LINK HOMOLOGY AND FROBENIUS EXTENSIONS II
MIKHAIL KHOVANOV AND LOUIS-HADRIEN ROBERT

ABSTRACT. The first two sections of the paper provide a convenient
scheme and additional diagrammatics for working with Frobenius ex-
tensions responsible for key flavours of equivariant SL(2) link homology
theories. The goal is to clarify some basic structures in the theory and
propose a setup to work over sufficiently non-degenerate base rings. The
third section works out two related SL(2) evaluations for seamed sur-
faces.

A building block for the Khovanov homology [Kho00, BN02] is a specific
(1 4+ 1)-dimensional TQFT associated to a commutative Frobenius algebra
of rank two. Different versions of this TQFT exist, including those studied
in [BNO5, [KhoO6b] and in many other papers [Cap08, Vog20, [CMW09,
BNMOG6]. These different versions may yield different types of information.
The first striking example is the construction by Rasmussen [Rasl0] of a
lower bound on the slice genus of knots based on degenerating one of these
TQFTs into the Lee (14 1)-dimensional TQFT [Lee05]. An attempt to sort
through some of these theories, including Bar-Natan theories [BN05], had
been made in [KhoOGb.

A number of theories can be constructed via the natural action of U(2)
and its subgroups G on S? = CP', see [KhoO6b]. In those theories the ho-
mology Rg of the empty link is the G-equivariant cohomology H*(x,Z) of a
point, while the homology A of the unknot is the G-equivariant cohomology
H*(S?,Z). When G = SU(2) this theory allows to recover the Rasmussen
invariant and for G = U(1) with the diagonal embedding into U(2) it pro-
duces variations of the Rasmussen invariant. In the case G = U(2) rings
Rg and Ag are the rings of symmetric polynomials in two variables and a
particular rank two extension of the latter, respectively.

GL(N) foam evaluation [Kho04, RW20, [KR21] formulas require working
with the entire ring of polynomials in /N variables rather than its subring of
the symmetric polynomials. One proves that foam evaluation is symmetric,
but individual terms are not and many computations need to be done in
the larger ring.
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Passing from the ring of symmetric polynomials to the bigger ring of
all polynomials corresponds to downsizing from U(N) to U(1)"-equivariant
cohomology, for the standard embedding U(1)N = U(1) x --- x U(1) C
U(N). Reducing to this smaller subgroup enlarges the ground ring and
makes it easier to manipulate.

There are further potential benefits to working with all polynomials
rather than symmetric ones. A larger ground ring delivers more possibil-
ities for new constructions, due to the option to break the symmetry of the
polynomial variables from the symmetric group acting on them to a smaller
group.

We study N = 2 case of this construction in the paper and U(1) x U(1)-
equivariant homology, including carefully writing down various diagram-
matic relations in the Frobenius algebras that control the theory.

Since the first version of the paper came out, two developments showed
the benefit of using U(1) x U(1)-equivariant homology over U (2)-equivariant

one:

e R. Akhmechet has constructed U(1) x U(1)-equivariant homology
for links in the solid torus [Akh20]. Earlier attempts by several re-
searchers to build U(2)-equivariant homology for link in the solid
torus have not been successful. R. Akhmechet’s idea is to break the
symmetry between the two generators of the polynomial ground ring
when defining maps for generating cobordisms in the solid torus.

e T. Sano has shown that the the sign indeterminacy in the extension
of Khovanov homology to tangle cobordisms can be eliminated in
U(1) x U(1)-equivariant theory [San20]. In the non-equivariant and
in the U(2)-equivariant theory it’s unknown whether such elimina-
tion is possible. Prior to Sato’s work, the indeterminacy was resolved
by adding defects to cobordisms, see Clark—Morrison—Walker [CMW09)
and Caprau [Cap09], or by introducing G'L(2) foams, see Blanchet [Blal0].
These and other theories have been investigated by Ehrig-Tubbenhauer—
Stroppel [EST17] and put into a perspective from the viewpoint of
GL(N) foams by Lauda—Queffelec-Rose [LQR15].

Together with the use of U(1)N-equivariance in foam evaluation, these
examples easily justify taking a close look at U(1)"-equivariant link homol-
ogy. We expect that the number of uses of such ”symmetry breaking” to
find new structures and refinements in link homology will continue to grow,
for both N = 2 and arbitrary N.



LINK HOMOLOGY AND FROBENIUS EXTENSIONS II 3

In this note, without trying to be all-inclusive, we go through several
key variations on the usual U(2)-equivariant Frobenius pair (R, A), with R
and A being the equivariant U(2) cohomology groups with Z coefficients of
a point and a 2-sphere, respectively (Section . In Section |2| we investigate
a Galois symmetry appearing in the U(2)-equivariant context and explain
how this symmetry can be implemented combinatorially on cobordisms by
mean of defect lines. Finally, in Section [3|, we explain how these theories can
be recovered using foam evaluation and investigate how they behave when

defects are introduced on objects.

1. A CUBE OF FOUR RANK TWO FROBENIUS EXTENSIONS

1.1. Road map for Frobenius extensions in U(2)-equivariant Kho-
vanov homology. In this section we investigate four Frobenius extensions.
These four extensions are collected into Figure (1| below; see also Figure
for a more detailed view of this cube.

D—l

[l ~ Rp
4
o
_i RaD

FiGURE 1. Cube of four Frobenius extensions; red numbers
1 —4 on the sides provide links to descriptions of these exten-
sions.

The diagram consists of four graded Frobenius extensions of degree two
(11) (Rv A)a (RpaAD)> (ROMAOé)? (RaDaAaD)

and maps between them. In each of these extensions (R, A.) Frobenius
algebra A, is a free graded R,-module of rank two with a basis {1, X'}, with
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the trace map € : A, — R, given by
(1.2) €(1) =0, €X)=1,

and the comultiplication

Al) = X®1+1® (X - E),
AX) = X@X - Elel.

Inclusions of rings R, C A, in the extensions are shown by the four arrows

(1.3)

that go diagonally pointing northeast. Horizontal and vertical arrows rep-

resent certain inclusions of ground rings R, and induced inclusions of rings
A,.
1. The first extension (R, A) consists of graded rings

o R =Z[Ey, By, deg(Er) = 2, deg(Er) = 4,

o A= R[X]/(X? - E\X + E,), deg(X) = 2.
Algebra A is a commutative Frobenius R-algebra of rank two with a basis
{1, X'}. The trace and comultiplication are given by formulas , .

Algebra A is a free graded R-module with homogeneous basis {1, X}.

Elements X and E; — X in A are roots of the polynomial 2? — Ex + E,
with coefficients in R, and there is an R-linear involution o of the algebra
A transposing X and E; — X. We can somewhat restore this symmetry

between X and F; — X in the notation and denote
(1.4) X = X, Xy = B —X,
so that
Xi+Xo=E, X1Xo=FE,
and
(1.5) o(Xy) =Xy, o(Xy) =Xy, o(l)=1,
with o(a + bX;) = a + bX, for a,b € R. We have
(1.6) Al) = X101-10X, = —(Xo®1 -1 X)),
(1.7) AXy) = X19X1—F1®1,
(1.8) AXy) = E21®1—X,® Xo.

Comultiplication introduces a sign which breaks the symmetry between
the two roots, and comultiplication does not commute with o. Likewise, the
trace map breaks the symmetry between the roots,

(1.9) (X)) =1, e(Xa)=—1,

and ec = —e.
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In Figure[2] we recall the usual diagrammatic conventions for 2-dimensional
TQFTs and commutative Frobenius algebras, with our distinguished gen-
erator X denoted by a dot.

@@..

14 € idg
m A mA
FiGUurE 2. Cobordisms and the Frobenius structure maps dictionary.

The definition of € reads diagramatically as follows:

(1.10) @:o and @:1.

The composition of comultiplication and multiplication

is an A-module map taking 1 to the difference of roots X; — X5. Conse-
quently, this map is the multiplication by X; — X5. Thus, a genus one cobor-
dism with one boundary component, when viewed as a cobordism from the
empty one-manifold to S', represents the element X; — Xy = mA(1) € A.
A two-torus with two boundary components, when viewed as a cobordism
between the circles, describes the map A — A which is the multiplication
by X; — Xo.

The trace map € determines an R-linear symmetric bilinear form on A,

(,) : A® A— R, (a,b) = e(ab).

This is a unimodular form on A with dual bases (1, X) and (X — Ey,1).
This pair of dual bases can also be written (1, X;) and (—X5, 1).

The identity map on A decomposes in these bases as usual:
(1.12) a = X1 ®¢€(a) —1®e(Xoa) = —Xo®e(a) +1®e(Xqa), a € A.

We can write this identity diagrammatically as the neck-cutting relation.

— 7 T
ayayol

(1.13)

D@
DA
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with

o |[:=F; —| e

Notice that we use a dot of the second type (hollow dot, a little circle
with white area inside) to denote the second root Xy, borrowing the idea
and notation from [BHPWTI9|. The following notation may also be useful:

(1.14) Xo=X, =X, Xo:=Xo=FE, — X,

where we use e and o as subscripts for root elements instead of 1, 2.

A solid dot e placed on a vertically positioned annulus denotes the multi-
plication by X; = X operator on A, see the rightmost diagram in Figure [2|
Defining relation in A translates into the solid dot reduction relation

(1.15) o0 =F,| o |—F,

The dual (or hollowed) dot (o) denotes the multiplication by X, = E; —
X. A torus with a boundary component is the difference of a dot and a dual

dot on a disk with the same boundary.

(1-16)@@@@ with | % |=| o || o

Relation ([1.15)) holds with solid dot replaced by hollow dot. We denote by
* the difference of the solid and hollow dots, and use a similar subscript in
X:

(1.17) X, =X, — Xo= X, — X, =2X — E; = mA(l) € A.

Note that X, is in A but not in R. With our notations, a torus with
one boundary component equals a disk with a star dot on it, see equation
. In this sense, having a star dot on a surface is equivalent to adding
a handle to it.

Recall that the discriminant of the quadratic polynomial 22 — Eyx + E,
is the square of the difference X; — X5 of roots and belongs to R,

(1.18) D= (X, —Xo)’=X2=F] —4E, € R.

The degree deg(D) = 4. Diagrammatically,

(1.19) 2 |l=|x|=D

A closed surface of genus two evaluates to €(D) = 0, as in [BNO5, Section

9.2]. A closed surface of genus three evaluates to 2D:
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(1.20) 2D .

Significance of closed genus three surfaces and their evaluation was pointed
out by Bar-Natan in [BNO5 Section 9.2], where the Lee theory was tied to
specializing the value of the closed genus three surface to 8.

Likewise, a surface of genus two with one boundary circle equals a disk

times D, see below and equations ((1.16)), (1.19)):

D090

A closed surface of odd genus 2n + 1 evaluates to 2D", of even genus 2n to
zero. A surface of odd genus 2n + 1 with a dot evaluates to E;D", of even
genus 2n with a dot to D".

We have

(1.21) o(Xy) = —=X,, €(Xy) =2, A(X,) =X10X1+Xo®Xe—2F1®1.
Exact sequences of A-bimodules

(1.22) 0— A{d} 2 A@r A{2) X5 A0 A 2 A —0,

where {k} is the grading shift up by k, glue into an infinite 2-periodic

resolution of the identity A-bimodule A by free A-bimodules

(1.23) ... 5 AR A4} ™A Ao A2} 5 AggA T A — 0,

Two-dimensional TQFT (R, A), with its applications to link homology,
was introduced by Bar-Natan [BNO5]. It’s also the theory labelled (Rj5, As)
in [KhoOGb|, with parameters h,t there corresponding to E;, —Es.

2. Frobenius extension (Rp, Ap) consists of graded rings
e Rp = R|D7'| = Z[E,, E», D], where D is the discriminant, see
equation . Since deg(D~!) = —4, graded algebra Rp is non-
trivial in all even degrees.
o Ap = Rp[X]/(X? — E\X + E,).
Thus, algebra Rp is obtained from R by inverting the discriminant element
(localizing along it). Algebra Ap = A®pgRp, so that the Frobenius extension
(Rp, Ap) is obtained from (R, A) by inverting the discriminant D. Algebra
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Ap is a free Rp-module of rank two with a homogeneous basis {1, X}.
Formulas and for the trace and the comultiplication hold in this
Frobenius extension, as well as all other formulas derived above for the
extension (R, A).

Since D is invertible of degree 4, there is an isomorphism of graded free
Rp-modules Rp = Rp{4}, so that in the Grothendieck group of graded
modules one can work at most over Z[q]/(¢* — 1) rather than over Z[q, ¢™]
for graded R-modules.

Separability: Given a unital homomorphism v : S — T of commutative
rings, one can form the enveloping algebra T° =T ®g T, acting on T by

(tl ® tg)t = tlttg
and a homomorphism of T°-modules
m:TRsT — T, m(a®b)=ab.

Homomorphism 1 is called separable if there exists a homomorphism g :
T — T ®g T of T*-modules such that m o yu = Idr,

mop : T'—TRsT —T.

Remark: Separability can be defined for noncommutative S-algebras T'
as well, changing the notion of the enveloping algebra to T° = T ®g T°,
where T is the opposite algebra of T'.

Separability is equivalent to the existence of an idempotent e € T'®g T’
such that m(e) = 1 and eu = 0 for any u € ker(m). Such e is called a
separability idempotent and is equal to u(1). Separability is also equivalent
to the condition that the exact sequence of T¢-modules

0 — ker(m) — T ®sT 5T — 0

splits. T¢-submodule ker(m) is generated by the complementary idempotent
1 —e, in the separable case. We refer to [Kad99l [For17] for more information

on separable extensions.
Proposition 1.1. The ring extension Rp — Ap is separable.

Proof. Specializing the above notations to our case, we have the algebra
A% = Ap ®gr, Ap.

Recall that X, = X; — X, is the difference of roots, denoted by star dot
* on a surface. From equation (|1.18)) we see that +£X, are the two square
roots in A of the discriminant D € R.
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With D invertible, we can define the inverse of the x dot as the ratio

X,/D,

(1.24) 1 =D1| %

This diagram describes X! = D7!X, € Ap. Since mA = (X, —X,) Ida, =
X, Ida,, see equations (1.11)) and (1.16)), and X, is invertible in Ap, we can

rescale the comultiplication to the map

(1.25) Ap = Ix, D'A=ly1 A : Ap — A5
to split the short exact sequence

(1.26) 0 — ker(m) — Ap ®@p, Ap — Ap — 0.

Here (x, denotes the left multiplication by X, on A%, but the right multi-

plication by the same element works as well, since A is a homomorphism of
S-modules.

Diagrammatically, Ap is given by dotting the copants with the star in-

verse,

N S G -
(1.27) Ap = v - Dl,

Note that placing a star dot on a surface is equivalent to adding a handle,
see . One can think of the inverse x~! on a surface as an antihandle
(of genus minus one). Informally, Ap is given by copants of genus (—1). In
the theory (Rp, Ap) we can turn a connected component of a surface into a
"negative genus” surface by placing a suitable negative power of the x dot
on it.

We have mAp = ida,. Diagrammatically, mA adds a handle to the
annulus representing the identity map of id 4., the state space of the circle.
Presence of the star dot inverse on the surface for Ap cancels out that
handle.

The separability idempotent is

(128) e=Ap(1) =D '"A(X,) =D '(X1 X1+ Xo® Xy —2F,1 ® 1)
=D HX,®1-1®X,)? =D 'A(1)? € A, O
Diagrammatically, e is a genus one cobordism from the empty 1-manifold
to the union of two circles times the scalar D~!. The handle in the genus one

cobordism can be substituted by X, see below, writing e as tube cobordism

decorated by x dot times D~!. Equivalently, we can write e as a tube with
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x~ 1 dot on it, thus a ’genus minus one’ cobordism with two boundary circles

at the top.
R e

The endomorphism /. of %, given by multiplication by e can be depicted as

Dy S A 5
¢, =D7! —

Idempotent e gives a factorization

AS = A%e x AS(1—€) = Ap x Ap

follows:

of the algebra A%, into the direct product of two copies of Ap.

Idempotent e is strongly separable, that is, fixed by the involution of A%,
which permutes the two factors in the tensor product [Kad99, section 5.3].
This is due to Ap(1) being invariant under this involution.

Remark: Separability is closely related to vanishing of higher Hochschild
homology groups. For a separable extension S C T and any T-algebra A,
there is an isomorphism HHZ(A) = HH?(A), see [Lod92, Theorem 1.2.13].
Hochschild had shown [Hoc47] that an extension k& C T of a field k is
separable iff the Hochschild homology HH; (T, M) = 0 for all T-bimodules
M. Hochschild homology plays an important role in link homology, start-
ing with the work of Przytycki [PrzI10] on the relation between Hochschild
homology and the homology of (2,7n)-torus links.

Our original extension R — A is not separable, since it’s easy to check
that the multiplication map m : A ® A — A does not split.

3. The third extension (R,, A,) consists of graded rings
o Ry = Zlon, s, deg(ay) = deg(ay) = 2,
o A, = Ry[X]|/((X — a1)(X — ), deg(X) = 2.
The involution a; <> asg, denoted o, and induced by the permutation of
indices, acts on R,, and we identify the subring of invariants under this
involution with the ring R = Z[E, Fs] via identifications F; = ay+ag, Fy =
a1as. Under the inclusion R C R, the latter is a free graded R-module of
rank 2 with a homogeneous basis {1, o }, for example.
Recall that A is a graded R-algebra as well. Graded R-algebras A and
R, are isomorphic, and there are two possible isomorphisms, taking X € A
to either o or ap in R,. Notice that X = X1, F1 — X = X5 in A and a1, ay
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in R, are roots of the polynomial y* — Ey + E, with coefficients in R. Any
R-algebra isomorphism A = R, will take roots X, X5 to roots ay,as in
some order. Despite the existence of these isomorphisms, rings A and R,
have different origins and carry different topological interpretations in our
story. This pair of isomorphisms between A and R, does not immediately
carry over to the topological side.

We can rewrite the defining relation in A, as

0=(X—)(X —a) = X?— E X + Es,

recognizing the defining relation in A, but over a larger ground ring, to

obtain a canonical isomorphism
(1.29) Aa = R, ®grA,

which can be taken as the definition of A,.
Elements X, X5 € A and ay, as € R, are roots in A, of y?> — By + Eb.

Furthermore, we have
Xi+Xo=a1+ay=FE;, XXy =aja9 = Es.
The four elements X; — a;, 4,5 € {1,2}, are zero divisors in R,:
(X1 — o) (X1 —ag) = (Xo — a1)(Xy —ap) = 0.

Up to a sign, that’s only two zero divisors, since Xy — a3 = —(X; — ay) and
X2 — Qg = —(Xl — Oél).
The comultiplication map can be simply written using X — «;, ¢ = 1,2:

AN =X -a)@1+10 X —a) =X —a) @1 +1® (X — o),
AX—a)=(X—a) @ (X — o),
AX —ag) = (X —ag) @ (X — ag).

We can think of X — «; as shifted dots and denote them on diagrams by a
small circle with ¢ in it, ® and @. We display below some skein relations on
shifted dots. In particular, the comultiplication formulas can be interpreted

as simple neck-cutting relations.
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0@ =0, o0 = (g —aq) © |, @@ = (g —ag) @ |

It may also be convenient to denote Xy = X — ), X5 = X — ay € A,.
Relations above can be rewritten algebraically, for example X 5 X5 = 0.

Then X, = X5 + Xy, that is,| » |=| @ |+| @

In the ring R, discriminant factorizes, D = (a; — ay)?, which is just
like its factorization D = (X; — X3)? = X2 in the isomorphic ring A. By

analogy, one may also denote ay, = a1 — .

Involutions on R, and A,. Compared to R, the ring R, has an additional
symmetry, an involution o, mentioned above, permuting a; and as. This
R-linear involution extends to A, transposing the roots aj,ay and fixing
X:

O'a<051) = (g, O'a(CYQ) = (q, O'a(X) = X.
0, fixes the subalgebra R and permutes X4 and Xg),

We can extend R-algebra involution o on A to an R,-algebra involution

of A,, also denoted o, with
o X—a)=ay— X, o(X —a) =01 — X, o(l) =1.

Algebra involutions ¢ and o, of A, commute, and their composition oo, is

an R-linear involution which negates shifted dots,

We write down a summary of these involutions of algebra A, in Table [T}

It may also be convenient to relabel o into ox, by analogy with .
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Involution | linearity | a; | | X7 | Xo| Xg Xo

o Ry-linear | oy |an | Xo | Xy | —Xg | Xg

Oa A-linear | ap | oy | Xy | Xy | Xg Xa
00, R-linear | ap |y | Xy | Xy | —Xg | —Xg

TABLE 1. Summary of involutions o, o, and oo,.

Equivariant cohomology: Passing from (R, A) to (R, A,) corresponds
to passing from U(2)-equivariant cohomology of a point and a 2-sphere
to U(1) x U(1)-equivariant cohomology of these topological spaces, where
U(1)x U(1) is a maximal torus in U(2). Group U(2) acts on S? via the iden-
tification of the latter with CP' and descending from the standard action
of U(2) on C2.

4. The fourth extension (R,p, Ayp) consists of graded rings
o R.p = Zlay, as, (o — )Y, deg(ay) = deg(an) = 2,
o Aup = Rop[X]/((X — a1)(X — ag)), deg(X) = 2.
This extension is obtained from the third extension (R,, A,) by inverting
the discriminant D = (a; — az)?. Equivalently, one can invert a; — ap. An
element of A,p can be written uniquely as fi -1+ fo- X where fi, fo € Rap.

Let

X — X —
(131) €1 = i €y = a2

)
Qo — (¥

o — Qg
These two elements of A,p are mutually-orthogonal complementary idem-

potents,

(1.32) l=e +ey, €2 =e1, €3 =ecy, e165 = ege; = 0.
Consequently, the ring A,p decomposes as the direct product

(1.33) Aop = R.per X Rypes.

The entire Frobenius algebra structure decouples as well:

(1.34)  Aer) = (aa—aq)-e1®e1, Alea) = (1 —ag) -2 @ ey,
(1.35)  eler) = (g — 1), elen) = (a1 — o)™,

Both X, = X; — X, and a4 are invertible in A,p, since both square to D.
The ratio

X, _ 2X — F;
—:X*oz*lz—:eg—el
Qe a1 — Qg

is a degree zero invertible element other than —1 that squares to 1. Elements

{17X*O{;1, _]-a _X*a:l} = {1762 — €1, _1761 - 62}
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A= D! Ap = A[D~ ] =
R[X]/(X? — E1 X + E2) Rp[X]/(X2 — B\ X + B)

D1 .2
R =7Z[E1, E2] ‘
af:2
Ay = A[al az} = AO‘D =
, -1
al:2 Ra[X]/((X = a1)(X = a2) D Rep[XI/((X = a)(X ~ a2))
a1 +ag = Ey = )]?3231 X Ra’Deza
ajag = B €1 = az—all’ €2 = al—azz
. . a2
not an integral domain X 2
“O\Q)
X/ 2 S
gy
Rap =
Ro = Z[al, 052} D_l p _ -1
ot o B Zlay, az, (a1 —az) ™1

al +ax = Eq

ajag = Ea aras = B

FiGURE 3. Cube of the four Frobenius extensions, with the
rings defined

constitute a subgroup of degree zero invertible elements in A,p isomorphic
to Z/2 x Z/2. Since the ring A,p is not an integral domain, it may contain a
finite non-cyclic subgroup of invertible elements. Since X is invertible, it can
be put in the denominator instead of a4 to recover the same idempotents:
ap — X a; — Xo

(1.36) e = X, - X, ey = X - X,
1.2. Summary of basic properties. In Figure |3| we redraw the cube of
Frobenius extensions, adding some information about the rings involved.

Let us summarize this diagram. In it, three of the Frobenius extensions
listed in are obtained by base changes from the original extension
(R, A):
(1.37)
(Ra, Aa) = Ry@r(R,A), (Rp, Ap) = Rp®gr(R, A), (Rap, Aap) = Rap®r(R, A).

The original extension (R, A) is given by the upper left diagonal arrow.
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Diagonal arrows: Diagonal arrows in the diagram, pointing northeast,
denote inclusions R, C A, for each of the four Frobenius extensions .
In each case A, is a free R,-module of rank two with a basis {1, X'}. The
rank and the additional basis (and generating) element X are indicated by
writing ”: 2”7 and 7 X” next to the arrows.

Horizontal arrows: The four horizonal arrows correspond to localizing
each of the four commutative rings R, A, R,, A, in the vertices of the left
square facet of the cube by inverting the discriminant D € R. Each arrow is
the inclusion of one of these four rings into the localized ring. We put D~*
by these arrows to indicate this operation. The two Frobenius extensions on

the right side of the diagram are separable, but not the two on the left.

Downward arrows: The four vertical downward arrows correspond to
enlarging each of the four rings in the vertices of the top square by adding
roots oy, ap of polynomial y? — Ey + F,. This extension of rings is a rank
two extension, with the larger ring a free rank two module over the smaller
ring with a basis {1, o, } for i € {1,2}. We indicated this transformation by
writing ”«” and ”: 2”7 next to each vertical arrow. In particular, the leftmost

vertical arrow denotes the inclusion
R = Z[El, EQ] C Ra = Z[al,ag], aq + Qo = El, A1y = EQ.

Thus, downward vertical arrows denote an extension where we tensor each

of the four rings R, A, Rp, Ap with R, over R. In particular,
Ao = A®r Ry, Rap = Rp ®r Ry, Aap = Ap Qg R,.

As we’ve mentioned, R, is a free rank two graded R-module with a ba-
sis {1, a1} (or {1,as}). In fact, (R, R,) is a rank two Frobenius extension
isomorphic to the extension (R, A). There are two R-algebra isomorphisms
A = R,: one of them takes X to «a; and, necessarily, F; — X to as, while
the other takes the roots (X, Fy — X) of 2? — Eyx + Ey to (a9, ay), corre-

spondingly. We will not be using these isomorphisms in the paper.

Zero divisors and idempotents: Ring A, contains zero divisors £(X —ay),
+(X — ay), with (X — a1)(X — ay) = 0. In particular, it’s not an integral
domain. Additionally, with the determinant inverted, these zero divisors
rescale into idempotents e, e; in A,p, where they decompose the ring into
the direct product of two copies of the ground ring R.p.

Pushouts: Rings R,p and A,p, together with the maps into them in the
front and back squares of the diagram in Figures|l|and , are pushouts (and
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colimits) of commutative ring diagrams
(1.38) R,+— R— Rp, A,<+— A— Ap,

correspondingly. In the extension R C R,, the ring R, is free of rank two as
an R-module. In particular, this is a flat and a faithfully flat extension, ditto
for A C A,. The inclusion R C Rp is a localization of commutative rings
and thus a flat extension. The back square of the four A,’s in the diagram
is obtained via the base change R — A from the front square pushout of
commutative rings R,’s.

Diagonal plane symmetries of the cube: As mentioned earlier, rings A and
R, are isomorphic as R-algebras, via two possible algebra automorphisms
that take X to a; or ap and E; — X to g or aq, correspondingly:

TliAi)Ra, (X)) =a1, (B —X) = g,
TQ:AiRa, 7(X) = g, To(E1 — X) = o.

Composition 717, 1 — ToT| !'is an R-linear automorphism of R, that trans-
poses aq, ay. Likewise, 7, Lry = Ty L1 is an R-linear automorphism of A that
transposes X; = X and X, = F; — X.

Ring A, is a free R-module of rank four with a basis, for instance,
{1, X, ay,a; X}. Isomorphisms 7, 7; ! extend to a algebra involution of A,,
also denoted 7, given by

(139) Tl(Oél):X, T1<X):C¥1, Tl(()ég):El—X, Tl(El—X>:OéQ,
or, in the other notation,
(140) T1 O <> Xl, Qg <> XQ.

Thus, 71 adds sign to X — a; but fixes X —as in A,. It acts with eigenvalue
—1 on the subspace R(X —ay) and with eigenvalue 1 on R(X —ay). Likewise,
(X —a) =X —ag and 7o(X — ag) = —(X — ).

Isomorphisms 71, 75 of A, extend to isomorphisms from Ap to R,p and
to automorphisms of A,p. They also restrict to identity automorphisms of
both R and Rp.

In this way, they act on the entire cube in Figure 3] as automorphisms of
algebras R, A,, Rp, and A,p (in the four vertices of the cube that lie on a
plane through two horizontal edges), isomorphisms between A and R, and
isomorphisms between Ap and R,p.

Properties of link homology for these four extensions.
Given an oriented link L and its diagram D with n crossings, we can

construct 2" resolutions of D into diagrams of planar circles and then use
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the Frobenius pair (R, A) and associated 2-dimensional TQFT to build a
commutative cube with tensor powers of A (with grading shifts) placed in
the vertices. Collapsing into a complex, we obtain a complex C'(D) of free
graded R-modules. Choosing a base point on D which is not a crossing turns
C(D) into a complex of graded A-modules. Homology H(D) of C'(D) is a
bigraded R-module, which is almost never free. With a choice of base point,
H(D) is a graded A-module.

To the Reidemeister moves D; ~ Dy one assigns chain homotopy equiv-
alences C'(D;) = C(D3) between complexes of free graded R-modules, with
induced isomorphisms on bigraded homology group H(D;) = H(D;). With
a base point and a Reidemeister move away from the base point, homotopy
equivalences and homology isomorphisms become that of A-modules. For
a k-component unlink Uy, the homology H(Uy) = A®* a free A-module of
rank 2F71.

For two basepoints p1, ps located on the same component and separated
by a single crossing, multiplication maps on C'(D) by X; at p; and by X5

at py are chain homotopic.

Base changes from R to R,, Rp, R.p allow to define chain complexes
and the corresponding homology groups

(1.41) Co(D) = R,®rC(D), Ha(D)=H(C,(D)),
(1.42) Cp(D) = Rp®rC(D), Hp(D)=H(Cp(D)),
(1.43) Cop(D) = Rap ®rC(D), Hap(D)=H(Cu(D)).

We can arrange these four types of complexes and groups into a three-

dimensional cube, where diagonal wiggly arrows denote passage to homol-

ogy.

H(D) Hp(D)
> /
*00&
C(D) D op(D)  ali2
al:2
a2 Hu(D) —— |2 Hop(D)
/ al: 7
D) — P2 (D)
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The four terms in the vertices of the front square are complexes C, (D)
obtained from C'(D) by suitable base changes R — R.. They are complexes
of free graded R,-modules. Define the four homology groups H, (D) in the
back square as the homology of these complexes. They are naturally modules
over R, and, if a base point is picked, modules over A,.

Flatness of the extensions R — R, implies that the natural maps

(1.44) H(D) ®x R, — H,(D)

are isomorphisms of R,-modules, also giving isomorphisms passing from

diagrams to links
(1.45) H(L) ® R. — H.(L)

These homology theories extend to tangles as usual [Kho02], by first ex-
tending SL(2)-equivariant rings H" over R (with H' = A) via base change
R — R, to rings H}. Bimodules and bimodule homomorphisms for flat
tangles and their cobordisms extend as well, resulting in suitable 2-functors
from the 2-category of flat tangle cobordisms to the 2-category of homoge-
neous bimodules over H}', over all n.

Extension to tangle cobordisms also works as usual. Due to flatness of
our base changes, invariance of maps induced by tangle cobordisms up to an
overall sign follows from the corresponding invariance for the theory built
out of (R, A). For the invariance of link and tangle cobordism maps we
refer to the original papers [BNO5| [Jac04, [KhoO6a]. This invariance up to a
sign can be stated, for tangle cobordisms, in the language of maps between
complexes of graded bimodules in the homotopy category.

Isomorphisms are functorial in the link cobordism category, up to

an overall sign.

Taking care of the sign requires modifying the theory and working with
seamed circles or defect lines as in Caprau [Cap08, [Cap09], Clark—Morrison—
Walker [CMW09] and Vogel [Vog20], or GL(2) foams as in Blanchet [Blal0].
Defect lines in these theories are discussed below, in Section [3.1, mostly
via the evaluation approach simplified from GL(2) foams to surfaces with

seamed circles.

a-homology: As a complex of graded R-modules,
Co(D) = C(D) - 18 C(D) - on,

thus isomorphic to two copies of C(D), with a shift. Multiplication by ay
commutes with taking cohomology. As graded R-modules,

H.(D) = H(D)® H(D) - oy,
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and, with a choice of a base point in D, that’s an isomorphism of graded
A-modules.

We see that the a-homology H, (L), as a graded A-module, is isomorphic
to the sum of two copies of H(L), one with a grading shift by {2}, the degree
of a, but has an additional symmetry induced by the transposition of a;
and as. Also, H,(U) contains zero divisors in the homology of the unknot
U, when viewed as a commutative Frobenius algebra over the homology of
the empty link H, (@) via the pants, cup and cap cobordisms.

aD-homology: Homology theory H,p associated to the pair (Rop, Aup)
is essentially the Lee homology. The decomposition of A,p into the di-
rect product via the idempotents in equation parallels cor-
responding decomposition in the Lee homology. In particular, arguments
in Lee [Lee05] and Rasmussen [Rasl0] apply here as well and show that
Hop(L) is a free Rop-module of rank 2%, where k is the number of con-
nected components of link L.

Multiplication by D is a degree four isomorphism of H,p(L). Quantum
grading, lifting powers of ¢, is Z/4-periodic in this theory. Invertibility of
D can be used to reduce the homology to one with a Z/4-grading in the
g-direction, see the remark below.

Furthermore,
(146) HQD(L> = HD<L) ®RD R,ﬂ) == HD<L) -1 @ HD(L) (1.
Consequently, Hp(L) is "half the size” of Hyp(L).

Remark: There are versions of Cp(D) and Hp(D) chain complexes and
homology groups with the ¢g-grading reduced to Z/4. To define this theory,
form the Z/4-graded quotient ring Ry = R/(D — \) (another convenient
notation is Ry p), where A € {1, —1} is an invertible degree zero element
of R (or a more general invertible element of a ground ring different from
R). We pick invertible A to make D invertible in Ry. Ring Ay, = A ®g Ry,
which can also be denoted Ay p, is defined via the base change. The pair
(Ry, Ay) is a rank two Frobenius extension. Since deg(D) is four, rings
R, Ay are Z/4-graded only, ditto for the complexes C\(D) = C(D) ®g R,
and H)(D) = H(C\(D)). A similar quotient construction works for the Lee
homology H,p(D).

2. RING AND MODULE INVOLUTIONS AND DEFECT LINES

Algebra A carries an R-linear involution o given by o(X) = E; — X.

This section aims to study this additional structure, on the four Frobenius
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extensions (R, A,) in (1.1), and to give a combinatorial framework to work
with it.

2.1. Involution ¢ and Galois action. Involution ¢ is an algebra mor-
phism and therefore satisfies o(1) = 1. It transposes the roots X; = X, Xy =
E; — X in A of the polynomial y? — Ey + E, with coefficients in R C A,
o(X1) = Xa,0(X2) = Xj. Ground ring R is also the subring of o-invariants
of A. Notice that the (—1)-eigenspace of o is zero, which is not surprising
since we are not working over a field.

Via a base change R — R, this involution extends to an involution o
of the R,-algebra A,, for any of the four Frobenius extensions (R, A,) in
(L.1). In fact, it works for any base change R — R, of commutative rings,
but we restrict to these four cases.

Involution ¢ acts R,-linearly on the free R,-module A, with a basis
{1, X}. In this basis the action is given by the matrix

(2.1) o o— ((1) ﬂ) :

Let A.[o] be the crossed product of A, with the group ring of the order
two group Zs generated by o. Elements of A,[o] have the form ag-1+a; -0,
with the multiplication rule that moving ¢ to the right of a € A, produces

o(a)-o:
(2.2) b-oc-a=bo(a) 0, a,b€ A,, o>=1.

This gives an R,-linear action of the cross product A.[o] on A,, that is, a
homomorphism from the cross-product to the endomorphism algebra

(2.3) A,[0] — Endp, (A,) = Mat(2, R.),

the latter isomorphic to the algebra of 2 x 2 matrices with coefficients in
R., where we picked the basis {1, X} of A, as a free R,-module.

Algebra A,[o] is four-dimensional over R,, with a basis {1,0, X, Xo}.
Its basis elements act on A, = R,-1® R, - X as the following 2 x 2 matrices.
(2.4)

1 0 1 E; 0 —E, 0 FEs
1 — (0 1),al—> <O _1),X»—> (1 El),X0|—> (1 0).

In the definition of a Galois extension of a commutative ring below we
specialize to the case of a cyclic group of order two.

Definition 2.1 (JAG60) [CHR65],[For17, Theorem 12.2.9]). Suppose given
an extension of commutative rings S C 1" with an involution 7 acting S-
linearly on 7" with S the fixed subring and 7" a projective S-module. (S, T)

is called a Galois extension of commutative rings with the cyclic Galois
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group Cy = {1,7} of order two if the natural S-algebra homomorphism
T[r] — Endg(T) is an isomorphism. Here T'[7] is the cross product of T
with the group ring of the order two group {1, 7}.

Proposition 2.2. (R,, A.) is a Galois extension with the cyclic group {1,0}
if and only if the discriminant D = E? — 4Fy is invertible in R,.

Proof. The question is whether the four matrices in (2.4) are a basis of
the free R,-module Mat(2, R,). Writing down these matrices in the column

form, we get the matrix

11 0 0
o B -E E
U=1lo 0 1 1

1 -1 E 0

A square matrix with coefficients in a commutative ring S is invertible if
and only if its determinant is invertible in .S. The determinant of U is —D,
thus invertible iff D is. O

Among our four rings R,, the discriminant is invertible in Rp and R,p.

Corollary 2.3. Eztensions (Rp, Ap) and (Rap, Aap) are Galois with the
involution o. Extensions (R, A) and (Ry, As) are not Galois with this invo-

lution.

Field extensions of degree two: Let F' be a field. A homomorphism ) :
R — F is determined by a; = ¥(Ey),as = ¥(Fy) in F. To ¢ we can
associate the base change ring Ay = A ®p F, which is an F-vector space
with basis {1, X} and multiplication X? = a; X — ay. The pair (F, Ay) is
a field extension of degree two iff the polynomial f(y) = y* — a1y + as is
irreducible in F', that is, does not have a root.

Assume that field F' has characteristic other than two. Then for the
F-algebra A, there are three possibilities:

(1) Ay is a field. This happens exactly when ¢(D) = a? — 4as is not a
square in F', and then A, = F[\/¢(D)].
(2) Ay = Fey x Fey is the product of two copies of F. This happens
when f(y) has two distinct roots yi, o in F', with the idempotents
(2.5)
_ X -y

X -y
= and ey =
Y2 — U Y1 — Y2

Equivalently, /(D) # 0 has a square root in F.

€1 s 1= €1 + €9, €Z'€j = 51'7]‘61', Z,] - {1, 2}
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(3) Ay = F[z]/(2?) is a nilpotent extension of F' by a nilpotent element
of order 2. Equivalently, (D) = 0, that is, a? —4ay = 0, and we can

take 2 = X — %} for this generator.

Cases (1) and (2) happen when the homomorphism 1 : R — F extends to
localization ¢ : Rp — F.

Assume that char(F) = 2. The image of the discriminant ¢ (D) = a? is
a square. For the F-algebra A, there are the following possibilities:

(1) Ay is a field, that is, ¥* + a1y + a2 has no roots in F. There are two
cases.

(a) a; # 0. Replacing y by a; z reduces the equation to z2+z+c = 0,
¢ = aa;?, with no solutions in F' (which requires ¢ not to be in
the image of the map F' — F,z — 2%+ 2). Extension (F, A,) is
separable.

(b) a1 =0 and a, is not a square in F'. Extension (F, Ay) is insep-
arable.

(2) Ay = Fey x Fey is the product of two copies of F. This happens
when f(y) = y? + a1y + as has two distinct roots 1, y» in F. The

idempotents for the direct product decomposition are

Y2 — 1

X =y
Y1 — Y2

(2.6) e , and ey =

(3) Ay = F[z]/(2?) is a nilpotent extension of F' by a nilpotent element
of order 2. For this we need a; = 0 and ay = a? to have a square
root in F. One can then take z = X + a for the above isomorphism.

Among these four cases in characteristic two, (1la) and (2) correspond to
(D) # 0, giving a separable field extension and a direct product decom-
position, respectively. When ¢ (D) = 0, we are either in (1b) or (3), that is,
Ay is an inseparable field extension or a nilpotent extension of F'.

Looking across all characteristics, the case (D) = 0 corresponds to a

nilpotent extension (3) or an inseparable extension (1b).

Remark: As is well-known, separability property in Definition for
extensions S C T with the Galois group Z/2 = {1, 7} is equivalent to the
following: S = T" and there exist x1, x9,y1,y2 € T such that

1 ifg=1

(2.7) 219(y1) + 229(y2) :{ 0 ifg—r
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It is similar but not the same as our neck-cutting relations for (R, A), see
equations ((1.12)) and ([1.13)). For comparisons and analogies between Frobe-
nius and separable extensions we refer to [Kad99, [CIM00] and references

therein.

2.2. Involution ¢ and defect lines. For a TQFT interpretation, it’s con-
venient to see o as an involution of the R-module A, not of A as an algebra.
Denote by o, = ¢ this R-module map and by o_ the R-module map —o.
We have

oo()=1, o (X)=E ~-X, o (1)=-1, o (X)=X—E,.

Q

=
n
e
Q
H_

Il
H_
Pul
P
=S

|
<
Pul

SIE

a)), for a € A. Pictorially, this reads

Dl

2 d

and

X
I

D el

Q
+
|

We introduce a diagrammatic notation for o1 as a defect line on an annulus

with a choice of co-orientation, that is, a preferred side:

Co-orientation at this defect line can be reversed at the cost of adding a

minus sign.

One can also call these defect or seam lines o-defect lines. Notice that the
diagrams for o, and o_ are not diffeomorphic rel boundary. One can be
taken to the other by reflection in a horizontal plane, but that map is not
the identity on the boundary. Sliding a dot through a o-defect line converts
it to the dual dot. Namely, as endomorphisms of A,

04 X1 = X2 Oy, O_ X1 = XQ g_,

and likewise with indices 1,2 transposed. Diagrammatically,
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Sliding a star dot through a o-defect line flips its co-orientation. As endo-

morphisms of A,
o Xo=Xs0_, 0_X,=X,04.

Alternatively, one can add a minus sign as star dot is slid:

28 et N |

The involutory property of o1 says that two parallel defect circles, with
co-orientation pointing in the same direction, can be removed. Equivalently,
if two parallel defect circles both point either into or out of the annulus
region separating them, they can be removed with a minus sign, see equation
below.

Although o, is an algebra involution, while o_ is a coalgebra involution,
so that

(2.9) o+(1)==41, oromo (0x ®oy)=+m,
(2.10) €ooy =Fe, (0L®0r)oAooy =FA,

it’s more natural to think of o, and o_ as R-module isomorphisms only.
Relations between o, multiplication and comultiplication can be rewritten
as the equations for the removal of three defect circles around the three holes
of a thrice-punctured 2-sphere, see equation . Likewise, the relations
on o4 and the unit and the counit maps, see equations and left,
are the removal relations for a defect circle that bounds a disk, see equation
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Together with the involutory property, this allows to remove a collection
of n distinct defect circles bounding an n-punctured 2-sphere facet without
dots, perhaps with a sign, depending on co-orientations. When all circles
are co-oriented into a dotless facet, the sign is (—1). When all circles are
co-oriented out of a dotless facet, the sign is (—1)"*1. In general, if k circles

#+1 In the special case n = 0

are co-oriented out of the facet, the sign is (—1)
there is still consistency since the facet is a dotless 2-sphere, evaluating to
zero. If a region bounding an n-punctured sphere contains dots, they can
be reduced to a linear combination of the same diagrams with at most one
dot in the region. A dot can be flipped over a defect line to a dual dot on
the other side, see equation above.

To prove that a cobordism equipped with o-defect lines gives a well-
defined map between tensor powers of A (which is implicitly assumed in
this discussion), it’s convenient to use evaluation of cobordisms with o-
defect lines. We do this a little later, in Section (3.1}

Maps 04+ : A — A also decompose via the dual dot as
(2.14) oi(a) =+ (e(Xza) — Xoe(a)).
Furthermore, we can interpret the equation
(2.15) (0 @ DA(1) = (1 ®05)A(1)

via the movement of a defect line from the left to the right side of a tube. The
tube has both boundary circles at the top, and the co-orientation goes from

pointing up to pointing down as the defect line is isotoped, as illustrated

below.
We have
(2.16) mo (oL ®1)oA=0=mo(l®oy)oA.

Pictorially, this reads:

SO

In these cobordisms, the defect circle bounds the same region on both sides.

We’ll see in the next section that any cobordism with this property defines
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the zero map. More generally, if a cobordism admits a circle that intersects
defect lines odd number of times, the map associated to such cobordism is

zero, see Section |3.1]

3. TWO EVALUATIONS OF SEAMED SURFACES

Seamed surfaces, that is, surfaces with defect lines, have appeared in
Section [2.2] The aim of the present section is to give an evaluation of closed
seamed surfaces in order to give a TQFT flavor to the various theories dis-
cussed in Section 2] As we shall see, when one allows objects with defects,
some of these theories are no longer monoidal. Such complicated but inter-
esting behavior is usually avoided in the realm of link homology. We explain
how to recover monoidality by introducing a deformed evaluation of seamed
surfaces which uses a square root of —1. This gives an additional a posteriori
interpretation to the framework used by Clark—Morrison—Walker to prove
functoriality of Khovanov homology [CMW09).

In this section we continue to use variables oy, as generating the ring
R, as above, with symmetric functions in a1, ay giving us the subring R =
Z[E1, Es]. To connect the evaluation formulas below with those in [RW20),
KR21] one should replace our ay,as by Xi, Xy as in [RW20), [KR21] and
replace our X7, Xy, heavily used in Section [l by a different notation, for
example Y7, Y5.

3.1. An evaluation over R with defect lines.

Definition 3.1. A closed seamed surface is a closed compact surface F
equipped with a PL embedding in R? and with finitely many disjoint sim-
ple closed curves on F' and dots. Each of these curves comes with a co-
orientation, that is, a preferred side. Such a curve is also called a seam or a
defect. The set of seams of I is denoted O(F).

The set ©(F) of seams may be empty. Denote by f(F') the set of con-
nected components of ' with all seams removed. Its elements are called
facets, or, more precisely, open facets. We consider both open facets and
their closures in F'. The closure of a facet may contain one or more seams.
For simplicity, by a facet we usually mean a closed facet.

Dots on F, if any, are placed away from the seams. A dot may float freely
in its facet but cannot cross a seam.

Preferred side at a seam may be indicated by a short interval or an arrow

pointing from a point on the seam into the corresponding side. Alternatively,
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we can draw a whole comb of spaced out intervals from the seam and into
that side.

d3

-1 1

q

F1GURE 4. Four examples of seamed and dotted spheres rep-
resented with both comb and segment notation. Their (-)-
evaluation is given at the bottom. See example for details
in evaluating the fourth diagram.

Using the identities for neck-cutting ([1.13]), dot reduction (|1.15)), removal
of contractible seam ([2.11)), and evaluation of a seamless sphere with at most
one dot ([1.10]), one can define an algorithmic evaluation of closed seamed

surfaces as follows:

e Perform neck-cutting on both sides of each seams;

e Use even more neck-cutting to remove handles, we end up with a
formal linear combination of disjoint unions of spheres with seams
and dots;

e Move the dots and remove seams using (|1.15)) and (2.11)) in order to

have a formal linear combination of disjoint unions of sphere with
at most one dot;
e Finally, evaluate these sphere with (1.10]).

That is a map from the set of closed seamed surfaces to the ring R. One
would need to check that this is well-defined, which would follow from a
straightforward computation.

A feature of this algorithmic evaluation is that it may not be imple-
mentable while keeping all surfaces in the intermediate steps embedded in
R3. One example is to take a torus embedded in R? as the boundary of
a knotted solid torus and add several seamed circles in parallel along the
longitude of the torus. The first step in the combinatorial evaluation is to
do surgeries along annuli separating seamed circles on the torus. This step

cannot be done in a natural local way inside R?® and requires forgetting
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the embedding. However, one can check that all surface appearing are ori-
entable. So that the algorithmic evaluation associates with every seamed
surface an element of R.

Instead, to show that the map is well-defined, we now exhibit a closed
formula for this combinatorial evaluation.

Two facets fi, fo are called adjacent if they share at least one seam. A
facet is called self-adjacent if it comes to some seam from both sides.

We call a seamed surface even iff the union of its seams represents zero
in Hy(F,Z/2). Otherwise a surface is called odd (and will evaluate to zero).
A seamed surface with a self-adjacent facet is necessarily odd. We can refine
this terminology and call each connected component of F' even or odd de-
pending on this property of its seams. Note that a component Fj, is even if
each circle in generic position to the seamed circles in Fj, has even number

of intersections with the union of seamed circles.

Definition 3.2. A checkerboard coloring of a closed seamed surface I is a
map ¢ : f(F) — {1,2} from the set of facets of F' to the two-element set
{1,2} such that, along every seam, its two sides have different colors. The
set of checkerboard colorings of F' is denoted adm(F').

A coloring c¢ of the facets induces a coloring of the seams, by assigning
to a seam the color of the facet into which its co-orientation points. For a
seamed circle v denote its induced coloring by ¢(v) € {1, 2}.

Note that F' with a self-adjacent facet has no checkerboard coloring,
adm(F) = (). More generally, F' admits a checkerboard coloring iff it is an
even seamed surface.

Denote by |F'| the number of connected components of F'. An even sur-
face admits 2/71 checkerboard colorings. Denote by 6(F) = |©(F)| the num-
ber of seams of F'.

For i = 1,2 denote by F;(c) the union of facets of F' colored by i. Bound-
ary circles of facets are included in both Fj(c), F3(c). Denote by ©;(c) the
set of seams of F' colored by i and by 6;(c) its cardinality, 6;(c) = |©;(c)|.
We have ©(c) = O4(c) U O5(c) and

O(F) = 01(c) + 0a(c)
is the number of singular circles of F', which does not depend on the coloring.
Denote by d;(c) the number of dots on facets of color i for a coloring ¢

and by d(F) the number of dots on F. Necessarily, d(F') = dy(c) + dy(c) for
any coloring c. Define the degree

(3.1) deg(F) = —x(F) + 2d(F).
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Since Fj(c) C F C R?, and F is a closed surface in R?, both F' and Fj(c)
are orientable. Hence, the Euler characteristic of F;(c) has the same parity

as the number of connected component of its boundary. Define

X(Fi(e)) +6(F) _ X(F1(c))
5 = 61(0) + T € Z,

where x(F1(c)) = x(Fi(c)) + 0(F) is the Euler characteristic of the closed
surface F;(c) given by attaching 2-disks to F}(c) along all boundary circles.

Recall the rings R = Z[F1, Es|, R, = Z[ay, as], and Rap = Ra[(aq —
as) 7Y, the localization of R, at a; — ap. There are ring inclusions

R C Ra - Rap.

(3.2) s(F,c) =6(c) +

Finally, the c-evaluation (F,c) (or the evaluation of F' at ¢) and the evalu-

ation (F') are given by the following formulas:

(3.3) (F.e) = (=1 (g — ay )X/

(3.4) (F)= Y (Fo.
ceadm(F)
The denominator term does not depend on a choice of coloring.

The idea to extend the Robert—Wagner foam evaluation [RW20] to the
case when Fj(c) are not closed surfaces by capping their boundary circles
with disks and taking the Euler characteristic of the resulting surfaces F;(c)
was proposed by Yakov Kononov [Kon19], who also pointed out that such
closure constructions are used implicitly in the physics TQFT literature.
The alternative is to use the Euler characteristic of Fi(c), which may be an
odd integer. This requires adding v/—1 to the ground ring, see Section .
A deformation of evaluation appears in [KKK], with much larger state
spaces associated to collections of marked circles in the plane.

Remark: Equation has oy — a; in the denominator, compared to
X;—Xj for i < j in [RW20]. This is done to make the 2-sphere with one dot
evaluate to 1 rather than —1. The same answer can be achieved by changing
to ay — g in the denominator of and to Fy(c) in place of Fi(c) in
formula , so that

Ofih (C)agz(C)
(al — O@)X(F)/Q'

If ' and G are closed seamed surfaces, it follows directly from the defi-

(3.5) (F,c) = (=1)1O+x(F2()/2

nitions that

(3.6) (FUG) = (F) - (G).
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Lemma 3.3 (Compare with [RW20, Proposition 2.18] and [KR21, Theorem
2.17]). (F) is an homogeneous symmetric polynomial in oy and as of degree
deg(F), for any seamed surface F.

Proof. Let us show that (F) is a polynomial. Because of , we can as-
sume that F' is connected. Since F is embedded in R3, it is orientable. In
particular, x(F') < 0 unless F' is a sphere, and this is the only case for which
the statement is non-trivial. Since H;(S?, Zy) is trivial, F' is even regardless
of its seams and admits exactly two checkerboard colorings. Denote them
c and . One has d;(¢) = ds_i(c), 0:(c) = 03_;(c) and F;(') = F3_;(c) for
1 =1,2. Hence,

<_1)S(F’C) di(c)  da(c) s(F.c)+s(Fe) di(c') da(c)
(F) = 2 (aftag) 4+ (—1) o) o)

—1)s(F0) c c
(1) (aill(c)oédQ(C) n (_1)91(C)+92(C)+7X<Fﬂ Px(Fp( ))+6’(F)alli2(c)agl(c))

a2 4 (—1)*% af2<0>agl<0>>

Qo — (1
di(c) da(c da(c) di(c
_ (_1)8(&)&11( )&22( ) _ a12( )0421( )
Gy — ’

and (F') is a symmetric polynomial in oy and as. The statement about the
degree follows directly from the definition of degree of a seamed surfaces
and of the c-evaluation.

That (F) is symmetric follows directly from the identity 7((F,c)) =
(F,7(c)) for the transposition 7 = (1,2) acting on both the set of colorings

and on the ring of rational functions in aq, as. O

Thus, (F') € R for any seamed surface F.

Remark: If F has no checkerboard colorings (F has an odd component),
then (F) = 0.

Example 3.4. In the following computation, colorings are depicted directly

on seamed surfaces: facets with color 1 are hashed and facets with color 2

D)@ D))

%)

(a2 — )

are plain white.

(

= ()7 ()T

[NIIN]
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using formulas (3.2)-(3.4). In more details, x(F) = x(S?) = 2, so the de-
nominator is as — «; in both terms. For the first coloring ¢; (the annulus

facet has color 1),

01(c1) =2, X(Fi(c1)) = x(S?) = 2, s(F,c;) = 2+1 =3, di(c;) = 1, da(c;) = 0.
For the second coloring ¢, (the annulus facet has color 2),

01(c2) = 0, x(Fi(e2)) = x(S°US?) = 4, s(F,c2) = 042 =2, di(c2) = 0, da(c2) = 1,

so the contributions of (F,c¢;) and (F,cy) to the sum are as above, and
(F)=1.

Lemma 3.5. Evaluation of seamed surfaces satisfies the following local re-
(D22
R T !
(3.9) <. >+< .>:E1< >
o (<))

(
U (R (R
)

o (O)-{E)-{ )
() ()

Proof. The only identities which is not straightforward are (3.7)) and (3.8).
The proof of these identities are similar to that of [KK20, Proposition 4.7]
and [KR21l, Proposition 2.22]. We only prove (3.7)), the other one is analo-
gous.

lations:

(3.7)

Let us denote by F' the seam surface on the left-hand side of the identity
and by Gy, G, and G the seamed surfaces on the right-hand side, where t and
b stand for dot on top and dot on bottom. As surfaces, G; and G} and G;
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are identical, they only differ by their dot distributions. There is a canonical
one-to-one correspondence between adm(G), adm(Gy) and adm(Gy). Let ¢
be an element of adm(G). There are 4 possible local models for ¢. They are

given in Figure [5

od
DA
Dd
oA

—

a) c)

FI1GURE 5. The four possible local models for an coloring ¢
of G. Hash means facet has color 1 while solid white means
facet has color 2.

—

b)

—~
—

d)

In cases (c) (resp. (d)), one has

(Gt,c) = a1 (G,c) and  (Gy,c) = as (G, ¢)
(resp. (Gi,¢) = a1 (G,e)  and  (Gp,c) = as (G, 0))
therefore, in both of these cases, (Gy, ¢) + (G, ¢) — Ey (G, ¢) = 0. The admis-
sible colorings of G of types (a) and (b) are in a one-to-one correspondence
with admissible colorings of F. Let ¢ be a coloring of type (a) of G, with
the corresponding coloring of F' still denoted by c¢. On the one hand, one
has:

91(G7C) :el(Fv C)a X(G> :X<F)+27 X(G1<C)) :X(Fl(c))_'_Q? 9<G) = 9(F>7
On the other hand, (G, ¢) = (Gp, ¢) = a1 (G, ¢). Hence

Qp — Qg

(Gt,¢) + (G, c) — By (G, ¢) = (a1 — ) (G, ) = — (F,c) = (F,c).

Q2 —
If the coloring c is of type (d), a similar computation gives as well (F,c) =
(G, ¢) + (Gp, c) — Ey (G, ¢). Summing over all admissible colorings, one ob-
tains <F> = <Gt> + <Gt> — El <G> |

Formulas (3.7), (3.11), and (3.13)) coincide with the corresponding for-

mulas for the 2-dimensional TQFT assigned to the Frobenius pair (R, A),
see Section [.1]

As in Section [I.1], one can introduce the hollow and star dots, which will
satisfy the same relations as earlier.

We'll see in Section that the state spaces associated to collections
of planar circles in this theory coincide with those for the (R, A) TQFT.
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Seams correspond to o-defect lines in Section [2.2] Allowing them to end on
the boundary enriches (R, A)-TQFT, see examples at the end of Section .

3.2. An evaluation over R, with defect lines. Instead of completing
the surface Fi(c) to a closed surface Fi(c), which has Euler characteristic
divisible by two, one can keep x(Fi(c)) in the evaluation formulas (3.2)),
(3.3) at the cost of adding /—1 to the ground ring R to make sense of
(—1)x(Fe)/2,

Denote by Z, = Z|w]/(w? + 1) the ring of Gaussian integers and let

(3.14) R, =7, ®z R = 7,|E1, B

be the ring obtained from R by formally adding a square root w of —1.
Furthermore, denote A, = R, ®r A. The pair (R,, Ay,) is a Frobenius

extension of rank two, with {1, X'} a basis of A, as a free graded R,,-module.
We give an alternative evaluation of seamed surfaces in this new algebraic

context, using the ring R, together with the rings
Ry = Ly @7 Ro = Loy, a0, )]/ (w? + 1)
and
Ruap = Rap|w]/(W? + 1) = Zylay, as, (a1 — as) 7.

There are ring inclusions
Rw C Rwa C RwaD-

Define the evaluation of F' at a coloring ¢ and the overall evaluation of F
by

ot (c) a;m(f:)
(az — al)X(F)/2

(3.16) (F),= > (Fo),=w(F).

ccadm(F)

(3.15) (F,c), = w1 ©x(Fi() = w 'O (F ),

Note that (F,c)_ € R ap while (F)_ € R, for any seamed surface F'. Thus,
(F) is an homogeneous symmetric polynomial in oy and ay of degree deg(F')

with coefficients in the ring of Gaussian integers Z, = Z[w|/(w? + 1).

Lemma 3.6. Evaluation of seamed surfaces satisfies the following local re-

()22 =)

lations:

w w w w

(3.17)
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>W_E2
(0] (5] -

N )

w (O)e (W)

From relation (3.18]) we see that the seam line is now o scaled by w
rather than just o4 as in equation . Multiplicative factor w=?") in the
equation tells us how other formulas, including equations and
(2.13), will modify in this evaluation.

o 22

(3.19) >w - < >w,

.20 , < >

(3.21) < >w
L)

3.3. Universal construction. The universal construction constructs func-
tors from a cobordism category to an algebraic category. It was introduced
by Blanchet—Habegger-Masbaum—Vogel [BHMV95] and used to build foam
state spaces in [Kho04, RW20, [KR21]]. For this construction, one needs an
evaluation of closed objects, such as cobordisms, that is, a map from the
isomorphism classes of closed n-manifolds to some commutative ring. In the
cases we consider the evaluation is (-) or (-)_.

In favorable situations, functors obtained by the universal construction
are TQFTs. However, this is not always the case. In particular these functors
can fail to be monoidal.

Suppose Cob is a category of cobordisms, S is a commutative unital ring
and

7: Endcop(0) — S

a monoid homomorphism. Here Endcep(() is the monoid of isomorphism

classes of cobordisms with the empty boundary as elements and the disjoint
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union as the composition. The map 7 should take composition of cobordisms
to the product of corresponding elements in S. In particular it maps the
empty n-cobordism (J,, = Idg, , to 1g. In these notations we distinguish
between the empty n-cobordism (J,, and the empty (n — 1)-cobordism 0, ;.
The former is the identity endomorphism of the latter.

Let M be an object of Cob. Define F,(M) to be the free S-module
generated by Homcep (0, M). For any W in Hom(M, (), define the S-linear
map .?-‘:(M) — S on basis elements V' € Homcop (0, M) by ow (V) =
7(W o V). Finally, let

FOD=F00 /() Keow)
W eHomc,p, (0,M)
be the quotient module, F.(M) € S-mod. Thus, F, (M) is the quotient of
the free S-module };(M ) by the kernel of a suitable bilinear form. For a
cobordism W representing a generator of fT(M ), denote by [W] its equiv-
alence class in F,(M). One extends F to a functor by defining for any
W € Homeop(Mi, M) and V € F,(M;):

F(WH(IV]) = WeV].

Bilinear pairing. For every object M in Cob, evaluation 7 induces an
R-bilinear pairing (-,-), on F.(M): If Wy and W, are two elements of
Homcep (0, M), define

(3.25) (WA, [Wal)r = 7(Wy 0 Wa) = g (Wa),

where W, € Homcop(M, () is the mirror image of W;. This pairing is non-
degenerate at least on the right. We did not require skew-invariance of 7
under the flip (often related to orientation-reversal of closed cobordisms),
where ring S would carry a bar involution, with 7(W) = 7(W) for closed
cobordisms W. This condition would make the bilinear form skew-invariant
as well. In our examples, the involution on the ring is the identity and

T(W) = 7(W) for closed cobordisms W, making the bilinear form (-,-),

symmetric.

3.4. Category of seamed surfaces. Seamed surfaces can be extended to
a category whose objects are finite disjoint unions of marked circles. Marks
(or defects) on circles are endpoints of seams ending on the boundary of a
surface.

A marked circle is a circle equipped with a PL-embedding in R?. It carries
a finite number (possibly none) of marked points, also called seam points.

Each marked point carries a co-orientation, that is a preferred direction in a
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circle at this point. Equivalently, we say that a co-orientation is a preferred
side of a circle near a marked point. Marked points and their co-orientations
are depicted by red solid arrows on circles. If one chooses an orientation o of
a seam circle, co-orientation at each marked point either agrees or disagrees
with o. If the orientation agrees, respectively disagrees, with co-orientation,
we label the point as + point (plus point), respectively, — point (minus
point), relative to this orientation. Reversing the orientation of the circle
flips plus and minus points. If there are as many plus as minus points,
the circle is called balanced. This notion does not depend on the choice of
orientation. If a circle has no marked point it is unmarked.

An object of the category SeSu is a finite collection C' of disjoint marked
circles in the plane. We call such C' a marked embedded one-manifold or
meom, for short.

Let us orient circles in C' so that outermost circles are oriented clock-
wise. When all outermost circles are removed, the outermost circles in the
remaining one-manifold must have anticlockwise orientation, and so on. It-
erating this condition, we come to a canonical choice of orientation o(C') for

circles in any C.

FIGURE 6. Example of a meom. Orientations are depicted by
thin black arrows (=) and marks are indicated by triangular
red arrows (+—). The outer left circle is not balanced, the
others are.

Since marked points in C' carry co-orientations, each point is either com-
patibly oriented relative to o(C') (a 4+ point) or oppositely oriented (a —
point). On a given circle in C, we can encode the sequence of orientations
as a sequence of signs £ = (01,...,0), {; € {+, —}, up to cyclic order, as we
go along the circle following its orientation.

If an object C'is a single circle in the plane, necessarily clockwise oriented,
with the sequence of signs ¢, we denote it by Sé.

We say that C'is balanced if it has as many plus signs as minus signs in

the collection of sequences for its circles. For instance, if C' has three circles,



LINK HOMOLOGY AND FROBENIUS EXTENSIONS II 37

with cyclic sequences {(+ + +), (— — +), (——)}, it is balanced. Note that
C may be balanced without individual circles having this property. Notice
also that the assignment of pluses and minuses to marked points depends
not only on their co-orientations but also on the parity of the circle in its
nesting in C| that is, whether its orientation in the plane is clockwise or
anticlockwise.

More generally, to C' we associate its weight w(C'), the difference between
the number of pluses and minuses on its circles. A meom C' is balanced if
and only if w(C) = 0.

A circle is called odd, respectively even, if it has an odd, respectively
even, number of seam points. A meom C' is called even if each circle in it is
even.

If Cy and C; are two meoms, a seamed cobordism from Cy to Cy is a
compact surface F' equipped with a proper PL-embedding in R? x [0, 1] and
with finitely many disjoint simple curves with co-orientations in F' (seams)
and dots such that:

e The embedding of F is transverse to R? x {0, 1}.

e The seams of I are properly embedded and transverse to the bound-
ary.

e The boundary of F is equal to Cy x {0} LI Cy x {1}.

e Marked points of Cy and C} coincide with the intersection of seams
of F' and the boundary. Their co-orientations agree with the ones
induced by seams.

R? x {1} , >
O O

R? x {0} L& ﬂ

F1GURE 7. Diagrammatic summary of conventions for orien-
tation and co-orientations.

Our orientation conventions for surfaces and their top and bottom bound-
aries are the following. Orientation of a surface F' induces an orientation of
its top boundary 0y F' by sticking the first vector of an orientation basis out
of the surface, see Figure[7] The second vector then shows the direction for
the boundary orientation. For the bottom boundary 9yF' the convention is
the opposite: when the second vector of an orientation basis points out, the

first vector shows induced orientation of the boundary. We also adopt the
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convention that

In Figure [7] top and bottom horizontal lines indicate parts of circles in
R?x {1} and R? x {0}, respectively. Marked points, shown as red triangles at
these boundary lines, inherit co-orientations from those of seamed arcs. Top
marked point is a minus point, the three marked points at the bottom edge
have signs (—+—), reading from left to right. The seam with both endpoints
on the bottom connects a + and a — endpoints (different signs). An edge
betweeen the top and the bottom boundary connects two — enpoints (same
sign on both).

Meoms and seamed cobordisms between them, up to rel boundary iso-
topies in R? x [0, 1], form a category denoted SeSu. Composition is given by
superposition and rescaling.

In SeSu a morphism from Cj to C exists iff w(Cy) = w(C}), that is,
if they have the same weight. Indeed, such a morphism may have several
seamed arcs connecting marked points on the same boundary 0;F, i =0, 1,
and connecting marked points of JyF' to the points of 0;F. Seamed arcs
of the first type connect a plus point and a minus point, each contributing
zero to w(C;). Seamed arcs of the second type connect points of dyF' and
O, F of the same sign, contributing zero to w(Cj) — w(Cy). Consequently,
w(Ch) = w(Ch).

Remark: We chose to present the setup with orientations mainly for
convenience. However it is in order to point out less data is needed and
that, in fact, orientations of circles and surfaces can almost be ignored.

In our setup, a collection C of circles in R? is oriented so that any surface
F embedded in R? x [0,1] can be compatibly oriented, together with its
boundary. These orientations also allow to assign signs to all marked points
on the boundary of F.

What’s useful is the relative index of two marked points on OF carry-
ing co-orientations to see if they can be boundary points of a single seam.
Marked points of OF, with co-orientations, decompose as a disjoint union of
two sets. For any two points py and p; in the opposite sets it is possible to
replace F' by a surface F’ in R? x [0, 1] with the same boundary and bound-
ary co-orientations as in F', such that p, and p; are connected by a seam
in F’. Equivalently, F' can be completed by a surface F” with 0F = 0F"
and F” lying ’outside’ of F' with F'U F” a closed surface in R3, such that
po and p; are connected by a seam in F” and, consequently, belong to the

same defect circle (seamed circle) in F'U F”. Points py and p; from the same
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subset cannot be connected by a seam in F' or in any such replacement F”

or complement £

Applying the universal construction to (-) and (-) S and the category SeSu
yields functors, denoted (-) and (-),_, respectively. These are functors

(-) : SeSu — R—gmod, (-)_ : SeSu — R,—gmod,

from SeSu to the category of graded R-modules, respectively graded R,-
modules, and homogeneous module homomorphisms. The images of objects
of SeSu by these functors, that is, (C') and (C')_, are called state spaces of
C.

Suppose F': Cy — (' is a seam surface. It follows from the definition of
evaluation of seam surface that the R-module map (F') (resp. R,-module

map (F)_) is homogenous and its degree is given by the formula:
deg (F) = deg (F), = —(F) + 2d(F).

~/

3.5. State spaces for functors (-) and (-) . The state space (0;) = R
of the empty collection of circles is a rank one free R-module generated by
(0], where @y is the empty surface. If a meom C' is unbalanced (that is,
w(C) # 0), there are no cobordisms from the empty meom (; into it and
(C)=0,(C), =0.

Given meoms C' and C’, there is a natural injective graded R-module

homomorphism
(3.26) (C) @p (CYy — (CUC)

intertwining monoidal structures on the category SeSu and the category
of graded R-modules. This functor is not monoidal, though. The above
homomorphism is not an isomorphism, in general, since we can take C
and C” unbalanced, with zero state spaces, but make C'LIC" balanced, with
(C'LUC"y #0. A simple example is choosing an unbalanced circle for C', with
even number of marked points, and taking C’ = C", the mirror image of C.
The natural tube cobordism from @, to C'LUC", composed with its reflection,
evaluates to 2. This implies nontriviality of the state space C' LI C".

Lemma 3.7. The state space (S') of a single unmarked circle is isomorphic

to A as a graded R-module.

Proof. We first construct a map from A to (S'). Recall that A is a free R-
module and that 1, X is a basis of A. Define ® : A — (S') as the R-module
map which maps 1 to the class of @ and X to the class of @
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Let us first show that the map & is surjective. By R-linearity, it is enough
to show that any element of the form [F] with F' € Homses,((,S!) has a
preimage by ®. Using the neck-cutting relation (3.7)) one obtains that [F]]
equals an R-linear combination of three surfaces. Two of them are disjoint
unions of @ and closed seamed surfaces. One of them is the disjoint
union of @ and a closed seamed surface. Evaluate closed seam surfaces,
we see that [F] is the an R-linear combination of @ and @ Hence, ®
is surjective.

Let us now show that & is injective. It is enough to show that [@}

and [@] are linearly independent. We can compute the matrix of the
R-bilinear pairing (3.25)) on this set:

SN a1y
() )

This matrix is invertible, proving that [@] and [@} are linearly inde-
pendent. Il

We remind the reader that in this lemma A is viewed as a module, not
as a ring, and its generator 1 lives in degree —1.
One can easily adapt the previous proof to obtain the following propo-

sition.

Proposition 3.8. Let C' be a meom in SeSu obtained by inserting an un-

marked circle S' into one of the regions of a meom C' as an innermost
circle. Then (C) ~ A®pg (C").

Corollary 3.9. The state space <I_I§:181> of a collection of k unmarked

circles is isomorphic to A®* as a graded R-module.

The same isomorphism holds for arbitrarily nested collections of un-
marked circles.
Each circle corresponds to a tensor factor. Using relations in Lemma[3.5]

maps associated to generating cobordisms between unmarked circles can be
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identified with the following maps:

<>U+:H, <>U:A%A,

(O)eamn

The maps are those of the (1+1)-dimensional TQFT (R, A) and the o-defect
circles, so the theory [1] of Sections || and [2| appears out of evaluation (-).

Let us denote by S} _ the balanced seamed circle in the plane with two
seam points. It is unique up to planar isotopy.

Lemma 3.10. Suppose that v is a separating closed curve on a seamed sur-
face F' that intersects seams transversely in exactly two points with opposite

co-orientations. Then the following relation holds:

(3.27)

Notation A\ above the equal sign emphasizes the fact this local relation is

valid provided that a global condition (v being a separating curve) is satis-

fied.

Proof. Let us denote by F' the seam surface on the left-hand side of the
identity and by G and G5 the seamed surfaces on the right-hand side. As
surfaces GG; and G, are identical, they only differ by their dot distributions.
Denote by G the seam surface which is identical to G; and G5 but with
the visible dot removed. There is a canonical one-to-one correspondence
between adm(G), adm(G,) and adm(G2). Let ¢ be an element of adm(G).
There are 4 possible local types of ¢. They are given in Figure [§
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0 d
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»d
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a) c)

F1GURE 8. The four possible local types of a coloring ¢ of G.
Hash means facet has color 1 while solid white means facet
has color 2.

In cases (c) (resp. (d)), one has
(G1,¢) = (Ga,c) = az (G, c
(resp. (G1,c¢) = (Ga,c) = a1 (G, ¢

therefore, in both of these cases, (G, ) — (G, ¢) = 0.
The admissible colorings of G of types (a) and (b) are in a one-to-one

~ - ~

),

correspondence with admissible colorings of F'. Let ¢ be a coloring of type
(a) of G, with the corresponding coloring of F' still denoted by ¢. On the
one hand, one has:
01(G.c) = 01(F,c), x(G) =x(F)+2,
X(Gi(e)) = x(Fi(c)) + 1, 0(G) = 0(F) + 1.
The last identity comes from v being a separating curve of F' and implies
G
(F,c) = _ G
Qo — (1
On the other hand, (Gi,¢) = a1 (G,c) and (Gs,c¢) = a2 (G, c) so that,
ﬁna]'ly7 <F7 C> = <G17 C> - <G27 C>‘
If the coloring c is of type (b), a similar computation gives as well (F, ¢) =
(G1,c) — (Ga, c). Summing over all admissible colorings, one obtains (F') =

(G1) = (Ga). O

Corollary 3.11. The state space <S}r_> s 1somorphic to A as a graded
R-module.

Sketch of the proof. Same argument as for Lemma shows that <S}r_> is
generated by @ and @ One shows similarly that these elements are
R-linearly independent. O

The behavior of the functor (-) on disjoint unions of circles with marked
points is not fully monoidal, even if the circles are balanced.
First, consider the seamed surface ST _ x S' given by taking meom S} _,

a balanced circle with two marks in the plane, and multiplying by the circle
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St to get a standardly embedded torus in R? with two seamed circles. The

evaluation of this surface
(S_xS")=-2#2=rkg(S]_)

is minus two, different from two, which is the rank of <Si—> as a free R-
module. Usually, in the TQFT land, multiplying an (n — 1)-manifold M by
a circle and evaluating gives the dimension of the state space associated to
the manifold M. In the example above, the evaluation is —2 rather than 2,
perhaps implying the need to make the latter a super-module sitting in odd
degree and hinting that we cannot expect monoidality property on the nose
without further modifications.

Similarly, the evaluation <S}++ X Sl> = 2, but the circle S}H is unbal-
anced, with the trivial state space of zero dimension. Of course, a cross-
section S}r L USL_ of S}F 4 X St is balanced, while individual circles in it
are not, with the state space <S}r LU S£7> nontrivial, showing a failure of
monoidality for trivial reasons.

Next, consider the following six elements of (S, US, )

o9 ool ol
== v = =z

The surfaces are listed in the order of increasing degree, which is —2, 0,0, 0, 2,2
in this order. The matrix of the R-bilinear pairing (Gram matrix) on these

elements is:

0 0 0 0 1 1
0 0 1 1 £y E,
0 1 0 1 E, E,
(3.28) 0o 1 1 =2 F, —E,
1 F, B, E; E? E? - E,
1 By, E, —E, E}-E, —FE}+2FE,

Its determinant is 4E7 — 16Fy = 4(E? — 4F,) = 4D, which is not a zero
divisor in R. Consequently, these six elements are R-linearly independent
in (SL_USL_) and span a graded submodule isomorphic to R®, of graded
rank (¢ +¢')2+ 1+ ¢

The natural map of state spaces

(Si-) @r (Si) — (Sh-uUSi)

given by putting two seamed surfaces with boundary S} _ next to each other
is injective. It takes products of standard basis vectors for S! _ to the first,

second, third and fifth surfaces, among the six elements above. In particular,
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this map is not surjective, missing the free R-module generated by the two
other surfaces, given by a seamed tube, either with a dot or undecorated.

In particular, the state spaces <Sl _u Si—> and <Si—> ® <S}r_> are not
isomorphic. With more work, one can check that the above six surfaces are
a basis of (SL_USL_).

We see that the functor (-), even restricted to meoms with every cir-
cle balanced, is not a monoidal functor from the category of seamed sur-
faces with boundary embedded in R? to the category of graded R-modules,
strengthening non-monoidality property observed at the beginning of this
section.

The matrix becomes unimodular if we invert 2 and D, but we
don’t explore this here. Note also that the value of the closed genus three
surface is 2D, see .

Finally, let us inspect the state space (Sj), where S} = SL_,_ is the

circle with four seam points with alternating co-orientations, see Figure [9]

0 Y @

FIGURE 9. Sj is on the left; in the middle is a seamed surface
from the empty web @) to S}, and on the right, its flat repre-
sentation.

One can show using the neck-cutting relation that the following four

elements generate (S}):

DO O

The matrix of the R-bilinear pairing on these vectors is:

0 0 1 -1
00 1 1
1 1 E 0
11 0 E

The determinant of this matrix is 4, which is not a zero divisor. Hence, (S})
is a free R-module of rank 4 and graded rank 2(q+¢~'). At the same time,
(S} _) and (S') are free R-modules of rank 2 and graded rank ¢ + ¢~'. We
see that rank and graded rank of the module <Sé> assigned to a circle with a
balanced sequence £ = ({1, ..., ls;) of signs may depend on k. This is a more
subtle phenomenon than the observation that <Sé> = 0 for an unbalanced
£ due to absence of seamed embedded surfaces bounding Sé.
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Sequence £ | rank | graded rank
0 2 qg+qt
+— 2 q+q !
o+ 2 q+q!
+—+— 4 | 2(g+q7h

TABLE 2. Ranks and graded ranks of the space <Sé> for bal-
anced £ of short length.

Even more substantial dependence of <Sé> on the choice of a balanced
sequence / is investigated in [KKK] for a deformation of evaluation ().

The rank of the state space <S%> depends not only on the length of £ but
also on its cyclic ordering. Consider S}, := S%,__. One can show that (S},)

S

and that these two elements are linearly independent, thus (S},) is a free
R-module of graded rank ¢ + ¢—!. Table [2 collects rank and graded rank

information for state spaces <Sé>, for shortest balanced sequences £. Cyclic

is generated by

permutation of the sequence does not change the state space.

This somewhat unusual behavior improves in the alternative evaluation
(-),,- Our original reason for considering evaluation (-)  was to rederive some
of the constructions of Caprau [Cap08, [Cap09] and Clark, Morrison, and
Walker [CMWO09] via an evaluation framework. We encourage the reader to
match the relations in [Cap09, Section 3.2] with those in Lemma 3.6/ above.
Orienting a seamed line, as done in [Cap09], is equivalent to co-orienting it,
as in [CMWO09] and the present paper, as long as the ambient surface comes
with an orientation.

Using the neck-cutting relation for (-)  one obtains an analogue of Propo-

sition 3.8]

Proposition 3.12. Let C' be an object of SeSu obtained by inserting an

unmarked circle St into one of the regions of a meom C' as an innermost

circle. Then (C), ~ A®g (C"),.

Lemma 3.13. Let C' be an object of SeSu with (at least) one balanced circle
S. Let C" be obtained from C by changing marked points on S to obtain
another balanced circle S'. Then (C),_ ~ (C").
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Proof. It is enough to consider the case where S’ and S differ by a pair of
adjacent marked points with opposite co-orientation:

S= ad = .
A NS
Relations (3.22) and (3.23) imply that the morphisms

<W> : (S, — (9), and w <v> D {(S), = (S

are mutually inverse isomorphisms. O

Corollary 3.14. Let C be an object of SeSu which consists of k balanced
circles, possibly nested. Then (C),, is isomorphic to AS* as a graded R,,-
module. In particular, it is free of graded rank (q+ ¢~ 1)*.
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