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1. Introduction

In the universal construction approach to low-dimensional topological theories [5,23,44] one starts with
an evaluation of closed n-dimensional objects M taking values in a ground commutative ring or a field and
then defines state spaces A(N) for (n — 1)-dimensional objects N via the bilinear pairing on n-dimensional
objects M with a given boundary, OM = N, by coupling two such objects M7, M5 along the boundary and
evaluating the resulting closed object My Uy Ms. The n-dimensional objects may be manifolds, manifolds
with decorations, embedded manifolds or foams, or one of many other variations of these examples. The
universal pairing theory of Freedman, Kitaev, Nayak, Slingerland, Walker and Wang [19], further developed
by Calegari, Freedman, Walker and others [6,53], is closely related to the universal construction. Some other
examples of the universal construction for n = 2 were recently considered in [24,31,28]. Vector spaces or
modules A(N) that one assigns to (n — 1)-dimensional objects in universal constructions usually do not
satisfy the Atiyah tensor product axiom A(Nj U No) & A(N7) ® A(N2), see [1]. Instead, there are maps

A(Nl) X A(Ng) — A(Nl LJ Ng) s

which one can think of as a sort of a lax tensor structure.

In this note we explain that the universal construction approach is interesting even in dimension one.
Studying the universal construction for one-manifolds decorated by dots labelled by elements of a finite
set S, we recover the notion of noncommutative recognizable (equivalently, rational) power series in the
alphabet S as developed by Schiitzenberger [51], Fliess [17], Eilenberg [13,14], Conway [8], Reutenauer,
Carlyle and Paz, and others. A full set of references and introductions to this theory can be found in
the textbooks by Berstel and Reutenauer [3], Salomaa and Soittola [47], Esik and Kuich [15], Kuich and
Salomaa [34], also see [50,21]. For short introductions to noncommutative rational power series we refer to
Reutenauer [40-42].

Theory of noncommutative recognizable power series has its roots in the theory of rational languages
and finite state automata [8,13-15], and can be viewed as a linearization of the latter [3,21]. We briefly
review the basics of noncommutative rational (recognizable) power series in Section 2.2 and Proposition 2.1
stated there. Part of the motivation for this theory comes from an earlier theorem of Kleene that rational
languages are precisely those recognizable by FSA (finite state automata). A language L is a subset of S*
(the set of words in the letters of the alphabet S) and gives rise to series (L) with the coefficient of w one
if w € L and zero otherwise. Coefficients of a(L) belong to the Boolean semiring B = {0,1} with 1+1 = 1.
Kleene’s theorem and the theory of finite state automata can be found in many textbooks on the field,
see for instance [7] and foundational work of Conway [8] and Eilenberg [13,14]. Alternatively, we refer to
Underwood [52, Chapter 2] for a brief introduction to finite state automata, regular languages, and their
relation to bialgebras.

We consider various flavors of the category of S-decorated one-dimensional cobordisms. S-labelled dots
placed along a one-dimensional cobordism can also be thought of as codimension one defects on it.

In the first example, the category C of oriented one-dimensional cobordisms with labels from S is consid-
ered in Section 2. We work over a ground field k for simplicity, but the construction extends to an arbitrary
commutative ring R and at least parts of it extend to commutative semirings, mirroring the theory of
recognizable power series over semirings.

To build an evaluation one needs a number (an element of the ground field k) associated to each circle
carrying a collection of S-labelled dots. This collection is determined by a finite sequence w of elements of
S up to a cyclic order. Consequently, to build various evaluation categories, we need to assign a number
a(w) € k to each such sequence or word w € S*, subject to the condition a(uv) = a(vu) for all words u, v.
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An evaluation of this type is encapsulated by a formal expression

Zo= ) aw)w, a={a(w)}les- (1)

weS*

known as a noncommutative power series Z,, an element of the vector space k((S)) dual to the free associative
algebra k(S) generated by elements of S:

k(S) = k(S)* = Homy(k(S), k).

Recognizable noncommutative power series are singled out by the condition that their syntactic algebra
Aq, see Section 2.2, is finite-dimensional. The syntactic algebra [38] is the quotient of k(S) by the largest
two-sided ideal I,, of k(S) that lies in the hyperplane ker(«), when « is considered as a linear map k(S) — k.

Property a(uv) = a(vu) for all words u,v € S* describes a particular type of series that we refer to as
symmetric series. Reutenauer [38] calls such series central.

In Section 2 we show that for recognizable symmetric series « there is a satisfactory theory of tensor
envelopes [33], that is, tensor categories associated to «, that mirrors the theory of the Deligne categories
associated to symmetric groups and of negligible quotients of these categories [10,9,16]. Similar theories
have recently been introduced for evaluations of two-dimensional cobordisms in [24,31], two-dimensional
cobordisms with corners [28], and two-dimensional cobordisms with dots (codimension two defects) [27].
One can also compare our construction with tensor envelopes of the “one-sided inverse” algebras and Leav-
itt path algebras considered in [32] for categorifications of rings of fractions and with the diagrammatic
categorification of the polynomial ring in [29].

There are several categories and functors between them associated to rational symmetric noncommutative
series «, defined throughout Section 2.4 and summarized in Section 2.5 and diagram (23) there. Various skein
and quotient categories that one obtains extend the notion of the syntactic algebra A, of a (the quotient of
noncommutative polynomials k({S) by the largest two-sided ideal contained in ker «, see above) and can be
thought of as forming various tensor and Karoubi closures of the latter. The theory of syntactic algebras of
noncommutative recognizable (or rational) power series was introduced and developed by Reutenauer [38].
Syntactic algebra A, appears as the endomorphism algebra of the generating object (+) in several categories
associated to a.

In Section 3 we go beyond the restriction that noncommutative power series be symmetric by enlarging
our category of cobordisms. We consider category C of S-decorated cobordisms M that may have endpoints
strictly “inside” the cobordism, that it, not on the top or bottom boundary d; M and dyM. We call these
inner or floating endpoints. Such floating endpoints appear in diagrammatical calculi in [29,32], for in-
stance. Cobordisms of this type between empty 0-manifolds (closed or floating cobordisms) have connected
components that are either S-decorated oriented intervals or circles. A multiplicative evaluation on such
cobordisms assigns an element a®(w) € k to an oriented interval with word w written along it via labelled
dots, and an element a°(v) € k to an oriented circle, with word v, well-defined up to cyclic rotation, written
along it.

Consequently, the analogue of noncommutative power series in this case is a pair

a=(a*a’) (2)

where a® is a noncommutative power series and a° is a symmetric noncommutative power series. There
does not have to be any relation between a® and «a°.

Pair « of series as above allows to evaluate S-decorated floating intervals (via a®) and floating circles
(via @®). In Section 3 to the evaluation data o = (a®,a°) we assign several tensor categories similar to



4 M. Khovanov / Journal of Pure and Applied Algebra 228 (2024) 107689

those for the symmetric series. The resulting categories have the best behavior when both a® and a° are
recognizable series, and we specialize to this case early. We say that « is recognizable if both a® and a° are
recognizable.

We follow the path familiar from Section 2 and papers [31,28] and assign several categories and functors
between them to each recognizable pair «, including the following categories:

o The category VC~Q of viewable cobordisms, where any closed (floating) component is reduced via evalu-
ation a.

o The skein category 850” where, additionally, elements of two-sided and one-sided syntactic ideals I, and
I é. , I’ evaluate to zero when placed in the middle of the strand or by its floating endpoint, respectively.

o The category 5m the quotient of either VC, or SC, by the ideal of negligible morphisms.

« Additive Karoubi closure DC of SCa, which is the analogue of the Dehgne category.

o Additive Karoubi closure DC of Ca, equivalent to the quotient of DC, by the ideal of negligible
morphisms.

These four categories have finite-dimensional hom spaces (again, assuming « is recognizable), see diagram
(31) and Section 3. They can be thought of as various tensor envelopes of « and the syntactic algebra A,.

Categories built out of a single symmetric recognizable series in Section 2 can be considered a special
case of this construction, given by setting the first series a® to zero. Setting the second series a° to zero,
instead, results in another specialization of the theory, with all decorated circles evaluating to zero, while
decorated intervals evaluating to coefficients of a®, see the remark at the end of Section 3.

In this paper we use rational and recognizable interchangeably to refer to noncommutative power series
over a field with the syntactic ideal of finite codimension. Coincidence of rational and recognizable power
series with coefficients in an arbitrary semiring is a result of Schiitzenberger [51], see also [3,47,15,34] for
more details and references. For more general monoids, beyond the free monoid on a finite set S, the sets
of recognizable and rational series may differ, see [11,49] and references therein. The difference between
rational and recognizable series is also visible in examples in [28], where a recognizable series in two or more
commuting variables needs to be rational with denominators restricted to polynomials in single generating
variables.

The theory of recognizable noncommutative power series makes sense over non-commutative semirings [3,
47]. One can look to generalize the theory of tensor envelopes of such series from series over a field or a
commutative ring to series over a semiring. Note that closed cobordisms would then evaluate to elements
of the ground semiring. Components of a closed cobordism “commute”, in the sense of sliding past each
other, as elements of the commutative monoid of endomorphisms of the unit object of the tensor category of
cobordisms, the empty zero-manifold. For this reason, it is natural to restrict to commutative semirings in
this fuller extension of the theory of tensor envelopes of noncommutative power series. We do not consider
the general case of a ground commutative semiring K in this paper, though, limiting ourselves to a ground
field, but it may be interesting to develop. The case when K = B is the boolean semiring, gives, in particular,
the notion of tensor envelopes of a rational language L or, equivalently, tensor envelopes of a finite state
automaton. To get the definition, run the constructions of Section 3 with B in place of field k and the pair
a = (a*,0) of series with the zero symmetric series a® = 0 and a® the series of a regular language L. To
test whether this notion is useful, one may study examples of quotients Co of the skein category SC, for
such a.

In the follow-up paper, we will consider one-dimensional cobordisms with more general decorations, by
edges and vertices of an oriented graph (or a quiver) I'. The graph T' may be finite or infinite. Dots on
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a cobordisms are labelled by oriented edges of I'. Intervals of the cobordisms separated by dots along a
connected component are labelled by vertices of I'. A dot labelled by an edge s : a — b is surrounded
by intervals labelled by vertices a and b, respectively, in the order that matches the orientation of the
corresponding connected component. Such decorations are possible for both interval and circle connected
components of a cobordism. There are suitable monoidal categories C(T") and C (T") of T'-decorated cobordisms
generalizing categories C and C in this paper. Cobordisms with floating endpoints are allowed in q (T") but
not in C(T"). Objects of C(T") and C (T") are finite sequences of vertices of T or, equivalently, finite sequences
of objects of category S(T'), see next.

To T one assigns the small category S(I') of paths in I', with vertices of I' being the objects of S(T')
and paths in I' — morphisms, with concatenation of paths as the composition. Traveling along a connected
component of a I'-decorated cobordism one encounters a path in T', that is, a morphism in S(I"). If the
component is a circle, the path, in addition, must be closed, that is, start and end at the same vertex of I'.

An evaluation «, in the case of C(T"), where floating endpoints are allowed, consists of two maps:

e Map «a® from the set of morphisms in S(I') (paths in T') to the ground field k or, more generally, a
commutative ring or a semiring,

e Map a° from the set of circular morphisms, that is, closed paths in I' without a choice of the basepoint
to k.

The pair a = (a®,a°) is the analogue of the pair in (2), generalizing the special case considered in this
paper where I" has a single vertex and oriented loops from the vertex to itself are enumerated by elements
of S.

One can then define the analogues of all the categories in the diagram (31), including VC~Q, SC~a, C~a, in
this case. In particular, the category C(I'), is the quotient of the k-linearization kC(I') by the two-sided
ideal of negligible morphisms, defined via the trace given by evaluation a.

The pair « is called recognizable or locally-recognizable (when T' is infinite) if the “gligible quotient”
category C (T") has finite-dimensional hom spaces. Note that the boundary points and floating endpoints of
I-decorated cobordisms are labelled by objects of S(T"), that is, by vertices of T'; the label inherited from
the label of the adjacent edge of the cobordism.

These constructions can be further generalized to cobordisms between finite sets of boundary points given
by graphs and I'-decorated graphs rather than by I'-decorated one-manifolds. Cobordisms given by graphs
can still be viewed as one-dimensional cobordisms between zero-dimensional objects (finite sets of points,

possibly decorated by vertices of I and orientations, as necessary).

A natural open problem is to extend the universal construction, for decorated cobordisms (or cobordisms
with defects), beyond dimension one. Parts of this extension are visible in

o [27], where two-dimensional cobordisms are decorated by dots labelled by elements of a commutative
monoid or a commutative algebra, with non-trivial interactions between these dots and topology of
cobordisms coming from the handle cobordism equated to a nontrivial element of the monoid or algebra.

o [28], where side boundaries of two-dimensional cobordisms with corners may be colored by elements of
a finite set.

o Foam theory [23,4,12,46,44], see more references in [25], where rather particular evaluations of two-
dimensional decorated CW-complexes with generic singularities embedded in R? (foams) are used as
an intermediate step to build homology theories of links that categorify various one-variable specializa-
tions of the HOMFLYPT polynomial. Soergel bimodules, singular Soergel bimodules, and some other
structures in representation theory admit a foam description as well [54,45].
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Fig. 2.1.1. A morphism from (—+—++) to (+ — —++) in C. It has two closed (or floating) components, one undecorated, the other
decorated by siss. The two U-turns are decorated by s2ss and si, respectively. There are three through arcs: two undecorated,
one decorated by s2s2. Whether a crossing is over- or under-crossing is irrelevant.

o Evaluation theory for two-dimensional cobordisms and evaluations of overlapping foams [24], point-
ing towards further connections to arithmetic topology, representation theory, and the Heegaard-Floer
theory.

« [26], which considers evaluations in the two-dimensional planar case with one-dimensional defects.

Freedman et al. [19] mention possible decorations on low-dimensional cobordisms for their universal pairings.

Studying evaluations not just for n-manifolds but for decorated n-manifolds, n-manifolds and their foam
analogues embedded in R™"*!, and other such refinements should ease one’s way into understanding recog-
nizable evaluations in dimension n + 1. This program makes sense at least in dimensions n = 1,2, 3.

Acknowledgments. The author is grateful to Kirill Bogdanov, Mee Seong Im, and Vladimir Retakh for
interesting discussions and to Victor Shuvalov for help with creating the figures for the paper. The author
was partially supported by the NSF grant DMS-1807425 while working on this paper.

2. Decorated one-dimensional cobordisms and their evaluations
2.1. Categories C and C'

Fix a finite set S of cardinality » > 0, which we often write as S = {s1,82,...,8,}.

Consider the category C = Cg of S-decorated compact oriented one-dimensional cobordisms. Its objects
are oriented zero-dimensional manifolds NV, that is, finite sets with a sign assignment 4+ or — to each element
(signed finite sets). A morphism from Ny to Nj is an oriented one-dimensional manifold M decorated by
finitely many dots labelled by elements of S, with OM = Ny U (—Np), see Fig. 2.1.1 for an example, which
also sets the orientation convention for the boundary.

Dots can move along a connected component of M where they are placed but without crossing through
other dots or moving to a boundary point. Two morphisms are equal if they are diffeomorphic rel boundary
and keeping track of dots and their labels.

Each component ¢ of M is either an oriented circle or an oriented interval. Going along ¢ in the direction
of its orientation, one can read off the labels of marked points. When c is an interval, the sequence of labels
is an invariant of c. When c is a circle, the sequence of labels is an invariant up to a cyclic rotation of the
sequence. A component may carry no dots; the corresponding sequence is empty then.

Composition of morphisms is given by their concatenation.

To reduce to fewer objects, we take the objects to be sequences of signs € = (e1,...,€,), € € {+,—}. To
€ we associate an ordered signed zero-manifold with one point for each term in the sequence, with the signs
given by €1, ...,€,. We may alternatively write ¢;, = 1 or —1 instead of + or —.
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+ - - +
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Fig. 2.1.2. Duality morphisms for 4+ and — in C.

+ - +

- + + -
1y 1 st ¢s 5T ¢s P++>< P+><
- + -+

+ - +

Fig. 2.1.3. Generating morphisms in C: identity 14 of (+), identity 1_ of (—), morphism s¥ : (+) — (4) for s € S, morphism
s~ : (=) — (—), permutation morphism Py . Other permutation morphisms, such as P_, can be obtained as compositions of
these morphisms and those in Fig. 2.1.2.

o HI KA 65

XX AU Uy

Fig. 2.1.4. Some relations in C. They hold for any choice of orientations. Orientation of the LHS of each equation determines the
orientation of the RHS and vice versa. A set of these relations with some restrictions on orientations can be taken for a defining
set of relations. Commutativity relations on generators in horizontally separated regions are not shown, since they are built into
the axioms of a tensor category.

Permutation cobordisms show that permuting signs in a sequence ¢ leads to an isomorphic object, and
that isomorphism classes of objects are parametrized by pairs of non-negative integers n = (ng, n1), counting
the number of plus and minus signs.

When restricting to a skeleton category (one object for each isomorphism class), we thus reduce objects
to pairs n = (ng,n1), where ng is the number of plus points and n; is the number of minus points. In the
sequence of signs that n represents, we put plus signs first, and can also write n = (4+m0—"1).

Denote by C = Cg the category of S-decorated cobordisms with objects—finite sign sequences € as above.
The skeleton category of S-decorated cobordisms, with objects n, is denoted C’. Category C is slighter larger
than the equivalent category C’.

These categories are rigid symmetric tensor, with the tensor product in C given on morphisms by placing
their diagrams next to each other. On objects, the tensor product is the concatenation of sequences. In C’
when forming the tensor product of morphisms, we group plus points together and minus points together.
Tensor product on objects is given by (ng,n1) ® (mg,m1) = (ng + mo,n1 + mq).

In both categories C and C’ object (+) has object (—) as its dual, with the duality morphisms in C shown
in Fig. 2.1.2.

The empty sequence ) is the unit object 1 of the tensor category C. The pair 1 := (0, 0) is the unit object
of C'. Generating morphisms in C’ are shown in Figs. 2.1.2 and 2.1.3.

Some defining relations in C are shown in Fig. 2.1.4. We do not list a full set of defining relations and
will not need it. These relations can be hidden in the definition of C, where morphisms are declared equal
if the corresponding decorated cobordisms are diffeomorphic rel boundary.

A morphism M from € to € in C consists of some number of oriented circles and oriented intervals.
Boundaries of oriented intervals and their orientations match entries of € and € in pairs.
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Denote by |e| the difference of the number of plus and minus signs in € and call it the weight of the
sequence. For instance, |(+——++++—)| = 5—3 = 2. A morphism from ¢ to € exists iff the two sequences
have the same weight, |¢| = |¢/|. The weight is additive under the tensor product of objects (concatenation
of sequences). Denote by ||e|| the length of the sequence e.

Connected components ¢ of a morphism M are circles and intervals (arcs). Circles are closed components,
also called floating components. Arcs have boundary and, borrowing terminology from [30], separate into
U-turns and through arcs. A U-turn has both endpoints on the same side of a morphism (either on the
source one-manifold or on the target, while a through arc has one endpoint on the source and one on the
target, also see types (1)-(3) of components in Fig. 3.1.3. The endpoints of a U-turn have opposite signs,
while the endpoints of a through arc carry the same sign, see Figs. 2.1.2, 2.1.3.

By analogy with [31,28], we can also call arcs viewable or visible components, since they have endpoints on
the boundary of the cobordism (either top or bottom or both), and call circles floating components [29,28],
since they are disjoint from the boundary of the cobordism.

Denote by S* the set of finite sequences of elements of S, including the empty sequence ) (also see
Section 2.2). Going along an arc ¢ of a cobordism M gives us a word w(c) € S*. Going along a circle ¢ in x
gives a word w(c) well defined up to a cyclic rotation or conjugation of words, wiwy ~ wow;.

In this paper we encounter sequences € of signs, which are objects of C, and sequences w € S*, which are
sequences of labels encountered along connected components of a cobordism, the latter a morphism in C.

2.2. Noncommutative power series

For simplicity we work over a ground field k, although the theory of noncommutative power series and
rational and recognizable series makes sense over an arbitrary semiring R, not necessarily commutative [3,47].
For definitive treatments we refer the reader to books [3,47] and to [40-42] for quick introductions and
reviews.

Let S* =0 U SUS?U... be the set of sequences w = t; .. .t, of elements of a finite set S = {s1,...,5,}.
We call elements of S letters and elements of S* words or sequences in S. The empty word () is allowed. A
noncommutative power series a over k is any function

a S —k, aw)ek, weS*. (3)
We formally write this series as
Zo = Z Qo W, = (Qy)wes*, O = a(w) €Kk, (4)
weS*

using either a,, or a(w) to denote the value of o on a noncommutative monomial or word w. Denote by
k{(S)) the k-vector space of noncommutative power series and by k(S) the free noncommutative k-algebra
on generators in S (the algebra of noncommutative polynomials).

Given two series «, g, their product is the series a8 that on w evaluates to

af(w) = Z a(wr)B(wz), (5)

W=wiwa

the sum over all decompositions of w. There are £(w) + 1 terms in the sum, where ¢(w) is the length of w.
This product turns k{(S)) into a k-algebra, noncommutative if S has more than one element. The inclusion
k(S) C k((S)) is a ring homomorphism.

We say that series o € k((S)) is recognizable iff there is a homomorphism ¢ : k(S) — End(k™) of the
free algebra into the algebra of n x n matrices, a vector and a dual vector A, u” € k™ such that
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aw) = pap(w) A (6)

for all words w. That is, the number a(w) is the product of the 1 X n matrix u, n X n matrix ¥ (w) and
n x 1 matrix A. Denote by k{(S))"°° the set of all recognizable series.

Vector space k((S)) is a k(S)-bimodule with f ® g € k(S) ® k(S)°P acting on « € k{(S)) by

(f ® g)(a)(w) = a(gwf), we S*

We write fag := (f ® g)(a). This action gives rise to the left, right, and two-sided ideals I’, I”, and I, in
k(S):

o Left ideal I consists of all f € k(S) such that fa = 0, that is, all f such that a(wf) = 0 for any word
w € S*. Tt is the largest left ideal contained in the hyperplane ker(a) C k(S5).

o Right ideal I, consists of all g € k(S) such that ag = 0, that is, all g such that a(gw) = 0 for all w € S*.
It is the largest right ideal contained in ker(a).

o Ideal I, consists of all f € k(S) such that a(wfv) =0 for all w,v € S*. It is the largest two-sided ideal
contained in the hyperplane ker(«).

Ideal I’ has finite codimension in k(S) iff the series « is recognizable. Given triple as in (6), ideal I’,
contains the finite codimension subspace {x € k(S)[1)(x)\ = 0}. Vice versa, if I has finite codimension, it
is straightforward to produce the data in (6) by taking k™ = k(S)/I‘, A = 1 and y = a. Given a triple as
in (5), ker o contains two-sided ideal of finite codimension {f € k(S)[¢(f) = 0 € End(k™)}. Vice versa, if
I, has finite codimension, ideals I f; D I, and I} D I, have finite codimension too.

Consequently, if one of I, I, I, have finite codimension in k(S), the other two have finite codimension

as well.
Two-sided ideal I, of k(S) is called the syntactic ideal of .. Denote by

Ay = k(S)/I, (7)

the quotient algebra, the syntactic algebra of «, see [38]. It is defined for any «, but we mostly restrict to
considering it for recognizable o, when A, is finite-dimensional. We also call I/ and I” the left and right
syntactic ideals of a.

Algebra k(S) acts on k((S)) on the left and on the right, and k(S)-bimodule generated by « (a subbimod-
ule of k{(S))) is naturally isomorphic to the syntactic algebra A,, the latter equipped with k(S)-bimodule
structure via left and right multiplications:

Ao ZK(S) 2 K(S)7(0). (3)
The quotient k(S) /I’ is naturally a faithful left A,-module via the left multiplication action. Likewise,
k(S)/I7, is a faithful right A,-module via the right multiplication action.

We see that o € k{(S)) is recognizable iff the cyclic k(S) @ k(S)°P-module generated by « in k{(S)) is
finite-dimensional, or, equivalently,

dimy A, < oco.

The Hankel matriz M, of « is the infinite square matrix with rows and columns enumerated by elements
of S* with the (wy,ws)-entry a(wiws).
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Given any series a with () = 0 (called proper series), we can form the Kleene plus series at as the
formal sum

at=a+a®+..., (9)

where a” = aa. ..« is the product of n copies of . The term a™ evaluates to 0 on any word of length less
than n. Consequently, a given word evaluates nontrivially only on finitely many terms in the sum, and o™
makes sense as an element of k((S)). The series 1 + a™ is the inverse of the series 1 — « in the ring k((S)).
A series is finite if it contains finitely many terms. Finite series are those in the ring of noncommutative
polynomials k(S) C k{(S)).
Denote by k{(S))"*" the smallest subset of series that

o Contains all finite series.
e Closed under the product and finite k-linear combinations of series.
o Contains o™ for any proper series « in the subset.

Series in k{(S))"** are called rational series.

Proposition 2.1. The following properties of series o are equivalent.

1
2
3) The Hankel matriz M, of o has finite rank.

(1) « is rational.

(2)

(3)

(4) The syntactic ideal I, has finite codimension in k(S).
(5)

(6)

(7)

@
« s recognizable.

5) The left ideal I, has finite codimension in k{(S).
6
7

The right ideal I’ has finite codimension in k(S).
a can be computed by a weighted finite automaton.

Equivalence of (2), (4), (5), (6) is explained above.

For a proof of all equivalences see Sections 1 and 2 of [3], Salomaa-Soittola [47], or references there to the
original work of Schiitzenberger [51], Fliess [17], Eilenberg [14] and others. Most of these equivalences hold
in much greater generality than over a field, in many cases over an arbitrary semiring. The Hankel matrix
of noncommutative series was introduced by Fliess [17].

The notion of weighted finite automaton linearizes the concept of finite state automaton and, over a field
k, is equivalent to the triple (\, ¢, 1) as in (6), see [3, Section 1.6], for instance. O

We have k{(S)"¢ = k((S))"*, since rational and recognizable series coincide.

Assume that « is recognizable. The trace form « on the finite-dimensional algebra A, has the following
nondegeneracy property:

for any a € Ay, a # 0 there are b, c € A, such that a(bac) # 0. (10)

This is a much weaker condition than the usual Frobenius condition on a linear form S on a finite-
dimensional algebra B:

for any a € B, a # 0 there exist b such that 3(ab) # 0. (11)

In the latter case S equips B with the structure of a Frobenius algebra.
Given any finite-dimensional algebra B with a linear form « : B — k, the condition that

for any a € B,a # 0 there are b,c € B such that «(bac) # 0 (12)
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is equivalent to the zero ideal (0) being the only two-sided ideal in ker(a). Let us call a pair (B, o) with this
property a syntactic pair. A finite set of generators by, ..., b,, of B gives rise to a surjective homomorphism

pk<s>—>Ba p(sz):bw S:{Sla"'usm} (13)

from the free algebra k(S) to B and induced noncommutative power series in the set of variables S, also
denoted «. This gives a bijection between recognizable power series in S and isomorphism classes of syntactic
pairs (B, «) as above with a choice of generators (b1, ...,b,,) of B.

An algebra is called syntactic if it admits a presentation (7) for some S and «.
FExamples:

(1) Any Frobenius algebra B with a non-degenerate form g gives a syntactic pair (B, f3).

(2) Take the matrix algebra B = M,,(k) and define a(x) = 1,1 to pick the first diagonal coefficient of the
matrix x. In this example the form « satisfies the weaker property (10), so that (B, «a) is a syntactic
pair, but « is not a Frobenius trace. Algebra B is Frobenius for a different linear form on it (for example,
for the usual trace on matrices).

(3) Take the path algebra B of the quiver with two vertices 0,1 and the edge (01) connecting them, with
the multiplication given by concatenation of paths: (0)(01) = (01),(01)(1) = (01), etc. Algebra B has a
basis {(0), (1), (01)}. Take any linear form « with «((01)) # 0. Then (B, «) is a syntactic algebra with
this linear form. It can be generated by two elements. B is neither Frobenius nor quasi-Frobenius.

(4) A finite-dimensional commutative algebra is Frobenius iff it is syntactic.

See Reutenauer [38] and Perrin [36] for more results on syntactic algebras and the latter also for another
brief introduction to the subject.

2.3. Evaluations and symmetric series

We say that series o € k{(S)) is symmetric if a(wiws) = a(wow;) for any wy,wy € S*. Transformation
wiwg — wows is also called comjugation, so one can say that « is conjugation invariant. An evaluation « is
symmetric iff it only depends on a sequence up to cyclic order.

We use the word “symmetric” to define such series, since the word “cyclic” is already taken, see [2,22,39]
and [3, Section 12.2]. A series « is called cyclic if, in addition to the conjugation invariance condition, it
satisfies a(w™) = a(w) for any non-empty w. Thus, a cyclic series is symmetric but most symmetric series
are not cyclic. Reutenauer [38] uses central instead of our symmetric.

Denote the set of symmetric series by k{(S))® and by k{(S))*"< the set of recognizable symmetric series.

A series a € k{(S)) can be averaged out to a series av(«) given by

av()(w) = Y a(vu), if w#b, av(e)(®) = o). (14)

wv=w,v#£D

That is, take the sum over all possible ways to split w into the product wv and evaluate a on vu. Series
av(«) is symmetric. Only one of the two degenerate splittings @w and w( is used to avoid having a(w) twice
in the sum.

Proposition 2.2. av(a) € k({(S)*" if a € k({(S)"*c.

In other words, averaging out a recognizable series produces a symmetric recognizable series. This result
is proved in Rota [43], see also [39]. It gives a large supply of symmetric recognizable series. O
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+ - - + +

Fig. 2.4.1. A basis element in the hom space in VC,, with S = {s1, s2, s3, s4}. Floating components (circles) are absent.

Symmetric series with semisimple syntactic algebra A, are studied in [38,36].
2.4. Tensor envelopes of series a

(1) Category kC. We fix a base field k and form the k-linearization kC of C. Category kC has the
same objects as C, that is, finite sequences € of plus and minus signs. Morphisms in kC are finite linear
combinations of morphisms in C, with the composition rules extended k-bilinearly from those of C.

(2) Category VC, of viewable cobordisms. Next, choose a symmetric power series a € k{(S))®. Define
the category VC, as the quotient of kC by the relations that a circle 1;)\) with a sequence w written on it
evaluates to a(w). Since wiwy = Wow;, we need the condition that a is symmetric to define this quotient.

Another way to define VC, is to say that it has the same objects as C: sequences € of elements of S. A
morphism in VC, from ¢ to € is a finite k-linear combination of viewable cobordisms in C from ¢ to /. Recall
that a cobordism is viewable if it has no floating connected components, that is, components homeomorphic
to circles.

Composition of morphisms in VC, is given by concatenating cobordisms and removing each closed circle
w from the composition simultaneously with multiplying the remaining diagram by a(w).

The hom space Homyec, (€,€') has a basis given by a choice of orientation-respecting matching of the
elements in the pair of sequences ¢, € together with a choice of word in S for each pair in the matching. An
orientation-respecting matching consists of a bijection between pluses and minuses in the sequence (—e)e’,
which is the concatenation of —e and ¢, with the sequence —e given by reversing the signs of €. An example
in Fig. 2.4.1 shows a basis element in one such hom space, with e = (— —++++—) and ¢ = (+— —++).
Note that the size of hom spaces in VC, does not depend on «, only the composition of morphisms does.

Each word w = t1...tm, t; € S, i = 1,...,m defines a cobordism cob(w) given by putting letters
t1,...,ty along the interval, with the orientation going towards decreasing the index, see Fig. 2.4.2 left.
Extended by linearity, this assignment is an algebra isomorphism

k(S) — Endyc, ((+)) (15)
from the algebra of noncommutative polynomials to the algebra of endomorphisms of the sequence (+) in

VC,.
To a noncommutative polynomial

k
U = Zaiwi e k(S), a; €k, w; €85*
i=1

we assign the endomorphism
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+ + + +
tq
t .
cob(w) = = cob(u) = Zai =
i=1
t’rn,
+ + + +

Fig. 2.4.2. Left: cobordism cob(w) for a word w = t1...t,, € S* is given by placing dots labelled by letters of word w along the
oriented interval. Alternatively, cob(w) can be denoted by a box labelled w on an interval. Right: a linear combination cob(u) of
such cobordisms and its shorthand box notation.

k

cob(u) = Zai cob(w;) € Endye, ((+))
i=1

of the sequence (+) given by the linear combination of words w; written on an upward oriented interval,
see Fig. 2.4.2 right. It can be compactly denoted by a box on a strand with uw written in it.

Monomials in k(S) and their linear combinations can be placed along any component of a cobordism.
Taking the union over all viewable cobordisms with a given boundary (one cobordism for each diffeomor-
phism class rel boundary) and then over all ways of placing monomials in k(S) along each component of
the cobordism gives a basis in the hom space in the category VC, between two objects. Recall that objects
of VC, are sequences of 4+ and —.

The hom space between the objects €, € is non-zero if the objects have the same weight, |e| = |€/|.
Assuming the latter, the hom space Hom(e, €) is infinite-dimensional unless € = ¢’ = () is the empty sequence
or if the set S of labels is empty. In the latter case k(S) = k is the ground field. Another special case is
when S consists of a single element, S = {s}, for then k(S) = k[s] is commutative. The endomorphism
algebra of (4) in the category VC, is k(S), see (15).

Category VC, is a k-linear pre-additive category.

(8) The skein category SC,. Consider the syntactic ideal I, C k(S) associated to the symmetric series
a € k({(S)°. This ideal has finite codimension iff o € k{(S)*"°¢, that is, if « is, in addition, a recognizable
series. Denote by

A, = k(S)/I, (16)

the quotient algebra (the syntactic algebra) of the algebra of noncommutative polynomials by the syntactic
ideal. Algebra A, is finite-dimensional iff « is recognizable. In the latter case, let

do = dimy(Aq) = codimy (L) (17)

be the dimension of the syntactic algebra.

We quotient the category VC, of viewable cobordisms by the relation that elements of I, are zero along
any component of a cobordism. Namely, an element of I, is a finite linear combination

k
U= Zaiwi, a; €k, w; € S* (18)
i=1

of words in the alphabet S. Element cob(u), see Fig. 2.4.2, can be inserted along any component of a
cobordism x. We impose the condition that any such insertion results in the zero morphism in SC, between
the corresponding sequences ¢, €. Equivalently, we can set cob(u) € End((+)) to zero for all u € I, and
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uv =

ou

—% 5 auw)=0

Fig. 2.4.3. a(uv) = a(vu) = 0 for u € I, v € k(S) since uv,vu € I,.

take the monoidal closure of the relations cob(u) = 0 for all such u, which is equivalent to the previous
condition. Alternatively, we can choose generators {u;},j € J, for the 2-sided ideal I, impose relation
cob(u;) =0, € J and take their monoidal closure.

Note that relations cob(u) = 0 for u € I, are compatible with the evaluation of closed components
(circles). Namely, for any v € k(S), the closures uv and vu define the same element in Endye (), namely the
circle that carries the box uwv or vu, and a(uv) = a(vu) = 0, see Fig. 2.4.3. Consequently, no contradiction
in evaluation of closed components happens upon introducing these relations.

Denote by SC, the resulting quotient category. It has the same objects as VC, and additional relations
cob(u) = 0 for u € I, placed anywhere along one-dimensional S-decorated cobordisms that span hom spaces
in VC,.

Since relations in the syntactic ideal are imposed along each connected component of a cobordism, an
element along a component can be reduced accordingly. Choose a set of elements B, C k(S) that descend
to a basis of A, (if needed, one can choose monomials in S). Modulo I,, an element of k(S) can be reduced
to a linear combination of elements of B,. Accordingly, we can reduce a morphism in SC, to a linear
combination of viewable morphisms such that along each component an element of B, is placed. Call these
morphisms basic and denote the set of basic morphisms from € to € by Ba/(e, €).

Recall that a morphism from € to € exists in C if the two sequences have the same weight, that is, the
difference between the number of plus and minus signs in them: |e| = |¢/|. In the latter case, the number of
viewable morphisms (i.e., without circle components) is the number of ways to pair up elements of € and
¢ in an orientation-respecting way. Reverse the signs in one of the sequences, say in ¢, and concatenate
with the other to get €/(—¢). This sequence has the same number n of plus and minus signs, equal to
half the length of the sequence: 2n = ||¢|| + ||€'||- Isomorphism classes of viewable cobordisms from € to €
are in a one-to-one correspondence with bijections between plus and minus signs in € (—e¢). There are n!
such bijections. For each bijection, there are d ways to assign an element of B, to each component of a
cobordism. The following proposition and corollary result.

Proposition 2.3. The set of basic morphisms By(¢,€') is a basis of the hom space Homsc,, (€, €').

Corollary 1. Dimensions of hom spaces in SC, are given by:

nldy if le] = |€], 2n = |l¢]| + [|€]], (19)

dim Homse, (¢,€') =
0 otherwise.

In particular, hom spaces in the category SC, are finite-dimensional.
For the endomorphism algebra of the sequence (+) we have (compare with (15))

Endsc, ((+)) = Ao, (20)
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Fig. 2.4.4. The trace map: closing endomorphism z of € into Z and applying «. In this example e = (+ + — + —).

and the endomorphism algebra of (4) has dimension d,. Skein category SC, is similar to the oriented
Brauer category [37], but with lines decorated by elements of S, leading to many choices for evaluations of
floating components, one for each sequence in S* up to the cyclic equivalence.

(4) Negligible morphisms and gligible quotient C,,.
The trace tro(z) of a cobordism = from € to € is an element of k given by closing x via ||¢|| suitably
oriented arcs connecting n top with n bottom points of x into a floating cobordism z and applying «,

tro(z) := a().

This operation is depicted in Fig. 2.4.4. The trace is extended to all endomorphisms of € in kC by linearity.
It is well-defined on trace of endomorphisms of objects € in categories VCNO[ and SCNQ as well.

The trace is symmetric, that is tr,(yz) = tro(xy) for a morphism z from € to € and y from € to €. The
ideal J, C SC, is defined as follows.

A morphism y € Hom(g, €’) is called negligible and belongs to the ideal J,, if tr, (zy) = 0 for any morphism
z € Hom(¢€', €). Negligible morphisms constitute a two-sided ideal in the pre-additive category SC,. We call
Jo the ideal of negligible morphisms, relative to the trace form tr,. Define the quotient category

Cop 1= SCo/ o

The quotient category C,, has finite-dimensional hom spaces, as does SC,, (recall that « is recognizable).
The trace is nondegenerate on C, and defines perfect bilinear pairings

Hom(e, €') ® Hom(¢',e) — k

on its hom spaces. We may call C, the gligible quotient of SC,, having modded out by the ideal of negligible
morphisms.

State spaces of recognizable series a.. Recall that in the category VC, objects are sign sequences ¢ and
morphisms are finite linear combinations of viewable cobordisms. The space of homs

‘/E = Homvcw (0, g)a

has a basis of all viewable cobordisms (no floating components) M with M = e. This space carries a
symmetric bilinear form, given on pairs of basis elements (viewable cobordisms) by

(z,y)e = a(yx) €k,

where 7 is the reflection of y about a horizontal line combined with the orientation reversal on y, and gz is
the closed cobordism which is the composition of 7 and .
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Define A, (€) as the quotient of V. by the kernel of this bilinear form. Then there is a canonical isomor-
phism

Au(€) = Home, (0, ¢)
as well as isomorphisms
Au((—¢) U€) = Home, (0, (=€) U¢') = Home, (¢, €)

given by moving the bottom boundary e of a cobordism to the top via a cobordism with ||¢|| parallel arcs.
Here the sequence (—¢) L ¢’ is the concatenation of —e and €'

Note that € must be balanced for A, (€) to be nonzero, that is, e must have the same number n of pluses
and minuses. We can then define

Aa(n) = Aa((+"=")). (21)
Spaces A, (n) come with a lot of structure, including multiplication maps
As(n) ® Aq(m) — An(n+m).

We have A4,(0) = k and A,(1) = A,. Vector space A,(n) carries an action of the symmetric group
product S, X S, by the permutation cobordisms, as well as an action of the tensor power of the syntactic
algebra A®™ ® (A2)®", with one copy of A, = Endc,_ ((+)) or A% = Endc, ((—)) acting at each sign of
+"—"_ More generally, a version of the oriented walled Brauer algebra with strands carrying S-labelled
dots and closed decorated circles evaluating via « acts on A,(n) and, more generally, on Hom¢_ (e, +"—")
for any sign sequence e. This generalized walled Brauer algebra Br,, o is straightforward to define. It is
associated to any recognizable series «, finite-dimensional, and isomorphic to the endomorphism algebra
Endsc, ((+™—")) of the object (+"—") in the skein category SC,. The action of Br,, o on Home_ (¢, (+"—"))
descends to the action of its quotient algebra Endc, ((+"—")) on the same space.

Multiplication maps turn the direct sum

Ar = & Au(n) (22)

into a graded associative k-algebra, with compatible actions of S,, on A, (n) over all n, making A} into what
Sam and Snowden call a twisted commutative algebra or tca in [48, Definition 7.2.1]. A twisted commutative
algebra in that sense may be very from being commutative: for instance, the free associative algebra (the
tensor algebra of a vector space) has the obvious tca structure [48, Example 7.2.2]. More generally, given
an n-dimensional topological theory « as defined in [24], perhaps for manifolds with defects, etc. and an
(n — 1)-manifold N, the direct sum

A*(N) = Ggoa(l_lnN)

of state spaces of disjoint unions of n copies of N, over all n, is naturally a tca in the sense of [48].

(5) The Deligne category DC,, and its gligible quotient DC . The skein category SC,, is a rigid symmetric
monoidal k-linear category with signed sequences ¢ as objects and finite-dimensional hom spaces. We form
the additive Karoubi closure

DC, := Kar(SC?)
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by allowing formal finite direct sums of objects in SC, extending morphisms correspondingly, and then
adding idempotents to get a Karoubi-closed category. Category DC, plays the role of the Deligne category
in our construction.

The trace tr, extends to DC, and defines a 2-sided ideal DJ, C DC, of negligible morphisms relative
to try. Define the gligible quotient category by

DC, = DCo/DTa.

This category is equivalent to the additive Karoubi envelope of C,. It is a Karoubi-closed rigid symmetric
category with non-degenerate bilinear forms on its hom spaces.

2.5. Summary of categories and functors
Here is the summary of the categories that have been introduced.

e C: the category of S-decorated one-dimensional cobordisms. Its objects are sequences ¢ of plus and
minus signs and morphisms are one-manifolds with boundary decorated by S-labelled dots. That is, the
morphisms are S-decorated one-manifolds with boundary.

e kC: this category has the same objects as C; its morphisms are formal finite k-linear combinations of
morphisms in C.

e VC,: in this quotient category of kC we reduce morphisms to linear combinations of viewable cobordisms.
Floating connected components (circles, possibly carrying S-dots) are removed by evaluating them via
Q.

e SC,: to define this category, specialize to rational o and add skein relations by modding out by elements
of the ideal I,, in k[S], along each component of the cobordism. Hom spaces in this category are finite-
dimensional.

¢ Cq: the quotient of SC, by the ideal J, of negligible morphisms. This category is also equivalent (even
isomorphic) to the quotients of kC and VC, by the corresponding ideals of negligible morphisms in
them. The trace pairing in C, between Hom(n,m) and Hom(m,n) is perfect.

e DC, is the analogue of the Deligne category obtained from SC, by allowing finite direct sums of objects
and then adding idempotents as objects to get a Karoubi-closed category.

e DC ,: the quotient of DC,, by the two-sided ideal of negligible morphisms. This category is equivalent
to the additive Karoubi closure of C, and sits in the bottom right corner of the commutative square
below.

We arrange these categories and functors, for recognizable «, into the following diagram:

C kC VC, SCq DC,

l l (23

€. — DC,

All seven categories are rigid symmetric monoidal. All but the leftmost category C are k-linear. Except
for the two categories on the far right, the objects of each category are sequences € of plus and minus signs.
The four categories on the right all have finite-dimensional hom spaces. The two categories on the far right
are additive and Karoubi-closed. The four categories in the middle of the diagram are pre-additive but not
additive.

The arrows show functors between these categories considered in the paper. The square is commutative.
An analogous diagram of functors and categories can be found in [31] for the category of oriented 2D
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cobordisms in place of C and in [28] for suitable categories of oriented 2D cobordisms with side boundary
and corners.

For convenience, one- or two-word summaries of these categories are provided below, in the diagram
essentially identical to that in [28, Section 3.4]:

S 'dOtt?d —= k-linear —— viewable skein Deligne (Karoubian)
cobordisms k

gligible —— gligible and Karoubian

It is possible to go directly from kC to C, by modding out by the ideal of negligible morphisms in the
former category. It is convenient to arrive at this quotient in several steps, introducing categories VC, and
SC, on the way.

If o is not recognizable, we can still define categories VC,, C, and DC ., but then, for instance, one can
potentially get two non-equivalent categories in place of DC, by following along the two different paths in
the square above. To justify considering these categories for some non-recognizable « one would want to
find interesting examples where the gligible quotient category C, has additional relations beyond those in
SC,, that is, beyond the relations that elements of the syntactic ideal I, are zero in End(+) in SC,, and C,.

2.6. Examples and variations of the construction

An involution. Categories C and kC carry contravariant involution ~ that reflects the cobordism about
the middle, reversing its source and target objects, and reverses the orientation of the cobordism. This
involution takes the object € to —e, that is, reverses the sign (orientation) of boundary zero-manifolds as
well. To match this involution to evaluation «, assume that k comes with an involution, also denoted ~, and
« satisfies a(w) = (W), where @ = t,, ...t is the word w = t; ...t, in reverse. Then there are induced
contravariant involutions on all the categories associated to « and displayed in diagram (23), and one can,
for instance, study such unitary 1D topological theories, with the set of defects S, for k = C and ~ the

complex involution.

Ezamples.

(1) If the set S = ) is empty, there are no decorations and the series « is given by its value on the empty
sequence, that is, by its constant term, and we can write a = A € k for that value. A circle cobordism
evaluates to A. The skein category SC) is isomorphic to the viewable category VC, and to the oriented
Brauer category B, for the parameter A. Category C, is then the quotient of B) by the ideal of negligible
morphisms, while DC, is the additive Karoubi closure of B), etc. Note that these categories depend both
on the field k and X € k.

(2) If S = {s} is a one-element set, the series « is a one-variable series, with the generating function

Za(T) = Y anT", an=a(s"). (25)

n>0

a is recognizable iff Z,(T) is a rational function, with Z,(T) = P(T)/Q(T) for some polynomials
P(T),Q(T).

This example is similar to the ones in [24,31], where the topological theory is 2-dimensional but there are
no defects. The analogue of the Hankel matrix measuring bilinear pairing on connected cobordisms with the
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boundary S* (such cobordisms are determined by the genus g), see [24], is the Hankel matrix for evaluations
of Ty,x, where z,, is an arc with n dots, viewed as a cobordism from ) to (+—). Cobordism T, from (+—)
to @ is an arc with m dots. Closed cobordism T,,z,, is a circle with n + m dots, and once again the Hankel
matrix H with the (n, m)-entry a;, 4., results, as in [24]. In both cases the state space (of (+—), respectively
of S1) is the quotient of RN by the null space of H.

The theories diverge beyond this example, but there is another connection between the two, slightly
different from the one above due to an additional shift in the dots versus handles correspondence between
1D and 2D cobordisms. Namely, the state space of (+*—F) in the one-dimensional theory with the series
a maps to the state space for the union LIS’ of k circles in the two-dimensional theory for the series
o = (a,a0,aq,...) for any a € k. In terms of generating functions, Z,» = a + Z,T. On the topological
side, an arc with n dots is mapped to an annulus with n handles, while a circle carrying n dots is mapped
to the torus with additional n handles (thus a surface of genus n + 1). This shift from n to n + 1 accounts
for the discrepancy between the series but does not change their recognizability. The map from the state
spaces in the 1D theory to the state spaces in the 2D theory respects the bilinear forms on these spaces.

Partial fraction decomposition method of [27] can be applied in this case as well to understand the
categories associated to a. When the set S has more than one element, recognizable power series still admit
an analogue of the partial fraction decomposition, see [18] and references therein, which should lead to
decompositions of associated tensor categories.

Unoriented cobordisms. There is an obvious unoriented version of the category C, where one-dimensional
cobordisms are unoriented and the objects, in the skeletal category case, are numbers n € Z, counting
the number of top and bottom endpoints of the cobordism. Evaluation o must be ~-invariant, that is, to
satisfy a(w) = a(w), for any word w, in addition to being symmetric, as earlier: a(wjws) = a(wywy), for
any words wy,ws. The dihedral group D,, acts on the set S™ of words of length n in the alphabet S, and
the function a : S* — k, when restricted to these words, must be D,-invariant. Such series can be called
d-symmetric, for instance.

The theory then goes through and one can define the viewable category VC,, the skein category SC,, the
gligible quotient C,, and so on. The interesting case, as before, is when « is recognizable, that is, when the
category C,, has finite-dimensional hom spaces. A d-symmetric series « is recognizable iff it is recognizable
as noncommutative series iff the syntactic ideal I, has finite codimension in k(.5).

If the set S is empty, cobordisms do not carry any dots (defects), and the category SC,, is the unoriented
Brauer category Bry" for the parameter A = a(1) € k, while C, is the gligible quotient of B}".

3. Cobordisms with inner (floating) boundary
8.1. Category C of decorated cobordisms with inner boundary

To connect decorated one-dimensional cobordisms with noncommutative rational power series that are
not necessarily symmetric we enlarge the category C by allowing cobordisms M that may have additional
boundary points (floating boundary points) strictly inside the cobordism, not being part of the top &1 M or
bottom Jy M boundary of M.

Define the category C of S-labelled cobordism with floating (or inner) boundary to have the same objects
as C, that is, finite sequences € of plus and minus signs. A morphism in C from € to €, see Fig. 3.1.1 for an
example, is a compact oriented S-decorated one-manifold M with

OM = € U(—¢)UdiM, (26)

where 9;, M is the inner or floating boundary of M that is disjoint from the top boundary, given by ¢
and from the bottom boundary, given by —e. In (26) we interpret a sign sequence €' as a zero-dimensional
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Fig. 3.1.1. A morphism from (— — + — ++) to (— — + + —+). Over- and undercrossing and intersections are “virtual” and should
be ignored. Hollow dots are not labels and show inner (floating) endpoints of the cobordism.

oriented manifold, with oriented connected components described by elements of the sequence. The sequence
—¢ opposite to € corresponds to the orientation reversal of 0D manifold €. An S-decoration is a collection
of points (dots) labelled by elements of the set S inside M (not on the boundary dM). Labelled points can
move along a connected component but not cross through each other.

Morphisms are such decorated 1D cobordisms, possibly with inner endpoints (inner boundary points)
considered up to rel boundary diffeomorphisms. Fig. 3.1.1 shows an example of a morphism from ¢ =
(——+—4++)toe =(——++—+).

Composition of morphisms in Cis given by concatenation of cobordisms. The category C contains C as
the subcategory with the same objects as C and morphisms — morphisms of C that have no inner (floating)
boundary points.

Connected components of a cobordism in 5Split into viewable and floating types. Fig. 3.1.1 cobordism has
three floating components: one circle and two intervals. The same cobordism has eight viewable components:
four of them have both endpoints on top or bottom boundary, while the other four have one floating endpoint.
Floating components terminology was introduced in [29].

Going along a component ¢ in the direction of its orientation we read off the labels of dots. If the
component is an arc, the result is a sequence sec(c) € S*, a word in the alphabet S. If the component is a
circle, the sequence sec(c) is defined up to cyclic rotation. Our convention is to write the sequence from right
to left as we follow the orientation. For instance, in Fig. 3.1.6 left the sequence is s1s253, while in Fig. 3.1.6
right the sequence is s3sos1. Orientation reversal of a component corresponds to reversing the sequence.

The sequences for components of Fig. 3.1.1 cobordism are:

o The empty sequence () and (sq) for the two floating arc components.

e Sequence (s18352), up to cyclic rotation, for the unique floating circle component.

o Sequences (s151) and (s3) for the two connected components that connect a top endpoint and a bottom
endpoint.

e The empty sequence () for the unique component that connects two top endpoints.

e Sequence (s2s3) for the unique component connecting two bottom endpoints.

o Sequences (s3s1) and (s152) for arc components with one top and one inner boundary point.

o Sequences (@) and (s;) for arc components with one bottom and one inner boundary point.

A floating component of a cobordism z in C is either an interval or a circle, see Fig. 3.1.2.

A viewable component has one of the five types shown in Fig. 3.1.3, with some number of dots (perhaps
none) on it.

Monoidal category C has generators shown in Figs. 2.1.3 and 2.1.4 and common with its subcategory C
and two additional generators shows in Fig. 3.1.4 left. These are ars with one floating and one top endpoint.
Applying U-turns to them results in arcs with one floating and one bottom endpoint, see Fig. 3.1.4 right.
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Sjm g
Sji Sj2

Fig. 3.1.2. Left: three interval floating components, with sequences (0), (s;), and (s;, ss, ... s;, ). Right: three circle components,
with sequences (0), (s;) and (sj,, ...s;,5;) up to cyclic rotation.

B N

Fig. 3.1.3. Five types of viewable components, left to right: an interval connecting (1) a top and a bottom point, (2) two top points,
(3) two bottom points; a interval with an inner boundary point and a (4) top endpoint, (5) bottom endpoint. Labels of dots and
orientations of lines are not shown. In the subcategory C viewable components are of types (1)-(3) only.

Fig. 3.1.4. Left: additional generating morphisms for monoidal category c beyond the generating morphisms common for C and C
shown in Figs. 2.1.3 and 2.1.4.

S1 S1 53
S9 7§ S9 = S9
53 53 S1

Fig. 3.1.6. Orientation matters: evaluations a(sy1s2s3) and a(sgszs1) are different, in general. Reversal of a sequence corresponds to
orientation reversal of the corresponding floating arc or circle.

Some additional defining relations in C are shown in Fig. 3.1.5, see also Fig. 2.1.4 for defining relations in
the subcategory C, which also give a subset of defining relations in C. We will not need a full set of defining
relations for C in this paper.

3.2. Tensor envelopes 0f5

Floating (closed) cobordisms in C (endomorphisms of the empty zero-manifold (0))) are unions of floating
intervals and circles. A floating interval carries a sequence w € S*, a floating circle carries a sequence v well-
defined up to cyclic rotation, vyvs = vev;. Consequently a multiplicative evaluation of floating cobordisms
in C. , as explained in the introduction, consists of a pair of series

a = (a®a°), (27)
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c®(w) w,
c*(w) .
. M o
wy; Wy ... Wy, — a*(w) w, — a’(w)
w2 W3

Fig. 3.2.1. Evaluation a®(w) of the floating interval ¢® (w) and evaluation a°(w) of the circle ¢®(w) in VC, for a word w = wy . . . wy, .

Fig. 3.2.2. Three elements of the set Z(+, +—).

where a® € k((S)) is a noncommutative series and a° € k({(S))® is a symmetric series.

A multiplicative evaluation on closed cobordisms in C assigns a®(w) € k to an oriented interval with
word w written along it via labelled dots, see Fig. 3.2.1. Element a°(v) € k is assigned to an oriented circle
with word v, well-defined up to a cyclic rotation, written along it.

We now proceed along a familiar route, as in [31,28] and Section 2, to build various tensor envelopes of
a pair a = (a®,a°).

(1) Pre-linearization category kC. Category kC has the same objects as 5, and the morphisms are finite
k-linear combinations of morphisms in C. This is a naive linearization or pre-linearization of C.

(2) Viewable cobordisms category VC,. To form category VC;, we mod out tensor category kC by relations
that evaluate floating (closed) cobordisms to elements of the ground field via a. Namely, a floating oriented
interval with a sequence w € S* on it, denoted ¢®(w), evaluates to a®*(w) € k. A floating oriented w-decorated
circle ¢°(w) evaluates to a®(w), see Fig. 3.2.1. Recall that «° is symmetric and «°(vivy) = a@°(vav;) for any
words v1vg, matching circle rotation, ¢®(v1ve) = ¢®(vavy).

Since all floating components of a cobordism reduce to elements in k, the vector space of homs from e
to € in V(?a has a basis of viewable cobordisms from ¢ to € with any sequences written on its connected
components.

Denote by Z(¢,€') the set of diffeomorphism classes of viewable cobordisms (without dot decorations)
from € to €. A viewable cobordism has no circles and all its connected components are intervals. Such a
cobordism C' may have some number of viewable components of types (4) and (5), see Fig. 3.1.3. Each
such component has one floating boundary point and one boundary point among elements of € LI ¢’. Other
connected components (of types (1)-(3)) give an orientation-respecting matching of the remaining elements
of € and €.

To specify an element of Z(e, ') we select a subset I’ of elements in the sequence (—¢) L €' so that the
remaining sequence is balanced, that is, has the same number of pluses and minuses. We then choose a
bijection b between pluses and minuses of (—¢)Ue \ I'. Such pairs (I’,b) are in a bijection with isomorphism
classes of viewable undecorated cobordisms between € and €', that is, elements of Z(¢, €'). Fig. 3.2.2 shows
elements of the set Z(+,+—). Fig. 3.2.3 shows elements of the set Z(+,+ + —).

To allow S-decorations, we consider the set Z°(e, €’) which consists of a pair: an element of Z(¢, ¢') and a
choice of word w(c) in S* for each component ¢ of Z(¢, ¢’). To such a pair we assign an S-decorated viewable
cobordism given by the element of Z(¢, ¢’) and words w(c) written on components ¢ of the cobordism. Some
words may be empty (have length zero). Denote the cobordism associated with ¢ € Z%(e, €') by C(t).
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A A L o

Fig. 3.2.3. Seven elements of the set Z(+,+ + —).

Proposition 3.1. Viewable cobordisms C(t), over all t in T%(e,€'), constitute a basis in the hom space
Hom(e, €') in the category VC,.

Composing cobordisms from these bases sets results in cobordisms that, in general, have floating compo-
nents. These components are evaluated via «, viewable components are kept, and the composition of two
basis elements is a basis element in a suitable hom space, scaled by an element of k.

As earlier, to each word w € S* we associate the upward interval with w written on it, that is, cobordism
cob(w) from (4) to (+), see Fig. 2.4.2 left. Each element u of k(S) gives rise to a linear combination cob(u)
of these cobordisms, see Fig. 2.4.2 right. The resulting map

cob : k(S) — End,z ((+))

is an injective homomorphism from the free algebra k(S) to the ring of endomorphisms of (+) in category
VC, (in the smaller category VC, considered in Section 2 this map is an isomorphism). One-sided inverse
homomorphism to cob is given by the surjection

cob’ : Endys ((+)) — k(S)

that sends any cobordism with floating endpoints to zero. The latter cobordisms span a two-sided ideal in
Endy,z ((+)), with the quotient isomorphic to k(S). This ideal is naturally isomorphic to k(S) @ k(S) when
viewed as a k(S)-bimodule. Multiplication in this ideal is given by

T1 QX T2)(Y1 ®Y2) = (T2Y1)T1 ¥ Ya.
(21 ®@ 22) (11 ® y2) = ®(z2y1) 21 ®

Composition cob’ o cob = Idyg).

(3) Skein category SCNQ. This category has finite-dimensional hom spaces when « is recognizable, and we
restrict to that case. We say that a = (a®,a®) is recognizable if both series «® and «° are recognizable.
Series a® and «° has syntactic ideals Iys, Ino C k(S), respectively. Recognizability means that both ideals
have finite codimension in k(S). Equivalently, the two-sided ideal

I, = Ipe NIy C k(S) (28)
has finite codimension in k(S). Denote by
Ao = k(9)/1a
the syntactic algebra of the pair a.
Starting with the category VC,, we add tensor relations cob(u) = 0 for any u € I,, see Fig. 3.2.4 left.

These relations are consistent with the evaluation a of floating components. Consistency is due to restricting
to u in the syntactic ideal, which is contained in both ideals I+ and I,.. Elements of the first ideal evaluate
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Fig. 3.2.4. Left: endomorphism cob(u) of (4) is set to zero in SC,, for u € I,. Middle: a®(viuvy) = 0 for any vy, vy € k(S) since
u € Iy C Iae. Right: a®(vu) = 0 for any v € k({S) since u € I, C I4o.

Fig. 3.2.5. Left: Element cob® (u) of Hom(0, (+)) is set to zero in SC, for u € I‘.. This relation is compatible with evaluations

of floating diagrams, since a®(vu) = 0 Vo € k(S), second left. Right: Element cob™ (v) of Hom(f, (—)) is set to zero in SC,, for
v € I],.. This relation is also compatible with evaluations of floating diagrams, since a®(vu) = 0 Vu € k(S) for such v, see the last
equation on the right.

to zero when placed anywhere on a floating interval, see Fig. 3.2.4 middle. Elements of the second ideal
evaluate to zero when placed on a circle, see Fig. 3.2.4 right.

Recall that in addition to two-sided syntactic ideals I e, 4o and their intersection I, = Ine N I40 there
are one-sided syntactic ideals I‘. and I7.. Here

Ity = {z c k(S)|a®(yz) = 0 ¥y € k(S)} and I, = {z € k(S)|a®(zy) = 0 Yy € k(S)}

are left and right ideals in k(S), respectively.

For u € k(S) denote by cob™ (u) the element of Hom((}, (+)) given by putting v on an interval at its
“out” floating endpoint, see Fig. 3.2.5 left. Define cob™ (u) likewise, see Fig. 3.2.5 right. We add relations
that cob® (u) = 0 for u € IX. and cob™ (v) = 0 for v € I”.. This finishes our definition of category SCa.

Note that ideals I, I*4, I".« have finite codimensions in k(S), and each of these ideals is finitely-generated.
In particular, one can restrict to adding finitely many relations to VC, to get the “skein” category SC,.

Due to consistency of these relations with the evaluation o on floating components we can describe a
basis in the hom spaces in the category SCZ, as follows. Choose subsets By, B, Bh. C k(S) that descend
to bases of A, k(S)/It. and I7. /k(S), respectively.

Recall the basis Z° (¢, €') of the hom space from ¢ to € in VC,, constructed earlier. It consists of a floating
cobordism « from € to € with various monomials written on components of the cobordism (all components
are viewable). Define the set B, (€, €') to also consists of floating cobordisms from € to €, but now we write
an element of one of the three sets By, B’., Bl.. on each component of ¢, depending on its type:

o If a component has no floating endpoints, thus connects two boundary points (at the top or bottom
boundary, or both), put an element of B, along it.

o If a component has a floating endpoint and is oriented away from this endpoint, put an element of Bf;.
along this component.

o If a component has a floating endpoint and is oriented towards it, put an element of BJ. along this
component.

An undecorated viewable cobordism x with ni,no,n3 components of these three types, respectively, admits
| Bo|™t|BSe |"2| Bl | possible decorations. The set By (e, €’) is the union of these decorated cobordisms,
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Fig. 3.2.6. There are two types of cobordisms from (+) to (4) in C. Mirroring that decomposition, basis By ((4), (+)) consists of
elements of ¢ € B, placed on through strand and pairs of elements c¢; € Bé. and ¢z € BJ,. placed on the two strands with floating
endpoints.

where we start with any viewable undecorated cobordism z from € to ¢ and decorate it in all possible such
ways. The set B, (¢, €') is finite.

For example, B, ((+), (+)) has cardinality |B,|+ |Ble| - |BL.| and consists of diagrams of two types, see
Fig. 3.2.6.

Proposition 3.2. The set B, (¢, €') is a basis of the hom space Homgs (€, €') in the category SC,.

This construction gives a basis in hom spaces of S(?a for non-recognizable « as well, but then A, and
hom spaces are infinite-dimensional. Recall that we restrict to considering recognizable o for most of this
section.

The endomorphism ring of (+) in 85a contains a two-sided ideal isomorphic to the tensor product
k(S)/I’ ® I".\k(S), with the quotient algebra isomorphic to A,, so there is an exact sequence of k{S)-
bimodules

0 — k(S) /I ® I].\k(S) — Endgs ((+)) — Aa — 0. (29)

The quotient map onto A, admits a section, and A, is naturally a subalgebra of Endgs ((+)). This

decomposition corresponds to two types of endomorphisms of (+) in C (without floating endpoints versus
having two floating endpoints) and corresponding bases in endomorphisms of (+) in SC,, see Fig. 3.2.6.

(4) Gligible quotient category Co. The trace tro(z) of a cobordism z from € to ¢ is defined in the same
way as for cobordisms in the smaller category C,, by closing x into a floating cobordism Z, see Fig. 2.4.4
and evaluating via a:

tro () = a().
This operation extends to a k-linear trace on k(?a that descends to a trace on Vga and SCNQ:
End, s(¢) — End,,s (e) — Endgs (¢) Moy k.

The trace is symmetric. The two-sided ideal j(,, C SC, of negligible morphisms is defined as usual, see
Section 2.4 for the definition of negligible ideal in the subcategory SC, of SC,,.
Define the quotient category

C, = SC~Q/JQ.

The quotient category é; has finite-dimensional hom spaces, as does S@a, since « is recognizable. The
trace is nondegenerate on C, and defines perfect bilinear pairings
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Hom(e, €') ® Hom(e', e) — k

on its hom spaces. We call CNCK the gligible quotient of SC}, having modded out by the ideal of negligible
morphisms.

Up to an isomorphism, the state space
Aale) == Homg (0,¢) (30)

depends only on the number of pluses and minuses in € and A,(e) = An(+"—"), where n and m is the
number of pluses and minuses in e. Summing A, (+"—"™) over n,m > 0 one get a bigraded associative
algebra with S,, X S, action on the homogeneous (n,m) component with the properties similar to that of
a tca algebra [48].

(5) The Deligne category and its gligible quotient. From the skein category Sga we can pass to its additive
Karoubi closure

DC, = Kar(SC?),
which is the analogue of the Deligne category. The quotient of DC,, by the ideal DT, of negligible morphisms,

DC, := DCo/DJa,

(6%

is equivalent to the additive Karoubi closure of CTa

Summary: To summarize, the following categories are assigned to a recognizable pair « as in (27):

e The category VC~a of viewable cobordisms with the a-evaluation of floating (or closed) components.

e The skein category SC~a where closed (floating) S-decorated intervals and circles are evaluated via «
and elements of the syntactic ideal I, evaluate to zero when placed along any interval in a cobordism.
Furthermore, elements of left and right syntactic ideals 72+ and I”.. evaluate to zero when placed at the
beginning or end of an interval with the corresponding endpoint floating.

o The quotient Co of SC, by the two-sided ideal of negligible morphisms. We also call C. the gligible
category or the gligible quotient. Hom spaces in 5a come with nondegenerate bilinear forms

Hom(e, €') ® Hom(¢', ¢) — k,

where ¢, € are objects C~a, sequences of pluses and minuses describing oriented zero-manifolds that are
the source and the target of decorated one-cobordisms. The universal construction, in this case, assigns
the vector space Homg (D, €) of morphisms from the empty zero-manifold () to € to the oriented zero-
manifold e.

« Additive Karoubi closure DC, of 550,, analogous to the Deligne category. The quotient of DC, by the
ideal of negligible morphisms is denoted D_C~a.

We arrange these categories and functors, for recognizable a = (a®, @), into the following diagram, with
a commutative square on the right:

C KC Ve, SC, —— DCq

| n

504 —>D_(?

«
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Properties of the categories in the analogous diagram (23) in Section 2.5, as explained in the paragraph
following (23), hold for the categories in (31) as well.

The category C and categories built out of it require a pair of series & = (a®, a°) for evaluation. When
working with the subcategory C of cobordisms without floating endpoints, only circles appear as connected
components of floating cobordisms, and series a° is needed for evaluation. Instead of working with C, one
can use C but set the connected component a® = 0, so that @ = (0,a°). Then in the viewable category
VC, any cobordism that contains a floating interval evaluates to zero. Syntactic ideals I., I7. = k(S),
and in the skein category SC, any cobordism containing an interval (including viewable intervals, with one
boundary and one floating endpoint) evaluates to 0. This results in equivalences of categories

85(0,040) = Sca"a év((),oz") = Coc°7 ,DCV(O,OP) = Dca°7 ,D_év(oyao) = D_Cacu (32>

that, furthermore, respect commutative squares of categories in diagrams (23) and (31).

Thus, the construction in Section 2 of the skein category SC,, the gligible quotient category C, and
other categories defined there and associated to symmetric series o can be considered a special case of the
construction of the present section, specializing to the pair (0, «) with the first recognizable series in the
pair being zero.

Alternatively, one can set a° to zero and consider a pair « = (a*,0). In the viewable cobordism category
Vga for this a a circle (necessarily floating, and with any decoration) evaluates to 0. Only the ideals
Ine, I%., IT. (two-sided, left and right, respectively) are used in the definition of the skein category SC,. A
decorated U-turn as in Fig. 3.1.3, case (2) or (3), may be non-zero in 50,, since it may be coupled to two
intervals on the other side with a non-zero evaluation.

When a = (a*,0), another approach is to restrict possible cobordisms and disallow U-turns as cobordisms.
Then a cobordism ¢ must have no critical points under the natural projection onto the interval [0, 1] under
which 0;c projects onto 4, for i = 0,1. When components of cobordisms are unoriented, such restricted
cobordisms appear in [29] in a categorification of the polynomial ring (without dot decorations) and in [32]
in a categorification of Z[1/2] and potential categorifications of Z[1/n] as monoidal envelopes of certain
Leavitt path algebras and the “one-sided inverse” algebra k(a, b)/(ab — 1). The latter cobordisms carry dot
decorations, corresponding to the generators of these algebras.

When S = 0, the evaluation again reduces to two numbers (evaluations of the oriented interval and
oriented circle), and the skein category SC is the oriented partial Brauer category, see the remark below.
When S = {s} has cardinality one, recognizable series a is encoded by two rational functions Z,e(T'),
Zuo(T) in a single variable T'.

Remark. Instead of power series @ = (a®,a°) in noncommuting variables one can instead start with an
associative k-algebra B and two k-linear maps

a®* : B—k, o°: B—k (33)

such that a° is symmetric, a°(ab) = a°(ba), a,b € B. Two-sided syntactic ideals Ine,Inc C B, their
intersection I, := I, N 40, and one-sided syntactic ideals I”., I, are defined in the same way as for
noncommutative series.

The nondegenerate case is that of I, = 0 being the zero ideal in B, but the arbitrary case can be reduced
to it by passing to the quotient B/I,. Recognizable case corresponds to finite-dimensional B. Analogues of
all categories in (31) can be defined for such pair of traces on a finite-dimensional B. Defects on cobordisms
are now labelled by elements of B rather than by elements of S. The difference from noncommutative
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recognizable power series is that one does not pick any particular set of generators S of B, working with
the entire B instead, but the resulting categories, starting with the category SC, in (31), are equivalent to
the ones built from a noncommutative power series once a set S of generators of B is chosen.

Remark. It is straightforward to modify the constructions of this section to the case of unoriented one-
manifolds with floating endpoints and S-decorated dots. If, in addition, S = @, there are no dots and
floating cobordisms reduce to unions of intervals and circles. The evaluation is then a pair («®(1),a°(1)) of
elements of k and the unoriented skein category SCNQ is the partial Brauer category [35], also known as the
rook-Brauer category [20].
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