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Abstract
Studying the nervous system underlying animal motor control can shed light on how animals can adapt flexibly to a changing
environment. We focus on the neural basis of feeding control in Aplysia californica. Using the Synthetic Nervous System
framework, we developed a model of Aplysia feeding neural circuitry that balances neurophysiological plausibility and
computational complexity. The circuitry includes neurons, synapses, and feedback pathways identified in existing literature.
We organized the neurons into three layers and five subnetworks according to their functional roles. Simulation results
demonstrate that the circuitry model can capture the intrinsic dynamics at neuronal and network levels. When combined with
a simplified peripheral biomechanicalmodel, it is sufficient tomediate three animal-like feeding behaviors (biting, swallowing,
and rejection). The kinematic, dynamic, and neural responses of the model also share similar features with animal data. These
results emphasize the functional roles of sensory feedback during feeding.
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1 Introduction

As an essential motor control task, feeding has been exten-
sively studied in various animals (Avery and You 2012;
Vavoulis et al. 2007; Chen 2009). Aplysia californica, a
species of sea slug, can generate multifunctional feeding
behaviors, including biting, swallowing, and rejection (Jing
et al. 2004). The neural circuits involved in feeding control
contain about 2000 neurons (Moroz 2011), and only a subset
of these neurons play themost critical roles (Elliott and Suss-
wein 2002), Aplysia uses a relatively small neural network
to achieve complex feeding behaviors. Additionally, neurons
can be identified across animals (Lu et al. 2013). With large
and electrically compact somata, recording or controlling
the neurons’ activities through electrodes (Huan et al. 2021)
is also possible. These features make Aplysia an excellent
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candidate to research animal feeding. Fully understanding
feeding control through studying Aplysia can profoundly
impact various fields. For instance, it can lead us to discover
how animals use small neural circuits to generate behaviors
robust to uncertainties and capable of adapting to environ-
mental changes - a critical capability for animals to survive
in a dynamic environment (Wolpert and Ghahramani 2000).
Furthermore, the knowledge of neuromechanics of Aplysia
feeding can be applied to solve engineering problems, such as
designing and controlling soft robots that can grasp (Mangan
et al. 2005; Webster-Wood et al. 2020; Alnajjar and Murase
2008).

A computationalmodel ofAplysia feeding can be used as a
predictive tool to test hypotheses, thus informinghowAplysia
achieves multifunctional feeding behaviors. Although exist-
ing technologies allow detailed neurophysiological studies
of Aplysia’s nervous system at a single-cell level, there are
still gaps between the observed behaviors and the knowl-
edge of the circuitry. For instance, recent literature identified
the existence of feedback pathways and pattern generators
in the ganglia of Aplysia (Webster-Wood et al. 2020; Elliott
and Susswein 2002; Cataldo et al. 2006; Lyttle et al. 2017),
but their specific contributions to the overall feeding control
remain unclear: Are central pattern generators (CPGs) alone
sufficient to generate Aplysia-like multifunctional and robust
feeding behaviors? Or, is the integration of biomechanics
and feedback pathways necessary to more accurately model
Aplysia feeding control? It is possible to test these hypotheses
by using computational models to run numerical simula-
tions and comparing the model outputs with animal data.
The comparison results can validate or refine hypotheses and
motivate future experimental measurements (Webster-Wood
et al. 2020).

Due to the lack of mechanics representing the feeding
apparatus, existing computational models of Aplysia feed-
ing control have limited predictive ability. Costa et al. (2020)
presented a reducedmodel of anAplysia feeding CPG,which
includes CBI-2, a cerebral-buccal interneuron in the cerebral
ganglion, and other critical neurons in the buccal ganglion.
Cells in the model were represented as Hodgkin-Huxley-
type neurons with complex synaptic dynamics. The reduced
model was sufficient to generate a variety of motor patterns
observed in isolated ganglia of animals. The model did not
include cerebral-buccal interneurons (CBIs) thatwouldmake
it possible to study motor pattern switching. Moreover, since
the model focused solely on the nervous system and ignored
the peripheral mechanics, it could not demonstrate behav-
ioral responses or reflect sensory feedback’s contribution.
The complexity of Hodgkin-Huxley-type models also makes
this approach difficult to scale to larger circuits. The compu-
tational model presented in Lyttle et al. (2017) considered
both peripheral mechanics and neural dynamics of Aplysia
feeding, allowing the investigation of the effect of sensory

feedback. It could flexibly generate biting and swallowing
behaviors robust to parameter change. The simulation can be
implemented rapidly as the neural dynamics were based on
a low-dimensional stable heteroclinic channel (SHC) model.
However, the nodes in the model do not have a precise map-
ping to known neurons. Due to the absence of CBIs, it neither
allows egestive behaviors nor active behavioral switching.
Webster-Wood et al. (2020) developed a neuromechanical
model to study themultifunctional feeding control ofAplysia.
Following a demand-driven philosophy, the neural dynam-
ics in the model were described as Boolean operations.
The incorporated motor neurons and buccal interneurons
were driven by proprioceptive feedback, while three cerebral
buccal interneurons, CBI-2, CBI-3, and CBI-4, coordinated
behavioral switching based on exteroceptive feedback. The
model could run several orders faster than real-time, but the
neurons performing logic operations were less biologically
plausible than the neuronal models in Costa et al. (2020).
Thus, the Boolean model cannot fully capture the intrinsic
circuit dynamics of animals.

To build an Aplysia feeding control model with suffi-
cient predictive ability and low computational complexity,
we extended the previous Boolean network model (Webster-
Wood et al. 2020) to a Synthetic Nervous System (SNS)
version. Like Hodgkin-Huxley-type neurons, the computa-
tional capability of SNSs comes from conductance-based
mechanisms (Szczecinski et al. 2020), but its computational
complexity is less than a spiking model. Following previ-
ous literature (Jing and Weiss 2005; Webster-Wood et al.
2020), we organized the SNS neurons into three layers. In the
motor neuron and buccal interneuron layers, we divided the
neurons into five subnetworks according to their functions.
These neurons receive sensory feedback critical for gener-
ating adaptive feeding behaviors. In the cerebral ganglion
layer, three cerebral-buccal interneurons (CBIs) coordinate
behavioral switching based on exteroceptive feedback. The
quantitative comparison between the SNS neural models,
spiking neural models, and animal data demonstrates that the
SNS neurons can capture the features of the neural dynamics
observed in animals. We also find the SNS network model
can achieve animal-like feeding control when integratedwith
simplifiedperipheral biomechanics. These results support the
hypothesis that the combination of feedback and a relatively
small network inAplysia can generate multifunctional, adap-
tive, and robust feeding behaviors.

2 Methods

We have developed a Synthetic Nervous System (SNS)
model for Aplysia feeding control, which extends a previous
Boolean model of the Aplysia neural system (Webster-Wood
et al. 2020). Neurons in the model are organized into three
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layers and five subnetworks according to their functions. In
addition, themodel integrates sensory feedback loops, which
are vital for generating multifunctional and adaptive behav-
iors.

2.1 Biomechanical model

This work adopts a simplified biomechanical model of
Aplysia described in Webster-Wood et al. (2020) (Fig. 1A),
which models the translational displacement of the head (xh)
and the grasper (xg). The head and grasper are actuated by
the I2 protractor muscle, the I3 retractor muscle, and the
hinge retractor muscle. The model also includes the I4 mus-
cle and the anterior portion of the I3 jaw muscle, which are
responsible for radula closure and jaw closure, respectively.
The biomechanical model provides the SNS with propri-
oceptive feedback of grasper position relative to the head
(xg/h = xg − xh) and three exteroceptive stimuli, including
mechanical and chemical stimulation of the lips, andmechan-
ical stimulation in the grasper. With appropriate control, the
demand-driven biomechanical model can generate multiple
ingestive and egestive feeding behaviors, including unsuc-
cessful attempts to protract the grasper and grab edible food
(biting, Fig. 1B),moving the food inward via the grasper after
a successful grasp (swallowing, Fig. 1C), and the expulsion
of inedible material out of the mouse using its grasper (rejec-
tion, Fig. 1D). Biting is characterized by strong protraction
of the grasper, but no food is grasped. In swallowing, food
is grasped, and the grasper must be strongly retracted while
closed to pull the food into the mouth and weakly protracted
while open to re-position the grasper as well as pull more
food inwards. The food is a seaweed fixed to the rigid force
transducer in the experimental setup (Gill and Chiel 2020).
Thus, the retractionwhen the seaweed is being firmly grasped
results in the head being pulled forwards. Rejection requires
the grasper to be retracted while open and strongly protracted
while closed, in contrast with swallowing. In the experimen-
tal setup, the inedible material is generally a tube with no
fixation on external objects (Webster-Wood et al. 2020). In
Appendix A, we reproduce the calculations for the motion of
segments, muscle forces, and contact forces from Webster-
Wood et al. (2020) for completeness.

2.2 Synthetic nervous system

Instead of using complex spiking and compartment neu-
ron models, we described the neural dynamics within the
framework of the Synthetic Nervous System (Szczecin-
ski et al. 2017b, a). The SNS neuron, as shown in Fig. 2,
is a conductance-based, spiking-rate based, and single-
compartment neuron model. It balances biological plausi-
bility and computational complexity by considering critical
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Fig. 1 A biomechanical model of Aplysia feeding system that can gen-
erate multifunctional feeding behaviors. Adapted with permission from
Webster-Wood et al. (2020). A A schematic showing important ele-
ments in the feeding system of Aplysia. The grasper in the head can
be protracted or retracted by the I2, I3, and hinge muscles. In addition,
the retractor muscle I3 contributes to pinching the jaws (yellow circles)
onto seaweed, which is critical to prevent seaweed from slipping out
during the protraction phase of swallowing. By activating the I4 mus-
cle, the grasper can exert pressure and friction force on the seaweed.
We also consider the translation of the head since the head connects to
the body by soft tissue. B Schematic representation of the model during
biting. C Schematic representation of the model during swallowing.
D Schematic representation of the model during rejection. Rejection
requires the grasper to be retracted while open and strongly protracted
while closed, in contradiction with swallowing. The relative position
between the head or grasper and the seaweed or tube is identified by
square position markers on the seaweed or tube
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Fig. 2 Schematic of neural components in Synthetic Nervous Systems.
Themodel incorporates leak conductance, chemical synapses, electrical
synapses, and other ion channels. The currents through these conduc-
tances govern the evolution of the membrane potential U . Rather than
introducing voltage-gated ion channels to explicitly generate spikes,
this SNS uses neural activity y to reflect the temporal firing frequency.
It also neglects the propagation of neural signals along the membrane
by treating a neuron as a single-compartment element

neural components but neglecting the mechanisms underly-
ing the generation and propagation of spikes.

The SNS model in this work uses spiking rate neurons,
whichmeans that the relationship between the neural activity
yi and the membrane potential Ui of the i th neuron can be
expressed as a monotonically increasing activation function
ϕi . The following piecewise linear function is a common
selection for ϕi (Szczecinski et al. 2017b):

ϕi (Ui ) =

⎧
⎪⎨

⎪⎩

0, if Ui ≤ Ulo,i
Ui−Ulo,i
Uhi,i−Ulo,i

, if Ulo,i < Ui < Uhi,i

1, otherwise

(1)

where Ulo,i and Uhi,i are the lower threshold and upper
threshold of the activation function, respectively. For B64,
B65, B20, and B7 introduced in Sect. 2.3, logistic functions

ϕi (Ui ) = 1

1 + e−(Ui−θi )/σi
(2)

with parameters θi and σi are selected as their activation
functions as they empirically facilitate the manual tuning
process described in Sect. 2.4. The neural activity yi can be
regarded as an abstraction of the temporal firing rate. If yi =
0, it implies that the membrane potential has not achieved
the firing threshold, and yi = 1 implies the neuron is firing
at its maximum frequency.

The equation governing the evolution of Ui in SNSs can
be described as (Li et al. 2022):

Cm,i
dUi

dt
= Ileak,i + Iion,i + Isyn,i + Iapp,i (3)

where Cm,i is the membrane capacitance. Ileak,i and Iion,i
define the intrinsic dynamics of the neuron, Isyn,i captures
the synaptic dynamics, and Iapp,i is external stimulation. The

details of these terms can be found in the following sub-
sections.

2.2.1 Intrinsic dynamics

In Eq. (3), Ileak,i = G l,i
(
Er,i −Ui

)
, which represents the

current flowing through the leakage channel whose conduc-
tance is G l,i and leakage reversal potential is Er,i . Iion,i
represents the currents flowing through other ion channels
responsible for strong nonlinear phenomena like plateau
potentials and post-inhibitory rebound and is defined as:

Iion,i =
∑

j

gx,i j A
pi j
i j Bi j

(
Ex,i j −Ui

)
(4)

where,

dAi j

dt
= A∞,i j (Ui ) − Ai j

τAi j (Ui )

dBi j
dt

= B∞,i j (Ui ) − Bi j
τBi j (Ui )

(5)

These ion channels are voltage-gated because each conduc-
tance Gx,i j = gx,i j A

pi j
i j Bi j is determined by the maximal

conductance gx,i j as well as two variables Ai j and Bi j whose
dynamics can be expressed as first order differential equa-
tions with membrane-potential-related steady states (A∞,i j

and B∞,i j ) and time constants (τAi j and τBi j ). Ex,i j in Eq.
(3) is the reversal potential of the corresponding ion channel,
and pi j is the activation exponent.

2.2.2 Synaptic dynamics

The SNS framework considers synaptic currents flowing
through both chemical synapses and electrical synapses, with
the total current calculated as,

Isyn,i =
∑

k

Gs,ik
(
Es,ik −Ui

)

+
∑

m

Ge,im
(
Upre,im −Ui

)
(6)

For the kth chemical synapse, Es,ik denotes the reversal
potential of the channel. The synaptic conductance Gs,ik is
determined by a first-order relationship between the acti-
vation of presynaptic neuron, ypre,ik , and the activation of
presynaptic transmitter release, sik , and a first-order relation-
ship between sik and the activation of the synapse, rik

Gs,ik = gs,ikrik
drik
dt

= sik − rik
τs,ik2
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dsik
dt

= αik
(
ypre,ik

) − sik
τs,ik1

(7)

where gs,ik is the maximal conductance of the channel.
τs,ik1 and τs,ik2 are activation constants determining whether
the synapse transmission is fast or slow. In this work,
αik

(
ypre,ik

) = ypre,ik except for those synapses with the
interneuron B4 (see Sect. 2.3.2) as their presynaptic neu-
rons. To account for variable bursting intensities of B4
observed in our animal experiments, we set αiB4 (yB4) =

1
1−βiB4

max(0, yB4 − βiB4) so that B4 activity yB4 will not
influence the postsynaptic neuron until it is greater than the
corresponding synaptic threshold βiB4. For themth electrical
synapse, Ge,im is the constant synaptic strength, andUpre,im

is the membrane potential of the corresponding presynaptic
neuron.

2.2.3 External stimulation

Iapp,i in Eq. (3) defines an optional external stimulus cur-
rent, which can represent injected current via an electrode or
current from feedback loops. In this work, sensory feedback
signals were implemented in the form,

Iapp,i =
∑

n

ξin max (εin(xin − Sin), 0) (8)

where n is the index of the feedback loop, xin is the feedback
input which represents xg/h (see Sect. 2.1) for a propriocep-
tive feedback loop or any external stimulus introduced in
Sect. 2.3.3, ξin and Sin are the feedback gain and the thresh-
old of the feedback input, respectively (excitatory feedback if
ξin > 0, inhibitory feedback if ξin < 0). εin ∈ {−1, 1} deter-
mines whether the feedback loop is triggered on a rising or
falling edge.

2.3 Neural circuitry model

Using the SNS framework, we developed a neural circuitry
model of Aplysia feeding control. The model incorporates
known synaptic connections and plausible feedback signals
from the peripheral biomechanics (Fig. 3). Previous work
(Jing and Weiss 2005; Webster-Wood et al. 2020) suggests
that the neural network for Aplysia feeding control may have
a hierarchical architecture. Following this perspective, we
organized neurons in the model into three layers and five
subnetworks based on their functional roles in producing
multifunctional feeding behaviors. The motor control layer
contains motor neurons innervating the muscles. The sub-
networks of the buccal interneuron layer receive sensory
feedback and descending signals to coordinate the tim-
ing of motor control patterns. The cerebral ganglion layer
receives exteroceptive signals and controls the type of feed-

ing behavior generated by modulating neurons in the buccal
interneuron layer.

2.3.1 Motor control layer

The motor control layer models five motor neurons inner-
vating key musculature in the Aplysia feeding apparatus:
B31 innervates the I2 protractor muscle for protracting the
grasper (Hurwitz et al. 1996); B6 innervates the I3 retractor
muscle for retracting the grasper (Morton and Chiel 1993a);
B8 innervates the I4 muscle, used in this model for clos-
ing the grasper (Morton and Chiel 1993a); B38 innervates
the anterior portion of the I3 muscle for pinching the jaws
(McManus et al. 2014); B7 innervates the hinge muscle for
facilitating initial retraction (Sutton et al. 2004). These neu-
rons receive excitatory and inhibitory synaptic inputs from
the buccal interneuron layer; some (B7 and B38, (Webster-
Wood et al. 2020)) are also mediated by sensory feedback
(Fig. 3). Detailed synapses and feedback pathways to motor
neurons can be found in Tables3 and 5.

For simplicity, we only considered the most critical motor
neurons and interneurons formultifunctional feeding control.
Therefore, neurons in this model can be regarded as abstrac-
tions of larger neuron pools in the animal. For example, B31
here represents the motor neuron pool B31/B32/B61/B62
innervating the I2 muscle (Hurwitz et al. 1994), and B6 rep-
resents the motor neuron pool B6/B9/B3 innervating the I3
muscle (McManus et al. 2014). Furthermore, we assumed
the feedback stimuli directly acted on the neurons, although
sensory neurons and interneurons exist in the actual feedback
loops. Additional elements in these neuron pools and feed-
back loops could be easily added to the model as deemed
necessary to match the kinematic and dynamic behavior in
the animal.

2.3.2 Buccal interneuron layer

Wemodeled nine buccal interneurons in the buccal interneu-
ron layer andorganized them intofive subnetworks (B63/B31,
B64/B52, B34/B40, B65/B30, B20/B4) based on their func-
tional roles in biting, swallowing, or rejection (Fig. 4). The
control subnetworks are taken from Jing and Weiss (2005,
2001) and Costa et al. (2020) with modifications and the
inclusion of sensory feedback (Webster-Wood et al. 2020).
Each subnetwork receives behavioral commands from the
cerebral ganglion layer and modulation from other subnet-
works; some neurons (in particular, B64 and B4) also receive
sensory feedback to regulate the timing of their activation.
When a subnetwork is active, it excites or inhibits a spe-
cific set of motor neurons to control the innervated muscles.
In our model, several subnetworks can be active simultane-
ously, indicating that the stimulation of a motor neuron is a
net result of all active subnetworks innervating it.
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Fig. 3 The neural circuitry
model adapted with permission
from Li et al. (2022). Neurons in
the model are organized into
three layers. In the motor
control and buccal interneuron
layers, neurons are further
divided into five subnetworks
according to their functions.
Neurons in the same network
are indicated by the same color.
The cerebral ganglion layer
contains cerebral interneurons
for behavioral switching and
coordination. Cross-layer
synaptic connections are shown
as bold black arrows. Dashed
black lines represent inter-layer
connections. Sensory signals,
including proprioceptive and
exteroceptive feedback, may be
provided by additional sensory
neurons or interneurons
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The B63/B31 and B64/B52 subnetworks (Fig. 4A) are
the main subnetworks realizing grasper protraction and
retraction, respectively. Whether in ingestive or egestive
behaviors, the first essential function of Aplysia feeding con-
trol is robustly generating back-and-forth movements of the
grasper. The strong excitatory synaptic connections fromB63
to B31 guarantee that motor neuron B31 can be active with
B63 (Hurwitz et al. 1997). Due to their highly correlated fir-
ing patterns, B63 and B31 have been previously viewed as a
single functional unit (Hurwitz et al. 1997). Similarly, they
are grouped into a single subnetwork in this work despite
being from different layers. Subnetwork B64/B52 is respon-
sible for realizing the shift from protraction to retraction and
back. B64 is a buccal interneuron that fires throughout the
retraction phase (Hurwitz and Susswein 1996). Its activation
is initiated by a slow excitatory synapse from B63 (Costa
et al. 2020; Zhang et al. 2020) and maintained even beyond
the termination of the protraction phase due to its intrin-
sic dynamics (see Sect. 3.1). The existence of proprioceptive
input further enables its activation to be adaptive to the exter-
nal load (Webster-Wood et al. 2020; Borovikov et al. 2000).
B64 canmediate I3muscle contraction and grasper retraction
through an excitatory connection to motor neuron B6 (Elliott
and Susswein 2002). To guarantee the protraction-retraction
shift, it has abundant inhibitory connections to those neurons
active during the protraction phase (i.e., B30, B34, B40, B65,
B63, B31, B20) (Hurwitz and Susswein 1996). On the other

hand, B52 is an interneuron that can produce post-inhibitory
rebounds (PIRs) through a low threshold sodiumchannel (see
sect. 3.1). Mutual inhibitory synaptic connections between
B64 and B52 allow inhibition from B64 to elicit PIRs in B52
(Costa et al. 2020), which in term guarantees the termina-
tion of the retraction phase and extends the protraction phase
(Cataldo et al. 2006; Nargeot et al. 2002).

The B34/B40 (Fig. 4B) and B65/B30 Subnetworks
(Fig. 4C) are responsible for mediating radula closure during
the retraction phase and regulating the length of protrac-
tion. They are thus critical for generating ingestive feeding
behaviors. Subnetwork B34/B40 plays a key role in produc-
ing biting (Jing et al. 2003). Receiving excitatory synapses
from B63/B31 and inhibitory synapses from B64 (Hurwitz
et al. 1997; Jing and Weiss 2002), it is active in the protrac-
tion phase and serves a dual purpose. On the one hand, the
slow excitatory synapses from B34 and B40 to the motor
neuron B8 have functional roles in increasing the excitabil-
ity of the postsynaptic neuron (Hurwitz et al. 1997; Jing and
Weiss 2002). This increase in excitability allows B8 to gener-
ate stronger activation for radula closure during the retraction
phase.On the other hand, theB34/B40 subnetwork delays the
onset of the retraction phase and thus prolongs the protraction
phase through monosynaptic inhibitory connections to B64
(Jing et al. 2003). Radula closure during the retraction phase
and a relatively longer protraction phase are two features of
biting that enable an animal to grasp food outside the mouth
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Fig. 4 Schematic of the buccal interneuron layer adapted with per-
mission from Li et al. (2022). This layer contains five subnetworks
critical for the multifunctional feeding control of Aplysia. Different
combinations of these subnetworks can generate behavioral patterns
with different features. (A) Pathways in the subnetworks B63/B31 and
B64/B52. (B) Pathways in the subnetwork B34/B40. (C) Pathways in

the subnetwork B65/B30. (D) Pathways in the subnetwork B20/B4.
Neurons in different subnetworks are highlighted in different colors,
and each subnetwork is covered by a dashed and color-coded rectangle.
The inter-subnetwork synaptic connections are color-coded according
to their presynaptic neurons, while the intra-subnetwork connections
are color-coded by black

(Jing et al. 2004). Subnetwork B65/B30 plays a key role in
producing swallowing (Jing et al. 2004). B65 (Kabotyan-
ski et al. 1998) and B30 (Jing et al. 2004) are protraction
neurons that receive excitatory inputs from B63/B31 and
inhibitory input from B64. They also innervate B8 through
slow excitatory synapses tomediate the radula closure during
the retraction phase (Jing et al. 2004). In contrast to B34/B40,
B65/B30 has excitatory connections to B64 that accelerate
the onset of the retraction phase and shorten the protraction
phase (Kabotyanski et al. 1998; Jing et al. 2004). The length
of the protraction phase distinguishes swallowing from bit-
ing.

The B20/B4 subnetwork (Fig. 4D) controls the phase
in which radula closure occurs, thus mediating the switch
between ingestive and egestive behaviors (Jing and Weiss
2001). B20 is a protraction interneuron because the excita-
tion from other protraction interneurons, such as B34, B31,
and B65, and inhibition from the retraction interneuron B64
constitute the main part of its input (Jing and Weiss 2001).
Monosynaptically exciting B8, it provides strong stimulation

to the radula closure motor neuron during the protraction
phase. In addition, it makes slow monosynaptic chemical
connections to the retraction interneuron B4. The excitatory
synapses, whose effects exist even after B20 stimulation,
functionally increase the excitability of B4, allowing the
excitatory synapse from B64 to elicit strong activation in
B4 during the retraction phase (Jing and Weiss 2001). B4
prevents the radula closure motor neuron from firing dur-
ing retraction through an inhibitory synapse to B8 (Jing
and Weiss 2001; Kabotyanski et al. 1998). By overwriting
the inhibitory and excitatory stimulation from other subnet-
works, respectively, B20 and B4 enable the radula closure
during the protraction phase, a critical feature of egestive
behavior such as rejection. Furthermore, sensory feedback
is incorporated to excite B4 so that its maximal activation
occurs at the end of the protraction phase and the onset of the
retraction phase, as observed in animals (Morton and Chiel
1993b). With the inhibitory synapse to B6 (Gardner 1971),
the B4 activation can delay the onset of the activity in the I3
muscle, ensuring the contraction of the jaw muscle does not
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External Stimuli

Fig. 5 Schematic of the cerebral ganglion layer. Cerebral-buccal
interneurons in this layer are command-like neurons that excite or
inhibit different subnetworks in the lower buccal ganglion layer. They
are driven by external chemical and mechanical stimuli. A CBI-2 path-
ways.BCBI-4 pathways.CCBI-3 pathways.DExteroceptive feedback
pathways (Adapted with permission from Webster-Wood et al. (2020))

force the grasper to close or pull the inedible food inward
during rejection (Ye et al. 2006).

2.3.3 Cerebral Ganglion layer

The cerebral ganglion layer mediates the switch between
different behaviors by selectly stimulating the subnetworks
introduced in Sect. 2.3.2 (Fig. 5). In this layer, we mod-
eled three cerebral buccal interneurons confirmed as crit-
ical components for behavioral selection. CBI-2 (Fig. 5A)
monosynaptically excites B63, B31 (Hurwitz et al. 2003),
B34 (Sńchez andKirk 2000), andB40 (Jing andWeiss 2002),
but inhibits B65 (Jing and Weiss 2005). Thus, it strongly
recruits subnetwork B63/B31 and B34/B40. In contrast,
another command-like neuron in this layer, CBI-4 (Fig. 5B),
recruits subnetworks B63/B31 and B65/B30 by exciting B63
and B30, respectively (Jing et al. 2004). By inhibiting B20,

CBI-3 (Fig. 5C) permits shifting the phase inwhich the radula
closes with respect to protraction-retraction (Jing and Weiss
2001). The combinational stimulation of the CBI neurons
allows the production of different behaviorswith distinguish-
able features. For example, the behavior elicited by CBI-2
and CBI-3 tends to be ingestive and has a longer protraction
phase (biting). On the other hand, the behavior elicited by
CBI-4 and CBI-3 is still ingestive but has a longer retrac-
tion phase (swallowing). If CBI-3 is silent during the actions
of CBI-2 or CBI-4, the elicited behavior becomes egestive
(rejection).

The cerebral ganglion layer coordinates behavioral switch-
ing based on exteroceptive feedback. Referring to existing
literature (Gill and Chiel 2020; Webster-Wood et al. 2020),
animals generate biting if they are presented with edible
food such as strips of dried nori (mechanical and chemical
stimulation simultaneously act on lips while no mechani-
cal stimulation acts on graspers). The behavior immediately
switches to swallowing once animals successfully grasp food
(all three stimuli exist). If they detect inedible objects (either
chemical ormechanical stimulation to lips ismissing, and the
mechanical stimulation in the grasper is maintained), rejec-
tion will be initiated to push objects out. Following the same
logic formulations presented in Webster-Wood et al. (2020),
we applied excitatory or inhibitory stimuli to theCBI neurons
so that the neuromechanical model could handle behavioral
transitions like animals (Fig. 5D). In a specific behavior, CBI-
3 and CBI-4 remain tonic or silent as their activations are
totally determined by external stimuli. CBI-2, in contrast,
also receives inhibition from the interneuron B64 (Fig. 5A).
Since B64 is activated during the retraction phase, the inhi-
bition results in rhythmic output of CBI-2 during biting and
rejection.

2.4 Implementation and parameter tuning

We implemented the neuromuscular model in the Matlab
Simulink environment (R2023a) with the variable-time-step
ode45 solver (max. step size of 1 ms, relative and absolute
error tolerance of 1 × 10−3). The circuitry model has 486
parameters (120 for intrinsic dynamics, 298 for chemical
synapses, 28 for electrical synapses, and 24 for proprio-
ceptive feedback pathways, 16 for exteroceptive feedback
pathways, Appendix B). The simulation runs 1.2 times faster
than real-time on a desktop computer (128 GB RAM, 3.00
GHz CPU).

We developed the details of SNS neural dynamics based
on recent computational models (Costa et al. 2020; Cataldo
et al. 2006;Vavoulis et al. 2007). Using the SNNAPplatform,
Costa et al. (2020) built a reducedmodel of theCPG in the iso-
lated ganglia of Aplysia for the generation of feeding-related
buccal motor patterns. The neurons in the reduced model
incorporate slow conductances that mediate intrinsic dynam-
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ics and fast conductances that mediate spiking. We modeled
these slow conductances in the SNS neurons and fine-tuned
the parameters in the B64, B4, and B52 models, allowing
them to capture the firing thresholds and current-activation
curves observed in animals. Specifically, for B64, we ran the
CPG network model in (Costa et al. 2020), recorded the time
series of the net synaptic current going into B64, IB64, and
the normalized firing rate of B64, ŷB64. We then optimized
the parameters in the SNS model of B64 to minimize the
following cost function, J :

J = xcorr
(
ŷB64, yB64

)
(9)

where xcorr denotes the cross-correlation measure, and yB64
is the activity generated by the SNS model of B64 with
the previously recorded input current IB64. For B4 and B52,
we optimized their neural parameters to minimize the root-
mean-square error (RMSE) between the current-activation
curves produced by the SNS neurons and those observed in
animals. For those neurons that do not exist in Costa et al.
(2020), we assumed they had similar capacitance, leak con-
ductance, and resting potential values as the other neurons.

In addition, we hand-tuned the parameters in synaptic
connections and feedback pathways so that the integrated
neuromuscular model could qualitatively generate Aplysia
feeding behaviors. The computational model presented in
(Costa et al. 2020) also included synaptic mechanisms such
as synaptic weights, time constants, and complex synap-
tic plasticity. However, these mechanisms and parameters
in chemical synapses are based on spiking. Therefore, they
cannot be directly used in a network model with spiking-rate
based neurons. Costa et al. (2020) also neglected the proprio-
ceptive and exteroceptive feedback in their model to focus on
themotor programs in isolated ganglia. In thiswork,we tuned
the synaptic and feedback parameters in the SNS network by
trial and error until simulations reproduced animal-like feed-
ing behaviors, and the timing of ingestive behaviors shared
similar features with animal data.

2.5 Availability of data andmodel code

The Simulink model and source code are available at
https://github.com/CMU-BORG/C3NS-IRG3-Simulink
-Modular-Model. Archived code is available through Zen-
odo (doi: 10.5281/zenodo.10228820)

3 Results

After implementing the model, we performed several tests to
comparemodel outputwith animal data to validate themodel.
We first show that SNS neurons are capable of reproduc-
ing the intrinsic dynamics of specific Aplysia neurons with

reported dynamics in the literature: B64, B4 (Hurwitz and
Susswein 1996), B34 (Hurwitz et al. 1997), and B52 (Plum-
mer andKirk 1990).We then confirm that the proposedneural
control circuitry model can produce multifunctional feed-
ing behaviors of Aplysia californica when connected with
the biomechanical model. To further assess the model, we
compare the kinematics and kinetics responses of the neu-
romechanicalmodelwith animal data. In response to external
sensory cues, the model can also switch between ingestive
and egestive behaviors.

3.1 Intrinsic neural dynamics

The SNS circuitry can generate animal-like neural dynam-
ics, although the output of neurons is activation instead of
spikes. To assess the intrinsic dynamics of our SNS model,
we compared the output of selected SNS neurons to a prior
spikingmodel introduced in Costa et al. (2020) and to animal
data (Figs. 6, 7). The output of a spiking neuron model is a
temporal sequence of action potentials. To determine its acti-
vation, we calculated interspike intervals (ISIs), the intervals
between action potentials. We could then define its instanta-
neous firing rate as the reciprocal of ISIs and its activation
as the normalized instantaneous firing rate. Four neurons,
B64, B4, B34, and B52, were chosen for comparison due to
their unique intrinsic dynamics, functional importance, and
availability of current-activation data in the prior literature.

The retraction interneuron B64 has been identified as
a critical component for terminating the protraction phase
and maintaining the retraction phase (Hurwitz and Susswein
1996) inAplysia feeding control. During the retraction phase,
it expresses a sustained regenerative firing and inhibits cells
that are active during protraction. The SNS and spiking mod-
els of B64 incorporate a fast Na+ channel and a slow K+
channel to reflect its intrinsic dynamics. We find that brief
depolarization (0.3 s) can elicit sustained bursts in both neu-
ronal models (Fig. 6A). Furthermore, once the current level
in both models is above a threshold (1.25nA), the firing fre-
quencies of bursts are not strongly affected by the injected
current. These features, including spontaneous bursts and
highly nonlinear current-activation relationship, are matched
to reported animal data (Hurwitz and Susswein 1996). In
contrast, B4 is an interneuron responsible for generating
rejection behaviors with a relatively linear current-activation
relationship (Hurwitz and Susswein 1996). The SNS model
of B4 reflects these dynamics because no additional con-
ductances exist in its membrane. The thresholds of firing
(Fig. 6B) in the SNS model (1.20nA) and spiking model
(1.25nA) lie within the range found in animal experiments
(1.0–1.5nA) (Hurwitz and Susswein 1996).

B34 is a protraction interneuron vigorously active dur-
ing CBI-2-elicited behaviors (Hurwitz et al. 1997). During
depolarization, the neuron can start firing only after a slow
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Fig. 6 Comparison between the Synthetic Nervous System model, a
spiking model, and animal data for neurons A B64 and B B4. For each
neuron, the left graph shows 10 brief input responses produced by the
SNSmodel and a spiking model in Costa et al. (2020). The activation of
the spiking model is its instantaneous firing rate normalized to the peak
value we observed in the simulation (12Hz for B64, 15Hz for B4). As

a measure of similarity, cross correlation (R) between the SNS model
response and spiking model response is shown for each brief input test.
The averaged cross correlation is also given at the top. The right graph
shows the current-activation relationship of the corresponding neuron
obtained from the SNS model, spiking model and animal subjects

K+ current inactivates (Hurwitz et al. 1997). Therefore, the
spiking model and SNSmodel of B34 incorporate a slow K+
channel to account for this mechanism. When injected with
sustained input currents, both models produce strong activa-
tion after 2 s (SNS model: 3.3 s, spiking model: 2.0 s), and
the activation can be seen only after the level of input cur-

rent achieves high values (3.25nA) (Fig. 7A). These results
are consistent with the observation that B34 is depolarized
in phase with B31/B32 in many buccal motor programs,
but does not fire. Additionally, the depolarization of B34
elicited firing after a long delay is also observed in the ani-
mal data (Hurwitz et al. 1997). Another interneuron with
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Fig. 7 Comparison between the Synthetic Nervous System model, a
spiking model, and animal data for neurons A B34 and B B52. Sim-
ilar with Fig. 6, both sustained input test and current-activation curve
are shown for each neuron. The activation of the spiking model is its

instantaneous firing rate normalized to the peak value observed in the
simulation (10Hz for B34, 15Hz for B52). Cross correlation (R) is used
to compare the response similarity for input tests

distinctive physiological properties that plays a functional
role in feeding control is B52. This neuron can display a
burst of action potentials on rebound from hyperpolariza-
tion, which is critical for guaranteeing the termination of the
retraction phase (Plummer and Kirk 1990). Post-inhibitory
rebound can be produced by several mechanisms, includ-
ing hyperpolarization-activated cation current (Jones and
Thompson 2015). Inspired by the model in Costa et al.

(2020), we added a hyperpolarization-activated Na+ con-
ductance to the SNS model of B52. This channel has slow
kinetics and can produce a slow-decaying inward cation cur-
rent to polarize the neuron after a hyperpolarization. We find
that both SNS and spiking models of B52 can generate post-
inhibitory reboundwith the slowNa+ conductance (Fig. 7B).
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Fig. 8 The integration of the SNS model and a simplified periphery
model can produce animal-like kinematics, kinetics, and neural activ-
ities for three Aplysia feeding behaviors: A biting, B swallowing, and
C rejection. In biting, the motion of the periphery is relatively fast. No
force is applied to the seaweed as the coefficients of friction are manu-
ally set to zero because biting is a failure to grasp food. In swallowing,
a protraction phase is followed by a relatively longer retraction phase,
making the total duration of the feeding increase. The coefficients of
friction are restored so that the simultaneous activation of B8 and B6

results in a strong positive force on the seaweed during the retraction
phase. In rejection, the total duration of the behavior becomes even
longer. The coincidence between the protraction phase and grasper clo-
sure is mediated by the B20/B4 module. Positive forces here indicate
the seaweed is being pulled inward, while negative forces indicate the
neuromechanical model is pushing the food out. Shaded backgrounds
indicate retraction phases. Thickening of the grasper motion trace rep-
resents the position of the grasper when closing pressure would be large
enough to avoid slip
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3.2 Multifunctional and robust feeding control

By combining the SNS neural circuitry with the simplified
peripheral biomechanics (see Sect. 2.1), we obtained a neuro-
muscular model of Aplysia feeding sufficient to qualitatively
generate two ingestive behaviors (biting and swallowing,
Fig. 8A, B) and one egestive behavior (rejection, Fig. 8C).
To elicit biting in simulation, we applied both chemical and
mechanical stimulation to the lips.We also removed the inter-
active mechanism between the periphery and the seaweed.
Since biting is defined as failed attempts to grasp food, the
seaweed should experience no friction force in this behavior.
The model generates a rhythmic behavior with biting-like
features such as similar protraction and retraction durations
(Fig. 8A). Interneurons B34 and B40 are strongly activated,
while B65, B30, B20, and B4 show low activations due to
the activation pattern of the CBI neurons. If we further apply
mechanical stimulation to the grasper and restore the interac-
tion between the periphery and the environment, the model
generates swallowing-like behaviors (Fig. 8B). As observed
in animal swallowing, the protraction duration produced by
the model is shorter than the retraction duration. B65/B30,
rather than B34/B40, are activated during the protraction
phase. Mediated by B8, the grasper closer muscle I4 closes
in-phase with the retraction phase, exerting a large positive
(ingestive) force on the seaweed to pull the food into the buc-
cal mass. In contrast, if we remove the chemical stimulation
applied to the lips to indicate the presence of an inediblemate-
rial, the model starts a rejection-like behavior with a longer
cycle duration than the aforementioned ingestive behaviors
(Fig. 8C). The behavior is egestive because the alternating
activations of B20 and B4 result in a negative (egestive) force
on the seaweed during the protraction phase.

Similar to animals, the neuromuscular model exhibits
robustness within feeding control. Robustness enables ani-
mals to maintain fitness with respect to perturbation and
thus is critical for survival in an ever-changing environment.
It can be observed when animals attempt to swallow sea-
weeds with varying mechanical strength that animals tend to
increase the duration of swallows, particularly the retraction
phase, so that they can generate a strong enough retraction
to feed on food with increasing mechanical load. In the sim-
ulation, we can modify the mechanical load by adjusting the
seaweed strength parameter, controlling the force threshold
at which the seaweed breaks. As observed in behaving ani-
mals, increasing the value of this parameter leads to a longer
swallowing duration and retraction phase (Fig. 9). Initial
negative forces during protraction are consistent with those
observed in the animal (Webster-Wood et al. 2020). As the
model parameters were not explicitly optimized to reproduce
this phenomenon, the robustness demonstrated here is an
emergent property of the feedback mechanisms. When feed-
back pathways in the model are removed, the cycle duration
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Fig. 9 Normalized grasper motion and measured force on the force
transducer during a single swallowing cycle with varying seaweed
strength thresholds. Thickening of the grasper motion trace represents
the position of the grasper when closing pressure would be great enough
to avoid slip. Shaded backgrounds indicate retraction phases. Seaweed
strength thresholds indicated by vertical green linewidths increase from
0.0, where seaweed breaks early in the retraction phase (force on the
transducer quickly drops to zero), to 0.45, at which point the seaweed
does not break. The cycle period of swallows increases with increasing
seaweed strength

remains constant at 11.60 s for different levels of mechanical
load. This duration is longer than that observedwhen sensory
feedback is present and the seaweed is unbreakable.

3.3 Ingestive response comparison

The neuromuscular model shares similar behavioral dura-
tions with animals for in vivo biting and in vitro ingestive
patterns in isolated ganglia (Fig. 10). Intact animals gener-
ate biting with relatively short cycle durations (4.26 ± 0.95
s, Fig. 10A), as well as similar protraction duration (2.03 ±
0.62 s) and retraction duration (2.17 ± 0.60 s). The biting
behavior produced by the neuromuscular model has similar
protraction duration (1.84 s, Fig. 10A) and retraction dura-
tion (2.14 s), falling within the standard deviation for both
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Fig. 10 Comparison between behavioral durations of the animal data
and the neuromuscular model. The model validation was conducted
based on four experiments: A in vivo biting (unpublished data from
Cullins et al. (2015)), B ingestive patterns generated by isolated gan-
glion (unpublished data from Cullins et al. (2015)),C swallowing loose
seaweed (Gill and Chiel 2020) and D swallowing unbreakable seaweed
(Gill and Chiel 2020).A In in vivo biting, the intact feedback pathways
promoted short total durations with similar protraction and retraction
durations. B In isolated ganglion preparations, all feedback pathways
were removed. The ingestive patterns generated by animals have total

durations 3.68 times longer than the in vivo biting. The majority of
the increase occurs in the protraction phase (5.12 times longer than A)
rather than the retraction phase (2.30 times longer than A). The biting
responses of the model with and without feedback pathways share simi-
lar characteristics with the animal data.C In swallowing loose seaweed,
the freely-moving food exerted little load on the radula.D In swallowing
unbreakable seaweed, the load prevented animals from pulling the food
inward, leading to a longer behavior duration than the unloaded case.
The increased load also induced longer swallowing in the simulation.
Error bars indicate SD

measures in the animal data. On the other hand, biting-like
patterns can also be observed in isolated ganglia of animals.
However, due to the removal of sensory feedback, the in
vitro patterns become three times longer than in vivo bit-
ing patterns (15.66 ± 7.34 s, Fig. 10B). The duration mainly
increases in the protraction phase (10.40 ± 5.78 s) rather
than in the retraction phase (4.99 ± 3.28 s). When the neural
circuitry model is isolated from the proprioceptive feedback,
it also produces a biting-like behavior with a substantially
longer protraction phase (11.84 s, Fig. 10B) and moderately
longer retraction phase (5.77 s), both of which fall within the
standard deviation of the animal data.

Moreover, animals and the neuromuscular model exhibit
similar changes in retraction duration when the load in swal-
lowing increases. Under unloaded conditions, animals feed
on fragile seaweed and swallowwith a relatively short retrac-
tion phase (1.94 ± 0.36 s, Fig. 10C). The retraction duration
obtained from the simulation (1.93 s, Fig. 10C) is close to
the animal data if the model is allowed to interact with an
unloaded seaweed. Under loaded conditions, animals feed
on strips of seaweed that are unlikely to break during swal-
lowing. Mechanically reinforced seaweed generates a higher
load and slows down the retraction phase, increasing the
retraction duration by about 52.6% (2.96± 0.69 s, Fig. 10D).
In the simulation, fixing one end of the seaweed during
swallowing increases the retraction duration, which follows
the trend observed in the animal data, although the change

is larger with duration increasing by about 138% (4.61 s,
Fig. 10D).

A quantitative comparison between the simulation results
and animal data further demonstrates the neuromuscular
model generates animal-like kinematics, dynamics, and neu-
ral activity patterns during loaded swallowing (Fig. 11).
According to the timing of certain events identified from the
force record, a swallowing cycle can be segmented into five
stages. A time normalization procedure (Gill andChiel 2020)
is applied to the retraction start and stop times, force time
series, muscle activity series, as well as neural activity series
so that records from different animals and the model could
be aligned at the boundaries between the stages. It allows a
direct comparison between model response and animal data
using metrics like cross-correlation (R). With the exception
of I2 muscle activity, the correlation coefficients between
simulated and observed patterns are above 0.9 (Fig. 11A).
Compared with animal data, the I2 muscle activation pro-
ducedby themodel starts early and ends late in the protraction
phase. Themodel also tends to activate B6 early in the retrac-
tion phase. We also test if the model and animals produce
similar cycle duration and stage durations without the time
normalization procedure. The results (Fig. 11B) demonstrate
that the Stage IV duration produced by the model is longer
than the animal data, while all other stages produced by the
model are shorter than the corresponding duration of animals.
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Fig. 11 The responses of the neuromuscular model and animal subjects
(Gill and Chiel 2020) in loaded swallowing experiments are shown: A
timing of inward movement, neural activities, and normalized force on
the transducer. B Durations of the five stages defined in Gill and Chiel
(2020). Animal responses (dashed lines: mean values, shaded area: the
lower and upper quartiles) are normalized with respect to the maximum
of the mean values for each neuron and force, except B4 activity which
is scaled by 30Hz. The model responses (solid lines) are scaled by their
maximum values, except B4 activity which is scaled by 1. Both animal

and model responses are segmented by the time normalization proce-
dure so that they can be compared with each other. Vertical dotted lines
indicate the boundaries of segmentation used for normalization. For
model output, the inward movement timing was invariant after normal-
ization, so whiskers are omitted. In contrast, the animal dataset contains
recording from5animals; inwardmovementwas therefore variable after
normalization, and whiskers are shown to reflect the variations. Cross-
correlation (R) between the model response and animal is shown for the
traces

3.4 Behavioral switching

In addition to being able to generate biting, swallowing, and
rejection behaviors individually, the neuromuscular model
can also adaptively switch between these behaviors based
on exteroceptive feedback (Fig. 12), as observed in animals.
Aplysia can immediately transition frombiting to swallowing
once they successfully grasp the food and sense a mechan-
ical stimulus in its feeding apparatus. In the simulation, we
mimic a successful grasp by applying a step change to the
mechanical stimulation in the grasper and restoring the inter-
active mechanism between the periphery and the seaweed
(the first dotted line in (Fig. 12). As a result, the model
switches from biting-like behavior (Fig. 12A) driven by CBI-
2 to swallowing-like behavior (Fig. 12B) driven by CBI-4.
The activation of B8 is in-phase with the retraction phase
so that the radula can apply inward force on the seaweed.
Similarly, Aplysia starts producing egestive behaviors when
it cannot sense food stimulus at its lips during swallowing.
Such a transition can be observed in the simulation when the
chemical stimulation is removed, while mechanical stimula-
tion is maintained in the grasper and at the lips (the second
dotted line in Fig. 12). As a consequence, the model tran-

sitions from swallowing to CBI-3 driven rejection behavior
(Fig. 12C). The B20/B4 subnetwork mediates the phasing of
the radula closure so that the seaweed can be pushed out of
the feeding apparatus.

4 Discussion

In this work, we have presented a model of the neural cir-
cuitry involved in controlling Aplysia feeding behaviors. The
synaptic connections in the model are based on existing lit-
erature, and neuronal dynamics are represented using the
Synthetic Nervous Systems framework. We organized the
motor neurons and interneurons into three layers and five
subnetworks that realize functions essential in radula pro-
traction and retraction (Figs. 4 and 5). By optimizing the
neural parameters, we found the SNS neurons can reproduce
the firing threshold, current-activation relationship, and other
intrinsic dynamics of particular Aplysia neurons (Figs. 6 and
7). We then implemented the Aplysia neural circuitry in a
neuromuscular model with simplified peripheral mechanics
(Fig. 3). The neuromuscular model is sufficient to generate
threeAplysia feeding behaviors qualitatively (Figs. 8 and 12).
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Fig. 12 Theneuromuscularmodel can switch frombiting to swallowing
and from swallowing to rejection. Initially, the interactive mechanism
between the periphery and the seaweed is removed to indicate the sea-
weed is not yet grasped. Mechanical and chemical stimuli are present
at the lips, but no mechanical stimuli are in the grasper; the network
produces biting-like behavior. The behavior switches to swallowing at

the first dashed vertical line, which represents a step change in the
mechanical stimuli in the grasper and the restoration of the interactive
mechanism. At the second vertical dashed line, the model experiences a
loss of chemical stimuli at the lips and switches to rejection-like behav-
ior

The comparisons between the simulation results and reported
data also suggest that the ingestive feeding behaviors gener-
ated by the neuromuscular model share similar features with
animals (Figs. 9 and 11).

4.1 Neuronal model selection

To understand the biophysical properties of neurons and how
they contribute to information processing in animal brains,

scientists have proposed various mathematical models of
neuronal computation. Model developers may incorporate
different levels of details and abstraction in models accord-
ing to their specific purposes. For example, neuroscientists
who want to reproduce neural dynamics as accurately as
possible may adopt morphologically realistic models (Herz
et al. 2006).With thousands of electrically coupledHodgkin-
Huxley-type compartments, thesemodels have the capability
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to capture phenomena such as spike generation and propaga-
tion in axons (Rhodes and Llinás 2005), as well as synaptic
integration in complex dendritic trees (Golding et al. 2001).
However, incorporating multiple compartments and voltage-
gated ion channels often leads to computational complexity
issues, impeding their application in theoretical analysis or
large-scale network models. Phenomenological models with
a greatly reduced set of parameters can somewhat overcome
this drawback. By simplifying or neglecting the majority
of intrinsic mechanisms, they can achieve low computa-
tional cost but still capture fundamental neuronal behaviors
(Sharpee et al. 2006). The Boolean model used in Webster-
Wood et al. (2020) is a characteristic example that can
represent on/off behaviors of neuron bursts, while its sim-
ulation speed can be two to three orders of magnitude faster
than real-time. The drawback of this network model is that
it can be too oversimplified to capture how intrinsic dynam-
ics contribute to behaviors (see Sect. 4.2). Synthetic Nervous
Systems provide a compromise inmodel complexity between
these two extremes.

In this work, we modeled neurons using the Synthetic
Nervous System framework. Each neuron is represented
by a single compartment with biologically plausible ele-
ments. We neglected the spiking mechanisms, abstracting
axons as activation functions. This simplification is based
on the hypothesis that the generation of spikes in neurons
is a trade-off between the coding efficiency and the need
for signal transmission (Koch 1998). Due to this simplifi-
cation, the simulation speed of SNS neurons is typically
one order of magnitude faster than spiking neuron mod-
els. Our results (see Sect. 3.1) suggest that SNS neurons
can reflect the intrinsic dynamics of Aplysia neurons (Figs. 6
and 7). Furthermore, implementing them in neural circuitry
can generate an animal-like pattern generator (Fig. 10B).
Although this simplification does successfully reproduce
intrinsic dynamics and multifunctional feeding when cou-
pled with a biomechanical model, it is possible that spike
timing is critical for control in the animal. Therefore, more
tests need to be conducted to investigate the effect of such
spiking mechanisms in feeding in our model. Such mech-
anisms could be added to the SNS framework if the spike
timing is found to be critical (Szczecinski et al. 2020). Recent
related work also implies using single-compartment models
to express the rich computation performed in dendritic trees
is possible (Li et al. 2019, 2023) and this approach could be
integrated into the SNS in future studies.

4.2 Central pattern generators and feedback
pathways

Central pattern generators (CPGs) and feedback pathways
are regarded as two primary neural control mechanisms
underlying the rhythmic behaviors in animals (Song and

Geyer 2015). A CPG is a set of neurons that can gener-
ate cyclic outputs without rhythmic inputs (Ijspeert 2008).
Experimental observations have verified the existence of
CPGs inmany animals (Fedirchuk et al. 1998;Grillner 1975).
Stimulation to the isolated spinal cords of some vertebrates,
including lampreys and salamanders, can elicit rhythmic pat-
terns called fictive locomotion (Ijspeert 2008; Cohen and
Wallén 1980). These motor patterns resemble the behav-
ioral patterns observed in intact animals, implyingCPGs play
a central role in their locomotion control. It was assumed
that CPGs were also essential for human locomotion (Taga
1995), but recent gait disturbance experiments reveal that
CPGs alone cannot explain human reactions to a range of
unexpected disturbances during normal walking (Sloot et al.
2015;Rafiee andKiemel 2020).On the contrary, the evidence
supports that feedback pathways are a critical component of
overall locomotion control.

It is likely that both CPGs and feedback pathways con-
tribute to the feeding control of Aplysia. Previous studies
(Jing andWeiss 2001; Jing et al. 2004) have shown that stimu-
lating specific CBI neurons in the isolated ganglia can initiate
motor patterns corresponding to feeding-related behaviors.
In this work, we verified that SNS neurons with animal like
intrinsic dynamics are sufficient to constitute a neural cir-
cuitry that generates cyclic patterns without feedback input.
When feedback loops are removed, the circuitry model can
generate biting-like patterns sharing similar oscillatory tim-
ing with those observed in the isolated ganglia (Fig. 10B). It
should be noted, however, that the timing of motor patterns
in ganglia without feedback is far from similar to feeding
behaviors generated by intact animals. The elicited biting-
like patterns in the isolated ganglia can be three times longer
than in vivo biting (Fig. 10A, B). We integrated the SNS
neural circuitry with a peripheral biomechanical model and
found the ingestive behaviors produced by the combined
neuromuscular model are more consistent with in vivo obser-
vation (Figs. 10 and 11). These results indicate that sensory
feedback may play important roles in shaping and modulat-
ing Aplysia feeding behaviors (Cullins et al. 2015).

4.3 Networkmodels of Aplysia feeding

Several network models have been presented to explain
different aspects of the neural control underlying Aplysia
feeding. To study how plasticity contributes to memory
expression, Costa et al. (2020) developed a reduced model
of the CPG circuit in Aplysia. With conductance-based neu-
rons and their synaptic connections, the model can produce
ingestion-like, rejection-like, and intermediate buccal motor
patterns. The model focused on the intrinsic features of the
circuit, ignoring the effects of feedback signals on the neu-
ral activities and behaviors. Lyttle et al. (2017) explored
the interaction between neural circuits and biomechanics
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in motor control by analyzing a neuromechanical model
of Aplysia feeding. The neural network part of the model
included three neural pools corresponding to three ingestion
phases. Each of these neural pools receives sensory feed-
back from biomechanics and inhibitory inputs from other
neural pools. Although the above models can generate mul-
tiple modes of cyclic patterns, they cannot achieve active
switching among these modes. To study control for multi-
functionality in Aplysia feeding, Webster-Wood et al. (2020)
incorporated key neurons, including higher-order interneu-
rons in the cerebral ganglion, into their Boolean network
model. Driven by sensory feedback, the model can flexibly
switch behaviors as external stimuli vary.

We developed a SNS network to capture essential features
of the Aplysia feeding circuit. The model includes neurons,
synapses, and feedback pathways identified in existing liter-
ature to ensure biological plausibility. It can independently
produce three behaviors of interest through the local coor-
dination of buccal interneurons. The global coordination
mediated by the CBI neurons further allows the transition
among these behaviors. It can demonstrate the contribution
of both intrinsic dynamics and sensory feedback. Similar
to the CPG model presented in Costa et al. (2020), it is
sufficient to produce oscillatorymodeswithout sensory feed-
back. The Boolean network in Webster-Wood et al. (2020)
cannot reflect such motor patterns. Due to simplifying the
neuronal dynamics, it will stop working once sensory inputs
are removed. When combined with a biomechanical model,
the incorporated feedback pathways in the SNS network pro-
vide excitatory or inhibitory inputs to specific motor neurons
and interneurons, thereby allowing the generation of animal-
like feeding behaviors.

4.4 Limitations and future work

Although we showed the integration of the presented neu-
ral circuitry model and a previous biomechanical model can
qualitatively produce animal-like feeding behaviors, there
are some discrepancies between the simulation results and
animal data. In loaded swallowing, the retraction duration
of the neuromuscular model does not lie within the range
found in animal experiments (Fig. 10). The largest discrep-
ancy between the simulated and observed activities occurs
in the I2 muscle (R = 0.82, Fig. 11) whose onset is early by
14% and termination is late by 11% of the swallowing cycle.
The correlation coefficient of B6 is above 0.9 (0.92), but the
model response starts early in stage II. In contrast, the B6
activity observed in animals (mean value) does not achieve
90% of its maximum value until the end of stage III. The
model also tends to produce different stage durations. In par-
ticular, stage IV of the model is 79% longer than observed in
animals, while stages I, II, and III of themodel are 41%, 17%,
and 52% shorter than observed in animals, respectively. The

model might need to incorporate more biological details to
increase the quality of the match for kinematics, dynamics,
and neural activities.

In this work, the neuronal parameters of B64, B4, B34,
and B52 were estimated by optimization algorithms, while
other parameters, such as synaptic parameters (Table 3),
were found by hand-tuning (see Sect. 2.4). Since the neu-
ral circuitry model contains hundreds of parameters, the
hand-tuning process was tedious and time-consuming. In
addition, the hand-tuned parameters are not necessarily the
desired values. The quality of the model can be further
improved with more effective parameter exploration meth-
ods. In futurework,wewill automate the parameter search by
using advanced optimization ormachine learning algorithms,
such as Markov Chain Monte Carlo (MCMC) methods (van
Ravenzwaaij et al. 2018). MCMC is a Bayesian inference
method that has been leveraged to estimate key parameters
in complex neuron models (Wang et al. 2022). It can not only
provide a point estimate of a specific parameter set, but also
efficiently reveal the entire landscape of the fitness functions.
Therefore, it has an advantage in quantifying the parameter
sensitivity that is not analyzed in the work presented here.

In actual feeding behaviors, the movement of the grasper
or head is more complex than rigid translation along a single
dimension. Experimental results, including in vivomagnetic
resonance images (Novakovic et al. 2006), suggest that the
closed grasper rotates about the hinge muscle during Type B
rejection. The grasper even changes its shape during open-
ing and closing, leading to a mechanical reconfiguration of
the muscular system (Ye et al. 2006). Kinematics models
(Neustadter et al. 2002), kinetic models (Novakovic et al.
2006), and experimental results (Ye et al. 2006) have demon-
strated that these grasper movements can be critical for the
neural control ofmultifunctionality. Thework reported in this
paper integrated the neural circuitry model with a simplified
biomechanical model. As a consequence, while the model
can qualitatively generate multifunctional feeding behav-
iors, it fails to capture the interaction between neural control
and grasper rotation or deformation. Future iterations of the
model will be integrated with more detailed biomechanical
models to show how the combination of neural control and
peripheralmechanics contributes to the generation of feeding
behaviors.

Intermediate behaviors and cycle-to-cycle variability are
not explored in this work. In fact, biting, swallowing, and
rejection that can be qualitatively reproduced by the model
only constitute a small group of Aplysia feeding behaviors.
According to external sensory cues, animals can selectively
generate ingestive, egestive, and various intermediate behav-
iors along a behavioral continuum (Katzoff et al. 2006).
Previous literature (Morton and Chiel 1993a) has demon-
strated that those intermediate behaviors, such as the attempt
to reposition the food and retry swallowing before rejection,
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are vital for effective feeding. Since SNS neural circuitry can
generate graded rather than on/off activity, it has the potential
to capture these behaviors as well. Further development of
the simulation needs to be done to investigate intermediate
feeding behaviors controlled by the present model. On the
other hand, animals tend to generate behaviors with variabil-
ity (Cullins et al. 2015). Even within a given individual, the
observed behaviors have different periods and magnitudes in
each cycle. The variability in motor control may contribute
to the success of behaviors and animal survival (Marder and
Taylor 2011). Stochastic parameters can be incorporated into
the model to capture the important variability (Costa et al.
2020).

Appendix A Biomechancial model

A.1 Peripheral mechanics

The peripheral mechanics of the biomechanical model repre-
sents a simplified Aplysia feeding system with two segments
connected by two translational joints and actuated by four
muscles. Prismatic joints connect the segmentswith oneDOF
between the head and body and another DOF between the
grasper and head (Fig. 13A). Three muscle units, including
the I2 protractor muscle, the I3 retractor muscle, and the
hinge retractor muscle actuate the head-grasper joint. The
remaining muscle units, the I4 muscle and the anterior por-
tion of the I3 jaw muscle, are responsible for radula closure
and jaw closure, respectively.According to the free-body dia-
grams (Fig. 13b), the equations of motion of the system are
as follows:

mh ẍh + ch ẋh

= Fsp,h − Fsp,g − FI2 + FI3 + Fhinge + Ff,h

mg ẍh + cg ẋg

= Fsp,g + FI2 − FI3 − Fhinge + Ff,g (A1)

xh

xg

xg/h

Kh Kg

Fsp,h
FI2

Fsp,g

FI3

Fhinge

Ff,h

Ff,g

FI2

Fsp,g

FI3

Fhinge

(A) (B)

Fig. 13 Peripheral mechanics.AAmass-spring-damper representation
of the biomechanical model. The body-head connection and the head-
grasper connection are viewed as prismatic joints with internal stiffness.
Viscous damping is also incorporated to model the damping between
the segments and seawater. B Free body diagrams showing all possible
muscle forces, friction forces, and spring forces on the head segment
(top) and grasper segment (bottom)

where Fsp,h = kh
(
x0h − xh

)
and Fsp,g = kg

(
x0g/h − xg/h

)
are

the spring force between the head and neck and between the
grasper and the head of the animal, respectively. x denotes
position, m denotes mass, c denotes damping ratio, and k
denotes spring constant. The subscript h and g denote the
head and the grasper, respectively. x0h and x0g/h are the rest-
ing length of the prismatic joints. FI2, FI3, and Fhinge are
muscle forces, while Ffh and Ffg are friction forces between
the seaweed and the corresponding segments (see Appendix
A.3).

A.2 Muscle model

The muscle force F∗ is calculated as followed

F∗ = F∗,maxT∗MA∗
τ 2∗ T̈∗ + 2τ∗Ṫ∗ = y∗ (A2)

where the subscript ∗ is the index of the muscle unit,
F∗,max is the maximum muscle force, MA∗ is the mechani-
cal advantage (MAI2 = 1 − xg/h, MAI3 = xg/h, MAhinge =
max

(
xg/h − 0.5, 0

)
), and y∗ is the output of the corre-

sponding motor neuron. The activation of the corresponding
muscle, T∗, is determined by a cascade of two first order
systems with time constant τ∗.

A.3 Grasper-seaweed interaction and seaweed
movement

The biomechanical system can interact with the environment
via two points. The first contact point is between the grasper
and its food, seaweed. With a stimulus sent to the I4 muscle,
the grasper closes and applies contact force to the food. The
other contact point is located at the jaw. Contraction of the
anterior portion of the I3 muscle makes the jaw pinch the
seaweed. Pg, the normal contact between the grasper and
food, and Ph, the normal contact force between the head and
food, are calculated similarly to Eq. (A2)

τ 2∗ P̈∗ + 2τ∗ Ṗ∗ = y∗ (A3)

where the subscript ∗ denoting h or g is the index of the
contact point, τ∗ is the time constant of the corresponding
muscle, y∗ is the output of motor neurons innvervating the
corresponding muscle (yg = yI4, yI3,ant = yB6 + yB38).

The tangential contact force acts like the Coulomb friction
model,

|Ff ,∗| ≤ μs,∗P∗, static case

|Ff ,∗| = μk,∗P∗, sliding case (A4)
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where the direction of the friction force is opposite to the
relative motion, ∗ denotes the contact point as above, μs,∗
andμk,∗ are the corresponding static and dynamic coefficient
of friction, respectively (see Webster-Wood et al. (2020) for
how to determine the type and direction of friction force).

Appendix B Neuromuscular parameters

See the Tables 1, 2, 3, 4 and 5.

Table 1 Intrinsic dynamics of neurons without extra ion channels

Neuron Intrinsic currents Activation function

B4

Icap = 0.01 dU
dt min

(
1,max

(
0, U−6.58

U−25

))

IL = 0.2(−60 −U )

B6

Icap = 0.01 dU
dt min

(
1,max

(
0, U−5

U−43.3

))

IL = 0.1(−60 −U )

B7

Icap = 0.01 dU
dt

1
1+e−(U+43.5)/2.5

IL = 0.1(−60 −U )

B8

Icap = 0.01 dU
dt min

(
1,max

(
0, U−5

U−43.3

))

IL = 0.1(−60 −U )

B30

Icap = 0.01 dU
dt min

(
1,max

(
0, U−5

U−43.3

))

IL = 0.1(−60 −U )

B31

Icap = 0.01 dU
dt min

(
1,max

(
0, U−5

U−43.3

))

IL = 0.05(−60 −U )

B38

Icap = 0.01 dU
dt min

(
1,max

(
0, U−5

U−43.3

))

IL = 0.1(−60 −U )

B40

Icap = 0.01 dU
dt min

(
1,max

(
0, U−5

U−43.3

))

IL = 0.1(−60 −U )

B63

Icap = 0.01 dU
dt min

(
1,max

(
0, U−5

U−43.3

))

IL = 0.04(−60 −U )

CBI2

Icap = 0.01 dU
dt min

(
1,max

(
0, U−5

U−43.3

))

IL = 0.1(−60 −U )

CBI3

Icap = 0.01 dU
dt min

(
1,max

(
0, U−5

U−43.3

))

IL = 0.1(−60 −U )

CBI4

Icap = 0.01 dU
dt min

(
1,max

(
0, U−5

U−43.3

))

IL = 0.1(−60 −U )
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Table 2 Intrinsic dynamics of neurons with extra ion channels

Neuron Intrinsic currents Dynamic variables Steady states Relaxtion time (ms) Activation function

B20

Icap = 0.01 dU
dt

1
1+e−(U+43.5)/2.5

IL = 0.1(−60 −U )

IK = −1.25A2B(60 +U ) d A
dt = A∞−A

τA
A∞ = 1

1+e−60−U τA = 0.02 + 0.18

[1+e56+U ]2

dB
dt = B∞−B

τB
B∞ = 1

[1+e55+U ]2
τB = 0.5

B34

Icap = 0.01 dU
dt min

(
1,max

(
0, U−5

U−43.3

))

IL = 0.1(−60 −U )

IK = −1.25A2B(60 +U ) d A
dt = A∞−A

τA
A∞ = 1

1+e−60−U τA = 0.02 + 0.18

[1+e56+U ]2

dB
dt = B∞−B

τB
B∞ = 1

[1+e55+U ]2
τB = 0.5

B52

Icap = 0.01 dU
dt min

(
1,max

(
0, U−1.96

U−51.7

))

IL = 0.1(−62 −U )

INa = 0.1A(30 −U ) d A
dt = A∞−A

τA
A∞ = 1

[1+e61+U ]3
τA = 5 + 15

1+e
60+U

5

B64

Icap = 0.01 dU
dt

1
1+e−(U+43.5)/2.5

IL = 0.19(−60 −U )

INa = 0.1A(30 −U ) d A
dt = A∞−A

τA
A∞ = 1

1+e−50−U τA = 0.1

IK = −0.35A(70 +U ) d A
dt = A∞−A

τA
A∞ = 1

1+e−50−U τA = 4

B65

Icap = 0.01 dU
dt

1
1+e−(U+43.5)/2.5

IL = 0.08(−60 −U )

INa = −0.3A(40 +U ) d A
dt = A∞−A

τA
A∞ = 1

[

1+e
−45−U

5

]3 τA = 2

IK = −0.01A(60 +U ) d A
dt = A∞−A

τA
A∞ = 1

[

1+e
40+U

5

]4 τA = 1

Table 3 Summary and parameters of synapses

Postsynaptic Presynaptic Types (Maximal) Reversal Time
Conductance Potential Constants
(μS) (mV) (ms)

B4

B20 Slow excitatory −0.3 –60 2(r ), 5(s)

B31 Electrical 0.008

B64 Fast excitatory 0.1 0 0.01(r ), 0.01(s)

Electrical 0.008

B6

B4 Fast inhibitory 2 –80 0.01(r ), 0.01(s)

B63 Fast inhibitory 5 –80 0.01(r ), 0.01(s)

B64 Fast excitatory 0.4 0 0.25(r ), 0.25(s)
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Table 3 continued

Postsynaptic Presynaptic Types (Maximal) Reversal Time
Conductance Potential Constants
(μS) (mV) (ms)

B7

B64 Fast excitatory 0.4 0 0.01(r ), 0.01(s)

B8

B4 Fast inhibitory 5 –80 0.015(r ), 0.015(s)

B20 Fast excitatory 3.5 0 0.004(r ), 0.0015(s)

Slow excitatory 0.9 0 1(r ), 1(s)

B30 Slow excitatory −0.15 –60 3(r ), 3(s)

Fast inhibitory 0.5 –70 0.2(r ), 0.001(s)

B34 Slow excitatory −0.03 –65 1(r ), 1(s)

Fast inhibitory 0.2 –80 0.01(r ), 0.01(s)

B40 Slow excitatory 0.3 0 5(r ), 0.001(s)

Fast inhibitory 0.4 –75 0.015(r ), 0.015(s)

B64 Fast excitatory 0.002 0 0.01(r ), 0.01(s)

B65 Fast excitatory 0.06 0 0.004(r ), 0.0015(s)

Slow excitatory 0.3 0 1(r ), 1(s)

B20

CBI2 Slow excitatory 0.06 0 0.5(r ), 0.5(s)

CBI3 Fast inhibitory 2 –80 0.01(r ), 0.01(s)

CBI4 Slow excitatory 0.06 0 0.5(r ), 0.5(s)

B31 Electrical 0.004

B34 Fast excitatory 0.16 0 0.2(r ), 0.2(s)

B63 Fast excitatory 0.2 0 0.01(r ), 0.01(s)

Slow excitatory 0.1 0 0.5(r ), 0.5(s)

Electrical 0.004

B64 Fast inhibitory 2 –80 0.01(r ), 0.01(s)

B65 Fast excitatory 0.12 0 0.05(r ), 0.05(s)

Slow excitatory −0.01 –60 0.5(r ), 0.5(s)

Electrical 0.004

B30

CBI4 Fast excitatory 0.1 0 0.01(r ), 0.01(s)

Slow excitatory 0.1 0 0.5(r ), 5(s)

B31 Electrical 0.009

B63 Electrical 0.006

B64 Fast inhibitory 5 –80 0.01(r ), 0.01(s)

B65 Fast excitatory 0.05 0 0.01(r ), 0.01(s)

B31

CBI2 Fast excitatory 0.02 0 0.001(r ), 0.001(s)

Slow excitatory 0.002 0 0.5(r ), 5(s)

B4 Electrical 0.008

B20 Electrical 0.004

B30 Fast excitatory 0.05 0 0.005(r ), 0.005(s)

Electrical 0.009

B34 Fast excitatory 0.125 0 0.01(r ), 0.01(s)

Slow excitatory 0.05 0 1.5(r ), 1.5(s)

B63 Fast excitatory 1 0 0.01(r ), 0.01(s)

Slow excitatory 0.4 0 0.2(r ), 0.2(s)

123



Biological Cybernetics

Table 3 continued

Postsynaptic Presynaptic Types (Maximal) Reversal Time
Conductance Potential Constants
(μS) (mV) (ms)

Electrical 0.015

B64 Fast inhibitory 0.5 -80 0.01(r ), 0.01(s)

B65 Fast excitatory 0.1 0 0.004(r ), 0.0015(s)

Electrical 0.004

B34

CBI2 Fast excitatory 0.3 0 0.01(r ), 0.01(s)

B40 Electrical 0.008

B63 Fast excitatory 0.03 0 0.015(r ), 0.015(s)

B64 Fast inhibitory 2 –80 0.1(r ), 0.1(s)

B65 Electrical 0.008

B38

B20 Slow inhibitory 2 –80 0.5(r ), 0.5(s)

B40 Fast inhibitory 5 –80 0.01(r ), 0.01(s)

B64 Fast inhibitory 5 –80 0.1(r ), 0.1(s)

B40

CBI2 Fast excitatory 0.2 0 0.01(r ), 0.01(s)

Slow excitatory 0.2 0 0.2(r ), 2(s)

B34 Electrical 0.008

B63 Electrical 0.004

B64 Fast inhibitory 2 –80 0.01(r ), 0.01(s)

B65 Slow inhibitory 4 –60 1.5(r ), 1.5(s)

Electrical 0.008

B52

B64 Fast inhibitory 3 –80 0.01(r ), 0.01(s)

B63

CBI2 Fast excitatory 0.06 0 0.01(r ), 0.01(s)

Slow excitatory 0.06 0 0.5(r ), 5(s)

CBI4 Fast excitatory 0.06 0 0.01(r ), 0.01(s)

Slow excitatory 0.06 0 0.5(r ), 5(s)

B20 Electrical 0.004

B30 Fast excitatory 0.03 0 0.01(r ), 0.01(s)

Electrical 0.006

B31 Electrical 0.015

B34 Fast excitatory 0.3 0 0.025(r ), 0.025(s)

B40 Electrical 0.004

B64 Fast inhibitory 2 –80 0.01(r ), 0.01(s)

B65 Fast excitatory 0.1 0 0.004(r ), 0.0015(s)

Electrical 0.006

B64

B4 Electrical 0.008

B30 Slow excitatory 0.05 0 0.5(r ), 0.5(s)

Fast inhibitory 0.02 –80 0.02(r ), 0.02(s)

B31 Fast inhibitory 0.1 –80 0.1(r ), 0.1(s)

B34 Fast inhibitory 0.15 –80 0.2(r ), 0.2(s)
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Table 3 continued

Postsynaptic Presynaptic Types (Maximal) Reversal Time
Conductance Potential Constants
(μS) (mV) (ms)

B40 Fast inhibitory 0.18 –65 0.015(r ), 0.015(s)

B52 Fast inhibitory 5.6667 –80 0.05(r ), 0.05(s)

B63 Slow excitatory 0.2 0 0.2(r ), 0.2(s)

Fast inhibitory 0.02 –80 0.15(r ), 0.15(s)

B65 Fast excitatory 0.05 0 0.004(r ), 0.0015(s)

Slow inhibitory 0.03 –80 0.5(r ), 0.5(s)

B65

CBI2 Fast inhibitory 0.9 –80 0.01(r ), 0.01(s)

Slow inhibitory 0.9 –80 0.5(r ), 5(s)

CBI4 Slow inhibitory 0 –80 0.5(r ), 5(s)

B20 Electrical 0.004

B31 Electrical 0.004

B34 Electrical 0.008

B40 Electrical 0.008

B63 Slow excitatory 0.4 0 0.1(r ), 0.1(s)

Electrical 0.006

B64 Fast inhibitory 2 –80 0.01(r ), 0.01(s)

Table 4 Synaptic thresholds of
synapses from B4

Postsynaptic neuron Synaptic threshold

B6 0.55

B8 0.5

Table 5 Summary of feedback
pathways

Neuron Type Feedback currents

B64

Proprioceptive Iapp,1 = max
(
200(xg/h − 0.38), 0

)

Proprioceptive Iapp,2 = −max
(−200(xg/h − 0.38), 0

)

B4

Proprioceptive Iapp,1 = max
(
20(xg/h − 0.7), 0

)

Exteroceptive Iapp,2 = max
(−20(MEg − 1), 0

)

B7

Proprioceptive Iapp,1 = max
(
50(xg/h − 0.5), 0

)

Proprioceptive Iapp,2 = −max
(−100(xg/h − 0.7), 0

)

B38

Proprioceptive Iapp,1 = max
(−25(xg/h − 0.7), 0

)

Exteroceptive Iapp,2 = max (−20(CHl − 1), 0)

Exteroceptive Iapp,3 = max (−20(MEl − 1), 0)

Exteroceptive Iapp,4 = max
(−20(MEg − 1), 0

)
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