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Bilinear pairings on two-dimensional cobordisms and
generalizations of the Deligne category

by

Mikhail Khovanov (New York, NY) and
Radmila Sazdanovic (Raleigh, NC)

Abstract. The Deligne category of symmetric groups is the additive Karoubi closure
of the partition category. It is semisimple for generic values of the parameter t while
producing categories of representations of the symmetric group when modded out by the
ideal of negligible morphisms when t is a nonnegative integer. The partition category
may be interpreted, following Comes, via a particular linearization of the category of
two-dimensional oriented cobordisms. The Deligne category and its semisimple quotients
admit similar interpretations. This viewpoint coupled to the universal construction of
two-dimensional topological theories leads to multi-parameter monoidal generalizations of
the partition and the Deligne categories, one for each rational function in one variable.

1. Introduction. The Deligne categoryRep(St) interpolates between the
categories of finite-dimensional representations of the symmetric groups Sn,
viewed as tensor categories, turning the integer n into an element t of the
ground field [D], [CO], [EGNO, Section 9.12.1].

The Deligne category has a diagrammatic description, via the partition
category Pat, as the Karoubi envelope of the additive closure of Pat. When
t = n is a nonnegative integer, the Deligne category Rep(Sn) has a non-trivial
ideal of negligible morphisms, and the quotient by this ideal is naturally
equivalent to the tensor category of finite-dimensional representations of the
symmetric group.

Diagrams commonly used to describe partitions [CO, C, HR, LS] can be
thickened to two-dimensional surfaces or cobordisms S between unions of
circles. Circles appear as “thickenings” of points on which the partitions are
formed. Vice versa, any two-dimensional cobordism S gives rise to a partition
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upon ignoring closed components of S and the genus of each connected com-
ponent with boundary. This informal correspondence is depicted in Figure 1.
Cobordisms boast higher variability than partitions, admitting components
without boundary and allowing arbitrary genus of each component.

2D Cobordisms Partitions

thicken graph of a partition to a surface with boundary

forget
closed components and genera

Fig. 1. Schematic correspondence between set partitions and 2D cobordisms.

A precise connection between 2D cobordisms and the partition category
was pointed out by Comes [C, Section 2.2]: modding out the cobordism
category by the relations that adding a handle is the identity and that a
2-sphere evaluates to t (see Figure 2) produces the partition category, with
parameter t corresponding to the 2-sphere. Comes used this observation to
derive a set of defining relations for the partition category from that of the
cobordism category.

= = t

Fig. 2. Handle removal and sphere evaluation skein relations on 2D cobordisms.

A family of 2-dimensional topological theories was recently introduced
by one of the authors [Kh2], based on Blanchet, Habegger, Masbaum and
Vogel’s universal construction [BHMV]. It starts with an evaluation of closed
oriented surfaces, which may be described by power series

(1.1) Zα(T ) = α0 + α1T + α2T
2 + · · · =

∑
n≥0

αnT
n ∈ RJT K,

where R is a ground commutative ring or a field k, evaluating a connected
component of genus g to αg. This evaluation gives rise to state spaces Aα(k)
for collections of k circles. It can then be extended to produce a category
Cobα with objects nonnegative integers n and hom spaces HomCobα(n,m)
being R-linear combinations of cobordisms between n and m circles modulo
universal relations defined by the sequence α = (α0, α1, . . . ); also see below.
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In the partition category Pat, when two partitions are composed, each
connected component of the composition that has no boundary points is eval-
uated to t ∈ R and removed. In the correspondence between 2D cobordisms
and partitions, these components give rise to cobordisms of various genera,
which, in general, evaluate to αg, where g is the genus of the cobordism.

To match the general α-evaluation of 2D cobordisms to the evaluation by
powers of t in the partition and Deligne categories, specialize the sequence
α to

(1.2) α(t) = (t, t, t, . . . ), αg(t) = t ∀g ∈ Z+.

Then the additive Karoubi closure of the category Cobα(t) is equivalent, as
a tensor category, to the Deligne category

(1.3) Kar(Cob⊕α(t))
∼= Rep(St),

for t ∈ k\Z+ (specializing to a characteristic zero field k as the ground ring).
When t = n ∈ Z+, the quotient of the Deligne category by the ideal Jn of
negligible morphisms produces the category of finite-dimensional represen-
tations of the symmetric group Sn, equivalent to the above Karoubi closure
for t = n,

(1.4) Kar(Cob⊕α(n))
∼= Rep(Sn)/Jn ∼= k[Sn]-mod.

This observation allows us to generalize the Deligne category and its
semisimple quotients by taking a more general sequence α of elements of R
and then forming the tensor category Cobα and its additive Karoubi closure
Kar(Cob⊕α ), also denoted DCobα. The latter is given by first allowing finite
linear combinations of objects of Cobα, with suitably defined hom spaces,
and then adding all idempotents in endomorphism rings of these linear com-
binations as additional objects.

When R is a field k, it follows from [Kh2] and goes back to a theorem of
Kronecker that hom spaces in Cobα are finite-dimensional if and only if the
power series Zα(T ) in (1.1) can be represented as a rational function,

(1.5) Zα(T ) =
P (T )

Q(T )
,

where P (T ), Q(T ) are coprime polynomials with coefficients in k. To each
such rational function we can assign an additive Karoubi-complete tensor
(symmetric monoidal) category

(1.6) DCobα := Kar(Cob⊕α )

with finite-dimensional hom spaces. This category is a natural generalization
of the Deligne category Rep(St) for generic t and of its semisimple quotients
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for t = n ∈ Z+. The Deligne category corresponds to the rational function

(1.7) Zα(t)(T ) =
t

1− T
= t+ tT + tT 2 + · · · .

It should be extremely interesting to extend various results and constructions
related to the Deligne category and its semisimple quotients to this large
family of tensor categories DCobα (as well as categories DCobα defined in
Section 4) parametrized by rational functions.

2. Category of two-dimensional cobordisms and its linearization
categories

Category Cob2. Consider the symmetric monoidal category of 2-dimen-
sional oriented cobordisms. We use the skeletal version of this category (one
object in each isomorphism class), denoted Cob2. Its objects are nonnegative
integers n ∈ Z+ = {0, 1, 2, . . . } and morphisms from n to m are diffeomor-
phism classes rel boundary of compact oriented 2-manifolds S with a fixed
diffeomorphism

(2.1) ∂S ∼=
(
−
⊔
n

S1
)
⊔
(⊔

m

S1
)
,

where S1 is the oriented circle. In other words, the boundary of S is sep-
arated into the bottom and top boundary, and identified, correspondingly,
with disjoint unions of n and m circles. Composition is given by concate-
nation. Cobordisms may have connected components with no boundary. An
example of a morphism (cobordism) from 3 to 4 is given in Figure 3.

1′ 2′ . . . m′

1 2 . . . n

Fig. 3. A morphism in Cob2. The cobordism is not embedded anywhere, so overlaps of
components do not carry any information and can be reversed. We label top circles by
1′, 2′, . . . ,m′ and bottom circles by 1, 2, . . . , n. In this example m = 4 and n = 3.

Morphisms from n to m in Cob2 can be enumerated as follows. A mor-
phism x may have some number of closed components of various genera.
Counting these components gives a sequence cl(x) = (a0, a1, . . . , 0, 0, . . . ),
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where ak is the number of closed components of genus k in x. All but finitely
many terms in the sequence cl(x) are zero. Connected components with
boundary provide a decomposition of the set of n+m boundary circles into
nonempty subsets, where circles from the same subset are the boundaries
of the same connected component. Furthermore, each such component has
genus zero or higher, which counts the number of handles of the component.

Denote by Dm
n the set of decompositions of n+m circles. A morphism x ∈

HomCob2(n,m) can be described by a decomposition λ ∈ Dm
n , an assignment

of a nonnegative integer (genus or number of handles) to each set in the
decomposition λ and a choice of a sequence cl(x) as above describing genera
of closed components of x.

Let us label bottom circles 1, . . . , n and top circles 1′, . . . ,m′, from left
to right. A cobordism x induces a decomposition of the set

(2.2) Nm
n := {1, 2, . . . , n, 1′, 2′, . . . ,m′}.

For the cobordism x in Figure 3 we have n = 3, m = 4, the set is
N4
3 = {1, 2, 3, 1′, 2′, 3′, 4′}, and its subsets corresponding to components with

boundary are {1, 3, 1′}, {2, 3′}, and {2′, 4′}. These components have genera
2, 0, 1, respectively. The sequence cl(x) is (2, 0, 0, 1, 0, . . . ), since x has two
closed components of genus 0 (2-spheres) and one component of genus 3.

Category RCob2. Fix a commutative ring R and consider the pre-
additive R-linear category RCob2 freely generated by Cob2. It has the same
objects n as Cob2, and morphisms from n to m in RCob2 are linear combi-
nations of morphisms from n to m in Cob2 with coefficients in R and with
composition induced from that in Cob2. One can think of this construction,
for an arbitrary category C, as analogous to passing from a group G to its
group algebra R[G] or from a semigroup G to its semigroup algebra. It results
in an idempotented ring RC with a collection of mutually orthogonal idem-
potents (corresponding to identity morphisms), one for each object of C, as
a substitute for the unit element; see [KS2].

Category Cob′α for a sequence α. A more interesting category is
obtained if we choose an infinite sequence of elements

(2.3) α = (α0, α1, α2, . . . )

of R and evaluate each closed component of genus k to αk. For a closed
surface S denote

(2.4) α(S) =
∏
k≥0

αck
k ,

where ck is the number of components of S of genus k. The resulting monoidal
category, denoted Cob′(α) or Cob′α, has the same objects n as the earlier
categories. A morphism from n to m in Cob′α is an R-linear combination of
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cobordisms from n circles to m circles in Cob2 without closed components.
Composition is given by concatenation followed by evaluating each closed
component of genus k to αk. We can informally refer to Cob′α as the α-
prelinearization of the category Cob2.

There is the obvious “evaluation” or “reduction” functor RCob2 → Cob′α,
which is the identity on objects, that evaluates (or reduces) each closed com-
ponent of genus k to αk. The hom space HomCob′α

(n,m) is a free R-module
with a basis of cobordisms without closed components. Basis elements are
parametrized by partitions in Dm

n with a nonnegative integer (genus) as-
signed to each part of the partition.

Remark. Object 0 associated to the empty 1-manifold ∅1 is the unit
object of the monoidal categories Cob2, RCob2, and Cob′α. The commutative
monoid of endomorphisms EndCob2(0) is freely generated by isomorphism
classes of closed oriented connected surfaces, one for each genus g ≥ 0, and
can be identified with the free abelian monoid on these generators. The
commutative ring

EndRCob2(0)
∼= R[EndCob2(0)]

is the semigroup algebra of the monoid EndCob2(0). Also, EndCob′α
(0) ∼= R.

Generating functions and the bilinear form. A sequence α is con-
veniently encoded by the generating function

(2.5) Zα(T ) =
∑
n≥0

αnT
n ∈ RJT K.

For a closely related construction see [Kh2], where to such Zα(T ) there is
associated a family of R-modules Aα(n), for each n ≥ 0, constructed via
a bilinear form on the space of linear combinations of oriented 2-manifolds
with boundary the disjoint union of n circles

⊔
n S1. Namely, one considers

the free R-module Fr(n) with a basis {[S]}S of oriented compact surfaces
S with ∂S ∼=

⊔
n S1 (with the diffeomorphism fixed). On Fr(n) there is an

R-bilinear form ( , )n given on pairs of generators S1, S2 by gluing the two
surfaces along the common boundary and evaluating via α:

(2.6) ([S1], [S2])n = α
(
(−S1) ⊔∂ S2

)
.

The state space of n circles is the quotient of Fr(n) by the kernel of this
bilinear form:

(2.7) Aα(n) := Fr(n)/ker(( , )n).

This collection of R-modules is naturally a representation of the category
Cob′α, when the latter is viewed as an idempotented R-algebra with a system
of mutually-orthogonal idempotents {1n}n∈N. Namely, to the object n of
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Cob′α associate the R-module Aα(n). To a morphism given by a cobordism
x ∈ Cob2 from n to m associate an R-module map
(2.8) xα : Aα(n) → Aα(m),

obtained directly from the construction in [Kh2], via the evaluations of x
capped off by various oriented surfaces with n and m circles as the boundary.
These morphisms over all x ∈ Cob2 provide a representation of Cob2 and
Cob′α on the direct sum of R-modules

(2.9) Aα :=
⊕
n≥0

Aα(n).

Monoidal structures on Cob2 and Cob′α are not used in this construction.
Aα is a representation of the idempotented R-algebra underlying the cate-
gory Cob′α, in the sense of [KS1, KS2].

Category Cobα as a quotient by negligible morphisms. The action
of Cob′α can be quotiented down to a smaller category. The categories RCob2
and Cob′α admit trace maps. Namely, given an element x ∈ Hom(n, n), a
finite linear combination of cobordisms with n bottom and n top circles,
close up opposite circles i and i′, 1 ≤ i ≤ n, by annuli to get a linear
combination of closed cobordisms x̂ and then evaluate the result via α:
(2.10) Tr(x) = α(x̂) ∈ R;

see Figure 4.

xx =⇒ x̂ = x

Fig. 4. Closing up a linear combination x of (n, n) cobordisms into a linear combination
x̂ of closed cobordisms.

For morphisms x ∈ Hom(n,m) and y ∈ Hom(m,n) we have Tr(xy) =
Tr(yx).

A morphism x ∈ Hom(n,m) in the category Cob′α (or in RCob2) is
called negligible if Tr(yx) = 0 for any y ∈ Hom(m,n). Denote by J(n,m) ⊂
Hom(n,m) the subset of negligible morphisms from n to m. This subset is
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an R-submodule of Hom(n,m), and the union of J(n,m), over all n,m ≥ 0,
is the tensor ideal Jα of Cob′α. Define the category Cobα to be the quotient
of Cob′α by this ideal,

(2.11) Cobα := Cob′α/Jα.

This category has objects n ∈ Z+, and

(2.12) HomCobα(n,m) = HomCob′α
(n,m)/J(n,m).

The category Cobα is an R-linear tensor category with duals and a non-
degenerate trace: for any x ∈ HomCobα(n,m), x ̸= 0, there is y ∈
HomCobα(n,m) such that Tr(yx) ̸= 0. For information about ideals of neg-
ligible morphisms and corresponding quotient categories we refer the reader
to [EO, BW].

Starting with the category RCob2 instead of Cob′α in this construction
will result in the quotient category isomorphic to Cobα.

The functor of modding out an R-linear tensor category with duals by
the ideal of negligible morphisms is essentially the same operation as used in
the universal construction [BHMV, Kh2], where one mods out by the kernel
of the bilinear form. Thus, in the example above, there are isomorphisms of
R-modules

(2.13) HomCobα(n,m) ∼= HomCobα(0, n+m) ∼= Aα(n+m),

with the first isomorphism given by bending the n bottom circles up; see
Figure 5.

m

n

=⇒

m+ n

Fig. 5. Turning a morphism in Hom(n,m) into a morphism in Hom(0, n+m).

The space J(0, n+m) of negligible morphisms in HomCob′α
(0, n+m) is

exactly the kernel of the bilinear form on HomCob′α
(0, n+m) constructed via

formula (2.6) for n+m boundary circles, implying the second isomorphism
above. It is easy to rewrite composition of morphisms in Cobα via these
isomorphisms and suitable cobordism maps.

We refer to the category Cobα as the α-linearization of Cob2 (and of
the related categories RCob2 and Cob′α). These categories are part of the
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package of the universal construction or pairing (see [BHMV, Kh2] and
closely related [FKN+]), and can be defined in any dimension and in a vari-
ety of situations, given an evaluation of closed manifolds or similar objects
(foams [Kh1, RW], manifolds with embedded submanifolds [FKN+, KR], or
other decorations).

When the commutative ring R is a field k, it is observed in [Kh2] that the
spaces Aα(n) are finite-dimensional for all n (equivalently, for some n ≥ 1)
iff the generating function (2.5) is a rational function in T . Equivalently,
the representation (2.9) of Cobα is locally finite-dimensional in a similar
sense; see [KS1, KS2]. The case when the function Zα(T ) is rational seems
especially interesting, for many reasons.

The R-modules Aα(n) and maps between them induced by cobordisms
(see the discussion around (2.8)) define a representation of Cobα viewed as
an idempotented ring

(2.14) Bα =
⊕

n,m≥0

1mHomCobα(n,m)1n;

see [KS1, KS2] for a general discussion. On the corresponding representation
Aα in (2.8) idempotent 1n acts as the projector onto Aα(n), and an ele-
ment x ∈ HomCobα(n,m) acts by the corresponding map Aα(n) → Aα(m).
When R is a field and Zα(T ) is rational, this representation is locally finite-
dimensional.

Additive closure and the Karoubi envelope. It is useful to consider
the additive Karoubi envelope Kobα of Cobα. First form the finite additive
closure Cob⊕α of Cobα by taking formal finite direct sums of objects n of
Cobα, and extending to morphisms in the obvious way. The additive closure
has the zero object 0 different from the object 0. The latter is associated to
the empty 1-manifold and comes from the corresponding object of Cobα. The
endomorphisms of the object 0 form the zero R-algebra, while EndCob⊕α

(0) =

EndCobα(0)
∼= R.

Next, let DCobα be the Karoubi envelope of Cob⊕α . The six types of
categories we have encountered so far are listed below:

(2.15) Cob2 → RCob2 → Cob′α → Cobα → Cob⊕α → DCobα.

The first arrow consists in allowing R-linear combinations of cobordisms. In
the second arrow we evaluate closed surfaces of genus k to fixed elements αk

of R, over all k ≥ 0. We can refer to this procedure as α-prelinearization.
The third arrow consists in modding out Cob′α by the ideal of negligible
morphisms.

Like Cob′α, the category RCob2 also has the ideal Iα of negligible mor-
phisms, via the trace given by α. The composition of the second and third
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arrows above can also be described as the quotient of RCob2 by this ideal,

(2.16) RCob2 → RCob2/Iα ∼= Cobα.

The fourth and the fifth arrows in (2.15) are fully faithful functors. The
second, third and fourth categories are pre-additive, the fifth category is ad-
ditive and the last category is additive and Karoubi-complete. All six cate-
gories are tensor (symmetric monoidal) and these five functors are monoidal.

3. Partition category and the Deligne category. Recall that R is a
commutative ring. In the context of the partition category and the Deligne
category ring R is often taken to be a field k. Fix t ∈ R.

Partition category. The partition category Pat extends the notion of
the partition algebra that originally appeared in Martin [M] and Jones [J];
see [HR, LS] for more information and references.

Objects n of the partition category are nonnegative integers and mor-
phisms from n to m are R-linear combinations of decompositions Dm

n (also
called partitions) of the set Nm

n ; see discussion around formula (2.2).
Diagrammatically, partitions are often denoted by marking n points on

a horizontal line in the plane and m points on a parallel line above it. One
connects these n+m points by arcs, and the connected components of the re-
sulting graph are the parts of the partition. Intersections of arcs are ignored.
A partition usually has more than one such diagram. For instance, if {1, 3, 1′}
is a part of the partition, it can be described by two arcs (1, 3), (1, 1′) or two
arcs (1, 3), (3, 1′), or all three arcs; see also Figure 9 (left) below demonstrat-
ing this indeterminacy. This diagrammatic description of partitions is stan-
dard in papers on the partition algebra and category; see for instance [LS].
Two examples of diagrammatic presentations are given in Figure 6.

a

1 2 3 4

1′ 2′ 3′ 4′ 5′ 6′

b

1 2 3 4 5 6

1′ 2′ 3′ 4′ 5′

Fig. 6. Partitions a = {{1, 3, 1′}, {2, 4, 6′}, {2′, 4′}, {3′}, {5′}} ∈ P 6
4 and b = {{1, 2′},

{2, 3}, {4}, {5}, {6, 4′, 5′}, {1′, 3′}} ∈ P 5
6 . Notice multiple ways to display the same par-

tition. For the subset {1, 3, 1′} we depicted edges (1, 3) and (1, 1′). Another possibility is
to depict edges (1, 3) and (3, 1′) or edges (1, 1′) and (3, 1′). In choosing a diagram for a
partition it is natural to at least minimize the number of bottom-top edges, showing only
one such edge for each subset that contains both bottom and top points.
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Composition is given by concatenating diagrams (see Figure 7) and treat-
ing points in the middle that connect to bottom or top as ‘pass through’
points that vanish from the concatenation but are used before that to create
the new partition. If there exist a connected component that consists entirely
of points in the middle part of the diagram, it is removed and what is left
is multiplied by t. This procedure is iterated until no such components are
left.

ba =

a

1 2 3 4

b

1′ 2′ 3′ 4′ 5′

= t2

1 2 3 4

1′ 2′ 3′ 4′ 5′

= t2c

Fig. 7. Composition ba = t2c, where the partition c is shown on the right, c =
{{1, 3, 2′}, {2, 4, 4′, 5′}, {1′, 3′}}. The coefficient t2 comes from removing two connected
components in the middle of the ba diagram that connect to neither bottom nor top
points.

Composition is then extended bilinearly to R-linear combinations of par-
titions. The resulting R-linear category Pat is symmetric monoidal, with the
tensor product given on partitions by placing their diagrams in parallel.

Noah Snyder’s diagrammatics for the partition category. A long
time ago Noah Snyder [S] pointed out to one of us an alternative diagrammat-
ics for the partition category [H]. Figure 8 shows conventional diagrammatics
versus the Snyder diagrammatics for the standard generating morphisms of
the partition category. One difference is the use of a trivalent vertex to depict
the morphism from 2 to 1 corresponding to the partition {1, 2, 1′} and the
dual morphism from 1 to 2. This trivalent vertex as well as other configu-
rations can be freely rotated in the plane. As in the usual diagrammatics,
one allows intersections of distinct parts of the partition, thinking of them
as virtual intersections.

Figure 9 displays one benefit of the Snyder calculus: the generating mor-
phism (a) has an essentially unique minimal presentation.

It is convenient to introduce cup and cap diagrams (as additional genera-
tors), defined in the top row of Figure 10 via the original generators. Isotopy



12 M. Khovanov and R. Sazdanovic

(a)

→
(b)

→

(c)

→ ∗
(d)

→ ∗

(e)

→
(f)

→
∗

∗

Fig. 8. Conventional and Snyder’s generators for the partition category. Object 0 is shown
by a dashed line without dots on it. In (c) and (d) we indicated the loose end of a strand by
the ∗ symbol; other ways to depict the end are fine too. Likeng–Savage [LS] use a similar
notation for the generators (c), (d). The element shown in (f) is a suitable composition
of the generators (c) and (d) and evaluates to t in the partition category. The top and
bottom dashed lines in the depiction of a diagram are optional and are not shown in the
top row diagrams.

= = =

Fig. 9. Multiple ways to depict the generating morphism (a) in Figure 8 versus unique up
to isotopy diagram in the Snyder graphical calculus.

relations on the generators are shown in the next two rows of Figure 10.
Some other defining relations are shown in Figure 11. We leave it to the
reader to convert a full set of relations as found in [C, Theorem 1] or [LS]
into defining relations for the Snyder calculus.

The relation between 2D cobordisms and partitions is especially easy
to see in the Snyder calculus. Thickening Snyder’s trivalent graphs when
viewed as graphs in R3 rather than in R2 results in a surface with boundary
that corresponds to the partition. Intersection points of different components
of the graph should be disregarded, as before, for instance by pulling the
components slightly apart in R3 before thickening (the embedding into R3 is
then forgotten). An example of a matching between Snyder’s relations and
diffeomorphisms of surfaces is shown in Figure 12.
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:=
∗

∗
:=

= =
∗

= ∗ =
∗

= =

Fig. 10. Cup and cap diagrams and some isotopy relations in Snyder’s diagrammatics.

= = = t

= = =

Fig. 11. Some other defining relations in the Snyder calculus.

= ⇔ ≃

Fig. 12. One of the defining relations versus surface diffeomorphism.
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From graphs to surfaces. The lifting, discussed in this paper and
in [C], from partitions, which are graph-like objects, to two-dimensional
cobordisms is analogous, in some rather naive way, to passing from Feynman
diagrams (graph-like objects) to strings (two-dimensional objects):

Feynman diagrams −→ Strings,

Partition diagrams −→ 2D cobordisms,

Of course, the complexity of mathematics hidden in the top arrow structures
is orders of magnitude higher than those in the bottom arrow, discussed in
the present paper.

Deligne category. Let us specialize the ground ring R to be a field k
of characteristic 0. The Deligne category Rep(St) is the additive Karoubi
envelope of the partition category Pat, t ∈ k,

(3.1) Rep(St) = Kar(Pa⊕t ).

It is known to be semisimple when t /∈ Z+. When t = n ∈ Z+ ⊂ k, the
Deligne category admits a nontrivial ideal Jn that consists of the negligible
morphisms. A morphism x ∈ Hom(a, b) is negligible if Tr(yx) = 0 for any
y ∈ Hom(b, a). The category Rep(St) is a tensor category with duals, and
the trace is straightforward to define. The trace in Pat on a diagram λ ∈ Dm

m

is given by identifying points i and i′, 1 ≤ i ≤ m. If r is the number of
components in the resulting diagram, then Tr(λ) = tr.

The quotient Rep(Sn)/Jn is equivalent, as a tensor category, to the
category k[Sn]-mod of finite-dimensional representations of the symmetric
group Sn,

(3.2) Rep(Sn)/Jn ∼= k[Sn]-mod.

The ideal Jt of negligible morphisms in Rep(St) is zero if t /∈ Z+.

4. Generalized Deligne categories

Cobordismsandpartitions. Consider the categoryCob2 of two-dimen-
sional cobordisms. Given a morphism x from n to m, disregard its closed com-
ponents and ignore genera of connected components with boundary. A con-
nected component with boundary defines a subset among the set of boundary
circles of x. The latter set can be identified with {1, . . . , n, 1′, . . . ,m′} (see
Figure 3). Consequently, the union of connected components of x that have
a non-empty boundary determines a partition in Dm

n . To a cobordism x from
n to m we associate this partition in Dm

n , denoted p(x).
To extend this assignment to a functor

(4.1) F : RCob2 → Pat
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let |cl(x)| be the number of connected components of x without boundary
(closed components). The functor F is the identity on objects n ∈ Z+ of
RCob2 and Pat and

(4.2) F (x) = t|cl(x)|p(x)

on cobordisms. It is then extended R-linearly to linear combinations of cobor-
disms. Notice that F ignores the genera of all components of x. Clearly, F
is a tensor (symmetric monoidal) functor. This construction can be found in
Comes [C, Section 2.2]. One can think of Pat as the quotient of RCob2 by
skein relations in Figure 2.

Recall the categories Cob′α and Cobα introduced earlier and associated
to a sequence α, where a closed surface of genus g evaluates to αg ∈ R. Let
α(t) = (t, t, t, . . . ) be the constant sequence associated to t ∈ k. The evalua-
tion α(t) associates t to any oriented connected closed surface irrespectively
of its genus. The relations in Figure 2 hold in the category Cobα(t), and they
hold in Cob′α(t) when restricted to closed components. Consequently, there
are natural tensor functors

(4.3) Cob′α(t)
F ′
t−→ Pat

F ′′
t−→ Cobα(t)

between these three categories. These functors are the identities on objects,
F ′
t(n) = n, F ′′

t (n) = n. The first functor forgets about handles of each
component of a cobordism S, evaluates each closed component to t, and
associates a partition of the set Nm

n in (2.2) to S according to subsets of
boundary circles bounded by connected components of S.

The second functor F ′′
t exists by an earlier discussion, due to the defini-

tion of Cobα(t) via the quotient by the kernel of a bilinear form. It identifies
Cobα(t) with the quotient of Pat by the ideal of negligible morphisms.

The Deligne category. Starting with the functor F ′′
t and passing to

additive Karoubi closures results in a functor

(4.4) Ft : Rep(St) → Kobα(t)

from the Deligne category to Kobα(t) = Kar(Cob⊕α(t)), the additive Karoubi
closure of the category Cobα(t). From the structure theory of the Deligne
categories we can conclude that Ft consists of taking the quotient of Rep(St)
by the ideal Jt of negligible morphisms and induces an equivalence

(4.5) Rep(St)/Jt
∼=−→ Kobα(t).

Notice that there is a difference in the order in which we take the additive
Karoubi closure and mod out by the negligible morphisms. On the Deligne
category side, one first forms the additive Karoubi closure and then mods
out by the negligible morphisms. On the Kobα(t) side, one first mods out
by the negligible morphisms to get the category Cobα(t) and then forms
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the additive Karoubi closure. It is not clear whether this may produce a
discrepancy in more general cases, but for Deligne categories (and with R a
field k of characteristic 0) this change of order results in equivalent categories
and makes no difference.

Generalizations. We obtain an immediate generalization of the cate-
gories Rep(St)/Jt by changing from the constant sequence α(t) in (1.2) to a
more general sequence α. The most interesting case is when the generating
function Zα(T ) of α (see (1.1)) is a rational function, a ratio of two coprime
polynomials

(4.6) Zα(T ) =
P (T )

Q(T )

with coefficients in k. In this case the categories Cobα and DCobα have
finite-dimensional hom spaces. We can view DCobα as a natural generaliza-
tion of the quotient category Rep(St)/Jt. For generic t, the ideal Jt is zero,
and then the quotient category is the Deligne category.

Theorem 4.1. The categories DCobα are tensor k-linear Karoubi-closed
additive categories. When Zα(T ) is rational, morphism spaces in DCobα are
finite-dimensional.

It is an interesting project to investigate the categories DCobα when
the generating function Zα(T ) is rational. Deligne category quotients are
recovered for the rational function in (1.7).

Notice that the categories DCobα deliver generalizations of the quotients
Rep(St)/Jt rather than of the Deligne categories Rep(St) themselves. To
remedy this discrepancy, we instead pass from Cob′α to DCobα in one more
step, when R = k is a field and the partition function Zα(t) is rational as in
(4.6). Let

N = deg(P (T )), M = deg(Q(T )), K = max(N + 1,M),(4.7)

Q(T ) = 1− e1T + e2T
2 + · · ·+ (−1)MeMTM , ei ∈ k,(4.8)

as in [Kh2, Section 2.4]. Then in the state space Aα(1) of a circle we have
the equality
(4.9) xK − e1x

K−1 + e2x
K−2 − · · ·+ (−1)MeMxK−M = 0,

where x denotes a 2-torus with one boundary component. The power xk

of x represents a surface of genus k with one boundary component, with
multiplication in Aα(1) given by the pants cobordism [Kh2]. Equation (4.9)
gives a skein relation in the category Cobα which reduces a collection of K
handles on a single component to a linear combination of collections of K−1,
K − 2, . . . , K −M handles.

For rational α, start with the pre-additive category Cob′α of Section 2,
and diagram (2.15) that shows the position of Cob′α in the chain of categories
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and functors associated with α. In Cob′α only closed components are reduced
to elements αk of k. Hom spaces Hom(n,m) in Cob′α are infinite-dimensional
k-vector spaces, unless n = m = 0, with a basis of diffeomorphism classes
rel boundary of all cobordisms without closed components. Thus, a basis
element is described by a decomposition in Dm

n and a choice of genus for
each connected component.

Define the category PCobα to have the same objects n ≥ 0 as Cob′α and
morphism spaces to be quotients of those in Cob′α by the skein relations
corresponding to equation (4.9). That is, we set this linear combination of
morphisms (cobordisms) to zero in the quotient category. Applying this re-
lation we reduce a component which contains at least K handles to com-
ponents with fewer handles. In particular, any morphism in Cob′α reduces
to a k-linear combination of cobordisms with no closed components and at
most K − 1 handles on each connected component. Diffeomorphism classes
rel boundary of these cobordisms are in bijection with elements of the set
Dm

n (<K) of partitions in Dm
n with an integral weight between 0 and K − 1

associated to each part (number of handles of the component, on the cobor-
dism side). Recall that to a partition x we associated a cobordism p(x) (see
discussion preceding formula (4.2). We can now extend this association, also
denoted p, and assign to a partition x with nonnegative integral weights of
its parts the cobordism p(x) by starting with the cobordism for the partition
without weights and adding the number of handles equal to the weight to
each two-sphere with boundary holes.

Computations in [Kh2, Section 2.4] imply that relation (4.9) is compatible
with evaluation α applied to closed cobordisms. In particular, no additional
relations on cobordisms appear and elements of the set Dm

n (<K), converted
to cobordisms, provide a basis of HomPCobα(n,m).

Proposition 4.2. The hom space Hom(n,m) in PCobα has a basis
{p(x)}, over all x ∈ Dm

n (<K).

In particular, hom spaces in PCobα are finite-dimensional. We can now
insert category PCobα into the chain of six categories in (2.15):

(4.10) Cob2 → RCob2 → Cob′α → PCobα → Cobα → Cob⊕α → DCobα.

It fits in between Cob′α and Cobα. The category PCobα is the quotient of
Cob′α by the skein relation (4.9). Like any other category in this chain, it
is tensor (symmetric monoidal). The trace form on Cob′α descends to that
on PCobα. The quotient of PCobα by the ideal of negligible morphisms
relative to this trace form is isomorphic to Cobα (isomorphic and not just
equivalent, since these categories are essentially skeletal and have very few
objects). As already mentioned, this insertion is possible when Zα(T ) is a
rational function and R is a field.
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The category PCobα generalizes the partition category Pat. The partition
category Pat is isomorphic to PCobα(t) for the constant sequence α(t) =
(t, t, . . . ). More generally, choosing K in (4.7) fixes the size of homs in PCobα,
analogously to independence of dimensions of homs in Pat on t, given by the
number of partitions (the Bell number). When K = 1, the dimensions of
hom spaces in PCobα are also given by the number of partitions in Dm

n , and
for K > 1 by the number of weighted partitions as discussed above.

To get from PCobα to the analogue of the Deligne category, pass to
the additive Karoubi closure to get an additive and idempotent-complete
category

(4.11) DCobα := Kar(PCob⊕α ).

Chain (4.10) of functors can be upgraded to a commutative diagram of
functors

(4.12)
Cob2 RCob2 Cob′

α PCobα PCob⊕
α DCobα

Cobα Cob⊕
α DCobα

e

where the chain (4.10) is given by the (left, left, left, down, left, left) sequence
of arrows. Two new categories are added in the upper right. Vertical down
arrows are quotients by the ideals of negligible morphisms. Both squares in
the diagram are commutative.

Notice that first modding out PCobα by the negligible morphisms to
get Cobα and then taking the Karoubi envelope DCobα compared to first
taking the Karoubi envelope DCobα and then modding out by the negligible
morphisms does not produce any extra idempotents. This is due to the easy-
to-check idempotent lifting property that holds for any finite-dimensional
algebra B over k and any 2-sided ideal J ⊂ B (not necessarily nilpotent).
Any idempotent in B/J lifts to an idempotent in B. Endomorphism algebras
of objects in PCob⊕α are finite-dimensional over k. For the ideal J one would
take the ideal of negligible endomorphisms of an object in PCob⊕α .

To summarize, the chain of three categories and two functors (the parti-
tion category, the Deligne category, and its quotient by the negligible mor-
phisms)

(4.13) Pat → Rep(St) → Rep(St)/Jt

generalizes to a similar chain

(4.14) PCobα → DCobα → DCobα

for any sequence α with rational power series Zα(T ). Specializing to the
constant series α(t) and rational function t/(1 − T ) recovers the original
setup (4.13).
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