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The spatial and social correlates of neighborhood
morphology: Evidence from building footprints in five U.S.
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Abstract

Recent advances in quantitative tools for examining urban morphology enable the development
of morphometrics that can characterize the size, shape, and placement of buildings; the
relationships between them; and their association with broader patterns of development.
Although these methods have the potential to provide substantial insight into the ways in which
neighborhood morphology shapes the socioeconomic and demographic characteristics of
neighborhoods and communities, this question is largely unexplored. Using building footprints
in five of the ten largest U.S. metropolitan areas (Atlanta, Boston, Chicago, Houston, and Los
Angeles) and the open-source R package, foot, we examine how neighborhood morphology
differs across U.S. metropolitan areas and across the urban-exurban landscape. Principal
components analysis, unsupervised classification (K-means), and Ordinary Least Squares
regression analysis are used to develop a morphological typology of neighborhoods and to
examine its association with the spatial, socioeconomic, and demographic characteristics of
census tracts. Our findings illustrate substantial variation in the morphology of neighborhoods,

both across the five metropolitan areas as well as between central cities, suburbs, and the



urban fringe within each metropolitan area. We identify five different types of neighborhoods
indicative of different stages of development and distributed unevenly across the urban
landscape: these include low-density neighborhoods on the urban fringe; mixed use and high-
density residential areas in central cities; and uniform residential neighborhoods in suburban
cities. Results from regression analysis illustrate that the prevalence of each of these forms is
closely associated with variation in socioeconomic and demographic characteristics such as
population density, the prevalence of multifamily housing, and income, race/ethnicity,
homeownership, and commuting by car. We conclude by discussing the implications of our
findings and suggesting avenues for future research on neighborhood morphology, including
ways that it might provide insight into issues such as zoning and land use, housing policy, and

residential segregation.

Introduction

A decades-long shift in how geographers and planners analyze urban form has
emphasized how bottom-up and uncoordinated local decision-making gives rise to large-scale,
coordinated, morphological patterns that define the size and shape of cities in predictable ways
[1]. Urban morphology —the systematic study of the form and configuration of human
settlements with an eye toward uncovering the principles and rules of development and design
[2]—- has been used for centuries to understand, evaluate, and intervene in urban processes [3].
However, the growth of high-resolution satellite imagery, big data, and new computational
tools opens up new avenues to document, evaluate, and monitor urban form. The result has

been an increased effort to quantify urban form by identifying the morphological metrics of



development [4—7]. Morphological understandings of urban spatial organization and evolution
can identify underlying mechanisms and characteristics of urban development, to better plan
for and manage increasingly complex urban areas [8]. Drawing on methods from data science,
urban morphologists have developed new tools and approaches [9] for characterizing street
networks [3,10] as well as the form of buildings [9,11]. New data, tools, and techniques mean
researchers are not limited to small case studies which have been common in urban
morphology studies. Recent research using building footprints has used morphological analysis
to characterize patterns of development at the neighborhood level [7]. For example, Jochem
and Tatem use publicly available spatial datasets of building footprints to define their
constituent elements (size, shape, and placement of structures) in England, Scotland and Wales
and to examine the extent to which typologies of neighborhoods derived from unsupervised
classification using building footprint morphometrics align with census-defined classifications

for rural and urban areas of various types [7].

We adapt and extend this analysis to the U.S. context to analyze the dimensions and
distribution of development inscribed in the morphology of neighborhoods in five of the ten
largest U.S metropolitan areas and to develop a typology of U.S. neighborhoods based on their
morphological characteristics. In doing so, we combine the tools of urban morphology with the
theoretical contributions from a vast literature in urban studies, sociology, and planning that
has explored how neighborhoods are a key mechanism that structures ecological, political and
social outcomes in metro regions. Distinct types of neighborhoods (e.g., suburban enclaves,
urban cores, rural districts) vary markedly in the characteristics of their population and the

opportunities they provide [12—-14]. Little is known, however, about whether the morphological



characteristics measured by building footprints align with these pre-existing conceptual
understandings of neighborhoods and the characteristics of residents in them. We address this
gap in this study by answering three primary research questions: Can neighborhood-level
estimates of building morphology be used to create a useful typology of U.S. neighborhoods
that maps onto conceptual understandings of urban form? How does neighborhood
morphology vary across the country and across central cities, suburban areas, and the urban
fringe? Do neighborhoods with distinct building morphologies differ in regard to key socio-

demographic characteristics?

We employ the recently developed R foot package, a set of open-source tools for
calculating morphology metrics for building footprints, which Jochem and Tatem (2021) use to
identify the constituent elements of building footprints and settlement patterns across all
buildings in Great Britain. Using the foot package, we calculate morphometrics summarizing the
characteristics of building footprints in census blocks across five major U.S. metropolitan areas
with different development and land use histories to examine how the morphology of
neighborhoods differs across urban-exurban space and between U.S. metros. We measure
neighborhood morphology through physical form, specifically the features of building
footprints, including the size, shape, and placement of buildings and their relations to each
other. We use unsupervised classification to identify five primary classes of neighborhoods
based on building morphology: these include central-city residential neighborhoods, business
and commercial districts, first suburbs, late suburbs, and rural areas. We examine the
prevalence and variation of neighborhood types across urban space (from central cities to the

urban fringes). Finally, we explore whether and how the physical morphology of neighborhoods



corresponds with neighborhood-level spatial and social conditions, including population density,
the prevalence of multifamily housing, and income, race/ethnicity, homeownership, and

commuting by car.

Background

A wide body of literature in the geographic sciences has focused hhas sought to use
morphological analysis to examine urban phenomena [15-18], including the variegated
character of urban development [19] and neighborhood-scale distinctions between settlement
types [20]. Yet a large portion of quantitative urban morphological research remains focused on
definitions of urban vs non-urban by characterizing rates of urbanization [6], differentiating
urbanized and non-urbanized areas [5,21] or distinguishing different degrees of compactness
and sprawl [4,22]. Others pay attention to more nuanced variation across urban areas. For
example, Xingye et al. (2021) apply multifractal analysis to remote sensed imagery and show
how three types of urban clusters (urban core areas, medium-sized urban settlements, and
small villages and towns) dominate the urban spatial organization of Beijing.

Our analysis draws on a large literature from the fields of urban studies, sociology, and
urban planning that has demonstrated that neighborhoods matter for a range of social,
political, and ecological processes and outcomes (see van Ham and Manely 2012 and Sharkey
and Faber 2014 for reviews). Our analysis examines how neighborhood morphology maps on to
varying spatial and sociodemographic characteristics of place. Fine-grained morphological
analysis that distinguishes between neighborhood types can elucidate patterns of development

across a broader typology of urban development, including in peri-urban neighborhoods where



socially vulnerable populations often reside [20]. The availability of large spatial datasets of
building footprint polygons enables more nuanced analysis of variation in the built environment
within and across urban areas. Morphology metrics can characterize the size, shape, and
placement of buildings and the relationships between them, which can in turn be correlated
with or indicative of different neighborhood or settlement types [7].

Morphological analysis using building footprints can identify neighborhood types within
single urban areas and classify development patterns across different metropolitan regions.
Analysis of urban morphology can provide insight into historical patterns of development, but it
requires contextual interpretation [23]. In the U.S. context for instance, the dominant
residential building pattern is suburban, as historians of U.S. development have noted [24]. Yet,
suburbs are not a monolith. Suburbanization followed multiple waves from the earliest
Victorian “first suburbs,” to later railroad suburbs, to car-centered suburban sprawl, to
“technoburbs” enabled by contemporary revolutions in communications [25]. Taking suburbs as
an example, there are various corresponding economic, demographic, planning, and Census-
based definitions of neighborhood types. In a departure from these socioeconomic or
regulatory definitions of neighborhood types, a morphological typology of neighborhoods
would codify elements of the built environment that distinguish and define the form of U.S.

neighborhoods, allowing for more systematic comparison across time and space [26].

Data and methods

Given the computational intensity of creating building footprint-based measures of

neighborhood morphology, in this analysis of neighborhood morphology in the U.S. we focus on



a handful of metropolitan areas. To examine potential variation in morphology across different
contexts (urban/rural, older/newer, weakly/strictly regulated), we examine five of the ten
largest Combined Metropolitan Statistical Areas (CMSAs) in the country. These five metros
represent a range of development and planning histories that are representative of U.S.
jurisdictions more broadly. Development patterns are intricately linked to local governments’
decisions on how to regulate land, which determines density, the supply and characteristics of
buildings, the socio-demographics of populations, the nature of sprawl and the relation of
places to the natural environments within and around them [27]. In short, the character of local
land use regulations determines the physical character of places in the U.S. These five metros
cover all of the four orders that Pendall, Puentes, and Martin (2006) identify as characteristic of
U.S. land use regulatory regimes nationally, which they define as: Traditional (Atlanta, Chicago),
Exclusionary (Boston), Wild Wild Texas (Houston), and Reform (Los Angeles).

We begin by collecting building footprints for each metropolitan area in question. We
use a national database of building footprints generated by Microsoft for more than 125 million
buildings in the U.S. The building footprints are two-dimensional representations of the outlines
of structures detected in very high-resolution satellite imagery and extracted and mapped using
deep neural networks. The building footprint polygons do not contain any additional attribute
data which might identify the type of structure. These data were released for public use in 2018

and are publicly available at https://github.com/microsoft/USBuildingFootprints. We then

identify all building footprints located within the boundary of the Census Bureau-delineated

Combined Statistical Area (CSA) for each of the five metro areas studied. Prior to calculating


https://github.com/microsoft/USBuildingFootprints

neighborhood morphometrics, we remove buildings with a footprint of less than 25 meters,
which we suspect contain uninhabited structures such as sheds or garages.

We conduct all measurement of neighborhood morphology in R using the foot package
[7,28] which provides a variety of easy-to-use and flexible options for the calculation of building
footprint-derived morphometrics. The building footprints are reprojected into the modal UTM
projection for the metropolitan area in question to allow for accurate area and distance
calculations. We then use the foot package in R to calculate morphometrics for buildings in each
census block. Although census blocks are an imperfect proxy for neighborhoods, they are the
smallest geography delineated by the U.S. Census Bureau and thus allow for relatively a high-
resolution spatial scale that is easily linked to demographic and socioeconomic data on
individual communities. Within each census block, we measure a series of morphological
characteristics of buildings that we believe are likely to vary across neighborhood contexts in
the United States. These include the total area of each footprint (in square meters), the
compactness of each footprint, the ratio of building length to equivalent-width, the distance (in
meters) to the nearest neighbor, the length of the perimeter of each footprint (in meters), and
the footprint’s shape index. Where applicable, we estimate both the central tendency (median)
and variability (interquartile range) of the morphological characteristics at the census block
level. The building footprint-level variables and block-level summary statistics we use to

calculate each morphometric is shown in Table 1.



Table 1. Morphometric Definitions

Size

Shape

Morphometric

area_iqgr

perimeter_iqgr

area_median

perimeter_median

area_max

compact_iqgr

leqwratio_igr

shape_igr

compact_median

Building Footprint-level Variable

Building footprint area in square

meters

Building footprint perimeter length in

meters

Building footprint area in square

meters

Building footprint perimeter length in

meters

Building footprint area in square

meters

Polsby-Popper index

Ratio of the longest edge of the
building footprint's minimum bounding

rectangle to the building's equivalent

width

Ratio of building footprint area to the

area of its minimum bounding circle

Polsby-Popper index

Block-level Summary

Interquartile range

Interquartile range

Median

Median

Maximum

Interquartile range

Interquartile range

Interquartile range

Median
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legwratio_median

shape_median

Placement

nndist_iqr

nndist_median

angle_entropy

foot_density

settled_count

Ratio of the longest edge of the
building footprint's minimum bounding
rectangle to the building's equivalent
width

Ratio of building footprint area to the

area of its minimum bounding circle

Distance in meters to the nearest
building footprint

Distance in meters to the nearest
building footprint

Orientation of the building's rotated

minimum bounding rectangle

Number of building footprints

Number of building footprints

Median

Median

Interquartile range

Median

Shannon entropy index
Footprints per square
kilometer

Sum

To reduce the influence of outliers within each neighborhood, we calculate the median

and interquartile range for each of the variables above within each census block. We also

calculate a measure of entropy of the orientation of each footprint, the size of the largest

footprint in square meters, the total number of buildings, and the number of buildings per

square kilometer. After calculating these morphometrics, we examine descriptive statistics for

each morphometric across the five metropolitan areas and across central cities, suburban cities,
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and areas located along the urban fringe. To do so, we use shapefiles from the U.S. Census
Bureau for Census Places to identify all incorporated places within each Combined Metropolitan
Statistical Area (CMSA). For each metropolitan area, we treat the one or more incorporated
places that are named in each metropolitan area as the area’s central city (e.g., in Boston,
Worcester, and Providence are all named in the Boston CMSA, so we treat them all as central
cities). All other incorporated places within the metro area are labeled as suburban cities. Lastly,
all areas located outside an incorporated place are labeled as the urban fringe.

We then use principal components analysis (PCA) and unsupervised classification (K-
means clustering) to develop a typology of neighborhoods. Prior to the use of PCA, we
normalize and standardize the distribution of each variable to reduce the potential influence of
outliers and the unit of measurement on the PCA and subsequent unsupervised classification.
To normalize each variable, we test the skew of the variables’ distribution before and after a
series of transformations of the following form, Xtand X, where X is the variable of interest
and tis a number ranging from 1 to 5. We thus transform each variable by calculating the
square through fifth and the square root through the fifth root; in addition, we calculate the
natural log. We then select the transformation with the least skewed distribution and then
standardize each variable so that it has a mean of 0 and standard deviation of 1. After
completing these transformations, we use PCA to conduct dimensionality reduction and to
examine whether a limited number of dimensions can be used to represent neighborhood
morphology.

We then use unsupervised classification to examine the ability of these morphometrics

to identify and describe a typology of neighborhoods and to examine the distribution of these

12



neighborhoods across metropolitan contexts and across the urban, suburban, and rural
landscape. We create the classification using only measures of building morphology (i.e., we do
not include demographic and socioeconomic variables or other urban features such as road
networks as has been used in some prior work [10]. We do so because we are explicitly
interested in testing whether neighborhood morphology is associated with variation in
socioeconomic and demographic data. We use the K-means algorithm in the Scikit-Learn
package in Python [29] to conduct the unsupervised classification. We also test alternative
algorithms, including Gaussian mixture models (GMMs) and agglomerative hierarchical methods
with various tuning parameters, where applicable: for the GMMs, we evaluate models with
spherical, diagonal, and full covariance types, whereas, for the agglomerative approach, we
evaluate single, complete, average, and Ward linkages. To compare the results of the
classifications across algorithms, we calculate silhouette scores for 2 through 10 clusters for
each clustering algorithm. Given the computational intensity of silhouette scores, we use a
sample of 10,000 census blocks (1.5% of the more than 630,000 census blocks containing
building footprints in the five metro areas) to estimate the average silhouette score. As
illustrated in Table 2, although the average silhouette scores are highest for the agglomerative
hierarchical models with single, complete, and average linkages, this is due to over-
segmentation, leading to (in some cases many) clusters capturing only a fraction of the total
observations. These clusters do not, therefore, capture meaningful variation in morphology
across the sample. Among the remaining models, the K-means and GMM models with diagonal

and spherical covariance structures perform the best, with classifications of 2 and 3 classes
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producing the highest silhouette scores (.2 to .25). Given its comparable performance and its

ubiquity in the literature, we select the K-means results for further analysis.

Table 2. Model Performance for Various Classifiers

Number

of K-

Classes means

2 0.24 (0)
3 0.19 (0)
4 0.16 (0)
5 0.16 (0)
6 0.16 (0)
7 0.15 (0)
8 0.15 (0)
9 0.14 (0)
10 0.14 (0)

GMM
Diagonal
0.23(0)
0.14 (0)
0.07 (0)
0.05 (0)
0.06 (0)
0.05 (0)
0.06 (0)
0.05 (0)

0.05 (0)

GMM

Spherical

0.25 (0)
0.19 (0)
0.13 (0)
0.14 (0)
0.13 (0)
0.13 (0)
0.13 (0)
0.11(0)

0.12 (0)

GMM
Full
0.2 (0)
0.12 (0)
0.07 (0)
0.08 (0)
0.06 (0)
0.05 (0)
0.03 (0)
0.04 (0)

0.04 (0)

Aggl.
Single
0.77 (1)
0.41(2)
0.39 (3)
0.38(4)
0.38(5)
0.32 (6)
0.28(7)
0.28(8)

0.26 (9)

Aggl.

Complete

0.77 (1)
0.14 (1)
0.14 (1)
0.13 (1)
0.11 (1)
0.1(1)
0.09 (2)
0.09 (2)

0.09 (4)

Aggl.
Average
0.77 (1)
0.53(2)
0.39 (3)
0.34 (4)
0.33(5)
0.32 (6)
0.28 (6)
0.28 (7)

0.23(7)

Aggl.
Ward
0.17 (0)
0.16 (0)
0.12 (0)
0.09 (0)
0.09 (0)
0.08 (0)
0.09 (0)
0.07 (0)

0.07 (0)

Notes: This table presents the average silhouette score across all clusters for a given model and pre-

specified number of clusters. To illustrate potential over-segmentation, the number of clusters

containing fewer than 1% of all observations is shown in parentheses.

To select the optimal number of clusters, we examine an elbow plot and descriptive

statistics for each class from the various K-means models with between 2 and 10 clusters. As

shown in the elbow plot (Fig 1), there is no inflection point indicating a clearly optimal model.

However, upon subsequent review of the descriptive statistics for the morphometrics,
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disaggregated by each class (results not shown), it appears that the results from 2- and 3-way
classifications primarily distinguish between 1) census blocks with low-density development, 2)
high-density development with large buildings, and 3) high-density development with small to
moderate sized buildings (e.g., residential neighborhoods). They do not, however, provide much
insight into variation within these classes. Given that evaluating variation in the morphology of
residential areas is one of the primary objectives of the study, we choose to discuss the results
of the classification with 5 clusters because it has the next highest silhouette score and results
in multiple classes of low-density, primarily residential development.
Fig. 1. EIbow Plot

We do not claim the 5 classes discussed below represent mutually exclusive or universal
neighborhood types. Rather, we describe how these classes differ regarding key morphological
characteristics that correspond with broad archetypes in the social science of urban and
suburban neighborhoods in the United States. A key contribution of this analysis is our test of
whether and how neighborhood morphology aligns with socio-demographic characteristics of
these archetypes. Selecting a different number of clusters or a different clustering algorithm
may lead to neighborhoods with more or less refined and distinct morphological characteristics.
But, as we describe below, morphology would still likely correlate with socioeconomic and
demographic conditions in ways that map intuitively onto sociological understandings of urban
and suburban spaces.

We examine the results from the unsupervised classification by discussing descriptive
statistics for the morphometrics for each class and examining the distribution of each class

across the five metros and across central cities, suburban cities, and the urban fringe. We then
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use Ordinary Least Squares regression analysis to examine the relationship between
demographic and socioeconomic characteristics and the prevalence of each class at the census
tract level. The purpose here is to examine whether the morphology-based classifications map
onto social variables in meaningful and informative ways. To do so, we estimate the following
regression model:

Yij= a+ pX;; +6D; + ¢
where Y represents the share of census blocks within each census tract i and metro area j that
are assigned to each of the five morphological classes from the Kmeans classification; a
represents the intercept; X represents a vector of socioeconomic and demographic
characteristics for the ith census tract in the jth metro area, including the median year
structures were built, the population density per square mile, the percentage of housing units
located in structures with 20 or more units, the homeownership rate, the median household
income, the percentage of people who are non-Hispanic White, and the percentage of workers
who commute by car; B represents a corresponding vector of coefficients that capture the
relationship between each socioeconomic and demographic indicator included in X; D
represents a vector of dummy variables for each metropolitan area; & is a vector of coefficients
associated with the metropolitan dummy variables and represents the average difference in the
share of neighborhoods of each class relative to the reference category (Atlanta), holding other

variables constant; and ¢ is the error term.
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Results

Descriptive statistics

As illustrated in Table 3 which shows the median for each morphometric for census
blocks in each metropolitan area, the five metropolitan areas differ in regard to the size and
placement of buildings in the typical neighborhood, but not in regard to the shape of buildings.
For example, the typical size of building footprints in each neighborhood (area_median) and the
variability among building footprints within neighborhoods (area_iqgr), both differ considerably
across metro areas. In Atlanta, Houston, and Los Angeles — the three post-car metros — the
median building in the median neighborhood is considerably larger (between 192 and 213
square meters) than in Boston or Chicago (147 to 158 square meters). Similarly, the variability in
the size of buildings is also larger in these post-car metros, where in the median neighborhood
buildings varied in size with an interquartile range of 84 square meters or more; this is notably
more intra-neighborhood variation in building size than is found in Boston (63) or Chicago (74).
Thus, neighborhoods in the older metros are typically composed of smaller and more uniformly

sized buildings than those in Sunbelt cities.
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Table 3. Median Morphometrics by Metropolitan Area

Size

area_iqgr

perimeter_iqgr

area_median

perimeter_median

area_max

Shape

compact_iqgr

legwratio_igr

shape_igr

compact_median

legwratio_median

shape_median

Placement

nndist_iqr

Atlanta

87.50

15.32

192.47

58.21

405.41

0.09

0.53

0.08

0.72

161

0.55

10.49

Boston

63.39

13.42

146.79

51.04

305.45

0.09

0.55

0.09

0.72

1.60

0.56

7.85

Los
Chicago Houston Angeles
74.37 86.52 84.45
15.32 16.25 15.93
157.58 195.58 213.27
53.03 58.70 62.73
338.95 397.99 415.05
0.08 0.11 0.10
0.53 0.53 0.54
0.08 0.10 0.09
0.72 0.73 0.70
1.56 1.53 1.57
0.56 0.56 0.55
4.55 5.95 3.33
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nndist_median 33.05 27.30 19.90 21.79 18.46

angle_entropy 0.85 0.86 0.97 0.91 0.92
foot_density 178.77 439.76 698.02 502.56 871.61
settled count 15 15 15 17 22

As illustrated in Table 3, there is also considerable variation between metropolitan areas

in regard to the distance between buildings and, relatedly, the number of buildings per square

kilometer. For example, in Los Angeles and Chicago — two of the most densely settled

metropolitan areas in the country — more than half of buildings in the median neighborhood are

within approximately 19 meters of another building. However, in the typical neighborhood in

less densely settled Atlanta, most buildings are 33 meters from the nearest building. To put it

differently, the building density in Chicago (698 buildings per square kilometer) and Los Angeles

(872) is considerably higher than in Atlanta (179). Table 3 also reveals some counter-intuitive

and notable findings regarding the morphology of neighborhoods across the five metropolitan

areas. For example, in Boston, the distance between buildings (27 meters) is considerably larger

than in the post-car metros of Houston (21) and Los Angeles (19). One might expect Boston to

have higher building density given its period of development. As we explore in Tables 4 and 5

below, this is largely explained by the location of buildings across central cities, suburban cities,

or the urban fringe within each metropolitan area. Similarly, it is notable that building size is not

directly related to either building density or distance between buildings. For example, although

the post-care metros of Atlanta, Houston, and Los Angeles all have larger buildings (median
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about 192 square meters), they vary markedly in both building footprint density and distance
between buildings. These findings point toward potentially divergent building development
patterns within each metropolitan area.

To explore variation in building morphology within metropolitan areas, we now turn to
an examination across central cities, suburban cities, and the urban fringe, as shown in Table 4.
A number of morphometrics show notable variation across these spatial scales. As might be
expected, the median footprint of buildings in suburban cities and the urban fringe is
considerably larger than in central cities (median of approximately 180 compared with 161).
Similarly, buildings in the fringe are much farther from each other (median distance of 30
meters) when compared with buildings in suburban and central cities (19 and 16 meters,
respectively), and neighborhoods along the fringe have considerably lower building density (179
buildings per square kilometer) than in central and suburban cities (1,083 and 805 buildings per
square kilometer). Notably, however, as illustrated by the interquartile range (IQR)
morphometrics, the location with the least intra-neighborhood variability is suburban cities. For
example, in suburban cities the typical neighborhood has considerably less intra-neighborhood
variation in building size, as indicated by an interquartile range of 66 square meters, compared
with 84 and 87 square meters in central cities and the suburban fringe. Suburban cities also
show lower intra-neighborhood variation across the other metrics studied here (area_iqr,
compact_iqgr, leqwratio_igr, nndist_igr, perimeter_igr, and shape_igr) than do neighborhoods
on the urban fringe. The lower variability in suburban morphometrics across very different U.S.
metros reflects not only the prevalence of cookie-cutter style suburban neighborhoods with

uniform housing types, but also the dominance of common land use regulations and
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development practices (i.e., setbacks and minimum lot sizes) that shape suburban development

patterns.

Table 4. Median Morphometrics by Location

Size

Shape

area_iqgr

perimeter_igr

area_median

perimeter_median

area_max

compact_iqgr

legwratio_igr

shape_igr

compact_median

leqwratio_median

shape_median

Suburban
Central Cities Cities Urban Fringe
84.29 66.37 87.10
17.64 12.80 16.76
160.90 183.85 178.87
53.76 57.34 56.77
459.08 339.29 387.48
0.10 0.08 0.10
0.64 0.46 0.58
0.10 0.08 0.09
0.71 0.72 0.71
1.65 1.53 1.60
0.55 0.56 0.55
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Placement

nndist_iqr 3.57 3.76 10.15
nndist_median 15.75 19.35 30.28
angle_entropy 0.93 0.93 0.90
foot_density 1083.50 804.95 179.20
settled count 18 17 16

Table 5 presents selected morphometrics —the median and maximum area, median
distance between buildings, and the building footprint density —in each metropolitan area,
disaggregated by location within the central city, suburban city, and urban fringe. For
comparison across metro areas, we also included the percentage of census blocks in each
location. A number of these findings are notable. For example, although in all cases building
density decreases (and distance between the nearest building increases) as one moves from
central cities to suburban cities and from suburban cities to the urban fringe, the five
metropolitan areas differ substantially in regard to the intensity of development across these
three locations. For example, in Boston, nearly two-thirds (64%) of census blocks are located in
the urban fringe, where the distance between neighboring buildings is 31 meters (second only
to the urban fringe of Atlanta). This is driven by the prevalence of low-density, unincorporated
New England towns, many of which rely on exclusionary zoning to limit the density of new
development [27]. In comparison, in Los Angeles, more than two-thirds of census blocks are in
suburban cities (56%) and central cities (15%) and have the highest building footprint density
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and lowest distance between neighborhoods observed in suburban and fringe areas across the
five metropolitan areas.

A second notable finding is that, in some metros, there is minimal if any variation in the
size of the median building, while in others there is substantial variation between central city,
suburban city, and urban fringe locations. For example, in Atlanta, there is only a 10-square
meter difference between the size of the median building in suburban cities (197) and central
cities (187). The same is true in Boston (140 to 149) and Houston (194 to 196). In Chicago and
Los Angeles, however, the median building in central cities (128 and 181 square meters,
respectively) is more than 40 square meters smaller than buildings located in other parts of the
metropolitan area. This suggests highly divergent development patterns in these two
metropolitan areas wherein suburban cities (in Los Angeles) or the urban fringe (in Chicago) are
home to substantially larger buildings than the central city. The results in Chicago make some
intuitive sense: buildings in lower-density areas typically have larger footprints; thus, the urban
fringe has larger building footprints than suburban cities (189 vs 151 square meters), which in
turn have larger footprints than central cities (128). In Los Angeles, however, suburban cities
have substantially larger buildings than exurban areas and central cities (225 vs. 200 and 181,
respectively). This is likely driven by what has been called “horizontal density” — the expansion
of single-family units and the widespread creation of accessory dwelling units across what were

historically exclusively single-family suburban neighborhoods [30,31].
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Table 5. Selected Median Morphometrics by Metropolitan Area and Location

Atlanta
Central Cities
Suburban Cities
Urban Fringe
Boston
Central Cities
Suburban Cities
Urban Fringe
Chicago
Central Cities
Suburban Cities
Urban Fringe
Houston
Central Cities
Suburban Cities
Urban Fringe
Los Angeles
Central Cities
Suburban Cities

Urban Fringe

area_median

187.46
197.02

191.17

149.2
140.66

149.89

128.79
151.79

189.99

194.14
196.85

195.44

181.15
225.21

200.66

nndist_median

21.12
28.25

36.35

16.62
20.32

316

11.94
18.37

28.32

18.81
21.14

26.67

15.67
18.2

22.81

foot_density

492.96
382

85.61

1107.15
857.07

235.38

1440.77
84111

131.98

802.54
609.02

211.54

1208.67
947.25

358.41

Percentage

of Blocks

5%
27%

68%

6%
30%

64%

18%
49%

32%

23%
30%

47%

15%
56%

29%
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Unsupervised classification

We now turn to a discussion of the results of our unsupervised classification (K-means
using 5 classes). Fig 2 provides archetypal examples of each of the five classes, while Table 6
presents the median for each of the 16 morphometrics in each of the 5 classes. As is clear, class
1 is primarily composed of neighborhoods with smaller buildings, high levels of building density,
and low intra-neighborhood variability in building size, shape, and placement. In other words,
these are dense neighborhoods of smaller buildings that vary little from each other in regard to
the orientation of buildings. These are likely cookie-cutter, single-family, residential
neighborhoods with modestly sized homes. Class 4 is similar, with little intra-neighborhood
variation in the size, shape, and placement of buildings, but with lower density and larger
buildings (see below). Class 2 on the other hand contains neighborhoods with low overall
building density and a high degree of intra-neighborhood variability in regard to building size,
shape, and placement. These are therefore low-density neighborhoods which, as we illustrate
shortly, are primarily located on the urban fringe. Class 3 is composed primarily of
neighborhoods with large buildings with non-compact shapes. These census blocks likely
contain commercial or mixed-use buildings or other buildings with large and varied footprints.
Lastly, class 5 is characterized by the high density and high variability of building footprints.

Fig. 2. Archetypal Examples of Each Class
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Table 6. Median Morphometrics by Neighborhood Class

Size

area_iqgr

perimeter_iqr

area_median

perimeter_median

area_max

Shape

compact_igr

leqwratio_iqr

shape_igr

compact_median

legwratio_median

shape_median

Placement

nndist_iqr

Class 1

56.66

10.51

157.78

50.72

398.76

0.05

0.33

0.06

0.76

1.37

0.6

4.95

Class 2

153.5

25.5

198.64

59.46

1438.8

0.12

0.77

0.12

0.71

1.66

0.54

19.63

Class 3

1140.4

88.39

863.98

124.14

5056.22

0.17

1.3

0.15

0.61

2.3

0.47

1543

Class 4

63.78

10.42

246.41

67.06

458.57

0.07

0.4

0.06

0.67

1.79

0.52

5.18

Class 5

95.49

19.3

158.26

53.08

654.16

0.12

0.79

0.12

0.71

1.68

0.54

4.24

26



nndist_median 20.19 36.26 40.76 27.52 16.07

angle_entropy 0.86 0.77 0.92 0.91 0.85
foot_density 928.67 162.52 240.33 616.4 1262.66
settled_count 24.17 35.51 13.38 16.74 30.44

Comparisons across the five classes reveal a number of interesting similarities and
differences. For example, class 4 is similar to class 1, with low intra-neighborhood variability in
building size, shape, and placement, but larger building footprints and lower density. Thus, class
1 may capture earlier suburban developments with modest homes on smaller lots while class 4
may capture more recent suburban-style developments with larger houses on larger lots.
Moreover, class 5 is similar to both class 1 and class 4 in regard to the size and shape of the
median building, but neighborhoods in class 5 tend to have substantially higher intra-
neighborhood variability in building size and shape. In other words, the size and shape of
buildings within the same neighborhood vary considerably in class 5 but are relatively uniform
in classes 1 and 4. This variability is clearly illustrated in Fig 2, which depicts representative
arrangements of building footprints for each neighborhood class. Notably, neighborhoods in
class 5 also have substantially higher building density and substantially lower distances between
buildings. Class 5 may therefore represent downtown” or “main street” neighborhoods where
there is a greater mix and density of buildings or denser, single-family neighborhoods with weak

or weakly enforced land use regulations.
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Lastly, there are also interesting similarities between classes 2 and 5. Despite the
relatively small size of buildings in both classes, there is a high degree of intra-neighborhood
variability in building size and shape in both class 2 and class 5. The primary factor that
distinguishes these two classes is the distance between buildings and the overall density of
buildings within the neighborhood. Unlike class 5, which has the highest density of all 5 classes
(1,262 buildings per square kilometer), class 2 has the lowest building density with a median of

162 buildings per square kilometer.

Spatial and socioeconomic analyses

Morphological analysis of building footprints alone is clearly able to distinguish a
typology of U.S. neighborhoods, but how does this morphology-based taxonomy map onto
variation in spatial and social dimensions between neighborhoods? We conclude by examining
the distribution of each class across space and the association of each class with key
demographic and socioeconomic characteristics. To do so, we examine the share of each class
that is located in each metropolitan area and in three sub-metropolitan regions (central cities,
suburban cities, and the urban fringe). We also use regression analysis to examine the
association between the share of neighborhoods (census blocks) in each tract that were
predicted to be of each class and key socioeconomic and demographic data, as measured by

2016-2020 tract-level estimates from the American Community Survey.

We begin by discussing the results for class 3. Recall that, as illustrated in Table 3, class 3
neighborhoods have substantially larger buildings than the other four classes. Table 7 shows
that a relatively small share of neighborhoods in each metro area and each sub-metropolitan

region are in class 3. For example, class 3 neighborhoods make up a low of 6% of census blocks
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in Boston and a high of 12% of census blocks in Los Angeles. Similarly, class 3 neighborhoods
make up a maximum of 14% of census blocks in central cities, and between 8-9% in suburban
cities and the urban fringe. The regression results in Table 8 provide additional insight into the
characteristics of class 3 neighborhoods. Tracts with a higher share of class 3 neighborhoods
had substantially higher shares of housing units in structures with 20 or more units in total
(effect size of .47), lower homeownership rates (-.33), and lower shares of residents who
commuted to work by car (-.15). Notably, class 3 neighborhoods also have the strongest
association with household income (.11), suggesting that tracts with concentrations of class 3
neighborhoods have residents with higher-than-average incomes. These results suggest that
class 3 represents mixed-use business and commercial areas with higher-than-average shares of
multifamily housing, rental housing, and multi-modal means of transit. The metropolitan
dummy variables in the regression shown in Table 8 represent the average difference in the
share of neighborhoods of each class relative to the reference category (Atlanta), holding other
variables constant. We do not interpret these coefficients directly as they are used simply to
control for variation in the prevalence of each class at the metropolitan level and largely
substantiate the findings in Table 8.

Table 7. Percentage of Classes by Metro and Location

Metro Class 1 Class 2 Class 3 Class 4 Class 5
Atlanta 24% 46% 10% 18% 3%
Boston 31% 34% 6% 16% 13%
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Chicago 30% 17% 8% 20% 25%

Houston 30% 28% 10% 12% 20%
Los Angeles 19% 14% 12% 23% 33%
Central Cities 21% 6% 14% 11% 48%
Suburban Cities 34% 11% 9% 22% 24%
Urban Fringe 21% 44% 8% 17% 10%

At the opposite end of the spectrum are class 2 neighborhoods which, as discussed
earlier, are characterized by low-density/high-variability development. The distribution of class
2 neighborhoods varies substantially, both across metro areas and sub-metropolitan contexts.
For example, class 2 makes up 46% of neighborhoods in Atlanta but only 14% and 17% in Los
Angeles and Chicago, respectively (see Table 3 and Fig 3). Similarly, class 2 is very common in
the urban fringe (44% of neighborhoods), but uncommon in suburban cities (11%) and central
cities (6%). The regression results also highlight that tracts with high shares of class 2
neighborhoods have exceedingly low population densities (effect size of -.64; see Table 8). Each
of these statistics suggests that class 2 neighborhoods represent low-intensity development on
the urban fringe. This conclusion is also supported by the fact that the concentration of class
two neighborhoods has a significant but modest association with the share of non-Hispanic
Whites (.11); counterintuitively, however, commuting by car has a small though statistically
significant association with the prevalence of class 2 neighborhoods (-.03), the reason for which

is unclear.
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Fig. 3. Distribution of the Five Classes Across the Metropolitan Landscape

We now turn to a discussion of classes 1, 4, and 5. As we noted earlier, these three
classes are relatively similar in their morphology: all three contain smaller, closely spaced (i.e.,
high-density) buildings. The main morphological differences between the three are A) that class
5 neighborhoods have greater variability in building size and shape than do classes 1 and 4, and
B) that class 4 has larger buildings than class 1 (see Table 3). However, their distribution across
space and their socioeconomic and demographic profiles differ in important ways. To illustrate
this fact, we begin by discussing class 5 and how its physical morphology relates to tract-level
socioeconomic and demographic characteristics that distinguish it from neighborhoods in
classes 1 and 4.

As illustrated in Table 4, class 5 neighborhoods are most common in central cities (48%
of neighborhoods) and least common on the urban fringe (10%). Classes 1 and 4, on the other
hand, are more common in suburban cities (34% and 22% of neighborhoods, respectively) than
in central cities (21% and 11%) or the urban fringe (21% and 17%). Class 5 thus likely represents
older residential neighborhoods in dense urban centers, while classes 1 and 4 are primarily
suburban neighborhoods. Thus, while class 5 is made up of small and densely spaced buildings,
their location near central cities likely means these are some of the oldest residential
neighborhoods, or “first suburbs,” built before the dominance of subdivision regulations and
zoning ordinances when more variability in housing forms (i.e. townhomes and row houses
alongside single-family homes) was common [24]. The regression results at the tract level
confirm these distinctions. For example, although tracts with high shares of class 1

neighborhoods have a small positive association with the median year of construction (.12),
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those with high shares of class 5 neighborhoods have a much larger, negative association (-.41);
thus, tracts with newer housing are more likely to contain class 1 neighborhoods and less likely
to contain class 5 neighborhoods.

Although classes 1 and 5 share some similarities, other characteristics of class 1 are
indicative of suburban neighborhoods, while those of class 5 suggest they contain older urban
neighborhoods. For example, tracts with high shares of class 1 and class 5 neighborhoods have
high population densities (effect sizes of .33 and .27, respectively; see Table 8) and both have
low percentages of multifamily structures (i.e., the share of units in structures with 20 or more
units; -.18). However, whereas high concentrations of class 5 neighborhoods have a negative
association with homeownership rates (-.13), homeownership is closely associated with the
prevalence of class 1 neighborhoods (.24). Similarly, shares of commuting by car are not
associated with class 5 neighborhoods but are common in class 1 (.11). These statistics, along
with differences in the median year housing was built in each class, point to class 5 as older
urban neighborhoods with a mix of owners and renters and class 1 as more recent suburban
neighborhoods with high concentrations of homeowners.

We conclude by examining the socioeconomic and demographic characteristics of class
4 neighborhoods, paying particular attention to how they differ from those in class 1. As our
earlier analysis of building morphology illustrated, class 4 neighborhoods have larger building
footprints and lower density than in class 1. Once again, the demographic and socioeconomic
characteristics provide insight into the social context for these differences. For example, in
tracts with high shares of class 4 neighborhoods, the median structure was built more recently

(effect size of .26; see Table 8) than in tracts with class 1 neighborhoods (.12). Similarly, tracts
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with high shares of class 4 neighborhoods have lower population densities (.18 vs. .33). These
statistics suggest that class 1 neighborhoods may represent earlier suburbs while class 4
neighborhoods represent more recent development; their morphology corresponds with the
decade-by-decade increase in the average size of US homes that accompanied widespread
suburbanization. That said, however, it is notable that the sign and magnitude of the
coefficients are similar across the two models predicting the share of class 1 and class 4
neighborhoods, and that the r-squared in these models is substantially lower (.2 and .18,
respectively) than for classes 2, 3, and 5 (.67, .53, and .52).

The low r-squared suggests, along with similarities in their morphological characteristics,
suggest that class 1 and class 4 neighborhoods may not be distinct enough to warrant being
considered separate types of neighborhood. To examine whether collapsing these two classes
into a single neighborhood type led to changes in the regression results, we estimated a sixth
regression model predicting the share of neighborhoods in either class 1 or 4. The results,
shown in the last column in Table 8, provide some evidence that classes 1 and 4 represent
similar neighborhood types. For example, after combining the two categories, the r-squared
increases to .3 while the coefficients typically have the same sign as in the first and fourth

models but are generally larger in magnitude.

Table 8. Regression: Tract-level Factors that Predict the Prevalence of Each Morphological Class

Share of Share of Share of Share of Share of

Share of
Blocks in Blocks in Blocks in Blocks in Blocks in

Blocks in
Class 1 Class 2 Class 3 Class 4 Class 5
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(Intercept)

Median Year

Structure Built

Population

density

Median
Household

Income

Non-Hispanic

White (%)

Homeownership

Rate

Commute by Car

(%)

Class 1 or

Class 4
0.16 *** 0.38 *** 0.00 -0.23 *** -0.33 *¥** -0.02
(0.02) (0.01) (0.02) (0.02) (0.02) (0.02)
0.12 *** 0.04 *** 0.11 *** 0.26 *** -0.41 *** 0.28 ***
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
(.33 *** -0.64 *¥** -0.11 *** 0.18 *** 0.27 *** 0.41 ***
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
-0.07 *** -0.02 * 0.11 *** -0.06 *** 0.03 ** -0.10 ***
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
-0.12 *¥** 0.171 *** -0.04 *** 0.08 *** -0.02 * -0.05 ***
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
0.24 *** 0.02 * -0.33 *¥** 0.23 *** -0.13 *** 0.37 ***
(0.02) (0.01) (0.01) (0.02) (0.01) (0.01)
0.11 *** -0.03 *** -0.15 *** 0.08 *** 0.00 0.15 ***
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
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Units in

Structures with

20+ Units (%)

Boston

Chicago

Houston

Los Angeles

N

R2

-0.18 *** 0.03 *** 0.47 ¥** 0,08 *** -0.18 *** -0.22 *¥*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
0.22 *** -0.06 ** -0.16 *** 0.15 *** -0.11 *** 0.29 ***
(0.03) (0.02) (0.03) (0.03) (0.03) (0.03)
0.09 ** -0.69 *** 0.08 *** 0.41 *** 0.21 *** 0.37 ***
(0.03) (0.02) (0.02) (0.03) (0.02) (0.03)
-0.04  -0.38 *** 0.14 ¥**  _0.34 *** 0.51 *** -0.27 ***
(0.03) (0.02) (0.02) (0.03) (0.02) (0.03)
-0.54 *¥*¥* 050 **x -0.03 0.49 *** 0.62 *** -0.13 ***
(0.03) (0.02) (0.02) (0.03) (0.02) (0.03)
12072 12072 12072 12072 12072 12072
0.20 0.67 0.53 0.18 0.52 0.30

All continuous predictors and the outcome variable are mean-centered and scaled by 1 standard

deviation.*** p <0.001; ** p<0.01; * p<0.05.

Discussion and conclusion

Neighborhood morphology — as represented by the size, shape, and placement of

building footprints — provides a high-resolution means of measuring patterns of development

across the urban landscape. In this paper, we examine whether neighborhood morphometrics

at the census block level provide insight into spatial patterns of development and

socioeconomic and demographic conditions across metropolitan and sub-metropolitan areas.

We observe substantial differences in the size and placement of buildings across the five
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metropolitan areas, as well as across central cities, suburban cities, and the urban fringe. We
also use unsupervised classification to develop a morphological typology of neighborhoods and
examine variation in the prevalence of neighborhood types across urban space and its
association with neighborhood-level socioeconomic and demographic conditions. Our cluster
analysis reveals a set of five neighborhood types, including “first suburb” neighborhoods with
modest and uniform housing size and placement; newer suburbs with larger but relatively
uniform housing; older, high-density neighborhoods with highly varied housing; low-density
neighborhoods with highly varied patterns of development; and neighborhoods with larger
commercial or multifamily buildings. By comparing the prevalence of these neighborhood types
across three metropolitan scales (urban, suburban, and urban fringe) and with tract-level
socioeconomic and demographic data, we provide additional nuance regarding differences in
the period of development, type of housing, characteristics of residents, and connection to
employment opportunities across different neighborhood types. In doing so, we demonstrate a
method of characterizing neighborhood morphology, detail a typology of U.S. neighborhoods
across varying U.S. metros, and examine how different neighborhood morphologies align with
variations in spatial and sociodemographic characteristics such as population density,
prevalence of multifamily housing, and income, race/ethnicity, homeownership, and
commuting by car.

Beyond a typology of U.S. neighborhoods, the growing availability of building footprint
data and an increasing number of statistical software programs for analyzing them [7,32] make
possible a wide variety of analyses of neighborhood morphology that have the potential to

advance geographic science in urban areas in important ways. Detailed data from the U.S.
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Census Bureau on neighborhood level conditions (e.g., type and size of dwellings) are only
available at the census block group level. However, block groups are often large, arbitrarily
delineated and contain a mixture of housing and neighborhood types. Building footprints and
morphometrics derived from them provide a high-resolution option for distinguishing between
different types of development at various spatial scales.

While it is beyond the scope of this paper to analyze all the ways physical morphology
relates to tract-level socioeconomic and demographic characteristics, the association between
neighborhood morphology and key socio-spatial characteristics indicates a number of
significant applications of this method. Building footprint-derived estimates of neighborhood
morphology provide an additional, high resolution means of analyzing patterns of urban
development. As we illustrate, morphometrics capture variability in layout of buildings and, in
doing so, capture distinct morphological characteristics that reflect historical and contextual
differences in development patterns across central cities, suburbs, and the urban fringe.
Morphometrics may therefore be useful as primary or supplemental data inputs for efforts to
examine and address a myriad of issues such as zoning and land use, housing supply and policy,
residential segregation, neighborhood change, infrastructure investment, the development and
operation of transit networks, historic preservation, and the coordination of regional
development.

Future research could examine the causes of neighborhood morphology and its
potential association with important societal outcomes. For example, scholars might use
neighborhood morphology as the dependent variable in analyses of the impact of land use

regulation, code enforcement actions, lending policy, and developer practices to understand
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how these policy and market factors shape the supply of housing and, as a result, the
morphology of new neighborhoods. Similarly, scholars might use neighborhood morphology as
the independent variable in analyses of residential segregation, economic mobility, or
environmental vulnerability to understand how patterns of development shape access to
opportunity or exposure to risk. As the availability of building footprints (or the aerial imagery
used to derive them) increases, scholars could also examine temporal variation in development
patterns and neighborhood morphology. This in turn could be used to examine physical
patterns of neighborhood change (e.g., abandonment, infill, and upgrading) and socioeconomic
or demographic patterns of neighborhood change (e.g., filtering, population loss, gentrification,
etc.).

Future research might also address some of the limitations of the methods used here.
For example, our method of unsupervised classification undoubtedly aggregates distinct
neighborhoods into only a handful of neighborhood types. Scholars could use footprint-derived
morphometrics and ground-truthed (parcel or zoning) data to distinguish between single-family
and multifamily neighborhoods, manufactured home communities, and mixed-use
developments. Future research could also explore alternative means of delineating
neighborhood boundaries other than census blocks, including other census geographies, plat
maps, or zoning districts. Additionally, morphological analysis might compress long, place-based
histories into a geographic cross-section of the built environment. Thus, morphological analysis
can be used to complement analyses of administrative, regulatory, and development data, thus
opening multiple avenues of future research that can provide deeper insight into development

patterns and economic or social phenomena.
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