild Wild Texas (Houston), and Reform (Los Angeles).   

We begin by collecting building footprints for each metropolitan area in question. We 

use a national database of building footprints generated by Microsoft for more than 125 million 

buildings in the U.S.  The building footprints are two-dimensional representations of the outlines 

of structures detected in very high-resolution satellite imagery and extracted and mapped using 

deep neural networks. The building footprint polygons do not contain any additional attribute 

data which might identify the type of structure. These data were released for public use in 2018 

and are publicly available at https://github.com/microsoft/USBuildingFootprints. We then 

identify all building footprints located within the boundary of the Census Bureau-delineated 

Combined Statistical Area (CSA) for each of the five metro areas studied. Prior to calculating 

https://github.com/microsoft/USBuildingFootprints
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neighborhood morphometrics, we remove buildings with a footprint of less than 25 meters, 

which we suspect contain uninhabited structures such as sheds or garages.   

We conduct all measurement of neighborhood morphology in R using the foot package 

[7,28] which provides a variety of easy-to-use and flexible options for the calculation of building 

footprint-derived morphometrics. The building footprints are reprojected into the modal UTM 

projection for the metropolitan area in question to allow for accurate area and distance 

calculations. We then use the foot package in R to calculate morphometrics for buildings in each 

census block. Although census blocks are an imperfect proxy for neighborhoods, they are the 

smallest geography delineated by the U.S. Census Bureau and thus allow for relatively a high-

resolution spatial scale that is easily linked to demographic and socioeconomic data on 

individual communities. Within each census block, we measure a series of morphological 

characteristics of buildings that we believe are likely to vary across neighborhood contexts in 

the United States. These include the total area of each footprint (in square meters), the 

compactness of each footprint, the ratio of building length to equivalent-width, the distance (in 

meters) to the nearest neighbor, the length of the perimeter of each footprint (in meters), and 

the footprint’s shape index. Where applicable, we estimate both the central tendency (median) 

and variability (interquartile range) of the morphological characteristics at the census block 

level. The building footprint-level variables and block-level summary statistics we use to 

calculate each morphometric is shown in Table 1. 
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Table 1. Morphometric Definitions 

 Morphometric Building Footprint-level Variable Block-level Summary 

Size    

 area_iqr 

Building footprint area in square 

meters Interquartile range 

 perimeter_iqr 

Building footprint perimeter length in 

meters Interquartile range 

 area_median 

Building footprint area in square 

meters Median 

 perimeter_median 

Building footprint perimeter length in 

meters Median 

 area_max 

Building footprint area in square 

meters Maximum 

Shape    

 compact_iqr Polsby-Popper index Interquartile range 

 leqwratio_iqr 

Ratio of the longest edge of the 

building footprint's minimum bounding 

rectangle to the building's equivalent 

width Interquartile range 

 shape_iqr 

Ratio of building footprint area to the 

area of its minimum bounding circle Interquartile range 

 compact_median Polsby-Popper index Median 
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 leqwratio_median 

Ratio of the longest edge of the 

building footprint's minimum bounding 

rectangle to the building's equivalent 

width Median 

 shape_median 

Ratio of building footprint area to the 

area of its minimum bounding circle Median 

Placement    

 nndist_iqr 

Distance in meters to the nearest 

building footprint Interquartile range 

 nndist_median 

Distance in meters to the nearest 

building footprint Median 

 angle_entropy 

Orientation of the building's rotated 

minimum bounding rectangle Shannon entropy index 

 foot_density Number of building footprints 

Footprints per square 

kilometer 

 settled_count Number of building footprints Sum 

 

To reduce the influence of outliers within each neighborhood, we calculate the median 

and interquartile range for each of the variables above within each census block. We also 

calculate a measure of entropy of the orientation of each footprint, the size of the largest 

footprint in square meters, the total number of buildings, and the number of buildings per 

square kilometer. After calculating these morphometrics, we examine descriptive statistics for 

each morphometric across the five metropolitan areas and across central cities, suburban cities, 
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and areas located along the urban fringe. To do so, we use shapefiles from the U.S. Census 

Bureau for Census Places to identify all incorporated places within each Combined Metropolitan 

Statistical Area (CMSA).  For each metropolitan area, we treat the one or more incorporated 

places that are named in each metropolitan area as the area’s central city (e.g., in Boston, 

Worcester, and Providence are all named in the Boston CMSA, so we treat them all as central 

cities). All other incorporated places within the metro area are labeled as suburban cities. Lastly, 

all areas located outside an incorporated place are labeled as the urban fringe.  

We then use principal components analysis (PCA) and unsupervised classification (K-

means clustering) to develop a typology of neighborhoods. Prior to the use of PCA, we 

normalize and standardize the distribution of each variable to reduce the potential influence of 

outliers and the unit of measurement on the PCA and subsequent unsupervised classification. 

To normalize each variable, we test the skew of the variables’ distribution before and after a 

series of transformations of the following form, Xt and X1/t, where X is the variable of interest 

and t is a number ranging from 1 to 5. We thus transform each variable by calculating the 

square through fifth and the square root through the fifth root; in addition, we calculate the 

natural log. We then select the transformation with the least skewed distribution and then 

standardize each variable so that it has a mean of 0 and standard deviation of 1. After 

completing these transformations, we use PCA to conduct dimensionality reduction and to 

examine whether a limited number of dimensions can be used to represent neighborhood 

morphology. 

We then use unsupervised classification to examine the ability of these morphometrics 

to identify and describe a typology of neighborhoods and to examine the distribution of these 
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neighborhoods across metropolitan contexts and across the urban, suburban, and rural 

landscape. We create the classification using only measures of building morphology (i.e., we do 

not include demographic and socioeconomic variables or other urban features such as road 

networks as has been used in some prior work [10]. We do so because we are explicitly 

interested in testing whether neighborhood morphology is associated with variation in 

socioeconomic and demographic data. We use the K-means algorithm in the Scikit-Learn 

package in Python [29] to conduct the unsupervised classification. We also test alternative 

algorithms, including Gaussian mixture models (GMMs) and agglomerative hierarchical methods 

with various tuning parameters, where applicable: for the GMMs, we evaluate models with 

spherical, diagonal, and full covariance types, whereas, for the agglomerative approach, we 

evaluate single, complete, average, and Ward linkages. To compare the results of the 

classifications across algorithms, we calculate silhouette scores for 2 through 10 clusters for 

each clustering algorithm. Given the computational intensity of silhouette scores, we use a 

sample of 10,000 census blocks (1.5% of the more than 630,000 census blocks containing 

building footprints in the five metro areas) to estimate the average silhouette score. As 

illustrated in Table 2, although the average silhouette scores are highest for the agglomerative 

hierarchical models with single, complete, and average linkages, this is due to over-

segmentation, leading to (in some cases many) clusters capturing only a fraction of the total 

observations. These clusters do not, therefore, capture meaningful variation in morphology 

across the sample. Among the remaining models, the K-means and GMM models with diagonal 

and spherical covariance structures perform the best, with classifications of 2 and 3 classes 
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producing the highest silhouette scores (.2 to .25). Given its comparable performance and its 

ubiquity in the literature, we select the K-means results for further analysis.  

Table 2. Model Performance for Various Classifiers 

Number 

of 

Classes 

K-

means 

GMM 

Diagonal 

GMM 

Spherical 

GMM 

Full 

Aggl. 

Single 

Aggl. 

Complete 

Aggl. 

Average 

Aggl. 

Ward 

2 0.24 (0) 0.23 (0) 0.25 (0) 0.2 (0) 0.77 (1) 0.77 (1) 0.77 (1) 0.17 (0) 

3 0.19 (0) 0.14 (0) 0.19 (0) 0.12 (0) 0.41 (2) 0.14 (1) 0.53 (2) 0.16 (0) 

4 0.16 (0) 0.07 (0) 0.13 (0) 0.07 (0) 0.39 (3) 0.14 (1) 0.39 (3) 0.12 (0) 

5 0.16 (0) 0.05 (0) 0.14 (0) 0.08 (0) 0.38 (4) 0.13 (1) 0.34 (4) 0.09 (0) 

6 0.16 (0) 0.06 (0) 0.13 (0) 0.06 (0) 0.38 (5) 0.11 (1) 0.33 (5) 0.09 (0) 

7 0.15 (0) 0.05 (0) 0.13 (0) 0.05 (0) 0.32 (6) 0.1 (1) 0.32 (6) 0.08 (0) 

8 0.15 (0) 0.06 (0) 0.13 (0) 0.03 (0) 0.28 (7) 0.09 (2) 0.28 (6) 0.09 (0) 

9 0.14 (0) 0.05 (0) 0.11 (0) 0.04 (0) 0.28 (8) 0.09 (2) 0.28 (7) 0.07 (0) 

10 0.14 (0) 0.05 (0) 0.12 (0) 0.04 (0) 0.26 (9) 0.09 (4) 0.23 (7) 0.07 (0) 

Notes: This table presents the average silhouette score across all clusters for a given model and pre-

specified number of clusters. To illustrate potential over-segmentation, the number of clusters 

containing fewer than 1% of all observations is shown in parentheses. 

 

To select the optimal number of clusters, we examine an elbow plot and descriptive 

statistics for each class from the various K-means models with between 2 and 10 clusters. As 

shown in the elbow plot (Fig 1), there is no inflection point indicating a clearly optimal model. 

However, upon subsequent review of the descriptive statistics for the morphometrics, 
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disaggregated by each class (results not shown), it appears that the results from 2- and 3-way 

classifications primarily distinguish between 1) census blocks with low-density development, 2) 

high-density development with large buildings, and 3) high-density development with small to 

moderate sized buildings (e.g., residential neighborhoods). They do not, however, provide much 

insight into variation within these classes. Given that evaluating variation in the morphology of 

residential areas is one of the primary objectives of the study, we choose to discuss the results 

of the classification with 5 clusters because it has the next highest silhouette score and results 

in multiple classes of low-density, primarily residential development.  

Fig. 1. Elbow Plot 

We do not claim the 5 classes discussed below represent mutually exclusive or universal 

neighborhood types. Rather, we describe how these classes differ regarding key morphological 

characteristics that correspond with broad archetypes in the social science of urban and 

suburban neighborhoods in the United States. A key contribution of this analysis is our test of 

whether and how neighborhood morphology aligns with socio-demographic characteristics of 

these archetypes. Selecting a different number of clusters or a different clustering algorithm 

may lead to neighborhoods with more or less refined and distinct morphological characteristics. 

But, as we describe below, morphology would still likely correlate with socioeconomic and 

demographic conditions in ways that map intuitively onto sociological understandings of urban 

and suburban spaces. 

We examine the results from the unsupervised classification by discussing descriptive 

statistics for the morphometrics for each class and examining the distribution of each class 

across the five metros and across central cities, suburban cities, and the urban fringe. We then 
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use Ordinary Least Squares regression analysis to examine the relationship between 

demographic and socioeconomic characteristics and the prevalence of each class at the census 

tract level. The purpose here is to examine whether the morphology-based classifications map 

onto social variables in meaningful and informative ways. To do so, we estimate the following 

regression model: 

𝑌𝑖𝑗 =  𝛼 + 𝛽𝑋𝑖𝑗 + 𝛿𝐷𝑗 + 𝜀𝑖𝑗 

where Y represents the share of census blocks within each census tract i and metro area j that 

are assigned to each of the five morphological classes from the Kmeans classification; α 

represents the intercept; X represents a vector of socioeconomic and demographic 

characteristics for the ith census tract in the jth metro area, including the median year 

structures were built, the population density per square mile, the percentage of housing units 

located in structures with 20 or more units, the homeownership rate, the median household 

income, the percentage of people who are non-Hispanic White, and the percentage of workers 

who commute by car; β represents a corresponding vector of coefficients that capture the 

relationship between each socioeconomic and demographic indicator included in X; D 

represents a vector of dummy variables for each metropolitan area; δ is a vector of coefficients 

associated with the metropolitan dummy variables and represents the average difference in the 

share of neighborhoods of each class relative to the reference category (Atlanta), holding other 

variables constant; and ε is the error term.  
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Results 

Descriptive statistics 
As illustrated in Table 3 which shows the median for each morphometric for census 

blocks in each metropolitan area, the five metropolitan areas differ in regard to the size and 

placement of buildings in the typical neighborhood, but not in regard to the shape of buildings. 

For example, the typical size of building footprints in each neighborhood (area_median) and the 

variability among building footprints within neighborhoods (area_iqr), both differ considerably 

across metro areas. In Atlanta, Houston, and Los Angeles — the three post-car metros — the 

median building in the median neighborhood is considerably larger (between 192 and 213 

square meters) than in Boston or Chicago (147 to 158 square meters). Similarly, the variability in 

the size of buildings is also larger in these post-car metros, where in the median neighborhood 

buildings varied in size with an interquartile range of 84 square meters or more; this is notably 

more intra-neighborhood variation in building size than is found in Boston (63) or Chicago (74). 

Thus, neighborhoods in the older metros are typically composed of smaller and more uniformly 

sized buildings than those in Sunbelt cities.  
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Table 3. Median Morphometrics by Metropolitan Area 

  Atlanta Boston Chicago Houston 

Los 

Angeles 

Size       

 area_iqr 87.50 63.39 74.37 86.52 84.45 

 perimeter_iqr 15.32 13.42 15.32 16.25 15.93 

 area_median 192.47 146.79 157.58 195.58 213.27 

 perimeter_median 58.21 51.04 53.03 58.70 62.73 

 area_max 405.41 305.45 338.95 397.99 415.05 

Shape       

 compact_iqr 0.09 0.09 0.08 0.11 0.10 

 leqwratio_iqr 0.53 0.55 0.53 0.53 0.54 

 shape_iqr 0.08 0.09 0.08 0.10 0.09 

 compact_median 0.72 0.72 0.72 0.73 0.70 

 leqwratio_median 1.61 1.60 1.56 1.53 1.57 

 shape_median 0.55 0.56 0.56 0.56 0.55 

Placement      

 nndist_iqr 10.49 7.85 4.55 5.95 3.33 
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 nndist_median 33.05 27.30 19.90 21.79 18.46 

 angle_entropy 0.85 0.86 0.97 0.91 0.92 

 foot_density 178.77 439.76 698.02 502.56 871.61 

 settled_count 15 15 15 17 22 

 

As illustrated in Table 3, there is also considerable variation between metropolitan areas 

in regard to the distance between buildings and, relatedly, the number of buildings per square 

kilometer. For example, in Los Angeles and Chicago – two of the most densely settled 

metropolitan areas in the country – more than half of buildings in the median neighborhood are 

within approximately 19 meters of another building. However, in the typical neighborhood in 

less densely settled Atlanta, most buildings are 33 meters from the nearest building. To put it 

differently, the building density in Chicago (698 buildings per square kilometer) and Los Angeles 

(872) is considerably higher than in Atlanta (179). Table 3 also reveals some counter-intuitive 

and notable findings regarding the morphology of neighborhoods across the five metropolitan 

areas. For example, in Boston, the distance between buildings (27 meters) is considerably larger 

than in the post-car metros of Houston (21) and Los Angeles (19). One might expect Boston to 

have higher building density given its period of development. As we explore in Tables 4 and 5 

below, this is largely explained by the location of buildings across central cities, suburban cities, 

or the urban fringe within each metropolitan area. Similarly, it is notable that building size is not 

directly related to either building density or distance between buildings. For example, although 

the post-care metros of Atlanta, Houston, and Los Angeles all have larger buildings (median 
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about 192 square meters), they vary markedly in both building footprint density and distance 

between buildings. These findings point toward potentially divergent building development 

patterns within each metropolitan area.  

To explore variation in building morphology within metropolitan areas, we now turn to 

an examination across central cities, suburban cities, and the urban fringe, as shown in Table 4.  

A number of morphometrics show notable variation across these spatial scales. As might be 

expected, the median footprint of buildings in suburban cities and the urban fringe is 

considerably larger than in central cities (median of approximately 180 compared with 161). 

Similarly, buildings in the fringe are much farther from each other (median distance of 30 

meters) when compared with buildings in suburban and central cities (19 and 16 meters, 

respectively), and neighborhoods along the fringe have considerably lower building density (179 

buildings per square kilometer) than in central and suburban cities (1,083 and 805 buildings per 

square kilometer). Notably, however, as illustrated by the interquartile range (IQR) 

morphometrics, the location with the least intra-neighborhood variability is suburban cities. For 

example, in suburban cities the typical neighborhood has considerably less intra-neighborhood 

variation in building size, as indicated by an interquartile range of 66 square meters, compared 

with 84 and 87 square meters in central cities and the suburban fringe. Suburban cities also 

show lower intra-neighborhood variation across the other metrics studied here (area_iqr, 

compact_iqr, leqwratio_iqr, nndist_iqr, perimeter_iqr, and shape_iqr) than do neighborhoods 

on the urban fringe. The lower variability in suburban morphometrics across very different U.S. 

metros reflects not only the prevalence of cookie-cutter style suburban neighborhoods with 

uniform housing types, but also the dominance of common land use regulations and 
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development practices (i.e., setbacks and minimum lot sizes) that shape suburban development 

patterns.  

Table 4. Median Morphometrics by Location 

  Central Cities 

Suburban 

Cities Urban Fringe 

Size     

 area_iqr 84.29 66.37 87.10 

 perimeter_iqr 17.64 12.80 16.76 

 area_median 160.90 183.85 178.87 

 perimeter_median 53.76 57.34 56.77 

 area_max 459.08 339.29 387.48 

Shape     

 compact_iqr 0.10 0.08 0.10 

 leqwratio_iqr 0.64 0.46 0.58 

 shape_iqr 0.10 0.08 0.09 

 compact_median 0.71 0.72 0.71 

 leqwratio_median 1.65 1.53 1.60 

 shape_median 0.55 0.56 0.55 
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Placement    

 nndist_iqr 3.57 3.76 10.15 

 nndist_median 15.75 19.35 30.28 

 angle_entropy 0.93 0.93 0.90 

 foot_density 1083.50 804.95 179.20 

 settled_count 18 17 16 

 

Table 5 presents selected morphometrics – the median and maximum area, median 

distance between buildings, and the building footprint density – in each metropolitan area, 

disaggregated by location within the central city, suburban city, and urban fringe. For 

comparison across metro areas, we also included the percentage of census blocks in each 

location. A number of these findings are notable. For example, although in all cases building 

density decreases (and distance between the nearest building increases) as one moves from 

central cities to suburban cities and from suburban cities to the urban fringe, the five 

metropolitan areas differ substantially in regard to the intensity of development across these 

three locations. For example, in Boston, nearly two-thirds (64%) of census blocks are located in 

the urban fringe, where the distance between neighboring buildings is 31 meters (second only 

to the urban fringe of Atlanta). This is driven by the prevalence of low-density, unincorporated 

New England towns, many of which rely on exclusionary zoning to limit the density of new 

development [27]. In comparison, in Los Angeles, more than two-thirds of census blocks are in 

suburban cities (56%) and central cities (15%) and have the highest building footprint density 
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and lowest distance between neighborhoods observed in suburban and fringe areas across the 

five metropolitan areas.  

 A second notable finding is that, in some metros, there is minimal if any variation in the 

size of the median building, while in others there is substantial variation between central city, 

suburban city, and urban fringe locations. For example, in Atlanta, there is only a 10-square 

meter difference between the size of the median building in suburban cities (197) and central 

cities (187). The same is true in Boston (140 to 149) and Houston (194 to 196). In Chicago and 

Los Angeles, however, the median building in central cities (128 and 181 square meters, 

respectively) is more than 40 square meters smaller than buildings located in other parts of the 

metropolitan area. This suggests highly divergent development patterns in these two 

metropolitan areas wherein suburban cities (in Los Angeles) or the urban fringe (in Chicago) are 

home to substantially larger buildings than the central city. The results in Chicago make some 

intuitive sense: buildings in lower-density areas typically have larger footprints; thus, the urban 

fringe has larger building footprints than suburban cities (189 vs 151 square meters), which in 

turn have larger footprints than central cities (128). In Los Angeles, however, suburban cities 

have substantially larger buildings than exurban areas and central cities (225 vs. 200 and 181, 

respectively). This is likely driven by what has been called “horizontal density” – the expansion 

of single-family units and the widespread creation of accessory dwelling units across what were 

historically exclusively single-family suburban neighborhoods [30,31]. 
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Table 5. Selected Median Morphometrics by Metropolitan Area and Location 

  area_median nndist_median foot_density  

Percentage 

of Blocks 

Atlanta       

 Central Cities 187.46 21.12 492.96  5% 

 Suburban Cities 197.02 28.25 382  27% 

 Urban Fringe 191.17 36.35 85.61  68% 

Boston       

 Central Cities 149.2 16.62 1107.15  6% 

 Suburban Cities 140.66 20.32 857.07  30% 

 Urban Fringe 149.89 31.6 235.38  64% 

Chicago       

 Central Cities 128.79 11.94 1440.77  18% 

 Suburban Cities 151.79 18.37 841.11  49% 

 Urban Fringe 189.99 28.32 131.98  32% 

Houston       

 Central Cities 194.14 18.81 802.54  23% 

 Suburban Cities 196.85 21.14 609.02  30% 

 Urban Fringe 195.44 26.67 211.54  47% 

Los Angeles      

 Central Cities 181.15 15.67 1208.67  15% 

 Suburban Cities 225.21 18.2 947.25  56% 

 Urban Fringe 200.66 22.81 358.41  29% 
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Unsupervised classification 
We now turn to a discussion of the results of our unsupervised classification (K-means 

using 5 classes). Fig 2 provides archetypal examples of each of the five classes, while Table 6 

presents the median for each of the 16 morphometrics in each of the 5 classes. As is clear, class 

1 is primarily composed of neighborhoods with smaller buildings, high levels of building density, 

and low intra-neighborhood variability in building size, shape, and placement. In other words, 

these are dense neighborhoods of smaller buildings that vary little from each other in regard to 

the orientation of buildings. These are likely cookie-cutter, single-family, residential 

neighborhoods with modestly sized homes. Class 4 is similar, with little intra-neighborhood 

variation in the size, shape, and placement of buildings, but with lower density and larger 

buildings (see below). Class 2 on the other hand contains neighborhoods with low overall 

building density and a high degree of intra-neighborhood variability in regard to building size, 

shape, and placement. These are therefore low-density neighborhoods which, as we illustrate 

shortly, are primarily located on the urban fringe. Class 3 is composed primarily of 

neighborhoods with large buildings with non-compact shapes. These census blocks likely 

contain commercial or mixed-use buildings or other buildings with large and varied footprints. 

Lastly, class 5 is characterized by the high density and high variability of building footprints.  

Fig. 2. Archetypal Examples of Each Class 
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Table 6. Median Morphometrics by Neighborhood Class 

  Class 1 Class 2  Class 3 Class 4 Class 5 

Size        

 area_iqr 56.66 153.5  1140.4 63.78 95.49 

 perimeter_iqr 10.51 25.5  88.39 10.42 19.3 

 area_median 157.78 198.64  863.98 246.41 158.26 

 perimeter_median 50.72 59.46  124.14 67.06 53.08 

 area_max 398.76 1438.8  5056.22 458.57 654.16 

Shape        

 compact_iqr 0.05 0.12  0.17 0.07 0.12 

 leqwratio_iqr 0.33 0.77  1.3 0.4 0.79 

 shape_iqr 0.06 0.12  0.15 0.06 0.12 

 compact_median 0.76 0.71  0.61 0.67 0.71 

 leqwratio_median 1.37 1.66  2.3 1.79 1.68 

 shape_median 0.6 0.54  0.47 0.52 0.54 

Placement       

 nndist_iqr 4.95 19.63  15.43 5.18 4.24 
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 nndist_median 20.19 36.26  40.76 27.52 16.07 

 angle_entropy 0.86 0.77  0.92 0.91 0.85 

 foot_density 928.67 162.52  240.33 616.4 1262.66 

 settled_count 24.17 35.51  13.38 16.74 30.44 

 

Comparisons across the five classes reveal a number of interesting similarities and 

differences. For example, class 4 is similar to class 1, with low intra-neighborhood variability in 

building size, shape, and placement, but larger building footprints and lower density. Thus, class 

1 may capture earlier suburban developments with modest homes on smaller lots while class 4 

may capture more recent suburban-style developments with larger houses on larger lots. 

Moreover, class 5 is similar to both class 1 and class 4 in regard to the size and shape of the 

median building, but neighborhoods in class 5 tend to have substantially higher intra-

neighborhood variability in building size and shape. In other words, the size and shape of 

buildings within the same neighborhood vary considerably in class 5 but are relatively uniform 

in classes 1 and 4. This variability is clearly illustrated in Fig 2, which depicts representative 

arrangements of building footprints for each neighborhood class. Notably, neighborhoods in 

class 5 also have substantially higher building density and substantially lower distances between 

buildings. Class 5 may therefore represent downtown” or “main street” neighborhoods where 

there is a greater mix and density of buildings or denser, single-family neighborhoods with weak 

or weakly enforced land use regulations.  
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Lastly, there are also interesting similarities between classes 2 and 5. Despite the 

relatively small size of buildings in both classes, there is a high degree of intra-neighborhood 

variability in building size and shape in both class 2 and class 5.  The primary factor that 

distinguishes these two classes is the distance between buildings and the overall density of 

buildings within the neighborhood. Unlike class 5, which has the highest density of all 5 classes 

(1,262 buildings per square kilometer), class 2 has the lowest building density with a median of 

162 buildings per square kilometer. 

Spatial and socioeconomic analyses 
Morphological analysis of building footprints alone is clearly able to distinguish a 

typology of U.S. neighborhoods, but how does this morphology-based taxonomy map onto 

variation in spatial and social dimensions between neighborhoods? We conclude by examining 

the distribution of each class across space and the association of each class with key 

demographic and socioeconomic characteristics. To do so, we examine the share of each class 

that is located in each metropolitan area and in three sub-metropolitan regions (central cities, 

suburban cities, and the urban fringe). We also use regression analysis to examine the 

association between the share of neighborhoods (census blocks) in each tract that were 

predicted to be of each class and key socioeconomic and demographic data, as measured by 

2016-2020 tract-level estimates from the American Community Survey.  

We begin by discussing the results for class 3. Recall that, as illustrated in Table 3, class 3 

neighborhoods have substantially larger buildings than the other four classes. Table 7 shows 

that a relatively small share of neighborhoods in each metro area and each sub-metropolitan 

region are in class 3. For example, class 3 neighborhoods make up a low of 6% of census blocks 
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in Boston and a high of 12% of census blocks in Los Angeles. Similarly, class 3 neighborhoods 

make up a maximum of 14% of census blocks in central cities, and between 8-9% in suburban 

cities and the urban fringe. The regression results in Table 8 provide additional insight into the 

characteristics of class 3 neighborhoods. Tracts with a higher share of class 3 neighborhoods 

had substantially higher shares of housing units in structures with 20 or more units in total 

(effect size of .47), lower homeownership rates (-.33), and lower shares of residents who 

commuted to work by car (-.15). Notably, class 3 neighborhoods also have the strongest 

association with household income (.11), suggesting that tracts with concentrations of class 3 

neighborhoods have residents with higher-than-average incomes. These results suggest that 

class 3 represents mixed-use business and commercial areas with higher-than-average shares of 

multifamily housing, rental housing, and multi-modal means of transit. The metropolitan 

dummy variables in the regression shown in Table 8 represent the average difference in the 

share of neighborhoods of each class relative to the reference category (Atlanta), holding other 

variables constant. We do not interpret these coefficients directly as they are used simply to 

control for variation in the prevalence of each class at the metropolitan level and largely 

substantiate the findings in Table 8. 

Table 7. Percentage of Classes by Metro and Location 

  

Metro Class 1 Class 2 Class 3 Class 4 Class 5 

Atlanta 24% 46% 10% 18% 3% 

Boston 31% 34% 6% 16% 13% 
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Chicago 30% 17% 8% 20% 25% 

Houston 30% 28% 10% 12% 20% 

Los Angeles 19% 14% 12% 23% 33% 

Central Cities 21% 6% 14% 11% 48% 

Suburban Cities 34% 11% 9% 22% 24% 

Urban Fringe 21% 44% 8% 17% 10% 

 

At the opposite end of the spectrum are class 2 neighborhoods which, as discussed 

earlier, are characterized by low-density/high-variability development. The distribution of class 

2 neighborhoods varies substantially, both across metro areas and sub-metropolitan contexts. 

For example, class 2 makes up 46% of neighborhoods in Atlanta but only 14% and 17% in Los 

Angeles and Chicago, respectively (see Table 3 and Fig 3). Similarly, class 2 is very common in 

the urban fringe (44% of neighborhoods), but uncommon in suburban cities (11%) and central 

cities (6%). The regression results also highlight that tracts with high shares of class 2 

neighborhoods have exceedingly low population densities (effect size of -.64; see Table 8). Each 

of these statistics suggests that class 2 neighborhoods represent low-intensity development on 

the urban fringe. This conclusion is also supported by the fact that the concentration of class 

two neighborhoods has a significant but modest association with the share of non-Hispanic 

Whites (.11); counterintuitively, however, commuting by car has a small though statistically 

significant association with the prevalence of class 2 neighborhoods (-.03), the reason for which 

is unclear.  
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Fig. 3. Distribution of the Five Classes Across the Metropolitan Landscape      

We now turn to a discussion of classes 1, 4, and 5. As we noted earlier, these three 

classes are relatively similar in their morphology: all three contain smaller, closely spaced (i.e., 

high-density) buildings. The main morphological differences between the three are A) that class 

5 neighborhoods have greater variability in building size and shape than do classes 1 and 4, and 

B) that class 4 has larger buildings than class 1 (see Table 3). However, their distribution across 

space and their socioeconomic and demographic profiles differ in important ways. To illustrate 

this fact, we begin by discussing class 5 and how its physical morphology relates to tract-level 

socioeconomic and demographic characteristics that distinguish it from neighborhoods in 

classes 1 and 4.  

As illustrated in Table 4, class 5 neighborhoods are most common in central cities (48% 

of neighborhoods) and least common on the urban fringe (10%). Classes 1 and 4, on the other 

hand, are more common in suburban cities (34% and 22% of neighborhoods, respectively) than 

in central cities (21% and 11%) or the urban fringe (21% and 17%). Class 5 thus likely represents 

older residential neighborhoods in dense urban centers, while classes 1 and 4 are primarily 

suburban neighborhoods. Thus, while class 5 is made up of small and densely spaced buildings, 

their location near central cities likely means these are some of the oldest residential 

neighborhoods, or “first suburbs,” built before the dominance of subdivision regulations and 

zoning ordinances when more variability in housing forms (i.e. townhomes and row houses 

alongside single-family homes) was common [24]. The regression results at the tract level 

confirm these distinctions. For example, although tracts with high shares of class 1 

neighborhoods have a small positive association with the median year of construction (.12), 
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those with high shares of class 5 neighborhoods have a much larger, negative association (-.41); 

thus, tracts with newer housing are more likely to contain class 1 neighborhoods and less likely 

to contain class 5 neighborhoods.   

Although classes 1 and 5 share some similarities, other characteristics of class 1 are 

indicative of suburban neighborhoods, while those of class 5 suggest they contain older urban 

neighborhoods. For example, tracts with high shares of class 1 and class 5 neighborhoods have 

high population densities (effect sizes of .33 and .27, respectively; see Table 8) and both have 

low percentages of multifamily structures (i.e., the share of units in structures with 20 or more 

units; -.18). However, whereas high concentrations of class 5 neighborhoods have a negative 

association with homeownership rates (-.13), homeownership is closely associated with the 

prevalence of class 1 neighborhoods (.24). Similarly, shares of commuting by car are not 

associated with class 5 neighborhoods but are common in class 1 (.11). These statistics, along 

with differences in the median year housing was built in each class, point to class 5 as older 

urban neighborhoods with a mix of owners and renters and class 1 as more recent suburban 

neighborhoods with high concentrations of homeowners.  

We conclude by examining the socioeconomic and demographic characteristics of class 

4 neighborhoods, paying particular attention to how they differ from those in class 1. As our 

earlier analysis of building morphology illustrated, class 4 neighborhoods have larger building 

footprints and lower density than in class 1. Once again, the demographic and socioeconomic 

characteristics provide insight into the social context for these differences. For example, in 

tracts with high shares of class 4 neighborhoods, the median structure was built more recently 

(effect size of .26; see Table 8) than in tracts with class 1 neighborhoods (.12). Similarly, tracts 
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with high shares of class 4 neighborhoods have lower population densities (.18 vs. .33). These 

statistics suggest that class 1 neighborhoods may represent earlier suburbs while class 4 

neighborhoods represent more recent development; their morphology corresponds with the 

decade-by-decade increase in the average size of US homes that accompanied widespread 

suburbanization. That said, however, it is notable that the sign and magnitude of the 

coefficients are similar across the two models predicting the share of class 1 and class 4 

neighborhoods, and that the r-squared in these models is substantially lower (.2 and .18, 

respectively) than for classes 2, 3, and 5 (.67, .53, and .52).  

The low r-squared suggests, along with similarities in their morphological characteristics, 

suggest that class 1 and class 4 neighborhoods may not be distinct enough to warrant being 

considered separate types of neighborhood. To examine whether collapsing these two classes 

into a single neighborhood type led to changes in the regression results, we estimated a sixth 

regression model predicting the share of neighborhoods in either class 1 or 4. The results, 

shown in the last column in Table 8, provide some evidence that classes 1 and 4 represent 

similar neighborhood types. For example, after combining the two categories, the r-squared 

increases to .3 while the coefficients typically have the same sign as in the first and fourth 

models but are generally larger in magnitude. 

 

Table 8. Regression: Tract-level Factors that Predict the Prevalence of Each Morphological Class 

  Share of 

Blocks in 

Class 1 

Share of 

Blocks in 

Class 2 

Share of 

Blocks in 

Class 3 

Share of 

Blocks in 

Class 4  

Share of 

Blocks in 

Class 5 

Share of 

Blocks in 
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Class 1 or 

Class 4 

(Intercept) 0.16 *** 0.38 *** 0.00 -0.23 *** -0.33 *** -0.02 

  (0.02)    (0.01)    (0.02)    (0.02)    (0.02)    (0.02)    

Median Year 

Structure Built 

0.12 *** 0.04 *** 0.11 *** 0.26 *** -0.41 *** 0.28 *** 

  (0.01)    (0.01)    (0.01)    (0.01)    (0.01)    (0.01)    

Population 

density 

0.33 *** -0.64 *** -0.11 *** 0.18 *** 0.27 *** 0.41 *** 

  (0.01)    (0.01)    (0.01)    (0.01)    (0.01)    (0.01)    

Median 

Household 

Income 

-0.07 *** -0.02 *   0.11 *** -0.06 *** 0.03 **  -0.10 *** 

  (0.01)    (0.01)    (0.01)    (0.01)    (0.01)    (0.01)    

Non-Hispanic 

White (%) 

-0.12 *** 0.11 *** -0.04 *** 0.08 *** -0.02 *   -0.05 *** 

  (0.01)    (0.01)    (0.01)    (0.01)    (0.01)    (0.01)    

Homeownership 

Rate 

0.24 *** 0.02 *   -0.33 *** 0.23 *** -0.13 *** 0.37 *** 

  (0.02)    (0.01)    (0.01)    (0.02)    (0.01)    (0.01)    

Commute by Car 

(%) 

0.11 *** -0.03 *** -0.15 *** 0.08 *** 0.00 0.15 *** 

  (0.01)    (0.01)    (0.01)    (0.01)    (0.01)    (0.01)    
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Units in 

Structures with 

20+ Units (%) 

-0.18 *** 0.03 *** 0.47 *** -0.08 *** -0.18 *** -0.22 *** 

  (0.01)    (0.01)    (0.01)    (0.01)    (0.01)    (0.01)    

Boston 0.22 *** -0.06 **  -0.16 *** 0.15 *** -0.11 *** 0.29 *** 

  (0.03)    (0.02)    (0.03)    (0.03)    (0.03)    (0.03)    

Chicago 0.09 **  -0.69 *** 0.08 *** 0.41 *** 0.21 *** 0.37 *** 

  (0.03)    (0.02)    (0.02)    (0.03)    (0.02)    (0.03)    

Houston -0.04 -0.38 *** 0.14 *** -0.34 *** 0.51 *** -0.27 *** 

  (0.03)    (0.02)    (0.02)    (0.03)    (0.02)    (0.03)    

Los Angeles -0.54 *** -0.50 *** -0.03 0.49 *** 0.62 *** -0.13 *** 

  (0.03)    (0.02)    (0.02)    (0.03)    (0.02)    (0.03)    

N 12072 12072 12072 12072 12072 12072 

R2 0.20 0.67 0.53 0.18 0.52 0.30 

All continuous predictors and the outcome variable are mean-centered and scaled by 1 standard 

deviation.*** p < 0.001;  ** p < 0.01;  * p < 0.05. 

Discussion and conclusion 

Neighborhood morphology – as represented by the size, shape, and placement of 

building footprints – provides a high-resolution means of measuring patterns of development 

across the urban landscape. In this paper, we examine whether neighborhood morphometrics 

at the census block level provide insight into spatial patterns of development and 

socioeconomic and demographic conditions across metropolitan and sub-metropolitan areas. 

We observe substantial differences in the size and placement of buildings across the five 
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metropolitan areas, as well as across central cities, suburban cities, and the urban fringe. We 

also use unsupervised classification to develop a morphological typology of neighborhoods and 

examine variation in the prevalence of neighborhood types across urban space and its 

association with neighborhood-level socioeconomic and demographic conditions. Our cluster 

analysis reveals a set of five neighborhood types, including “first suburb” neighborhoods with 

modest and uniform housing size and placement; newer suburbs with larger but relatively 

uniform housing; older, high-density neighborhoods with highly varied housing; low-density 

neighborhoods with highly varied patterns of development; and neighborhoods with larger 

commercial or multifamily buildings. By comparing the prevalence of these neighborhood types 

across three metropolitan scales (urban, suburban, and urban fringe) and with tract-level 

socioeconomic and demographic data, we provide additional nuance regarding differences in 

the period of development, type of housing, characteristics of residents, and connection to 

employment opportunities across different neighborhood types. In doing so, we demonstrate a 

method of characterizing neighborhood morphology, detail a typology of U.S. neighborhoods 

across varying U.S. metros, and examine how different neighborhood morphologies align with 

variations in spatial and sociodemographic characteristics such as population density, 

prevalence of multifamily housing, and income, race/ethnicity, homeownership, and 

commuting by car.  

Beyond a typology of U.S. neighborhoods, the growing availability of building footprint 

data and an increasing number of statistical software programs for analyzing them [7,32] make 

possible a wide variety of analyses of neighborhood morphology that have the potential to 

advance geographic science in urban areas in important ways. Detailed data from the U.S. 
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Census Bureau on neighborhood level conditions (e.g., type and size of dwellings) are only 

available at the census block group level. However, block groups are often large, arbitrarily 

delineated and contain a mixture of housing and neighborhood types. Building footprints and 

morphometrics derived from them provide a high-resolution option for distinguishing between 

different types of development at various spatial scales.   

While it is beyond the scope of this paper to analyze all the ways physical morphology 

relates to tract-level socioeconomic and demographic characteristics, the association between 

neighborhood morphology and key socio-spatial characteristics indicates a number of 

significant applications of this method. Building footprint-derived estimates of neighborhood 

morphology provide an additional, high resolution means of analyzing patterns of urban 

development. As we illustrate, morphometrics capture variability in layout of buildings and, in 

doing so, capture distinct morphological characteristics that reflect historical and contextual 

differences in development patterns across central cities, suburbs, and the urban fringe. 

Morphometrics may therefore be useful as primary or supplemental data inputs for efforts to 

examine and address a myriad of issues such as zoning and land use, housing supply and policy, 

residential segregation, neighborhood change, infrastructure investment, the development and 

operation of transit networks, historic preservation, and the coordination of regional 

development.  

Future research could examine the causes of neighborhood morphology and its 

potential association with important societal outcomes. For example, scholars might use 

neighborhood morphology as the dependent variable in analyses of the impact of land use 

regulation, code enforcement actions, lending policy, and developer practices to understand 
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how these policy and market factors shape the supply of housing and, as a result, the 

morphology of new neighborhoods. Similarly, scholars might use neighborhood morphology as 

the independent variable in analyses of residential segregation, economic mobility, or 

environmental vulnerability to understand how patterns of development shape access to 

opportunity or exposure to risk. As the availability of building footprints (or the aerial imagery 

used to derive them) increases, scholars could also examine temporal variation in development 

patterns and neighborhood morphology. This in turn could be used to examine physical 

patterns of neighborhood change (e.g., abandonment, infill, and upgrading) and socioeconomic 

or demographic patterns of neighborhood change (e.g., filtering, population loss, gentrification, 

etc.).  

Future research might also address some of the limitations of the methods used here. 

For example, our method of unsupervised classification undoubtedly aggregates distinct 

neighborhoods into only a handful of neighborhood types. Scholars could use footprint-derived 

morphometrics and ground-truthed (parcel or zoning) data to distinguish between single-family 

and multifamily neighborhoods, manufactured home communities, and mixed-use 

developments. Future research could also explore alternative means of delineating 

neighborhood boundaries other than census blocks, including other census geographies, plat 

maps, or zoning districts. Additionally, morphological analysis might compress long, place-based 

histories into a geographic cross-section of the built environment. Thus, morphological analysis 

can be used to complement analyses of administrative, regulatory, and development data, thus 

opening multiple avenues of future research that can provide deeper insight into development 

patterns and economic or social phenomena.  
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