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1. Introduction

In the universal construction approach to low-dimensional topological theories [5,23,44] one starts with 

an evaluation of closed n-dimensional objects M taking values in a ground commutative ring or a field and 

then defines state spaces A(N) for (n − 1)-dimensional objects N via the bilinear pairing on n-dimensional 
objects M with a given boundary, ∂M ∼= N , by coupling two such objects M1, M2 along the boundary and 

evaluating the resulting closed object M1 ∪N M2. The n-dimensional objects may be manifolds, manifolds 
with decorations, embedded manifolds or foams, or one of many other variations of these examples. The 

universal pairing theory of Freedman, Kitaev, Nayak, Slingerland, Walker and Wang [19], further developed 

by Calegari, Freedman, Walker and others [6,53], is closely related to the universal construction. Some other 
examples of the universal construction for n = 2 were recently considered in [24,31,28]. Vector spaces or 
modules A(N) that one assigns to (n − 1)-dimensional objects in universal constructions usually do not 
satisfy the Atiyah tensor product axiom A(N1 � N2) ∼= A(N1) ⊗ A(N2), see [1]. Instead, there are maps

A(N1) ⊗ A(N2) A(N1 � N2) ,

which one can think of as a sort of a lax tensor structure.

In this note we explain that the universal construction approach is interesting even in dimension one. 
Studying the universal construction for one-manifolds decorated by dots labelled by elements of a finite 

set S, we recover the notion of noncommutative recognizable (equivalently, rational) power series in the 

alphabet S as developed by Schützenberger [51], Fliess [17], Eilenberg [13,14], Conway [8], Reutenauer, 
Carlyle and Paz, and others. A full set of references and introductions to this theory can be found in 

the textbooks by Berstel and Reutenauer [3], Salomaa and Soittola [47], Ésik and Kuich [15], Kuich and 

Salomaa [34], also see [50,21]. For short introductions to noncommutative rational power series we refer to 

Reutenauer [40–42].
Theory of noncommutative recognizable power series has its roots in the theory of rational languages 

and finite state automata [8,13–15], and can be viewed as a linearization of the latter [3,21]. We briefly 

review the basics of noncommutative rational (recognizable) power series in Section 2.2 and Proposition 2.1
stated there. Part of the motivation for this theory comes from an earlier theorem of Kleene that rational 
languages are precisely those recognizable by FSA (finite state automata). A language L is a subset of S∗

(the set of words in the letters of the alphabet S) and gives rise to series α(L) with the coefficient of w one 

if w ∈ L and zero otherwise. Coefficients of α(L) belong to the Boolean semiring B = {0, 1} with 1 + 1 = 1. 
Kleene’s theorem and the theory of finite state automata can be found in many textbooks on the field, 
see for instance [7] and foundational work of Conway [8] and Eilenberg [13,14]. Alternatively, we refer to 

Underwood [52, Chapter 2] for a brief introduction to finite state automata, regular languages, and their 
relation to bialgebras.

We consider various flavors of the category of S-decorated one-dimensional cobordisms. S-labelled dots 
placed along a one-dimensional cobordism can also be thought of as codimension one defects on it.

In the first example, the category C of oriented one-dimensional cobordisms with labels from S is consid-
ered in Section 2. We work over a ground field k for simplicity, but the construction extends to an arbitrary 

commutative ring R and at least parts of it extend to commutative semirings, mirroring the theory of 
recognizable power series over semirings.

To build an evaluation one needs a number (an element of the ground field k) associated to each circle 

carrying a collection of S-labelled dots. This collection is determined by a finite sequence w of elements of 
S up to a cyclic order. Consequently, to build various evaluation categories, we need to assign a number 
α(w) ∈ k to each such sequence or word w ∈ S∗, subject to the condition α(uv) = α(vu) for all words u, v.
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An evaluation of this type is encapsulated by a formal expression

Zα =
∑

w∈S∗

α(w) w, α = {α(w)}w∈S∗ , (1)

known as a noncommutative power series Zα, an element of the vector space k〈 〈S〉 〉 dual to the free associative 

algebra k〈S〉 generated by elements of S:

k〈〈S〉〉 := k〈S〉∗ = Homk(k〈S〉, k).

Recognizable noncommutative power series are singled out by the condition that their syntactic algebra

Aα, see Section 2.2, is finite-dimensional. The syntactic algebra [38] is the quotient of k〈S〉 by the largest 
two-sided ideal Iα of k〈S〉 that lies in the hyperplane ker(α), when α is considered as a linear map k〈S〉 −→ k.

Property α(uv) = α(vu) for all words u, v ∈ S∗ describes a particular type of series that we refer to as 
symmetric series. Reutenauer [38] calls such series central.

In Section 2 we show that for recognizable symmetric series α there is a satisfactory theory of tensor 
envelopes [33], that is, tensor categories associated to α, that mirrors the theory of the Deligne categories 
associated to symmetric groups and of negligible quotients of these categories [10,9,16]. Similar theories 
have recently been introduced for evaluations of two-dimensional cobordisms in [24,31], two-dimensional 
cobordisms with corners [28], and two-dimensional cobordisms with dots (codimension two defects) [27]. 
One can also compare our construction with tensor envelopes of the “one-sided inverse” algebras and Leav-
itt path algebras considered in [32] for categorifications of rings of fractions and with the diagrammatic 

categorification of the polynomial ring in [29].
There are several categories and functors between them associated to rational symmetric noncommutative 

series α, defined throughout Section 2.4 and summarized in Section 2.5 and diagram (23) there. Various skein 

and quotient categories that one obtains extend the notion of the syntactic algebra Aα of α (the quotient of 
noncommutative polynomials k〈S〉 by the largest two-sided ideal contained in ker α, see above) and can be 

thought of as forming various tensor and Karoubi closures of the latter. The theory of syntactic algebras of 
noncommutative recognizable (or rational) power series was introduced and developed by Reutenauer [38]. 
Syntactic algebra Aα appears as the endomorphism algebra of the generating object (+) in several categories 
associated to α.

In Section 3 we go beyond the restriction that noncommutative power series be symmetric by enlarging 

our category of cobordisms. We consider category C̃ of S-decorated cobordisms M that may have endpoints 
strictly “inside” the cobordism, that it, not on the top or bottom boundary ∂1M and ∂0M . We call these 

inner or floating endpoints. Such floating endpoints appear in diagrammatical calculi in [29,32], for in-
stance. Cobordisms of this type between empty 0-manifolds (closed or floating cobordisms) have connected 

components that are either S-decorated oriented intervals or circles. A multiplicative evaluation on such 

cobordisms assigns an element α•(w) ∈ k to an oriented interval with word w written along it via labelled 

dots, and an element α◦(v) ∈ k to an oriented circle, with word v, well-defined up to cyclic rotation, written 

along it.
Consequently, the analogue of noncommutative power series in this case is a pair

α = (α•, α◦) (2)

where α• is a noncommutative power series and α◦ is a symmetric noncommutative power series. There 

does not have to be any relation between α• and α◦.
Pair α of series as above allows to evaluate S-decorated floating intervals (via α•) and floating circles 

(via α◦). In Section 3 to the evaluation data α = (α•, α◦) we assign several tensor categories similar to 
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those for the symmetric series. The resulting categories have the best behavior when both α• and α◦ are 

recognizable series, and we specialize to this case early. We say that α is recognizable if both α• and α◦ are 

recognizable.

We follow the path familiar from Section 2 and papers [31,28] and assign several categories and functors 
between them to each recognizable pair α, including the following categories:

• The category VC̃α of viewable cobordisms, where any closed (floating) component is reduced via evalu-
ation α.

• The skein category SC̃α, where, additionally, elements of two-sided and one-sided syntactic ideals Iα and 

I�
α• , Ir

α• evaluate to zero when placed in the middle of the strand or by its floating endpoint, respectively.
• The category C̃α, the quotient of either VC̃α or SC̃α by the ideal of negligible morphisms.
• Additive Karoubi closure DC̃α of SC̃α, which is the analogue of the Deligne category.
• Additive Karoubi closure DC̃ α of C̃α, equivalent to the quotient of DC̃α by the ideal of negligible 

morphisms.

These four categories have finite-dimensional hom spaces (again, assuming α is recognizable), see diagram 

(31) and Section 3. They can be thought of as various tensor envelopes of α and the syntactic algebra Aα.

Categories built out of a single symmetric recognizable series in Section 2 can be considered a special 
case of this construction, given by setting the first series α• to zero. Setting the second series α◦ to zero, 
instead, results in another specialization of the theory, with all decorated circles evaluating to zero, while 

decorated intervals evaluating to coefficients of α•, see the remark at the end of Section 3.

In this paper we use rational and recognizable interchangeably to refer to noncommutative power series 
over a field with the syntactic ideal of finite codimension. Coincidence of rational and recognizable power 
series with coefficients in an arbitrary semiring is a result of Schützenberger [51], see also [3,47,15,34] for 
more details and references. For more general monoids, beyond the free monoid on a finite set S, the sets 
of recognizable and rational series may differ, see [11,49] and references therein. The difference between 

rational and recognizable series is also visible in examples in [28], where a recognizable series in two or more 

commuting variables needs to be rational with denominators restricted to polynomials in single generating 

variables.

The theory of recognizable noncommutative power series makes sense over non-commutative semirings [3,
47]. One can look to generalize the theory of tensor envelopes of such series from series over a field or a 

commutative ring to series over a semiring. Note that closed cobordisms would then evaluate to elements 
of the ground semiring. Components of a closed cobordism “commute”, in the sense of sliding past each 

other, as elements of the commutative monoid of endomorphisms of the unit object of the tensor category of 
cobordisms, the empty zero-manifold. For this reason, it is natural to restrict to commutative semirings in 

this fuller extension of the theory of tensor envelopes of noncommutative power series. We do not consider 
the general case of a ground commutative semiring K in this paper, though, limiting ourselves to a ground 

field, but it may be interesting to develop. The case when K = B is the boolean semiring, gives, in particular, 
the notion of tensor envelopes of a rational language L or, equivalently, tensor envelopes of a finite state 

automaton. To get the definition, run the constructions of Section 3 with B in place of field k and the pair 
α = (α•, 0) of series with the zero symmetric series α◦ = 0 and α• the series of a regular language L. To 

test whether this notion is useful, one may study examples of quotients C̃α of the skein category SC̃α for 
such α.

In the follow-up paper, we will consider one-dimensional cobordisms with more general decorations, by 

edges and vertices of an oriented graph (or a quiver) Γ. The graph Γ may be finite or infinite. Dots on 
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a cobordisms are labelled by oriented edges of Γ. Intervals of the cobordisms separated by dots along a 

connected component are labelled by vertices of Γ. A dot labelled by an edge s : a → b is surrounded 

by intervals labelled by vertices a and b, respectively, in the order that matches the orientation of the 

corresponding connected component. Such decorations are possible for both interval and circle connected 

components of a cobordism. There are suitable monoidal categories C(Γ) and C̃(Γ) of Γ-decorated cobordisms 
generalizing categories C and C̃ in this paper. Cobordisms with floating endpoints are allowed in C̃(Γ) but 
not in C(Γ). Objects of C(Γ) and C̃(Γ) are finite sequences of vertices of Γ or, equivalently, finite sequences 
of objects of category S(Γ), see next.

To Γ one assigns the small category S(Γ) of paths in Γ, with vertices of Γ being the objects of S(Γ)
and paths in Γ – morphisms, with concatenation of paths as the composition. Traveling along a connected 

component of a Γ-decorated cobordism one encounters a path in Γ, that is, a morphism in S(Γ). If the 

component is a circle, the path, in addition, must be closed, that is, start and end at the same vertex of Γ.
An evaluation α, in the case of C̃(Γ), where floating endpoints are allowed, consists of two maps:

• Map α• from the set of morphisms in S(Γ) (paths in Γ) to the ground field k or, more generally, a 

commutative ring or a semiring,
• Map α◦ from the set of circular morphisms, that is, closed paths in Γ without a choice of the basepoint 

to k.

The pair α = (α•, α◦) is the analogue of the pair in (2), generalizing the special case considered in this 
paper where Γ has a single vertex and oriented loops from the vertex to itself are enumerated by elements 
of S.

One can then define the analogues of all the categories in the diagram (31), including VC̃α, SC̃α, C̃α, in 

this case. In particular, the category C̃(Γ)α is the quotient of the k-linearization kC̃(Γ) by the two-sided 

ideal of negligible morphisms, defined via the trace given by evaluation α.
The pair α is called recognizable or locally-recognizable (when Γ is infinite) if the “gligible quotient” 

category C̃(Γ)α has finite-dimensional hom spaces. Note that the boundary points and floating endpoints of 
Γ-decorated cobordisms are labelled by objects of S(Γ), that is, by vertices of Γ, the label inherited from 

the label of the adjacent edge of the cobordism.
These constructions can be further generalized to cobordisms between finite sets of boundary points given 

by graphs and Γ-decorated graphs rather than by Γ-decorated one-manifolds. Cobordisms given by graphs 
can still be viewed as one-dimensional cobordisms between zero-dimensional objects (finite sets of points, 
possibly decorated by vertices of Γ and orientations, as necessary).

A natural open problem is to extend the universal construction, for decorated cobordisms (or cobordisms 
with defects), beyond dimension one. Parts of this extension are visible in

• [27], where two-dimensional cobordisms are decorated by dots labelled by elements of a commutative 

monoid or a commutative algebra, with non-trivial interactions between these dots and topology of 
cobordisms coming from the handle cobordism equated to a nontrivial element of the monoid or algebra.

• [28], where side boundaries of two-dimensional cobordisms with corners may be colored by elements of 
a finite set.

• Foam theory [23,4,12,46,44], see more references in [25], where rather particular evaluations of two-
dimensional decorated CW-complexes with generic singularities embedded in R3 (foams) are used as 
an intermediate step to build homology theories of links that categorify various one-variable specializa-
tions of the HOMFLYPT polynomial. Soergel bimodules, singular Soergel bimodules, and some other 
structures in representation theory admit a foam description as well [54,45].
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Fig. 2.1.1. A morphism from (− + − + +) to (+ − − + +) in C. It has two closed (or floating) components, one undecorated, the other 
decorated by s1s3. The two U-turns are decorated by s2s4 and s1, respectively. There are three through arcs: two undecorated, 
one decorated by s2s2. Whether a crossing is over- or under-crossing is irrelevant.

• Evaluation theory for two-dimensional cobordisms and evaluations of overlapping foams [24], point-
ing towards further connections to arithmetic topology, representation theory, and the Heegaard-Floer 
theory.

• [26], which considers evaluations in the two-dimensional planar case with one-dimensional defects.

Freedman et al. [19] mention possible decorations on low-dimensional cobordisms for their universal pairings.

Studying evaluations not just for n-manifolds but for decorated n-manifolds, n-manifolds and their foam 

analogues embedded in Rn+1, and other such refinements should ease one’s way into understanding recog-
nizable evaluations in dimension n + 1. This program makes sense at least in dimensions n = 1, 2, 3.

Acknowledgments. The author is grateful to Kirill Bogdanov, Mee Seong Im, and Vladimir Retakh for 
interesting discussions and to Victor Shuvalov for help with creating the figures for the paper. The author 
was partially supported by the NSF grant DMS-1807425 while working on this paper.

2. Decorated one-dimensional cobordisms and their evaluations

2.1. Categories C and C′

Fix a finite set S of cardinality r ≥ 0, which we often write as S = {s1, s2, . . . , sr}.
Consider the category C = CS of S-decorated compact oriented one-dimensional cobordisms. Its objects 

are oriented zero-dimensional manifolds N , that is, finite sets with a sign assignment + or − to each element 
(signed finite sets). A morphism from N0 to N1 is an oriented one-dimensional manifold M decorated by 

finitely many dots labelled by elements of S, with ∂M = N1 � (−N0), see Fig. 2.1.1 for an example, which 

also sets the orientation convention for the boundary.
Dots can move along a connected component of M where they are placed but without crossing through 

other dots or moving to a boundary point. Two morphisms are equal if they are diffeomorphic rel boundary 

and keeping track of dots and their labels.
Each component c of M is either an oriented circle or an oriented interval. Going along c in the direction 

of its orientation, one can read off the labels of marked points. When c is an interval, the sequence of labels 
is an invariant of c. When c is a circle, the sequence of labels is an invariant up to a cyclic rotation of the 

sequence. A component may carry no dots; the corresponding sequence is empty then.
Composition of morphisms is given by their concatenation.

To reduce to fewer objects, we take the objects to be sequences of signs ε = (ε1, . . . , εn), εi ∈ {+, −}. To 

ε we associate an ordered signed zero-manifold with one point for each term in the sequence, with the signs 
given by ε1, . . . , εn. We may alternatively write εi = 1 or −1 instead of + or −.
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Fig. 2.1.2. Duality morphisms for + and − in C.

Fig. 2.1.3. Generating morphisms in C: identity 1+ of (+), identity 1− of (−), morphism s+ : (+) −→ (+) for s ∈ S, morphism 
s− : (−) −→ (−), permutation morphism P++. Other permutation morphisms, such as P−+, can be obtained as compositions of 
these morphisms and those in Fig. 2.1.2.

Fig. 2.1.4. Some relations in C. They hold for any choice of orientations. Orientation of the LHS of each equation determines the 
orientation of the RHS and vice versa. A set of these relations with some restrictions on orientations can be taken for a defining 
set of relations. Commutativity relations on generators in horizontally separated regions are not shown, since they are built into 
the axioms of a tensor category.

Permutation cobordisms show that permuting signs in a sequence ε leads to an isomorphic object, and 

that isomorphism classes of objects are parametrized by pairs of non-negative integers n = (n0, n1), counting 

the number of plus and minus signs.
When restricting to a skeleton category (one object for each isomorphism class), we thus reduce objects 

to pairs n = (n0, n1), where n0 is the number of plus points and n1 is the number of minus points. In the 

sequence of signs that n represents, we put plus signs first, and can also write n = (+n0−n1).

Denote by C = CS the category of S-decorated cobordisms with objects—finite sign sequences ε as above. 
The skeleton category of S-decorated cobordisms, with objects n, is denoted C′. Category C is slighter larger 
than the equivalent category C′.

These categories are rigid symmetric tensor, with the tensor product in C given on morphisms by placing 

their diagrams next to each other. On objects, the tensor product is the concatenation of sequences. In C′

when forming the tensor product of morphisms, we group plus points together and minus points together. 
Tensor product on objects is given by (n0, n1) ⊗ (m0, m1) = (n0 + m0, n1 + m1).

In both categories C and C′ object (+) has object (−) as its dual, with the duality morphisms in C shown 

in Fig. 2.1.2.
The empty sequence ∅ is the unit object 1 of the tensor category C. The pair 1 := (0, 0) is the unit object 

of C′. Generating morphisms in C′ are shown in Figs. 2.1.2 and 2.1.3.
Some defining relations in C are shown in Fig. 2.1.4. We do not list a full set of defining relations and 

will not need it. These relations can be hidden in the definition of C, where morphisms are declared equal 
if the corresponding decorated cobordisms are diffeomorphic rel boundary.

A morphism M from ε to ε′ in C consists of some number of oriented circles and oriented intervals. 
Boundaries of oriented intervals and their orientations match entries of ε and ε′ in pairs.
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Denote by |ε| the difference of the number of plus and minus signs in ε and call it the weight of the 

sequence. For instance, |(+ −− ++ ++−)| = 5 −3 = 2. A morphism from ε to ε′ exists iff the two sequences 
have the same weight, |ε| = |ε′|. The weight is additive under the tensor product of objects (concatenation 

of sequences). Denote by ||ε|| the length of the sequence ε.
Connected components c of a morphism M are circles and intervals (arcs). Circles are closed components, 

also called floating components. Arcs have boundary and, borrowing terminology from [30], separate into 

U-turns and through arcs. A U-turn has both endpoints on the same side of a morphism (either on the 

source one-manifold or on the target, while a through arc has one endpoint on the source and one on the 

target, also see types (1)-(3) of components in Fig. 3.1.3. The endpoints of a U-turn have opposite signs, 
while the endpoints of a through arc carry the same sign, see Figs. 2.1.2, 2.1.3.

By analogy with [31,28], we can also call arcs viewable or visible components, since they have endpoints on 

the boundary of the cobordism (either top or bottom or both), and call circles floating components [29,28], 
since they are disjoint from the boundary of the cobordism.

Denote by S∗ the set of finite sequences of elements of S, including the empty sequence ∅ (also see 

Section 2.2). Going along an arc c of a cobordism M gives us a word w(c) ∈ S∗. Going along a circle c in x

gives a word w(c) well defined up to a cyclic rotation or conjugation of words, w1w2 ∼ w2w1.
In this paper we encounter sequences ε of signs, which are objects of C, and sequences w ∈ S∗, which are 

sequences of labels encountered along connected components of a cobordism, the latter a morphism in C.

2.2. Noncommutative power series

For simplicity we work over a ground field k, although the theory of noncommutative power series and 

rational and recognizable series makes sense over an arbitrary semiring R, not necessarily commutative [3,47]. 
For definitive treatments we refer the reader to books [3,47] and to [40–42] for quick introductions and 

reviews.
Let S∗ = ∅ � S � S2 � . . . be the set of sequences w = t1 . . . tn of elements of a finite set S = {s1, . . . , sr}. 

We call elements of S letters and elements of S∗ words or sequences in S. The empty word ∅ is allowed. A 

noncommutative power series α over k is any function

α : S∗ −→ k, α(w) ∈ k, w ∈ S∗. (3)

We formally write this series as

Zα =
∑

w∈S∗

αw w, α = (αw)w∈S∗ , αw = α(w) ∈ k, (4)

using either αw or α(w) to denote the value of α on a noncommutative monomial or word w. Denote by 

k〈 〈S〉 〉 the k-vector space of noncommutative power series and by k〈S〉 the free noncommutative k-algebra 

on generators in S (the algebra of noncommutative polynomials).
Given two series α, β, their product is the series αβ that on w evaluates to

αβ(w) =
∑

w=w1w2

α(w1)β(w2), (5)

the sum over all decompositions of w. There are �(w) + 1 terms in the sum, where �(w) is the length of w. 
This product turns k〈 〈S〉 〉 into a k-algebra, noncommutative if S has more than one element. The inclusion 

k〈S〉 ⊂ k〈 〈S〉 〉 is a ring homomorphism.

We say that series α ∈ k〈 〈S〉 〉 is recognizable iff there is a homomorphism ψ : k〈S〉 −→ End(kn) of the 

free algebra into the algebra of n × n matrices, a vector and a dual vector λ, μT ∈ k
n such that
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α(w) = μ ψ(w) λ (6)

for all words w. That is, the number α(w) is the product of the 1 × n matrix μ, n × n matrix ψ(w) and 

n × 1 matrix λ. Denote by k〈 〈S〉 〉rec the set of all recognizable series.

Vector space k〈 〈S〉 〉 is a k〈S〉-bimodule with f ⊗ g ∈ k〈S〉 ⊗ k〈S〉op acting on α ∈ k〈 〈S〉 〉 by

(f ⊗ g)(α)(w) = α(gwf), w ∈ S∗.

We write fαg := (f ⊗ g)(α). This action gives rise to the left, right, and two-sided ideals I�
α, Ir

α and Iα in 

k〈S〉:

• Left ideal I�
α consists of all f ∈ k〈S〉 such that fα = 0, that is, all f such that α(wf) = 0 for any word 

w ∈ S∗. It is the largest left ideal contained in the hyperplane ker(α) ⊂ k〈S〉.
• Right ideal Ir

α consists of all g ∈ k〈S〉 such that αg = 0, that is, all g such that α(gw) = 0 for all w ∈ S
∗. 

It is the largest right ideal contained in ker(α).
• Ideal Iα consists of all f ∈ k〈S〉 such that α(wfv) = 0 for all w, v ∈ S∗. It is the largest two-sided ideal 

contained in the hyperplane ker(α).

Ideal I�
α has finite codimension in k〈S〉 iff the series α is recognizable. Given triple as in (6), ideal I�

α

contains the finite codimension subspace {x ∈ k〈S〉|ψ(x)λ = 0}. Vice versa, if I�
α has finite codimension, it 

is straightforward to produce the data in (6) by taking kn ∼= k〈S〉/I�
α, λ = 1 and μ = α. Given a triple as 

in (5), ker α contains two-sided ideal of finite codimension {f ∈ k〈S〉|ψ(f) = 0 ∈ End(kn)}. Vice versa, if 
Iα has finite codimension, ideals I�

α ⊃ Iα and Ir
α ⊃ Iα have finite codimension too.

Consequently, if one of I�
α, Ir

α, Iα have finite codimension in k〈S〉, the other two have finite codimension 

as well.
Two-sided ideal Iα of k〈S〉 is called the syntactic ideal of α. Denote by

Aα := k〈S〉/Iα (7)

the quotient algebra, the syntactic algebra of α, see [38]. It is defined for any α, but we mostly restrict to 

considering it for recognizable α, when Aα is finite-dimensional. We also call I�
α and Ir

α the left and right 

syntactic ideals of α.
Algebra k〈S〉 acts on k〈 〈S〉 〉 on the left and on the right, and k〈S〉-bimodule generated by α (a subbimod-

ule of k〈 〈S〉 〉) is naturally isomorphic to the syntactic algebra Aα, the latter equipped with k〈S〉-bimodule 

structure via left and right multiplications:

Aα
∼= k〈S〉 ⊗ k〈S〉op(α). (8)

The quotient k〈S〉/I�
α is naturally a faithful left Aα-module via the left multiplication action. Likewise, 

k〈S〉/Ir
α is a faithful right Aα-module via the right multiplication action.

We see that α ∈ k〈 〈S〉 〉 is recognizable iff the cyclic k〈S〉 ⊗ k〈S〉op-module generated by α in k〈 〈S〉 〉 is 
finite-dimensional, or, equivalently,

dimk Aα < ∞.

The Hankel matrix Mα of α is the infinite square matrix with rows and columns enumerated by elements 
of S∗ with the (w1, w2)-entry α(w1w2).
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Given any series α with α(∅) = 0 (called proper series), we can form the Kleene plus series α+ as the 

formal sum

α+ = α + α2 + . . . , (9)

where αn = αα . . . α is the product of n copies of α. The term αn evaluates to 0 on any word of length less 
than n. Consequently, a given word evaluates nontrivially only on finitely many terms in the sum, and α+

makes sense as an element of k〈 〈S〉 〉. The series 1 + α+ is the inverse of the series 1 − α in the ring k〈 〈S〉 〉.
A series is finite if it contains finitely many terms. Finite series are those in the ring of noncommutative 

polynomials k〈S〉 ⊂ k〈 〈S〉 〉.
Denote by k〈 〈S〉 〉rat the smallest subset of series that

• Contains all finite series.
• Closed under the product and finite k-linear combinations of series.
• Contains α+ for any proper series α in the subset.

Series in k〈 〈S〉 〉rat are called rational series.

Proposition 2.1. The following properties of series α are equivalent.

(1) α is rational.

(2) α is recognizable.

(3) The Hankel matrix Mα of α has finite rank.

(4) The syntactic ideal Iα has finite codimension in k〈S〉.

(5) The left ideal I�
α has finite codimension in k〈S〉.

(6) The right ideal Ir
α has finite codimension in k〈S〉.

(7) α can be computed by a weighted finite automaton.

Equivalence of (2), (4), (5), (6) is explained above.
For a proof of all equivalences see Sections 1 and 2 of [3], Salomaa-Soittola [47], or references there to the 

original work of Schützenberger [51], Fliess [17], Eilenberg [14] and others. Most of these equivalences hold 

in much greater generality than over a field, in many cases over an arbitrary semiring. The Hankel matrix 

of noncommutative series was introduced by Fliess [17].
The notion of weighted finite automaton linearizes the concept of finite state automaton and, over a field 

k, is equivalent to the triple (λ, ψ, μ) as in (6), see [3, Section 1.6], for instance. �
We have k〈 〈S〉 〉rec = k〈 〈S〉 〉rat, since rational and recognizable series coincide.
Assume that α is recognizable. The trace form α on the finite-dimensional algebra Aα has the following 

nondegeneracy property:

for any a ∈ Aα, a �= 0 there are b, c ∈ Aα such that α(bac) �= 0. (10)

This is a much weaker condition than the usual Frobenius condition on a linear form β on a finite-
dimensional algebra B:

for any a ∈ B, a �= 0 there exist b such that β(ab) �= 0. (11)

In the latter case β equips B with the structure of a Frobenius algebra.
Given any finite-dimensional algebra B with a linear form α : B −→ k, the condition that

for any a ∈ B, a �= 0 there are b, c ∈ B such that α(bac) �= 0 (12)
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is equivalent to the zero ideal (0) being the only two-sided ideal in ker(α). Let us call a pair (B, α) with this 
property a syntactic pair. A finite set of generators b1, . . . , bm of B gives rise to a surjective homomorphism

ρ : k〈S〉 −→ B, ρ(si) = bi, S = {s1, . . . , sm} (13)

from the free algebra k〈S〉 to B and induced noncommutative power series in the set of variables S, also 

denoted α. This gives a bijection between recognizable power series in S and isomorphism classes of syntactic 

pairs (B, α) as above with a choice of generators (b1, . . . , bm) of B.

An algebra is called syntactic if it admits a presentation (7) for some S and α.
Examples:

(1) Any Frobenius algebra B with a non-degenerate form β gives a syntactic pair (B, β).
(2) Take the matrix algebra B = Mn(k) and define α(x) = x1,1 to pick the first diagonal coefficient of the 

matrix x. In this example the form α satisfies the weaker property (10), so that (B, α) is a syntactic 

pair, but α is not a Frobenius trace. Algebra B is Frobenius for a different linear form on it (for example, 
for the usual trace on matrices).

(3) Take the path algebra B of the quiver with two vertices 0, 1 and the edge (01) connecting them, with 

the multiplication given by concatenation of paths: (0)(01) = (01), (01)(1) = (01), etc. Algebra B has a 

basis {(0), (1), (01)}. Take any linear form α with α((01)) �= 0. Then (B, α) is a syntactic algebra with 

this linear form. It can be generated by two elements. B is neither Frobenius nor quasi-Frobenius.
(4) A finite-dimensional commutative algebra is Frobenius iff it is syntactic.

See Reutenauer [38] and Perrin [36] for more results on syntactic algebras and the latter also for another 
brief introduction to the subject.

2.3. Evaluations and symmetric series

We say that series α ∈ k〈 〈S〉 〉 is symmetric if α(w1w2) = α(w2w1) for any w1, w2 ∈ S∗. Transformation 

w1w2 �→ w2w1 is also called conjugation, so one can say that α is conjugation invariant. An evaluation α is 
symmetric iff it only depends on a sequence up to cyclic order.

We use the word “symmetric” to define such series, since the word “cyclic” is already taken, see [2,22,39]
and [3, Section 12.2]. A series α is called cyclic if, in addition to the conjugation invariance condition, it 
satisfies α(wn) = α(w) for any non-empty w. Thus, a cyclic series is symmetric but most symmetric series 
are not cyclic. Reutenauer [38] uses central instead of our symmetric.

Denote the set of symmetric series by k〈 〈S〉 〉s and by k〈 〈S〉 〉s,rec the set of recognizable symmetric series.
A series α ∈ k〈 〈S〉 〉 can be averaged out to a series av(α) given by

av(α)(w) =
∑

uv=w,v �=∅

α(vu), if w �= ∅, av(α)(∅) = α(∅). (14)

That is, take the sum over all possible ways to split w into the product uv and evaluate α on vu. Series 
av(α) is symmetric. Only one of the two degenerate splittings ∅w and w∅ is used to avoid having α(w) twice 

in the sum.

Proposition 2.2. av(α) ∈ k〈 〈S〉 〉s,rec if α ∈ k〈 〈S〉 〉rec.

In other words, averaging out a recognizable series produces a symmetric recognizable series. This result 
is proved in Rota [43], see also [39]. It gives a large supply of symmetric recognizable series. �
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Fig. 2.4.1. A basis element in the hom space in VCα, with S = {s1, s2, s3, s4}. Floating components (circles) are absent.

Symmetric series with semisimple syntactic algebra Aα are studied in [38,36].

2.4. Tensor envelopes of series α

(1) Category kC. We fix a base field k and form the k-linearization kC of C. Category kC has the 

same objects as C, that is, finite sequences ε of plus and minus signs. Morphisms in kC are finite linear 
combinations of morphisms in C, with the composition rules extended k-bilinearly from those of C.

(2) Category VCα of viewable cobordisms. Next, choose a symmetric power series α ∈ k〈 〈S〉 〉s. Define 

the category VCα as the quotient of kC by the relations that a circle ŵ) with a sequence w written on it 
evaluates to α(w). Since ŵ1w2 = ŵ2w1, we need the condition that α is symmetric to define this quotient.

Another way to define VCα is to say that it has the same objects as C: sequences ε of elements of S. A 

morphism in VCα from ε to ε′ is a finite k-linear combination of viewable cobordisms in C from ε to ε′. Recall 
that a cobordism is viewable if it has no floating connected components, that is, components homeomorphic 

to circles.
Composition of morphisms in VCα is given by concatenating cobordisms and removing each closed circle 

ŵ from the composition simultaneously with multiplying the remaining diagram by α(w).
The hom space HomVCα

(ε, ε′) has a basis given by a choice of orientation-respecting matching of the 

elements in the pair of sequences ε, ε′ together with a choice of word in S for each pair in the matching. An 

orientation-respecting matching consists of a bijection between pluses and minuses in the sequence (−ε)ε′, 
which is the concatenation of −ε and ε′, with the sequence −ε given by reversing the signs of ε. An example 

in Fig. 2.4.1 shows a basis element in one such hom space, with ε = (− − + + + + −) and ε′ = (+ − − + +). 
Note that the size of hom spaces in VCα does not depend on α, only the composition of morphisms does.

Each word w = t1 . . . tm, ti ∈ S, i = 1, . . . , m defines a cobordism cob(w) given by putting letters 
t1, . . . , tm along the interval, with the orientation going towards decreasing the index, see Fig. 2.4.2 left. 
Extended by linearity, this assignment is an algebra isomorphism

k〈S〉 −→ EndVCα
((+)) (15)

from the algebra of noncommutative polynomials to the algebra of endomorphisms of the sequence (+) in 

VCα.
To a noncommutative polynomial

u =
k∑

i=1

aiwi ∈ k〈S〉, ai ∈ k, wi ∈ S∗

we assign the endomorphism
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Fig. 2.4.2. Left: cobordism cob(w) for a word w = t1 . . . tm ∈ S∗ is given by placing dots labelled by letters of word w along the 
oriented interval. Alternatively, cob(w) can be denoted by a box labelled w on an interval. Right: a linear combination cob(u) of 
such cobordisms and its shorthand box notation.

cob(u) =
k∑

i=1

ai cob(wi) ∈ EndVCα
((+))

of the sequence (+) given by the linear combination of words wi written on an upward oriented interval, 
see Fig. 2.4.2 right. It can be compactly denoted by a box on a strand with u written in it.

Monomials in k〈S〉 and their linear combinations can be placed along any component of a cobordism. 
Taking the union over all viewable cobordisms with a given boundary (one cobordism for each diffeomor-
phism class rel boundary) and then over all ways of placing monomials in k〈S〉 along each component of 
the cobordism gives a basis in the hom space in the category VCα between two objects. Recall that objects 
of VCα are sequences of + and −.

The hom space between the objects ε, ε′ is non-zero if the objects have the same weight, |ε| = |ε′|. 
Assuming the latter, the hom space Hom(ε, ε′) is infinite-dimensional unless ε = ε′ = ∅ is the empty sequence 

or if the set S of labels is empty. In the latter case k〈S〉 ∼= k is the ground field. Another special case is 
when S consists of a single element, S = {s}, for then k〈S〉 ∼= k[s] is commutative. The endomorphism 

algebra of (+) in the category VCα is k〈S〉, see (15).

Category VCα is a k-linear pre-additive category.

(3) The skein category SCα. Consider the syntactic ideal Iα ⊂ k〈S〉 associated to the symmetric series 
α ∈ k〈 〈S〉 〉s. This ideal has finite codimension iff α ∈ k〈 〈S〉 〉s,rec, that is, if α is, in addition, a recognizable 

series. Denote by

Aα := k〈S〉/Iα (16)

the quotient algebra (the syntactic algebra) of the algebra of noncommutative polynomials by the syntactic 

ideal. Algebra Aα is finite-dimensional iff α is recognizable. In the latter case, let

dα = dimk(Aα) = codimk(Iα) (17)

be the dimension of the syntactic algebra.

We quotient the category VCα of viewable cobordisms by the relation that elements of Iα are zero along 

any component of a cobordism. Namely, an element of Iα is a finite linear combination

u =
k∑

i=1

aiwi, ai ∈ k, wi ∈ S∗ (18)

of words in the alphabet S. Element cob(u), see Fig. 2.4.2, can be inserted along any component of a 

cobordism x. We impose the condition that any such insertion results in the zero morphism in SCα between 

the corresponding sequences ε, ε′. Equivalently, we can set cob(u) ∈ End((+)) to zero for all u ∈ Iα and 
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Fig. 2.4.3. α(ûv) = α(v̂u) = 0 for u ∈ Iα, v ∈ k〈S〉 since uv, vu ∈ Iα.

take the monoidal closure of the relations cob(u) = 0 for all such u, which is equivalent to the previous 
condition. Alternatively, we can choose generators {uj}, j ∈ J , for the 2-sided ideal Iα, impose relation 

cob(uj) = 0, j ∈ J and take their monoidal closure.
Note that relations cob(u) = 0 for u ∈ Iα are compatible with the evaluation of closed components 

(circles). Namely, for any v ∈ k〈S〉, the closures ûv and v̂u define the same element in EndkC(∅), namely the 

circle that carries the box uv or vu, and α(uv) = α(vu) = 0, see Fig. 2.4.3. Consequently, no contradiction 

in evaluation of closed components happens upon introducing these relations.
Denote by SCα the resulting quotient category. It has the same objects as VCα and additional relations 

cob(u) = 0 for u ∈ Iα placed anywhere along one-dimensional S-decorated cobordisms that span hom spaces 
in VCα.

Since relations in the syntactic ideal are imposed along each connected component of a cobordism, an 

element along a component can be reduced accordingly. Choose a set of elements Bα ⊂ k〈S〉 that descend 

to a basis of Aα (if needed, one can choose monomials in S). Modulo Iα, an element of k〈S〉 can be reduced 

to a linear combination of elements of Bα. Accordingly, we can reduce a morphism in SCα to a linear 
combination of viewable morphisms such that along each component an element of Bα is placed. Call these 

morphisms basic and denote the set of basic morphisms from ε to ε′ by Bα(ε, ε′).
Recall that a morphism from ε to ε′ exists in C if the two sequences have the same weight, that is, the 

difference between the number of plus and minus signs in them: |ε| = |ε′|. In the latter case, the number of 
viewable morphisms (i.e., without circle components) is the number of ways to pair up elements of ε and 

ε′ in an orientation-respecting way. Reverse the signs in one of the sequences, say in ε, and concatenate 

with the other to get ε′(−ε). This sequence has the same number n of plus and minus signs, equal to 

half the length of the sequence: 2n = ||ε|| + ||ε′||. Isomorphism classes of viewable cobordisms from ε to ε′

are in a one-to-one correspondence with bijections between plus and minus signs in ε′(−ε). There are n!
such bijections. For each bijection, there are dn

α ways to assign an element of Bα to each component of a 

cobordism. The following proposition and corollary result.

Proposition 2.3. The set of basic morphisms Bα(ε, ε′) is a basis of the hom space HomSCα
(ε, ε′).

Corollary 1. Dimensions of hom spaces in SCα are given by:

dim HomSCα
(ε, ε′) =

{
n! d n

α if |ε| = |ε′|, 2n = ||ε|| + ||ε′||,

0 otherwise.
(19)

In particular, hom spaces in the category SCα are finite-dimensional.
For the endomorphism algebra of the sequence (+) we have (compare with (15))

EndSCα
((+)) ∼= Aα, (20)
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Fig. 2.4.4. The trace map: closing endomorphism x of ε into x̂ and applying α. In this example ε = (+ + − + −).

and the endomorphism algebra of (+) has dimension dα. Skein category SCα is similar to the oriented 

Brauer category [37], but with lines decorated by elements of S, leading to many choices for evaluations of 
floating components, one for each sequence in S∗ up to the cyclic equivalence.

(4) Negligible morphisms and gligible quotient Cα.

The trace trα(x) of a cobordism x from ε to ε is an element of k given by closing x via ||ε|| suitably 

oriented arcs connecting n top with n bottom points of x into a floating cobordism x̂ and applying α,

trα(x) := α(x̂).

This operation is depicted in Fig. 2.4.4. The trace is extended to all endomorphisms of ε in kC̃ by linearity. 
It is well-defined on trace of endomorphisms of objects ε in categories VC̃α and SC̃α as well.

The trace is symmetric, that is trα(yx) = trα(xy) for a morphism x from ε to ε′ and y from ε′ to ε. The 

ideal Jα ⊂ SCα is defined as follows.
A morphism y ∈ Hom(ε, ε′) is called negligible and belongs to the ideal Jα if trα(zy) = 0 for any morphism 

z ∈ Hom(ε′, ε). Negligible morphisms constitute a two-sided ideal in the pre-additive category SCα. We call 
Jα the ideal of negligible morphisms, relative to the trace form trα. Define the quotient category

Cα := SCα/Jα.

The quotient category Cα has finite-dimensional hom spaces, as does SCα (recall that α is recognizable). 
The trace is nondegenerate on Cα and defines perfect bilinear pairings

Hom(ε, ε′) ⊗ Hom(ε′, ε) −→ k

on its hom spaces. We may call Cα the gligible quotient of SCα, having modded out by the ideal of negligible 

morphisms.

State spaces of recognizable series α. Recall that in the category VCα objects are sign sequences ε and 

morphisms are finite linear combinations of viewable cobordisms. The space of homs

Vε := HomVCα
(∅, ε),

has a basis of all viewable cobordisms (no floating components) M with ∂M = ε. This space carries a 

symmetric bilinear form, given on pairs of basis elements (viewable cobordisms) by

(x, y)ε := α(yx) ∈ k,

where y is the reflection of y about a horizontal line combined with the orientation reversal on y, and yx is 
the closed cobordism which is the composition of y and x.
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Define Aα(ε) as the quotient of Vε by the kernel of this bilinear form. Then there is a canonical isomor-
phism

Aα(ε) ∼= HomCα
(∅, ε)

as well as isomorphisms

Aα((−ε) � ε′) ∼= HomCα
(0, (−ε) � ε′) ∼= HomCα

(ε, ε′)

given by moving the bottom boundary ε of a cobordism to the top via a cobordism with ||ε|| parallel arcs. 
Here the sequence (−ε) � ε′ is the concatenation of −ε and ε′.

Note that ε must be balanced for Aα(ε) to be nonzero, that is, ε must have the same number n of pluses 
and minuses. We can then define

Aα(n) := Aα((+n−n)). (21)

Spaces Aα(n) come with a lot of structure, including multiplication maps

Aα(n) ⊗ Aα(m) −→ Aα(n + m).

We have Aα(0) ∼= k and Aα(1) ∼= Aα. Vector space Aα(n) carries an action of the symmetric group 

product Sn × Sn by the permutation cobordisms, as well as an action of the tensor power of the syntactic 

algebra A⊗n
α ⊗ (Aop

α )⊗n, with one copy of Aα
∼= EndCα

((+)) or Aop
α

∼= EndCα
((−)) acting at each sign of 

+n−n. More generally, a version of the oriented walled Brauer algebra with strands carrying S-labelled 

dots and closed decorated circles evaluating via α acts on Aα(n) and, more generally, on HomCα
(ε, +n−n)

for any sign sequence ε. This generalized walled Brauer algebra Brn,α is straightforward to define. It is 
associated to any recognizable series α, finite-dimensional, and isomorphic to the endomorphism algebra 

EndSCα
((+n−n)) of the object (+n−n) in the skein category SCα. The action of Brn,α on HomCα

(ε, (+n−n))
descends to the action of its quotient algebra EndCα

((+n−n)) on the same space.
Multiplication maps turn the direct sum

A∗
α := ⊕

n≥0
Aα(n) (22)

into a graded associative k-algebra, with compatible actions of Sn on Aα(n) over all n, making A∗
α into what 

Sam and Snowden call a twisted commutative algebra or tca in [48, Definition 7.2.1]. A twisted commutative 

algebra in that sense may be very from being commutative: for instance, the free associative algebra (the 

tensor algebra of a vector space) has the obvious tca structure [48, Example 7.2.2]. More generally, given 

an n-dimensional topological theory α as defined in [24], perhaps for manifolds with defects, etc. and an 

(n − 1)-manifold N , the direct sum

A∗(N) := ⊕
n≥0

α(�nN)

of state spaces of disjoint unions of n copies of N , over all n, is naturally a tca in the sense of [48].

(5) The Deligne category DCα and its gligible quotient DC α. The skein category SCα is a rigid symmetric 

monoidal k-linear category with signed sequences ε as objects and finite-dimensional hom spaces. We form 

the additive Karoubi closure

DCα := Kar(SC⊕
α )
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by allowing formal finite direct sums of objects in SC, extending morphisms correspondingly, and then 

adding idempotents to get a Karoubi-closed category. Category DCα plays the role of the Deligne category 

in our construction.

The trace trα extends to DCα and defines a 2-sided ideal DJ α ⊂ DCα of negligible morphisms relative 

to trα. Define the gligible quotient category by

DCα := DCα/DJ α.

This category is equivalent to the additive Karoubi envelope of Cα. It is a Karoubi-closed rigid symmetric 

category with non-degenerate bilinear forms on its hom spaces.

2.5. Summary of categories and functors

Here is the summary of the categories that have been introduced.

• C: the category of S-decorated one-dimensional cobordisms. Its objects are sequences ε of plus and 

minus signs and morphisms are one-manifolds with boundary decorated by S-labelled dots. That is, the 

morphisms are S-decorated one-manifolds with boundary.
• kC: this category has the same objects as C; its morphisms are formal finite k-linear combinations of 

morphisms in C.
• VCα: in this quotient category of kC we reduce morphisms to linear combinations of viewable cobordisms. 

Floating connected components (circles, possibly carrying S-dots) are removed by evaluating them via 

α.
• SCα: to define this category, specialize to rational α and add skein relations by modding out by elements 

of the ideal Iα in k[S], along each component of the cobordism. Hom spaces in this category are finite-
dimensional.

• Cα: the quotient of SCα by the ideal Jα of negligible morphisms. This category is also equivalent (even 

isomorphic) to the quotients of kC and VCα by the corresponding ideals of negligible morphisms in 

them. The trace pairing in Cα between Hom(n, m) and Hom(m, n) is perfect.
• DCα is the analogue of the Deligne category obtained from SCα by allowing finite direct sums of objects 

and then adding idempotents as objects to get a Karoubi-closed category.
• DC α: the quotient of DCα by the two-sided ideal of negligible morphisms. This category is equivalent 

to the additive Karoubi closure of Cα and sits in the bottom right corner of the commutative square 

below.

We arrange these categories and functors, for recognizable α, into the following diagram:

C −−−−→ kC −−−−→ VCα −−−−→ SCα −−−−→ DCα⏐⏐�
⏐⏐�

Cα −−−−→ DC α

(23)

All seven categories are rigid symmetric monoidal. All but the leftmost category C are k-linear. Except 
for the two categories on the far right, the objects of each category are sequences ε of plus and minus signs. 
The four categories on the right all have finite-dimensional hom spaces. The two categories on the far right 
are additive and Karoubi-closed. The four categories in the middle of the diagram are pre-additive but not 
additive.

The arrows show functors between these categories considered in the paper. The square is commutative. 
An analogous diagram of functors and categories can be found in [31] for the category of oriented 2D 
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cobordisms in place of C and in [28] for suitable categories of oriented 2D cobordisms with side boundary 

and corners.
For convenience, one- or two-word summaries of these categories are provided below, in the diagram 

essentially identical to that in [28, Section 3.4]:

S-dotted 

cobordisms
k-linear viewable skein Deligne (Karoubian)

gligible gligible and Karoubian

(24)

It is possible to go directly from kC to Cα by modding out by the ideal of negligible morphisms in the 

former category. It is convenient to arrive at this quotient in several steps, introducing categories VCα and 

SCα on the way.

If α is not recognizable, we can still define categories VCα, Cα and DC α, but then, for instance, one can 

potentially get two non-equivalent categories in place of DCα by following along the two different paths in 

the square above. To justify considering these categories for some non-recognizable α one would want to 

find interesting examples where the gligible quotient category Cα has additional relations beyond those in 

SCα, that is, beyond the relations that elements of the syntactic ideal Iα are zero in End(+) in SCα and Cα.

2.6. Examples and variations of the construction

An involution. Categories C and kC carry contravariant involution that reflects the cobordism about 
the middle, reversing its source and target objects, and reverses the orientation of the cobordism. This 
involution takes the object ε to −ε, that is, reverses the sign (orientation) of boundary zero-manifolds as 
well. To match this involution to evaluation α, assume that k comes with an involution, also denoted , and 

α satisfies α(w) = α(w), where w = tn . . . t1 is the word w = t1 . . . tn in reverse. Then there are induced 

contravariant involutions on all the categories associated to α and displayed in diagram (23), and one can, 
for instance, study such unitary 1D topological theories, with the set of defects S, for k = C and the 

complex involution.

Examples.

(1) If the set S = ∅ is empty, there are no decorations and the series α is given by its value on the empty 

sequence, that is, by its constant term, and we can write α = λ ∈ k for that value. A circle cobordism 

evaluates to λ. The skein category SCλ is isomorphic to the viewable category VCλ and to the oriented 

Brauer category Bλ for the parameter λ. Category Cλ is then the quotient of Bλ by the ideal of negligible 

morphisms, while DCλ is the additive Karoubi closure of Bλ, etc. Note that these categories depend both 

on the field k and λ ∈ k.

(2) If S = {s} is a one-element set, the series α is a one-variable series, with the generating function

Zα(T ) =
∑

n≥0

αnT n, αn = α(sn). (25)

α is recognizable iff Zα(T ) is a rational function, with Zα(T ) = P (T )/Q(T ) for some polynomials 
P (T ), Q(T ).

This example is similar to the ones in [24,31], where the topological theory is 2-dimensional but there are 

no defects. The analogue of the Hankel matrix measuring bilinear pairing on connected cobordisms with the 
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boundary S1 (such cobordisms are determined by the genus g), see [24], is the Hankel matrix for evaluations 
of xmxn where xn is an arc with n dots, viewed as a cobordism from ∅ to (+−). Cobordism xm from (+−)
to ∅ is an arc with m dots. Closed cobordism xmxn is a circle with n + m dots, and once again the Hankel 
matrix H with the (n, m)-entry αn+m results, as in [24]. In both cases the state space (of (+−), respectively 

of S1) is the quotient of RN by the null space of H.
The theories diverge beyond this example, but there is another connection between the two, slightly 

different from the one above due to an additional shift in the dots versus handles correspondence between 

1D and 2D cobordisms. Namely, the state space of (+k−k) in the one-dimensional theory with the series 
α maps to the state space for the union �kS

1 of k circles in the two-dimensional theory for the series 
α′ = (a, α0, α1, . . . ) for any a ∈ k. In terms of generating functions, Zα′ = a + ZαT . On the topological 
side, an arc with n dots is mapped to an annulus with n handles, while a circle carrying n dots is mapped 

to the torus with additional n handles (thus a surface of genus n + 1). This shift from n to n + 1 accounts 
for the discrepancy between the series but does not change their recognizability. The map from the state 

spaces in the 1D theory to the state spaces in the 2D theory respects the bilinear forms on these spaces.
Partial fraction decomposition method of [27] can be applied in this case as well to understand the 

categories associated to α. When the set S has more than one element, recognizable power series still admit 
an analogue of the partial fraction decomposition, see [18] and references therein, which should lead to 

decompositions of associated tensor categories.

Unoriented cobordisms. There is an obvious unoriented version of the category C, where one-dimensional 
cobordisms are unoriented and the objects, in the skeletal category case, are numbers n ∈ Z+, counting 

the number of top and bottom endpoints of the cobordism. Evaluation α must be -invariant, that is, to 

satisfy α(w) = α(w), for any word w, in addition to being symmetric, as earlier: α(w1w2) = α(w2w1), for 
any words w1, w2. The dihedral group Dn acts on the set Sn of words of length n in the alphabet S, and 

the function α : S∗ −→ k, when restricted to these words, must be Dn-invariant. Such series can be called 

d-symmetric, for instance.
The theory then goes through and one can define the viewable category VCα, the skein category SCα, the 

gligible quotient Cα, and so on. The interesting case, as before, is when α is recognizable, that is, when the 

category Cα has finite-dimensional hom spaces. A d-symmetric series α is recognizable iff it is recognizable 

as noncommutative series iff the syntactic ideal Iα has finite codimension in k〈S〉.
If the set S is empty, cobordisms do not carry any dots (defects), and the category SCα is the unoriented 

Brauer category Brun
λ for the parameter λ = α(1) ∈ k, while Cα is the gligible quotient of Bun

λ .

3. Cobordisms with inner (floating) boundary

3.1. Category C̃ of decorated cobordisms with inner boundary

To connect decorated one-dimensional cobordisms with noncommutative rational power series that are 

not necessarily symmetric we enlarge the category C by allowing cobordisms M that may have additional 
boundary points (floating boundary points) strictly inside the cobordism, not being part of the top ∂1M or 
bottom ∂0M boundary of M .

Define the category C̃ of S-labelled cobordism with floating (or inner) boundary to have the same objects 
as C, that is, finite sequences ε of plus and minus signs. A morphism in C̃ from ε to ε′, see Fig. 3.1.1 for an 

example, is a compact oriented S-decorated one-manifold M with

∂M = ε′ � (−ε) � ∂inM, (26)

where ∂inM is the inner or floating boundary of M that is disjoint from the top boundary, given by ε′

and from the bottom boundary, given by −ε. In (26) we interpret a sign sequence ε′ as a zero-dimensional 
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Fig. 3.1.1. A morphism from (− − + − ++) to (− − + + −+). Over- and undercrossing and intersections are “virtual” and should 
be ignored. Hollow dots are not labels and show inner (floating) endpoints of the cobordism.

oriented manifold, with oriented connected components described by elements of the sequence. The sequence 

−ε opposite to ε corresponds to the orientation reversal of 0D manifold ε. An S-decoration is a collection 

of points (dots) labelled by elements of the set S inside M (not on the boundary ∂M). Labelled points can 

move along a connected component but not cross through each other.
Morphisms are such decorated 1D cobordisms, possibly with inner endpoints (inner boundary points) 

considered up to rel boundary diffeomorphisms. Fig. 3.1.1 shows an example of a morphism from ε =
(− − + − ++) to ε′ = (− − + + −+).

Composition of morphisms in C̃ is given by concatenation of cobordisms. The category C̃ contains C as 
the subcategory with the same objects as C̃ and morphisms – morphisms of C̃ that have no inner (floating) 
boundary points.

Connected components of a cobordism in C̃ split into viewable and floating types. Fig. 3.1.1 cobordism has 
three floating components: one circle and two intervals. The same cobordism has eight viewable components: 
four of them have both endpoints on top or bottom boundary, while the other four have one floating endpoint. 
Floating components terminology was introduced in [29].

Going along a component c in the direction of its orientation we read off the labels of dots. If the 

component is an arc, the result is a sequence sec(c) ∈ S∗, a word in the alphabet S. If the component is a 

circle, the sequence sec(c) is defined up to cyclic rotation. Our convention is to write the sequence from right 
to left as we follow the orientation. For instance, in Fig. 3.1.6 left the sequence is s1s2s3, while in Fig. 3.1.6
right the sequence is s3s2s1. Orientation reversal of a component corresponds to reversing the sequence.

The sequences for components of Fig. 3.1.1 cobordism are:

• The empty sequence (∅) and (s2) for the two floating arc components.
• Sequence (s1s3s2), up to cyclic rotation, for the unique floating circle component.
• Sequences (s1s1) and (s3) for the two connected components that connect a top endpoint and a bottom 

endpoint.
• The empty sequence (∅) for the unique component that connects two top endpoints.
• Sequence (s2s3) for the unique component connecting two bottom endpoints.
• Sequences (s3s1) and (s1s2) for arc components with one top and one inner boundary point.
• Sequences (∅) and (s1) for arc components with one bottom and one inner boundary point.

A floating component of a cobordism x in C̃ is either an interval or a circle, see Fig. 3.1.2.
A viewable component has one of the five types shown in Fig. 3.1.3, with some number of dots (perhaps 

none) on it.
Monoidal category C̃ has generators shown in Figs. 2.1.3 and 2.1.4 and common with its subcategory C

and two additional generators shows in Fig. 3.1.4 left. These are ars with one floating and one top endpoint. 
Applying U-turns to them results in arcs with one floating and one bottom endpoint, see Fig. 3.1.4 right. 



M. Khovanov / Journal of Pure and Applied Algebra 228 (2024) 107689 21

Fig. 3.1.2. Left: three interval floating components, with sequences (∅), (si), and (si1
si2

. . . sik
). Right: three circle components, 

with sequences (∅), (si) and (sjm
. . . sj2

sj1
) up to cyclic rotation.

Fig. 3.1.3. Five types of viewable components, left to right: an interval connecting (1) a top and a bottom point, (2) two top points, 
(3) two bottom points; a interval with an inner boundary point and a (4) top endpoint, (5) bottom endpoint. Labels of dots and 
orientations of lines are not shown. In the subcategory C viewable components are of types (1)-(3) only.

Fig. 3.1.4. Left: additional generating morphisms for monoidal category C̃ beyond the generating morphisms common for C̃ and C
shown in Figs. 2.1.3 and 2.1.4.

Fig. 3.1.5. Some additional relations in C̃.

Fig. 3.1.6. Orientation matters: evaluations α(s1s2s3) and α(s3s2s1) are different, in general. Reversal of a sequence corresponds to 
orientation reversal of the corresponding floating arc or circle.

Some additional defining relations in C̃ are shown in Fig. 3.1.5, see also Fig. 2.1.4 for defining relations in 

the subcategory C, which also give a subset of defining relations in C̃. We will not need a full set of defining 

relations for C̃ in this paper.

3.2. Tensor envelopes of C̃

Floating (closed) cobordisms in C̃ (endomorphisms of the empty zero-manifold (∅)) are unions of floating 

intervals and circles. A floating interval carries a sequence w ∈ S∗, a floating circle carries a sequence v well-
defined up to cyclic rotation, v1v2 ≡ v2v1. Consequently a multiplicative evaluation of floating cobordisms 
in C̃, as explained in the introduction, consists of a pair of series

α = (α•, α◦), (27)
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Fig. 3.2.1. Evaluation α•(w) of the floating interval c•(w) and evaluation α◦(w) of the circle c◦(w) in VC̃, for a word w = w1 . . . wn.

Fig. 3.2.2. Three elements of the set I(+, +−).

where α• ∈ k〈 〈S〉 〉 is a noncommutative series and α◦ ∈ k〈 〈S〉 〉s is a symmetric series.
A multiplicative evaluation on closed cobordisms in C̃ assigns α•(w) ∈ k to an oriented interval with 

word w written along it via labelled dots, see Fig. 3.2.1. Element α◦(v) ∈ k is assigned to an oriented circle 

with word v, well-defined up to a cyclic rotation, written along it.

We now proceed along a familiar route, as in [31,28] and Section 2, to build various tensor envelopes of 
a pair α = (α•, α◦).

(1) Pre-linearization category kC̃. Category kC̃ has the same objects as C̃, and the morphisms are finite 

k-linear combinations of morphisms in C̃. This is a naive linearization or pre-linearization of C̃.

(2) Viewable cobordisms category VC̃α. To form category VC̃α, we mod out tensor category kC̃ by relations 
that evaluate floating (closed) cobordisms to elements of the ground field via α. Namely, a floating oriented 

interval with a sequence w ∈ S∗ on it, denoted c•(w), evaluates to α•(w) ∈ k. A floating oriented w-decorated 

circle c◦(w) evaluates to α◦(w), see Fig. 3.2.1. Recall that α◦ is symmetric and α◦(v1v2) = α◦(v2v1) for any 

words v1v2, matching circle rotation, c◦(v1v2) = c◦(v2v1).
Since all floating components of a cobordism reduce to elements in k, the vector space of homs from ε

to ε′ in VC̃α has a basis of viewable cobordisms from ε to ε′ with any sequences written on its connected 

components.

Denote by I(ε, ε′) the set of diffeomorphism classes of viewable cobordisms (without dot decorations) 
from ε to ε′. A viewable cobordism has no circles and all its connected components are intervals. Such a 

cobordism C may have some number of viewable components of types (4) and (5), see Fig. 3.1.3. Each 

such component has one floating boundary point and one boundary point among elements of ε � ε′. Other 
connected components (of types (1)-(3)) give an orientation-respecting matching of the remaining elements 
of ε and ε′.

To specify an element of I(ε, ε′) we select a subset I ′ of elements in the sequence (−ε) � ε′ so that the 

remaining sequence is balanced, that is, has the same number of pluses and minuses. We then choose a 

bijection b between pluses and minuses of (−ε) � ε \ I ′. Such pairs (I ′, b) are in a bijection with isomorphism 

classes of viewable undecorated cobordisms between ε and ε′, that is, elements of I(ε, ε′). Fig. 3.2.2 shows 
elements of the set I(+, +−). Fig. 3.2.3 shows elements of the set I(+, + + −).

To allow S-decorations, we consider the set IS(ε, ε′) which consists of a pair: an element of I(ε, ε′) and a 

choice of word w(c) in S∗ for each component c of I(ε, ε′). To such a pair we assign an S-decorated viewable 

cobordism given by the element of I(ε, ε′) and words w(c) written on components c of the cobordism. Some 

words may be empty (have length zero). Denote the cobordism associated with t ∈ IS(ε, ε′) by C(t).
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Fig. 3.2.3. Seven elements of the set I(+, + + −).

Proposition 3.1. Viewable cobordisms C(t), over all t in IS(ε, ε′), constitute a basis in the hom space 

Hom(ε, ε′) in the category VC̃α.

Composing cobordisms from these bases sets results in cobordisms that, in general, have floating compo-
nents. These components are evaluated via α, viewable components are kept, and the composition of two 

basis elements is a basis element in a suitable hom space, scaled by an element of k.

As earlier, to each word w ∈ S∗ we associate the upward interval with w written on it, that is, cobordism 

cob(w) from (+) to (+), see Fig. 2.4.2 left. Each element u of k〈S〉 gives rise to a linear combination cob(u)
of these cobordisms, see Fig. 2.4.2 right. The resulting map

cob : k〈S〉 −→ EndVC̃α
((+))

is an injective homomorphism from the free algebra k〈S〉 to the ring of endomorphisms of (+) in category 

VC̃α (in the smaller category VCα considered in Section 2 this map is an isomorphism). One-sided inverse 

homomorphism to cob is given by the surjection

cob′ : EndVC̃α
((+)) −→ k〈S〉

that sends any cobordism with floating endpoints to zero. The latter cobordisms span a two-sided ideal in 

EndVC̃α
((+)), with the quotient isomorphic to k〈S〉. This ideal is naturally isomorphic to k〈S〉 ⊗k〈S〉 when 

viewed as a k〈S〉-bimodule. Multiplication in this ideal is given by

(x1 ⊗ x2)(y1 ⊗ y2) = α•(x2y1) x1 ⊗ y2.

Composition cob′ ◦ cob = Idk〈S〉.

(3) Skein category SC̃α. This category has finite-dimensional hom spaces when α is recognizable, and we 

restrict to that case. We say that α = (α•, α◦) is recognizable if both series α• and α◦ are recognizable. 
Series α• and α◦ has syntactic ideals Iα• , Iα◦ ⊂ k〈S〉, respectively. Recognizability means that both ideals 
have finite codimension in k〈S〉. Equivalently, the two-sided ideal

Iα := Iα• ∩ Iα◦ ⊂ k〈S〉 (28)

has finite codimension in k〈S〉. Denote by

Aα := k〈S〉/Iα

the syntactic algebra of the pair α.
Starting with the category VC̃α, we add tensor relations cob(u) = 0 for any u ∈ Iα, see Fig. 3.2.4 left. 

These relations are consistent with the evaluation α of floating components. Consistency is due to restricting 

to u in the syntactic ideal, which is contained in both ideals Iα• and Iα◦ . Elements of the first ideal evaluate 
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Fig. 3.2.4. Left: endomorphism cob(u) of (+) is set to zero in SC̃α for u ∈ Iα. Middle: α•(v1uv2) = 0 for any v1, v2 ∈ k〈S〉 since 
u ∈ Iα ⊂ Iα• . Right: α◦(vu) = 0 for any v ∈ k〈S〉 since u ∈ Iα ⊂ Iα◦ .

Fig. 3.2.5. Left: Element cob+(u) of Hom(∅, (+)) is set to zero in SC̃α for u ∈ I�
α• . This relation is compatible with evaluations 

of floating diagrams, since α•(vu) = 0 ∀v ∈ k〈S〉, second left. Right: Element cob−(v) of Hom(∅, (−)) is set to zero in SC̃α for 
v ∈ Ir

α• . This relation is also compatible with evaluations of floating diagrams, since α•(vu) = 0 ∀u ∈ k〈S〉 for such v, see the last 
equation on the right.

to zero when placed anywhere on a floating interval, see Fig. 3.2.4 middle. Elements of the second ideal 
evaluate to zero when placed on a circle, see Fig. 3.2.4 right.

Recall that in addition to two-sided syntactic ideals Iα• , Iα◦ and their intersection Iα = Iα• ∩ Iα◦ there 

are one-sided syntactic ideals I�
α• and Ir

α• . Here

I�
α• = {x ∈ k〈S〉|α•(yx) = 0 ∀y ∈ k〈S〉} and Ir

α• = {x ∈ k〈S〉|α•(xy) = 0 ∀y ∈ k〈S〉}

are left and right ideals in k〈S〉, respectively.
For u ∈ k〈S〉 denote by cob+(u) the element of Hom(∅, (+)) given by putting u on an interval at its 

“out” floating endpoint, see Fig. 3.2.5 left. Define cob−(u) likewise, see Fig. 3.2.5 right. We add relations 
that cob+(u) = 0 for u ∈ I�

α• and cob−(v) = 0 for v ∈ Ir
α• . This finishes our definition of category SC̃α.

Note that ideals Iα, I�
α• , Ir

α• have finite codimensions in k〈S〉, and each of these ideals is finitely-generated. 
In particular, one can restrict to adding finitely many relations to VC̃α to get the “skein” category SC̃α.

Due to consistency of these relations with the evaluation α on floating components we can describe a 

basis in the hom spaces in the category SC̃α, as follows. Choose subsets Bα, B�
α• , Br

α• ⊂ k〈S〉 that descend 

to bases of Aα, k〈S〉/I�
α• and Ir

α•/k〈S〉, respectively.
Recall the basis IS(ε, ε′) of the hom space from ε to ε′ in VC̃α constructed earlier. It consists of a floating 

cobordism x from ε to ε′ with various monomials written on components of the cobordism (all components 
are viewable). Define the set Bα(ε, ε′) to also consists of floating cobordisms from ε to ε′, but now we write 

an element of one of the three sets Bα, B�
α• , Br

α• on each component of c, depending on its type:

• If a component has no floating endpoints, thus connects two boundary points (at the top or bottom 

boundary, or both), put an element of Bα along it.
• If a component has a floating endpoint and is oriented away from this endpoint, put an element of B�

α•

along this component.
• If a component has a floating endpoint and is oriented towards it, put an element of Br

α• along this 
component.

An undecorated viewable cobordism x with n1, n2, n3 components of these three types, respectively, admits 
|Bα|n1 |B�

α• |n2 |Br
α• |n3 possible decorations. The set Bα(ε, ε′) is the union of these decorated cobordisms, 



M. Khovanov / Journal of Pure and Applied Algebra 228 (2024) 107689 25

Fig. 3.2.6. There are two types of cobordisms from (+) to (+) in C̃. Mirroring that decomposition, basis Bα((+), (+)) consists of 
elements of c ∈ Bα placed on through strand and pairs of elements c1 ∈ B�

α• and c2 ∈ Br
α• placed on the two strands with floating 

endpoints.

where we start with any viewable undecorated cobordism x from ε to ε′ and decorate it in all possible such 

ways. The set Bα(ε, ε′) is finite.
For example, Bα((+), (+)) has cardinality |Bα| + |B�

α• | · |Br
α• | and consists of diagrams of two types, see 

Fig. 3.2.6.

Proposition 3.2. The set Bα(ε, ε′) is a basis of the hom space HomSC̃α
(ε, ε′) in the category SC̃α.

This construction gives a basis in hom spaces of SC̃α for non-recognizable α as well, but then Aα and 

hom spaces are infinite-dimensional. Recall that we restrict to considering recognizable α for most of this 
section.

The endomorphism ring of (+) in SC̃α contains a two-sided ideal isomorphic to the tensor product 
k〈S〉/I�

α• ⊗ Ir
α•\k〈S〉, with the quotient algebra isomorphic to Aα, so there is an exact sequence of k〈S〉-

bimodules

0 −→ k〈S〉/I�
α• ⊗ Ir

α•\k〈S〉 −→ EndSC̃α
((+)) −→ Aα −→ 0. (29)

The quotient map onto Aα admits a section, and Aα is naturally a subalgebra of EndSC̃α
((+)). This 

decomposition corresponds to two types of endomorphisms of (+) in C̃ (without floating endpoints versus 
having two floating endpoints) and corresponding bases in endomorphisms of (+) in SC̃α, see Fig. 3.2.6.

(4) Gligible quotient category C̃α. The trace trα(x) of a cobordism x from ε to ε is defined in the same 

way as for cobordisms in the smaller category Cα, by closing x into a floating cobordism x̂, see Fig. 2.4.4
and evaluating via α:

trα(x) := α(x̂).

This operation extends to a k-linear trace on kC̃α that descends to a trace on VC̃α and SC̃α:

End
kC̃(ε) −→ EndVC̃α

(ε) −→ EndSC̃α
(ε) trα−→ k.

The trace is symmetric. The two-sided ideal J̃α ⊂ SC̃α of negligible morphisms is defined as usual, see 

Section 2.4 for the definition of negligible ideal in the subcategory SCα of SC̃α.
Define the quotient category

C̃α := SC̃α/Jα.

The quotient category C̃α has finite-dimensional hom spaces, as does SC̃α, since α is recognizable. The 

trace is nondegenerate on C̃α and defines perfect bilinear pairings
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Hom(ε, ε′) ⊗ Hom(ε′, ε) −→ k

on its hom spaces. We call C̃α the gligible quotient of SC̃α, having modded out by the ideal of negligible 

morphisms.

Up to an isomorphism, the state space

Aα(ε) := HomC̃α
(∅, ε) (30)

depends only on the number of pluses and minuses in ε and Aα(ε) ∼= Aα(+n−m), where n and m is the 

number of pluses and minuses in ε. Summing Aα(+n−m) over n, m ≥ 0 one get a bigraded associative 

algebra with Sn × Sm action on the homogeneous (n, m) component with the properties similar to that of 
a tca algebra [48].

(5) The Deligne category and its gligible quotient. From the skein category SC̃α we can pass to its additive 

Karoubi closure

DC̃α := Kar(SC̃⊕
α ),

which is the analogue of the Deligne category. The quotient of DC̃α by the ideal DJ̃α of negligible morphisms,

DC̃α := DC̃α/DJ̃α,

is equivalent to the additive Karoubi closure of C̃α.

Summary: To summarize, the following categories are assigned to a recognizable pair α as in (27):

• The category VC̃α of viewable cobordisms with the α-evaluation of floating (or closed) components.
• The skein category SC̃α where closed (floating) S-decorated intervals and circles are evaluated via α

and elements of the syntactic ideal Iα evaluate to zero when placed along any interval in a cobordism. 
Furthermore, elements of left and right syntactic ideals I�

α• and Ir
α• evaluate to zero when placed at the 

beginning or end of an interval with the corresponding endpoint floating.
• The quotient C̃α of SC̃α by the two-sided ideal of negligible morphisms. We also call C̃α the gligible

category or the gligible quotient. Hom spaces in C̃α come with nondegenerate bilinear forms

Hom(ε, ε′) ⊗ Hom(ε′, ε) −→ k,

where ε, ε′ are objects C̃α, sequences of pluses and minuses describing oriented zero-manifolds that are 

the source and the target of decorated one-cobordisms. The universal construction, in this case, assigns 
the vector space HomC̃α

(∅, ε) of morphisms from the empty zero-manifold ∅ to ε to the oriented zero-
manifold ε.

• Additive Karoubi closure DC̃α of SC̃α, analogous to the Deligne category. The quotient of DC̃α by the 

ideal of negligible morphisms is denoted DC̃α.

We arrange these categories and functors, for recognizable α = (α•, α◦), into the following diagram, with 

a commutative square on the right:

C̃ −−−−→ kC̃ −−−−→ VC̃α −−−−→ SC̃α −−−−→ DC̃α⏐⏐�
⏐⏐�

C̃α −−−−→ DC̃ α

(31)
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Properties of the categories in the analogous diagram (23) in Section 2.5, as explained in the paragraph 

following (23), hold for the categories in (31) as well.

The category C̃ and categories built out of it require a pair of series α = (α•, α◦) for evaluation. When 

working with the subcategory C of cobordisms without floating endpoints, only circles appear as connected 

components of floating cobordisms, and series α◦ is needed for evaluation. Instead of working with C, one 

can use C̃ but set the connected component α• = 0, so that α = (0, α◦). Then in the viewable category 

VC̃α any cobordism that contains a floating interval evaluates to zero. Syntactic ideals I�
α• , Ir

α• = k〈S〉, 
and in the skein category SC̃α any cobordism containing an interval (including viewable intervals, with one 

boundary and one floating endpoint) evaluates to 0. This results in equivalences of categories

SC̃(0,α◦)
∼= SCα◦ , C̃(0,α◦)

∼= Cα◦ , DC̃(0,α◦)
∼= DCα◦ , DC̃(0,α◦)

∼= DCα◦ , (32)

that, furthermore, respect commutative squares of categories in diagrams (23) and (31).
Thus, the construction in Section 2 of the skein category SCα, the gligible quotient category Cα and 

other categories defined there and associated to symmetric series α can be considered a special case of the 

construction of the present section, specializing to the pair (0, α) with the first recognizable series in the 

pair being zero.

Alternatively, one can set α◦ to zero and consider a pair α = (α•, 0). In the viewable cobordism category 

VC̃α for this α a circle (necessarily floating, and with any decoration) evaluates to 0. Only the ideals 
Iα• , I�

α• , Ir
α• (two-sided, left and right, respectively) are used in the definition of the skein category SC̃α. A 

decorated U -turn as in Fig. 3.1.3, case (2) or (3), may be non-zero in C̃α, since it may be coupled to two 

intervals on the other side with a non-zero evaluation.

When α = (α•, 0), another approach is to restrict possible cobordisms and disallow U -turns as cobordisms. 
Then a cobordism c must have no critical points under the natural projection onto the interval [0, 1] under 
which ∂ic projects onto i, for i = 0, 1. When components of cobordisms are unoriented, such restricted 

cobordisms appear in [29] in a categorification of the polynomial ring (without dot decorations) and in [32]
in a categorification of Z[1/2] and potential categorifications of Z[1/n] as monoidal envelopes of certain 

Leavitt path algebras and the “one-sided inverse” algebra k〈a, b〉/(ab − 1). The latter cobordisms carry dot 
decorations, corresponding to the generators of these algebras.

When S = ∅, the evaluation again reduces to two numbers (evaluations of the oriented interval and 

oriented circle), and the skein category SC̃ is the oriented partial Brauer category, see the remark below. 
When S = {s} has cardinality one, recognizable series α is encoded by two rational functions Zα•(T ), 
Zα◦(T ) in a single variable T .

Remark. Instead of power series α = (α•, α◦) in noncommuting variables one can instead start with an 

associative k-algebra B and two k-linear maps

α• : B −→ k, α◦ : B −→ k (33)

such that α◦ is symmetric, α◦(ab) = α◦(ba), a, b ∈ B. Two-sided syntactic ideals Iα• , Iα◦ ⊂ B, their 
intersection Iα := Iα• ∩ Iα◦ , and one-sided syntactic ideals Ir

α• , I�
α• are defined in the same way as for 

noncommutative series.
The nondegenerate case is that of Iα = 0 being the zero ideal in B, but the arbitrary case can be reduced 

to it by passing to the quotient B/Iα. Recognizable case corresponds to finite-dimensional B. Analogues of 
all categories in (31) can be defined for such pair of traces on a finite-dimensional B. Defects on cobordisms 
are now labelled by elements of B rather than by elements of S. The difference from noncommutative 
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recognizable power series is that one does not pick any particular set of generators S of B, working with 

the entire B instead, but the resulting categories, starting with the category SC̃α in (31), are equivalent to 

the ones built from a noncommutative power series once a set S of generators of B is chosen.

Remark. It is straightforward to modify the constructions of this section to the case of unoriented one-
manifolds with floating endpoints and S-decorated dots. If, in addition, S = ∅, there are no dots and 

floating cobordisms reduce to unions of intervals and circles. The evaluation is then a pair (α•(1), α◦(1)) of 
elements of k and the unoriented skein category SC̃α is the partial Brauer category [35], also known as the 

rook-Brauer category [20].
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