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Abstract. The first two sections of the paper provide a convenient
scheme and additional diagrammatics for working with Frobenius ex-
tensions responsible for key flavours of equivariant SL(2) link homology
theories. The goal is to clarify some basic structures in the theory and
propose a setup to work over sufficiently non-degenerate base rings. The
third section works out two related SL(2) evaluations for seamed sur-
faces.

A building block for the Khovanov homology [Kho00, BN02] is a specific

(1 + 1)-dimensional TQFT associated to a commutative Frobenius algebra

of rank two. Different versions of this TQFT exist, including those studied

in [BN05, Kho06b] and in many other papers [Cap08, Vog20, CMW09,

BNM06]. These different versions may yield different types of information.

The first striking example is the construction by Rasmussen [Ras10] of a

lower bound on the slice genus of knots based on degenerating one of these

TQFTs into the Lee (1+1)-dimensional TQFT [Lee05]. An attempt to sort

through some of these theories, including Bar-Natan theories [BN05], had

been made in [Kho06b].

A number of theories can be constructed via the natural action of U(2)

and its subgroups G on S2 ∼= CP1, see [Kho06b]. In those theories the ho-

mology RG of the empty link is the G-equivariant cohomology H∗(∗,Z) of a

point, while the homologyAG of the unknot is theG-equivariant cohomology

H∗(S2,Z). When G = SU(2) this theory allows to recover the Rasmussen

invariant and for G = U(1) with the diagonal embedding into U(2) it pro-

duces variations of the Rasmussen invariant. In the case G = U(2) rings

RG and AG are the rings of symmetric polynomials in two variables and a

particular rank two extension of the latter, respectively.

GL(N) foam evaluation [Kho04, RW20, KR21] formulas require working

with the entire ring of polynomials in N variables rather than its subring of

the symmetric polynomials. One proves that foam evaluation is symmetric,

but individual terms are not and many computations need to be done in

the larger ring.
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Passing from the ring of symmetric polynomials to the bigger ring of

all polynomials corresponds to downsizing from U(N) to U(1)N -equivariant

cohomology, for the standard embedding U(1)N = U(1) × · · · × U(1) ⊂
U(N). Reducing to this smaller subgroup enlarges the ground ring and

makes it easier to manipulate.

There are further potential benefits to working with all polynomials

rather than symmetric ones. A larger ground ring delivers more possibil-

ities for new constructions, due to the option to break the symmetry of the

polynomial variables from the symmetric group acting on them to a smaller

group.

We study N = 2 case of this construction in the paper and U(1)×U(1)-

equivariant homology, including carefully writing down various diagram-

matic relations in the Frobenius algebras that control the theory.

Since the first version of the paper came out, two developments showed

the benefit of using U(1)×U(1)-equivariant homology over U(2)-equivariant

one:

• R. Akhmechet has constructed U(1) × U(1)-equivariant homology

for links in the solid torus [Akh20]. Earlier attempts by several re-

searchers to build U(2)-equivariant homology for link in the solid

torus have not been successful. R. Akhmechet’s idea is to break the

symmetry between the two generators of the polynomial ground ring

when defining maps for generating cobordisms in the solid torus.

• T. Sano has shown that the the sign indeterminacy in the extension

of Khovanov homology to tangle cobordisms can be eliminated in

U(1)× U(1)-equivariant theory [San20]. In the non-equivariant and

in the U(2)-equivariant theory it’s unknown whether such elimina-

tion is possible. Prior to Sato’s work, the indeterminacy was resolved

by adding defects to cobordisms, see Clark–Morrison–Walker [CMW09]

and Caprau [Cap09], or by introducingGL(2) foams, see Blanchet [Bla10].

These and other theories have been investigated by Ehrig–Tubbenhauer–

Stroppel [EST17] and put into a perspective from the viewpoint of

GL(N) foams by Lauda–Queffelec–Rose [LQR15].

Together with the use of U(1)N -equivariance in foam evaluation, these

examples easily justify taking a close look at U(1)N -equivariant link homol-

ogy. We expect that the number of uses of such ”symmetry breaking” to

find new structures and refinements in link homology will continue to grow,

for both N = 2 and arbitrary N .
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In this note, without trying to be all-inclusive, we go through several

key variations on the usual U(2)-equivariant Frobenius pair (R,A), with R

and A being the equivariant U(2) cohomology groups with Z coefficients of

a point and a 2-sphere, respectively (Section 1). In Section 2 we investigate

a Galois symmetry appearing in the U(2)-equivariant context and explain

how this symmetry can be implemented combinatorially on cobordisms by

mean of defect lines. Finally, in Section 3, we explain how these theories can

be recovered using foam evaluation and investigate how they behave when

defects are introduced on objects.

1. A cube of four rank two Frobenius extensions

1.1. Road map for Frobenius extensions in U(2)-equivariant Kho-

vanov homology. In this section we investigate four Frobenius extensions.

These four extensions are collected into Figure 1 below; see also Figure 3

for a more detailed view of this cube.

R RD

Rα RαD

A AD

Aα AαD

1

3

2

4

D−1

D−1

D−1

X : 2

X : 2

X : 2

X : 2

α : 2

α : 2

α : 2
D−1

α : 2

Figure 1. Cube of four Frobenius extensions; red numbers
1−4 on the sides provide links to descriptions of these exten-
sions.

The diagram consists of four graded Frobenius extensions of degree two

(1.1) (R,A), (RD, AD), (Rα, Aα), (RαD, AαD)

and maps between them. In each of these extensions (R∗, A∗) Frobenius

algebra A∗ is a free graded R∗-module of rank two with a basis {1, X}, with
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the trace map ε : A∗ −→ R∗ given by

(1.2) ε(1) = 0, ε(X) = 1,

and the comultiplication

(1.3)
∆(1) = X ⊗ 1 + 1⊗ (X − E1),

∆(X) = X ⊗X − E21⊗ 1.

Inclusions of rings R∗ ⊂ A∗ in the extensions are shown by the four arrows

that go diagonally pointing northeast. Horizontal and vertical arrows rep-

resent certain inclusions of ground rings R∗ and induced inclusions of rings

A∗.

1. The first extension (R,A) consists of graded rings

• R = Z[E1, E2], deg(E1) = 2, deg(E2) = 4,

• A = R[X]/(X2 − E1X + E2), deg(X) = 2.

Algebra A is a commutative Frobenius R-algebra of rank two with a basis

{1, X}. The trace and comultiplication are given by formulas (1.2), (1.3).

Algebra A is a free graded R-module with homogeneous basis {1, X}.
Elements X and E1 − X in A are roots of the polynomial x2 − E1x + E2

with coefficients in R, and there is an R-linear involution σ of the algebra

A transposing X and E1 − X. We can somewhat restore this symmetry

between X and E1 −X in the notation and denote

(1.4) X1 = X, X2 = E1 −X,

so that

X1 +X2 = E1, X1X2 = E2

and

(1.5) σ(X1) = X2, σ(X2) = X1, σ(1) = 1,

with σ(a+ bX1) = a+ bX2 for a, b ∈ R. We have

∆(1) = X1 ⊗ 1− 1⊗X2 = −(X2 ⊗ 1− 1⊗X1),(1.6)

∆(X1) = X1 ⊗X1 − E2 1⊗ 1,(1.7)

∆(X2) = E2 1⊗ 1−X2 ⊗X2.(1.8)

Comultiplication introduces a sign which breaks the symmetry between

the two roots, and comultiplication does not commute with σ. Likewise, the

trace map breaks the symmetry between the roots,

(1.9) ε(X1) = 1, ε(X2) = −1,

and εσ = −ε.
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In Figure 2 we recall the usual diagrammatic conventions for 2-dimensional

TQFTs and commutative Frobenius algebras, with our distinguished gen-

erator X denoted by a dot.

1A

•

X ε idA

•

·X

m ∆ m∆

Figure 2. Cobordisms and the Frobenius structure maps dictionary.

The definition of ε reads diagramatically as follows:

(1.10) = 0 and • = 1.

The composition of comultiplication and multiplication

(1.11) m∆ : A −→ A⊗A −→ A, m∆(1) = m(X1⊗1−1⊗X2) = X1−X2

is an A-module map taking 1 to the difference of roots X1 − X2. Conse-

quently, this map is the multiplication by X1−X2. Thus, a genus one cobor-

dism with one boundary component, when viewed as a cobordism from the

empty one-manifold to S1, represents the element X1 −X2 = m∆(1) ∈ A.

A two-torus with two boundary components, when viewed as a cobordism

between the circles, describes the map A −→ A which is the multiplication

by X1 −X2.

The trace map ε determines an R-linear symmetric bilinear form on A,

(, ) : A⊗ A −→ R, (a, b) = ε(ab).

This is a unimodular form on A with dual bases (1, X) and (X − E1, 1).

This pair of dual bases can also be written (1, X1) and (−X2, 1).

The identity map on A decomposes in these bases as usual:

(1.12) a = X1 ⊗ ε(a)− 1⊗ ε(X2a) = −X2 ⊗ ε(a) + 1⊗ ε(X1a), a ∈ A.

We can write this identity diagrammatically as the neck-cutting relation.

(1.13) =
•
−
◦

=
•
−
◦

,
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with

◦ := E1 − • .

Notice that we use a dot of the second type (hollow dot, a little circle

with white area inside) to denote the second root X2, borrowing the idea

and notation from [BHPW19]. The following notation may also be useful:

(1.14) X• := X1 = X, X◦ := X2 = E1 −X,

where we use • and ◦ as subscripts for root elements instead of 1, 2.

A solid dot • placed on a vertically positioned annulus denotes the multi-

plication by X1 = X operator on A, see the rightmost diagram in Figure 2.

Defining relation in A translates into the solid dot reduction relation

(1.15) • • = E1 • − E2

The dual (or hollowed) dot (◦) denotes the multiplication by X2 = E1−
X. A torus with a boundary component is the difference of a dot and a dual

dot on a disk with the same boundary.

(1.16) = • − ◦ = ? with ? = • − ◦ .

Relation (1.15) holds with solid dot replaced by hollow dot. We denote by

? the difference of the solid and hollow dots, and use a similar subscript in

X:

(1.17) X? := X1 −X2 = X• −X◦ = 2X − E1 = m∆(1) ∈ A.

Note that X? is in A but not in R. With our notations, a torus with

one boundary component equals a disk with a star dot on it, see equation

(1.16). In this sense, having a star dot on a surface is equivalent to adding

a handle to it.

Recall that the discriminant of the quadratic polynomial x2 −E1x+E2

is the square of the difference X1 −X2 of roots and belongs to R,

(1.18) D = (X1 −X2)2 = X2
∗ = E2

1 − 4E2 ∈ R.

The degree deg(D) = 4. Diagrammatically,

(1.19) ?2 = ?? = D .

A closed surface of genus two evaluates to ε(D) = 0, as in [BN05, Section

9.2]. A closed surface of genus three evaluates to 2D:
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(1.20) = 2D .

Significance of closed genus three surfaces and their evaluation was pointed

out by Bar-Natan in [BN05, Section 9.2], where the Lee theory was tied to

specializing the value of the closed genus three surface to 8.

Likewise, a surface of genus two with one boundary circle equals a disk

times D, see below and equations (1.16), (1.19):

= • = ?? = D .

A closed surface of odd genus 2n+ 1 evaluates to 2Dn, of even genus 2n to

zero. A surface of odd genus 2n + 1 with a dot evaluates to E1Dn, of even

genus 2n with a dot to Dn.

We have

(1.21) σ(X?) = −X?, ε(X?) = 2, ∆(X?) = X1⊗X1 +X2⊗X2−2E21⊗1.

Exact sequences of A-bimodules

(1.22) 0 −→ A{4} ∆−→ A⊗R A{2}
`X−rX−→ A⊗ A m−→ A −→ 0,

where {k} is the grading shift up by k, glue into an infinite 2-periodic

resolution of the identity A-bimodule A by free A-bimodules

(1.23) . . .
`X1
−rX1−→ A⊗RA{4}

m∆−→ A⊗RA{2}
`X1
−rX1−→ A⊗RA

m−→ A −→ 0.

Two-dimensional TQFT (R,A), with its applications to link homology,

was introduced by Bar-Natan [BN05]. It’s also the theory labelled (R5, A5)

in [Kho06b], with parameters h, t there corresponding to E1,−E2.

2. Frobenius extension (RD, AD) consists of graded rings

• RD = R[D−1] = Z[E1, E2,D−1], where D is the discriminant, see

equation (1.18). Since deg(D−1) = −4, graded algebra RD is non-

trivial in all even degrees.

• AD = RD[X]/(X2 − E1X + E2).

Thus, algebra RD is obtained from R by inverting the discriminant element

(localizing along it). Algebra AD = A⊗RRD, so that the Frobenius extension

(RD, AD) is obtained from (R,A) by inverting the discriminant D. Algebra
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AD is a free RD-module of rank two with a homogeneous basis {1, X}.
Formulas (1.2) and (1.3) for the trace and the comultiplication hold in this

Frobenius extension, as well as all other formulas derived above for the

extension (R,A).

Since D is invertible of degree 4, there is an isomorphism of graded free

RD-modules RD ∼= RD{4}, so that in the Grothendieck group of graded

modules one can work at most over Z[q]/(q4 − 1) rather than over Z[q, q−1]

for graded R-modules.

Separability: Given a unital homomorphism ψ : S −→ T of commutative

rings, one can form the enveloping algebra T e = T ⊗S T , acting on T by

(t1 ⊗ t2)t = t1tt2

and a homomorphism of T e-modules

m : T ⊗S T −→ T, m(a⊗ b) = ab.

Homomorphism ψ is called separable if there exists a homomorphism µ :

T −→ T ⊗S T of T e-modules such that m ◦ µ = IdT ,

m ◦ µ : T −→ T ⊗S T −→ T.

Remark: Separability can be defined for noncommutative S-algebras T

as well, changing the notion of the enveloping algebra to T e = T ⊗S T o,
where T o is the opposite algebra of T .

Separability is equivalent to the existence of an idempotent e ∈ T ⊗S T
such that m(e) = 1 and eu = 0 for any u ∈ ker(m). Such e is called a

separability idempotent and is equal to µ(1). Separability is also equivalent

to the condition that the exact sequence of T e-modules

0 −→ ker(m) −→ T ⊗S T
m−→ T −→ 0

splits. T e-submodule ker(m) is generated by the complementary idempotent

1−e, in the separable case. We refer to [Kad99, For17] for more information

on separable extensions.

Proposition 1.1. The ring extension RD −→ AD is separable.

Proof. Specializing the above notations to our case, we have the algebra

AeD = AD ⊗RD AD.

Recall that X∗ = X1 − X2 is the difference of roots, denoted by star dot

? on a surface. From equation (1.18) we see that ±X∗ are the two square

roots in A of the discriminant D ∈ R.
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With D invertible, we can define the inverse of the ? dot as the ratio

X?/D,

(1.24) ?−1 = D−1 ?

This diagram describes X−1
? = D−1X? ∈ AD. Since m∆ = (X1−X2) IdAD =

X? IdAD , see equations (1.11) and (1.16), and X? is invertible in AD, we can

rescale the comultiplication to the map

(1.25) ∆D := `X? D−1 ∆ = `X−1
?

∆ : AD −→ AeD

to split the short exact sequence

(1.26) 0 −→ ker(m) −→ AD ⊗RD AD
m−→ AD −→ 0.

Here `X? denotes the left multiplication by X? on AeD, but the right multi-

plication by the same element works as well, since ∆ is a homomorphism of

AeD-modules.

Diagrammatically, ∆D is given by dotting the copants with the star in-

verse,

(1.27) ∆D = ?−1 = D−1 ? ,

Note that placing a star dot on a surface is equivalent to adding a handle,

see (1.16). One can think of the inverse ?−1 on a surface as an antihandle

(of genus minus one). Informally, ∆D is given by copants of genus (−1). In

the theory (RD, AD) we can turn a connected component of a surface into a

”negative genus” surface by placing a suitable negative power of the ? dot

on it.

We have m∆D = idAD . Diagrammatically, m∆ adds a handle to the

annulus representing the identity map of idAD , the state space of the circle.

Presence of the star dot inverse on the surface for ∆D cancels out that

handle.

The separability idempotent is

e = ∆D(1) = D−1 ∆(X?) = D−1(X1 ⊗X1 +X2 ⊗X2 − 2E21⊗ 1)(1.28)

= D−1(X1 ⊗ 1− 1⊗X2)2 = D−1∆(1)2 ∈ AeD. �

Diagrammatically, e is a genus one cobordism from the empty 1-manifold

to the union of two circles times the scalar D−1. The handle in the genus one

cobordism can be substituted by X?, see below, writing e as tube cobordism

decorated by ? dot times D−1. Equivalently, we can write e as a tube with
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?−1 dot on it, thus a ’genus minus one’ cobordism with two boundary circles

at the top.

e = D−1
? = ?−1

The endomorphism `e of eD given by multiplication by e can be depicted as

follows:

`e = D−1 ? = ?−1

Idempotent e gives a factorization

AeD = AeDe× AeD(1− e) ∼= AD × AD

of the algebra AeD into the direct product of two copies of AD.

Idempotent e is strongly separable, that is, fixed by the involution of AeD
which permutes the two factors in the tensor product [Kad99, section 5.3].

This is due to ∆D(1) being invariant under this involution.

Remark: Separability is closely related to vanishing of higher Hochschild

homology groups. For a separable extension S ⊂ T and any T -algebra A,

there is an isomorphism HHT
n (A) ∼= HHS

n(A), see [Lod92, Theorem 1.2.13].

Hochschild had shown [Hoc47] that an extension k ⊂ T of a field k is

separable iff the Hochschild homology HH1(T,M) = 0 for all T -bimodules

M . Hochschild homology plays an important role in link homology, start-

ing with the work of Przytycki [Prz10] on the relation between Hochschild

homology and the homology of (2, n)-torus links.

Our original extension R −→ A is not separable, since it’s easy to check

that the multiplication map m : A⊗ A −→ A does not split.

3. The third extension (Rα, Aα) consists of graded rings

• Rα = Z[α1, α2], deg(α1) = deg(α2) = 2,

• Aα = Rα[X]/((X − α1)(X − α2)), deg(X) = 2.

The involution α1 ↔ α2, denoted σα and induced by the permutation of

indices, acts on Rα, and we identify the subring of invariants under this

involution with the ring R = Z[E1, E2] via identifications E1 = α1+α2, E2 =

α1α2. Under the inclusion R ⊂ Rα, the latter is a free graded R-module of

rank 2 with a homogeneous basis {1, α1}, for example.

Recall that A is a graded R-algebra as well. Graded R-algebras A and

Rα are isomorphic, and there are two possible isomorphisms, taking X ∈ A
to either α1 or α2 in Rα. Notice that X = X1, E1−X = X2 in A and α1, α2
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in Rα are roots of the polynomial y2−E1y+E2 with coefficients in R. Any

R-algebra isomorphism A ∼= Rα will take roots X1, X2 to roots α1, α2 in

some order. Despite the existence of these isomorphisms, rings A and Rα

have different origins and carry different topological interpretations in our

story. This pair of isomorphisms between A and Rα does not immediately

carry over to the topological side.

We can rewrite the defining relation in Aα as

0 = (X − α1)(X − α2) = X2 − E1X + E2,

recognizing the defining relation in A, but over a larger ground ring, to

obtain a canonical isomorphism

(1.29) Aα = Rα ⊗R A,

which can be taken as the definition of Aα.

Elements X1, X2 ∈ A and α1, α2 ∈ Rα are roots in Aα of y2 −E1y +E2.

Furthermore, we have

X1 +X2 = α1 + α2 = E1, X1X2 = α1α2 = E2.

The four elements Xi − αj, i, j ∈ {1, 2}, are zero divisors in Rα:

(X1 − α1)(X1 − α2) = (X2 − α1)(X2 − α2) = 0.

Up to a sign, that’s only two zero divisors, since X2−α1 = −(X1−α2) and

X2 − α2 = −(X1 − α1).

The comultiplication map can be simply written using X − αi, i = 1, 2:

∆(1) = (X − α1)⊗ 1 + 1⊗ (X − α2) = (X − α2)⊗ 1 + 1⊗ (X − α1),

∆(X − α1) = (X − α1)⊗ (X − α1),

∆(X − α2) = (X − α2)⊗ (X − α2).

We can think of X − αi as shifted dots and denote them on diagrams by a

small circle with i in it, 1 and 2 . We display below some skein relations on

shifted dots. In particular, the comultiplication formulas can be interpreted

as simple neck-cutting relations.
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=
1

+
2

=
2

+
1

,

1 =
1

1

, 2 =
2

2

,

= 1 + 2 ,
1

=
2

= 1,

1 2 = 0, 1 1 = (α2 − α1) 1 , 2 2 = (α1 − α2) 2 .

It may also be convenient to denote X 1 = X − α1, X 2 = X − α2 ∈ Aα.

Relations above can be rewritten algebraically, for example X 1 X 2 = 0.

Then X? = X 1 +X 2 , that is, ? = 1 + 2 .

In the ring Rα discriminant factorizes, D = (α1 − α2)2, which is just

like its factorization D = (X1 − X2)2 = X2
? in the isomorphic ring A. By

analogy, one may also denote α? = α1 − α2.

Involutions on Rα and Aα. Compared to R, the ring Rα has an additional

symmetry, an involution σα, mentioned above, permuting α1 and α2. This

R-linear involution extends to Aα transposing the roots α1, α2 and fixing

X:

σα(α1) = α2, σα(α2) = α1, σα(X) = X.

σα fixes the subalgebra R and permutes X 1 and X 2 ,

(1.30) σα(X 1 ) = X 2 , σα(X 2 ) = X 1 .

We can extend R-algebra involution σ on A to an Rα-algebra involution

of Aα, also denoted σ, with

σ(X − α1) = α2 −X, σ(X − α2) = α1 −X, σ(1) = 1.

Algebra involutions σ and σα of Aα commute, and their composition σσα is

an R-linear involution which negates shifted dots,

σσα(X 1 ) = −X 1 , σσα(X 2 ) = −X 2 .

We write down a summary of these involutions of algebra Aα in Table 1.

It may also be convenient to relabel σ into σX , by analogy with σα.



LINK HOMOLOGY AND FROBENIUS EXTENSIONS II 13

Involution linearity α1 α2 X1 X2 X 1 X 2

σ Rα-linear α1 α2 X2 X1 −X 2 X 1

σα A-linear α2 α1 X1 X2 X 2 X 1

σσα R-linear α2 α1 X2 X1 −X 1 −X 2

Table 1. Summary of involutions σ, σα and σσα.

Equivariant cohomology: Passing from (R,A) to (Rα, Aα) corresponds

to passing from U(2)-equivariant cohomology of a point and a 2-sphere

to U(1) × U(1)-equivariant cohomology of these topological spaces, where

U(1)×U(1) is a maximal torus in U(2). Group U(2) acts on S2 via the iden-

tification of the latter with CP1 and descending from the standard action

of U(2) on C2.

4. The fourth extension (RαD, AαD) consists of graded rings

• RαD = Z[α1, α2, (α1 − α2)−1], deg(α1) = deg(α2) = 2,

• AαD = RαD[X]/((X − α1)(X − α2)), deg(X) = 2.

This extension is obtained from the third extension (Rα, Aα) by inverting

the discriminant D = (α1 − α2)2. Equivalently, one can invert α1 − α2. An

element of AαD can be written uniquely as f1 ·1+f2 ·X where f1, f2 ∈ RαD.

Let

(1.31) e1 =
X − α1

α2 − α1

, e2 =
X − α2

α1 − α2

.

These two elements of AαD are mutually-orthogonal complementary idem-

potents,

(1.32) 1 = e1 + e2, e
2
1 = e1, e

2
2 = e2, e1e2 = e2e1 = 0.

Consequently, the ring AαD decomposes as the direct product

(1.33) AαD = RαDe1 ×RαDe2.

The entire Frobenius algebra structure decouples as well:

∆(e1) = (α2 − α1) · e1 ⊗ e1, ∆(e2) = (α1 − α2) · e2 ⊗ e2,(1.34)

ε(e1) = (α2 − α1)−1, ε(e2) = (α1 − α2)−1.(1.35)

Both X? = X1 −X2 and α? are invertible in AαD, since both square to D.

The ratio
X?

α?
= X?α

−1
? =

2X − E1

α1 − α2

= e2 − e1

is a degree zero invertible element other than −1 that squares to 1. Elements

{1, X?α
−1
? ,−1,−X?α

−1
? } = {1, e2 − e1,−1, e1 − e2}
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R = Z[E1, E2]
RD = R[D−1]

D = E2
1 − 4E2

Rα = Z[α1, α2]

α1 + α2 = E1

α1α2 = E2

RαD =

Z[α1, α2, (α1 − α2)−1]
α1 + α2 = E1

α1α2 = E2

A =
R[X]/(X2 − E1X + E2)

AD = A[D−1] =

RD[X]/(X2 − E1X + E2)

Aα = A[α1, α2] =
Rα[X]/((X − α1)(X − α2))

α1 + α2 = E1

α1α2 = E2

not an integral domain

AαD =

RαD[X]/((X − α1)(X − α2))

= RαDe1 ×RαDe2
e1 = X−α1

α2−α1
, e2 = X−α2

α1−α2

D−1

D−1

D−1

X : 2

X : 2

X : 2

se
pa

ra
bl

e

X : 2

se
pa

ra
bl

e

α : 2

α : 2

α : 2D−1

α : 2

Figure 3. Cube of the four Frobenius extensions, with the
rings defined

constitute a subgroup of degree zero invertible elements in AαD isomorphic

to Z/2×Z/2. Since the ring AαD is not an integral domain, it may contain a

finite non-cyclic subgroup of invertible elements. SinceX? is invertible, it can

be put in the denominator instead of α? to recover the same idempotents:

(1.36) e1 =
α1 −X1

X2 −X1

, e2 =
α1 −X2

X1 −X2

.

1.2. Summary of basic properties. In Figure 3 we redraw the cube of

Frobenius extensions, adding some information about the rings involved.

Let us summarize this diagram. In it, three of the Frobenius extensions

listed in (1.1) are obtained by base changes from the original extension

(R,A):

(1.37)

(Rα, Aα) ∼= Rα⊗R(R,A), (RD, AD) ∼= RD⊗R(R,A), (RαD, AαD) ∼= RαD⊗R(R,A).

The original extension (R,A) is given by the upper left diagonal arrow.
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Diagonal arrows: Diagonal arrows in the diagram, pointing northeast,

denote inclusions R∗ ⊂ A∗ for each of the four Frobenius extensions (1.1).

In each case A∗ is a free R∗-module of rank two with a basis {1, X}. The

rank and the additional basis (and generating) element X are indicated by

writing ”: 2” and ”X” next to the arrows.

Horizontal arrows: The four horizonal arrows correspond to localizing

each of the four commutative rings R,A,Rα, Aα in the vertices of the left

square facet of the cube by inverting the discriminant D ∈ R. Each arrow is

the inclusion of one of these four rings into the localized ring. We put D−1

by these arrows to indicate this operation. The two Frobenius extensions on

the right side of the diagram are separable, but not the two on the left.

Downward arrows: The four vertical downward arrows correspond to

enlarging each of the four rings in the vertices of the top square by adding

roots α1, α2 of polynomial y2 − E1y + E2. This extension of rings is a rank

two extension, with the larger ring a free rank two module over the smaller

ring with a basis {1, αi} for i ∈ {1, 2}. We indicated this transformation by

writing ”α” and ”: 2” next to each vertical arrow. In particular, the leftmost

vertical arrow denotes the inclusion

R = Z[E1, E2] ⊂ Rα = Z[α1, α2], α1 + α2 = E1, α1α2 = E2.

Thus, downward vertical arrows denote an extension where we tensor each

of the four rings R,A,RD, AD with Rα over R. In particular,

Aα = A⊗R Rα, RαD = RD ⊗R Rα, AαD = AD ⊗R Rα.

As we’ve mentioned, Rα is a free rank two graded R-module with a ba-

sis {1, α1} (or {1, α2}). In fact, (R,Rα) is a rank two Frobenius extension

isomorphic to the extension (R,A). There are two R-algebra isomorphisms

A ∼= Rα: one of them takes X to α1 and, necessarily, E1 − X to α2, while

the other takes the roots (X,E1 −X) of x2 − E1x + E2 to (α2, α1), corre-

spondingly. We will not be using these isomorphisms in the paper.

Zero divisors and idempotents: Ring Aα contains zero divisors ±(X−α1),

±(X − α2), with (X − α1)(X − α2) = 0. In particular, it’s not an integral

domain. Additionally, with the determinant inverted, these zero divisors

rescale into idempotents e1, e2 in AαD, where they decompose the ring into

the direct product of two copies of the ground ring RαD.

Pushouts: Rings RαD and AαD, together with the maps into them in the

front and back squares of the diagram in Figures 1 and 3, are pushouts (and
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colimits) of commutative ring diagrams

(1.38) Rα ←− R −→ RD, Aα ←− A −→ AD,

correspondingly. In the extension R ⊂ Rα, the ring Rα is free of rank two as

an R-module. In particular, this is a flat and a faithfully flat extension, ditto

for A ⊂ Aα. The inclusion R ⊂ RD is a localization of commutative rings

and thus a flat extension. The back square of the four A∗’s in the diagram

is obtained via the base change R −→ A from the front square pushout of

commutative rings R∗’s.

Diagonal plane symmetries of the cube: As mentioned earlier, rings A and

Rα are isomorphic as R-algebras, via two possible algebra automorphisms

that take X to α1 or α2 and E1 −X to α2 or α1, correspondingly:

τ1 : A
∼=−→ Rα, τ1(X) = α1, τ1(E1 −X) = α2,

τ2 : A
∼=−→ Rα, τ2(X) = α2, τ2(E1 −X) = α1.

Composition τ1τ
−1
2 = τ2τ

−1
1 is an R-linear automorphism of Rα that trans-

poses α1, α2. Likewise, τ−1
1 τ2 = τ−1

2 τ1 is an R-linear automorphism of A that

transposes X1 = X and X2 = E1 −X.

Ring Aα is a free R-module of rank four with a basis, for instance,

{1, X, α1, α1X}. Isomorphisms τ1, τ
−1
1 extend to a algebra involution of Aα,

also denoted τ1, given by

(1.39) τ1(α1) = X, τ1(X) = α1, τ1(α2) = E1 −X, τ1(E1 −X) = α2,

or, in the other notation,

(1.40) τ1 : α1 ↔ X1, α2 ↔ X2.

Thus, τ1 adds sign to X−α1 but fixes X−α2 in Aα. It acts with eigenvalue

−1 on the subspace R(X−α1) and with eigenvalue 1 on R(X−α2). Likewise,

τ2(X − α1) = X − α1 and τ2(X − α2) = −(X − α2).

Isomorphisms τ1, τ2 of Aα extend to isomorphisms from AD to RαD and

to automorphisms of AαD. They also restrict to identity automorphisms of

both R and RD.

In this way, they act on the entire cube in Figure 3, as automorphisms of

algebras R,Aα, RD, and AαD (in the four vertices of the cube that lie on a

plane through two horizontal edges), isomorphisms between A and Rα and

isomorphisms between AD and RαD.

Properties of link homology for these four extensions.

Given an oriented link L and its diagram D with n crossings, we can

construct 2n resolutions of D into diagrams of planar circles and then use
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the Frobenius pair (R,A) and associated 2-dimensional TQFT to build a

commutative cube with tensor powers of A (with grading shifts) placed in

the vertices. Collapsing into a complex, we obtain a complex C(D) of free

graded R-modules. Choosing a base point on D which is not a crossing turns

C(D) into a complex of graded A-modules. Homology H(D) of C(D) is a

bigraded R-module, which is almost never free. With a choice of base point,

H(D) is a graded A-module.

To the Reidemeister moves D1 ∼ D2 one assigns chain homotopy equiv-

alences C(D1) ∼= C(D2) between complexes of free graded R-modules, with

induced isomorphisms on bigraded homology group H(D1) ∼= H(D2). With

a base point and a Reidemeister move away from the base point, homotopy

equivalences and homology isomorphisms become that of A-modules. For

a k-component unlink Uk, the homology H(Uk) ∼= A⊗k, a free A-module of

rank 2k−1.

For two basepoints p1, p2 located on the same component and separated

by a single crossing, multiplication maps on C(D) by X1 at p1 and by X2

at p2 are chain homotopic.

Base changes from R to Rα, RD, RαD allow to define chain complexes

and the corresponding homology groups

Cα(D) = Rα ⊗R C(D), Hα(D) = H(Cα(D)),(1.41)

CD(D) = RD ⊗R C(D), HD(D) = H(CD(D)),(1.42)

CαD(D) = RαD ⊗R C(D), HαD(D) = H(Cα(D)).(1.43)

We can arrange these four types of complexes and groups into a three-

dimensional cube, where diagonal wiggly arrows denote passage to homol-

ogy.

C(D) CD(D)

Cα(D) CαD(D)

H(D) HD(D)

Hα(D) HαD(D)

D−1

D−1

D−1

ho
m
ol
og
y

α : 2

α : 2

α : 2
D−1

α : 2
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The four terms in the vertices of the front square are complexes C∗(D)

obtained from C(D) by suitable base changes R −→ R∗. They are complexes

of free graded R∗-modules. Define the four homology groups H∗(D) in the

back square as the homology of these complexes. They are naturally modules

over R∗ and, if a base point is picked, modules over A∗.

Flatness of the extensions R −→ R∗ implies that the natural maps

(1.44) H(D)⊗R R∗ −→ H∗(D)

are isomorphisms of R∗-modules, also giving isomorphisms passing from

diagrams to links

(1.45) H(L)⊗R R∗
∼=−→ H∗(L)

These homology theories extend to tangles as usual [Kho02], by first ex-

tending SL(2)-equivariant rings Hn over R (with H1 ∼= A) via base change

R −→ R∗ to rings Hn
∗ . Bimodules and bimodule homomorphisms for flat

tangles and their cobordisms extend as well, resulting in suitable 2-functors

from the 2-category of flat tangle cobordisms to the 2-category of homoge-

neous bimodules over Hn
∗ , over all n.

Extension to tangle cobordisms also works as usual. Due to flatness of

our base changes, invariance of maps induced by tangle cobordisms up to an

overall sign follows from the corresponding invariance for the theory built

out of (R,A). For the invariance of link and tangle cobordism maps we

refer to the original papers [BN05, Jac04, Kho06a]. This invariance up to a

sign can be stated, for tangle cobordisms, in the language of maps between

complexes of graded bimodules in the homotopy category.

Isomorphisms (1.45) are functorial in the link cobordism category, up to

an overall sign.

Taking care of the sign requires modifying the theory and working with

seamed circles or defect lines as in Caprau [Cap08, Cap09], Clark–Morrison–

Walker [CMW09] and Vogel [Vog20], or GL(2) foams as in Blanchet [Bla10].

Defect lines in these theories are discussed below, in Section 3.1, mostly

via the evaluation approach simplified from GL(2) foams to surfaces with

seamed circles.

α-homology: As a complex of graded R-modules,

Cα(D) ∼= C(D) · 1⊕ C(D) · α1,

thus isomorphic to two copies of C(D), with a shift. Multiplication by α1

commutes with taking cohomology. As graded R-modules,

Hα(D) ∼= H(D)⊕ H(D) · α1,
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and, with a choice of a base point in D, that’s an isomorphism of graded

A-modules.

We see that the α-homology Hα(L), as a graded A-module, is isomorphic

to the sum of two copies of H(L), one with a grading shift by {2}, the degree

of α1, but has an additional symmetry induced by the transposition of α1

and α2. Also, Hα(U) contains zero divisors in the homology of the unknot

U , when viewed as a commutative Frobenius algebra over the homology of

the empty link Hα(∅) via the pants, cup and cap cobordisms.

αD-homology: Homology theory HαD associated to the pair (RαD, AαD)

is essentially the Lee homology. The decomposition of AαD into the di-

rect product (1.33) via the idempotents in equation (1.31) parallels cor-

responding decomposition in the Lee homology. In particular, arguments

in Lee [Lee05] and Rasmussen [Ras10] apply here as well and show that

HαD(L) is a free RαD-module of rank 2k, where k is the number of con-

nected components of link L.

Multiplication by D is a degree four isomorphism of HαD(L). Quantum

grading, lifting powers of q, is Z/4-periodic in this theory. Invertibility of

D can be used to reduce the homology to one with a Z/4-grading in the

q-direction, see the remark below.

Furthermore,

(1.46) HαD(L) ∼= HD(L)⊗RD RαD = HD(L) · 1⊕ HD(L) · α1.

Consequently, HD(L) is ”half the size” of HαD(L).

Remark: There are versions of CD(D) and HD(D) chain complexes and

homology groups with the q-grading reduced to Z/4. To define this theory,

form the Z/4-graded quotient ring Rλ = R/(D − λ) (another convenient

notation is Rλ,D), where λ ∈ {1,−1} is an invertible degree zero element

of R (or a more general invertible element of a ground ring different from

R). We pick invertible λ to make D invertible in Rλ. Ring Aλ = A ⊗R Rλ,

which can also be denoted Aλ,D, is defined via the base change. The pair

(Rλ, Aλ) is a rank two Frobenius extension. Since deg(D) is four, rings

Rλ, Aλ are Z/4-graded only, ditto for the complexes Cλ(D) = C(D)⊗R Rλ

and Hλ(D) = H(Cλ(D)). A similar quotient construction works for the Lee

homology HαD(D).

2. Ring and module involutions and defect lines

Algebra A carries an R-linear involution σ given by σ(X) = E1 − X.

This section aims to study this additional structure, on the four Frobenius
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extensions (R∗, A∗) in (1.1), and to give a combinatorial framework to work

with it.

2.1. Involution σ and Galois action. Involution σ is an algebra mor-

phism and therefore satisfies σ(1) = 1. It transposes the roots X1 = X,X2 =

E1 −X in A of the polynomial y2 − E1y + E2 with coefficients in R ⊂ A,

σ(X1) = X2, σ(X2) = X1. Ground ring R is also the subring of σ-invariants

of A. Notice that the (−1)-eigenspace of σ is zero, which is not surprising

since we are not working over a field.

Via a base change R −→ R∗ this involution extends to an involution σ

of the R∗-algebra A∗, for any of the four Frobenius extensions (R∗, A∗) in

(1.1). In fact, it works for any base change R −→ R∗ of commutative rings,

but we restrict to these four cases.

Involution σ acts R∗-linearly on the free R∗-module A∗ with a basis

{1, X}. In this basis the action is given by the matrix

(2.1) σ 7−→
(

1 E1

0 −1

)
.

Let A∗[σ] be the crossed product of A∗ with the group ring of the order

two group Z2 generated by σ. Elements of A∗[σ] have the form a0 ·1+a1 ·σ,

with the multiplication rule that moving σ to the right of a ∈ A∗ produces

σ(a) · σ:

(2.2) b · σ · a = b σ(a) · σ, a, b ∈ A∗, σ2 = 1.

This gives an R∗-linear action of the cross product A∗[σ] on A∗, that is, a

homomorphism from the cross-product to the endomorphism algebra

(2.3) A∗[σ] −→ EndR∗(A∗)
∼= Mat(2, R∗),

the latter isomorphic to the algebra of 2 × 2 matrices with coefficients in

R∗, where we picked the basis {1, X} of A∗ as a free R∗-module.

Algebra A∗[σ] is four-dimensional over R∗, with a basis {1, σ,X,Xσ}.
Its basis elements act on A∗ = R∗ ·1⊕R∗ ·X as the following 2×2 matrices.

(2.4)

1 7−→
(

1 0
0 1

)
, σ 7−→

(
1 E1

0 −1

)
, X 7−→

(
0 −E2

1 E1

)
, Xσ 7−→

(
0 E2

1 0

)
.

In the definition of a Galois extension of a commutative ring below we

specialize to the case of a cyclic group of order two.

Definition 2.1 ([AG60, CHR65],[For17, Theorem 12.2.9]). Suppose given

an extension of commutative rings S ⊂ T with an involution τ acting S-

linearly on T with S the fixed subring and T a projective S-module. (S, T )

is called a Galois extension of commutative rings with the cyclic Galois
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group C2 = {1, τ} of order two if the natural S-algebra homomorphism

T [τ ] −→ EndS(T ) is an isomorphism. Here T [τ ] is the cross product of T

with the group ring of the order two group {1, τ}.

Proposition 2.2. (R∗, A∗) is a Galois extension with the cyclic group {1, σ}
if and only if the discriminant D = E2

1 − 4E2 is invertible in R∗.

Proof. The question is whether the four matrices in (2.4) are a basis of

the free R∗-module Mat(2, R∗). Writing down these matrices in the column

form, we get the matrix

U =


1 1 0 0
0 E1 −E2 E2

0 0 1 1
1 −1 E1 0

 .

A square matrix with coefficients in a commutative ring S is invertible if

and only if its determinant is invertible in S. The determinant of U is −D,

thus invertible iff D is. �

Among our four rings R∗, the discriminant is invertible in RD and RαD.

Corollary 2.3. Extensions (RD, AD) and (RαD, AαD) are Galois with the

involution σ. Extensions (R,A) and (Rα, Aα) are not Galois with this invo-

lution.

Field extensions of degree two: Let F be a field. A homomorphism ψ :

R −→ F is determined by a1 = ψ(E1), a2 = ψ(E2) in F . To ψ we can

associate the base change ring Aψ = A ⊗R F, which is an F -vector space

with basis {1, X} and multiplication X2 = a1X − a2. The pair (F,Aψ) is

a field extension of degree two iff the polynomial f(y) = y2 − a1y + a2 is

irreducible in F , that is, does not have a root.

Assume that field F has characteristic other than two. Then for the

F -algebra Aψ there are three possibilities:

(1) Aψ is a field. This happens exactly when ψ(D) = a2
1 − 4a2 is not a

square in F , and then Aψ ∼= F [
√
ψ(D)].

(2) Aψ = Fe1 × Fe2 is the product of two copies of F . This happens

when f(y) has two distinct roots y1, y2 in F , with the idempotents

(2.5)

e1 =
X − y1

y2 − y1

and e2 =
X − y2

y1 − y2

, 1 = e1 + e2, eiej = δi,jei, i, j ∈ {1, 2}.

Equivalently, ψ(D) 6= 0 has a square root in F .
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(3) Aψ ∼= F [z]/(z2) is a nilpotent extension of F by a nilpotent element

of order 2. Equivalently, ψ(D) = 0, that is, a2
1−4a2 = 0, and we can

take z = X − a1
2

for this generator.

Cases (1) and (2) happen when the homomorphism ψ : R −→ F extends to

localization ψ : RD −→ F .

Assume that char(F ) = 2. The image of the discriminant ψ(D) = a2
1 is

a square. For the F -algebra Aψ there are the following possibilities:

(1) Aψ is a field, that is, y2 + a1y+ a2 has no roots in F . There are two

cases.

(a) a1 6= 0. Replacing y by a1z reduces the equation to z2+z+c = 0,

c = a2a
−2
1 , with no solutions in F (which requires c not to be in

the image of the map F → F, z 7→ z2 + z). Extension (F,Aψ) is

separable.

(b) a1 = 0 and a2 is not a square in F . Extension (F,Aψ) is insep-

arable.

(2) Aψ = Fe1 × Fe2 is the product of two copies of F . This happens

when f(y) = y2 + a1y + a2 has two distinct roots y1, y2 in F . The

idempotents for the direct product decomposition are

(2.6) e1 =
X − y1

y2 − y1

, and e2 =
X − y2

y1 − y2

.

(3) Aψ ∼= F [z]/(z2) is a nilpotent extension of F by a nilpotent element

of order 2. For this we need a1 = 0 and a2 = a2 to have a square

root in F . One can then take z = X + a for the above isomorphism.

Among these four cases in characteristic two, (1a) and (2) correspond to

ψ(D) 6= 0, giving a separable field extension and a direct product decom-

position, respectively. When ψ(D) = 0, we are either in (1b) or (3), that is,

Aψ is an inseparable field extension or a nilpotent extension of F .

Looking across all characteristics, the case ψ(D) = 0 corresponds to a

nilpotent extension (3) or an inseparable extension (1b).

Remark: As is well-known, separability property in Definition 2.1 for

extensions S ⊂ T with the Galois group Z/2 ∼= {1, τ} is equivalent to the

following: S = T τ and there exist x1, x2, y1, y2 ∈ T such that

(2.7) x1g(y1) + x2g(y2) =

{
1 if g = 1
0 if g = τ
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It is similar but not the same as our neck-cutting relations for (R,A), see

equations (1.12) and (1.13). For comparisons and analogies between Frobe-

nius and separable extensions we refer to [Kad99, CIM00] and references

therein.

2.2. Involution σ and defect lines. For a TQFT interpretation, it’s con-

venient to see σ as an involution of the R-module A, not of A as an algebra.

Denote by σ+ = σ this R-module map and by σ− the R-module map −σ.

We have

σ+(1) = 1, σ+(X) = E1 −X, σ−(1) = −1, σ−(X) = X − E1.

Also, σ±(a) = ±(ε(Xa)−Xε(a)), for a ∈ A. Pictorially, this reads

σ+ =
•
−
•

and σ− =
•
−
•

.

We introduce a diagrammatic notation for σ± as a defect line on an annulus

with a choice of co-orientation, that is, a preferred side:

σ+ = , σ− = .

Co-orientation at this defect line can be reversed at the cost of adding a

minus sign.

= − .

One can also call these defect or seam lines σ-defect lines. Notice that the

diagrams for σ+ and σ− are not diffeomorphic rel boundary. One can be

taken to the other by reflection in a horizontal plane, but that map is not

the identity on the boundary. Sliding a dot through a σ-defect line converts

it to the dual dot. Namely, as endomorphisms of A,

σ+ X1 = X2 σ+, σ−X1 = X2 σ−,

and likewise with indices 1, 2 transposed. Diagrammatically,

•
=

◦
,

◦
=

•
.
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Sliding a star dot through a σ-defect line flips its co-orientation. As endo-

morphisms of A,

σ+ X? = X? σ−, σ−X? = X? σ+.

Alternatively, one can add a minus sign as star dot is slid:

(2.8)
?

= −
?

.

The involutory property of σ± says that two parallel defect circles, with

co-orientation pointing in the same direction, can be removed. Equivalently,

if two parallel defect circles both point either into or out of the annulus

region separating them, they can be removed with a minus sign, see equation

(2.12) below.

Although σ+ is an algebra involution, while σ− is a coalgebra involution,

so that

σ±(1) = ±1, σ± ◦m ◦ (σ± ⊗ σ±) = ±m,(2.9)

ε ◦ σ± = ∓ε, (σ± ⊗ σ±) ◦∆ ◦ σ± = ∓∆,(2.10)

it’s more natural to think of σ+ and σ− as R-module isomorphisms only.

Relations between σ±, multiplication and comultiplication can be rewritten

as the equations for the removal of three defect circles around the three holes

of a thrice-punctured 2-sphere, see equation (2.13). Likewise, the relations

on σ± and the unit and the counit maps, see equations (2.9) and (2.10) left,

are the removal relations for a defect circle that bounds a disk, see equation

(2.11).

= − = −(2.11)

= = −(2.12)

= − = −(2.13)
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Together with the involutory property, this allows to remove a collection

of n distinct defect circles bounding an n-punctured 2-sphere facet without

dots, perhaps with a sign, depending on co-orientations. When all circles

are co-oriented into a dotless facet, the sign is (−1). When all circles are

co-oriented out of a dotless facet, the sign is (−1)n+1. In general, if k circles

are co-oriented out of the facet, the sign is (−1)k+1. In the special case n = 0

there is still consistency since the facet is a dotless 2-sphere, evaluating to

zero. If a region bounding an n-punctured sphere contains dots, they can

be reduced to a linear combination of the same diagrams with at most one

dot in the region. A dot can be flipped over a defect line to a dual dot on

the other side, see equation (2.8) above.

To prove that a cobordism equipped with σ-defect lines gives a well-

defined map between tensor powers of A (which is implicitly assumed in

this discussion), it’s convenient to use evaluation of cobordisms with σ-

defect lines. We do this a little later, in Section 3.1.

Maps σ± : A −→ A also decompose via the dual dot as

(2.14) σ±(a) = ± (ε(X2 a)− X2 ε(a)) .

Furthermore, we can interpret the equation

(2.15) (σ± ⊗ 1)∆(1) = (1⊗ σ∓)∆(1)

via the movement of a defect line from the left to the right side of a tube. The

tube has both boundary circles at the top, and the co-orientation goes from

pointing up to pointing down as the defect line is isotoped, as illustrated

below.

= , = .

We have

(2.16) m ◦ (σ± ⊗ 1) ◦∆ = 0 = m ◦ (1⊗ σ±) ◦∆.

Pictorially, this reads:

= = = = 0.

In these cobordisms, the defect circle bounds the same region on both sides.

We’ll see in the next section that any cobordism with this property defines
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the zero map. More generally, if a cobordism admits a circle that intersects

defect lines odd number of times, the map associated to such cobordism is

zero, see Section 3.1.

3. Two evaluations of seamed surfaces

Seamed surfaces, that is, surfaces with defect lines, have appeared in

Section 2.2. The aim of the present section is to give an evaluation of closed

seamed surfaces in order to give a TQFT flavor to the various theories dis-

cussed in Section 2. As we shall see, when one allows objects with defects,

some of these theories are no longer monoidal. Such complicated but inter-

esting behavior is usually avoided in the realm of link homology. We explain

how to recover monoidality by introducing a deformed evaluation of seamed

surfaces which uses a square root of −1. This gives an additional a posteriori

interpretation to the framework used by Clark–Morrison–Walker to prove

functoriality of Khovanov homology [CMW09].

In this section we continue to use variables α1, α2 generating the ring

Rα as above, with symmetric functions in α1, α2 giving us the subring R =

Z[E1, E2]. To connect the evaluation formulas below with those in [RW20,

KR21] one should replace our α1, α2 by X1, X2 as in [RW20, KR21] and

replace our X1, X2, heavily used in Section 1, by a different notation, for

example Y1, Y2.

3.1. An evaluation over R with defect lines.

Definition 3.1. A closed seamed surface is a closed compact surface F

equipped with a PL embedding in R3 and with finitely many disjoint sim-

ple closed curves on F and dots. Each of these curves comes with a co-

orientation, that is, a preferred side. Such a curve is also called a seam or a

defect. The set of seams of F is denoted Θ(F ).

The set Θ(F ) of seams may be empty. Denote by f(F ) the set of con-

nected components of F with all seams removed. Its elements are called

facets, or, more precisely, open facets. We consider both open facets and

their closures in F . The closure of a facet may contain one or more seams.

For simplicity, by a facet we usually mean a closed facet.

Dots on F , if any, are placed away from the seams. A dot may float freely

in its facet but cannot cross a seam.

Preferred side at a seam may be indicated by a short interval or an arrow

pointing from a point on the seam into the corresponding side. Alternatively,
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we can draw a whole comb of spaced out intervals from the seam and into

that side.

•

•

•

•

•

•

•

•

−1 1 −1 1

Figure 4. Four examples of seamed and dotted spheres rep-
resented with both comb and segment notation. Their 〈·〉-
evaluation is given at the bottom. See example 3.4 for details
in evaluating the fourth diagram.

Using the identities for neck-cutting (1.13), dot reduction (1.15), removal

of contractible seam (2.11), and evaluation of a seamless sphere with at most

one dot (1.10), one can define an algorithmic evaluation of closed seamed

surfaces as follows:

• Perform neck-cutting on both sides of each seams;

• Use even more neck-cutting to remove handles, we end up with a

formal linear combination of disjoint unions of spheres with seams

and dots;

• Move the dots and remove seams using (1.15) and (2.11) in order to

have a formal linear combination of disjoint unions of sphere with

at most one dot;

• Finally, evaluate these sphere with (1.10).

That is a map from the set of closed seamed surfaces to the ring R. One

would need to check that this is well-defined, which would follow from a

straightforward computation.

A feature of this algorithmic evaluation is that it may not be imple-

mentable while keeping all surfaces in the intermediate steps embedded in

R3. One example is to take a torus embedded in R3 as the boundary of

a knotted solid torus and add several seamed circles in parallel along the

longitude of the torus. The first step in the combinatorial evaluation is to

do surgeries along annuli separating seamed circles on the torus. This step

cannot be done in a natural local way inside R3 and requires forgetting
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the embedding. However, one can check that all surface appearing are ori-

entable. So that the algorithmic evaluation associates with every seamed

surface an element of R.

Instead, to show that the map is well-defined, we now exhibit a closed

formula for this combinatorial evaluation.

Two facets f1, f2 are called adjacent if they share at least one seam. A

facet is called self-adjacent if it comes to some seam from both sides.

We call a seamed surface even iff the union of its seams represents zero

in H1(F,Z/2). Otherwise a surface is called odd (and will evaluate to zero).

A seamed surface with a self-adjacent facet is necessarily odd. We can refine

this terminology and call each connected component of F even or odd de-

pending on this property of its seams. Note that a component Fk is even if

each circle in generic position to the seamed circles in Fk has even number

of intersections with the union of seamed circles.

Definition 3.2. A checkerboard coloring of a closed seamed surface F is a

map c : f(F ) → {1, 2} from the set of facets of F to the two-element set

{1, 2} such that, along every seam, its two sides have different colors. The

set of checkerboard colorings of F is denoted adm(F ).

A coloring c of the facets induces a coloring of the seams, by assigning

to a seam the color of the facet into which its co-orientation points. For a

seamed circle γ denote its induced coloring by c(γ) ∈ {1, 2}.
Note that F with a self-adjacent facet has no checkerboard coloring,

adm(F ) = ∅. More generally, F admits a checkerboard coloring iff it is an

even seamed surface.

Denote by |F | the number of connected components of F . An even sur-

face admits 2|F | checkerboard colorings. Denote by θ(F ) = |Θ(F )| the num-

ber of seams of F .

For i = 1, 2 denote by Fi(c) the union of facets of F colored by i. Bound-

ary circles of facets are included in both F1(c), F2(c). Denote by Θi(c) the

set of seams of F colored by i and by θi(c) its cardinality, θi(c) = |Θi(c)|.
We have Θ(c) = Θ1(c) tΘ2(c) and

θ(F ) = θ1(c) + θ2(c)

is the number of singular circles of F , which does not depend on the coloring.

Denote by di(c) the number of dots on facets of color i for a coloring c

and by d(F ) the number of dots on F . Necessarily, d(F ) = d1(c) + d2(c) for

any coloring c. Define the degree

(3.1) deg(F ) = −χ(F ) + 2d(F ).
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Since Fi(c) ⊂ F ⊂ R3, and F is a closed surface in R3, both F and Fi(c)

are orientable. Hence, the Euler characteristic of Fi(c) has the same parity

as the number of connected component of its boundary. Define

(3.2) s(F, c) = θ1(c) +
χ(F1(c)) + θ(F )

2
= θ1(c) +

χ(F 1(c))

2
∈ Z,

where χ(F 1(c)) = χ(F1(c)) + θ(F ) is the Euler characteristic of the closed

surface F 1(c) given by attaching 2-disks to F1(c) along all boundary circles.

Recall the rings R = Z[E1, E2], Rα = Z[α1, α2], and RαD = Rα[(α1 −
α2)−1], the localization of Rα at α1 − α2. There are ring inclusions

R ⊂ Rα ⊂ RαD.

Finally, the c-evaluation 〈F, c〉 (or the evaluation of F at c) and the evalu-

ation 〈F 〉 are given by the following formulas:

〈F, c〉 = (−1)s(F,c)
α
d1(c)
1 α

d2(c)
2

(α2 − α1)χ(F )/2
∈ RαD,(3.3)

〈F 〉 =
∑

c∈adm(F )

〈F, c〉 .(3.4)

The denominator term does not depend on a choice of coloring.

The idea to extend the Robert–Wagner foam evaluation [RW20] to the

case when Fi(c) are not closed surfaces by capping their boundary circles

with disks and taking the Euler characteristic of the resulting surfaces F i(c)

was proposed by Yakov Kononov [Kon19], who also pointed out that such

closure constructions are used implicitly in the physics TQFT literature.

The alternative is to use the Euler characteristic of F1(c), which may be an

odd integer. This requires adding
√
−1 to the ground ring, see Section 3.2.

A deformation of evaluation (3.3) appears in [KKK], with much larger state

spaces associated to collections of marked circles in the plane.

Remark: Equation (3.3) has α2 − α1 in the denominator, compared to

Xi−Xj for i < j in [RW20]. This is done to make the 2-sphere with one dot

evaluate to 1 rather than −1. The same answer can be achieved by changing

to α1 − α2 in the denominator of (3.3) and to F 2(c) in place of F 1(c) in

formula (3.2), so that

(3.5) 〈F, c〉 = (−1)θ1(c)+χ(F 2(c))/2 α
d1(c)
1 α

d2(c)
2

(α1 − α2)χ(F )/2
.

If F and G are closed seamed surfaces, it follows directly from the defi-

nitions that

(3.6) 〈F tG〉 = 〈F 〉 · 〈G〉 .
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Lemma 3.3 (Compare with [RW20, Proposition 2.18] and [KR21, Theorem

2.17]). 〈F 〉 is an homogeneous symmetric polynomial in α1 and α2 of degree

deg(F ), for any seamed surface F .

Proof. Let us show that 〈F 〉 is a polynomial. Because of (3.6), we can as-

sume that F is connected. Since F is embedded in R3, it is orientable. In

particular, χ(F ) ≤ 0 unless F is a sphere, and this is the only case for which

the statement is non-trivial. Since H1(S2,Z2) is trivial, F is even regardless

of its seams and admits exactly two checkerboard colorings. Denote them

c and c′. One has di(c
′) = d3−i(c), θi(c

′) = θ3−i(c) and Fi(c
′) = F3−i(c) for

i = 1, 2. Hence,

〈F 〉 =
(−1)s(F,c)

α2 − α1

(
α
d1(c)
1 α

d2(c)
2 + (−1)s(F,c

′)+s(F,c)α
d1(c′)
1 α

d2(c′)
2

)
=

(−1)s(F,c)

α2 − α1

(
α
d1(c)
1 α

d2(c)
2 + (−1)θ1(c)+θ2(c)+

χ(F1(c)+χ(F2(c))
2

+θ(F )α
d2(c)
1 α

d1(c)
2

)
=

(−1)s(F,c)

α2 − α1

(
α
d1(c)
1 α

d2(c)
2 + (−1)

χ(F )
2 α

d2(c)
1 α

d1(c)
2

)
= (−1)s(F,c)

α
d1(c)
1 α

d2(c)
2 − αd2(c)

1 α
d1(c)
2

α2 − α1

,

and 〈F 〉 is a symmetric polynomial in α1 and α2. The statement about the

degree follows directly from the definition of degree of a seamed surfaces

and of the c-evaluation.

That 〈F 〉 is symmetric follows directly from the identity τ(〈F, c〉) =

〈F, τ(c)〉 for the transposition τ = (1, 2) acting on both the set of colorings

and on the ring of rational functions in α1, α2. �

Thus, 〈F 〉 ∈ R for any seamed surface F .

Remark: If F has no checkerboard colorings (F has an odd component),

then 〈F 〉 = 0.

Example 3.4. In the following computation, colorings are depicted directly

on seamed surfaces: facets with color 1 are hashed and facets with color 2

are plain white.〈
•

〉
=

〈
•

〉
+

〈
••

〉

= (−1)2+ 0+2
2

α1

(α2 − α1)
2
2

+ (−1)0+ 2+2
2

α2

(α2 − α1)
2
2

=
−α1

α2 − α1

+
α2

α2 − α1

= 1,
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using formulas (3.2)-(3.4). In more details, χ(F ) = χ(S2) = 2, so the de-

nominator is α2 − α1 in both terms. For the first coloring c1 (the annulus

facet has color 1),

θ1(c1) = 2, χ(F 1(c1)) = χ(S2) = 2, s(F, c1) = 2+1 = 3, d1(c1) = 1, d2(c1) = 0.

For the second coloring c2 (the annulus facet has color 2),

θ1(c2) = 0, χ(F 1(c2)) = χ(S2tS2) = 4, s(F, c2) = 0+2 = 2, d1(c2) = 0, d2(c2) = 1,

so the contributions of 〈F, c1〉 and 〈F, c2〉 to the sum are as above, and

〈F 〉 = 1.

Lemma 3.5. Evaluation of seamed surfaces satisfies the following local re-

lations: 〈 〉
=

〈
•
〉

+

〈
•

〉
− E1

〈 〉
,(3.7)

〈 〉
=

〈
•

〉
−

〈
•
〉
,(3.8)

〈
•

〉
+

〈
•
〉

= E1

〈 〉
,(3.9)

〈
• •

〉
= E2

〈 〉
,(3.10)

〈
• •

〉
= E1

〈
•

〉
− E2

〈 〉
(3.11)

〈 〉
= −

〈 〉
= −

〈 〉
,(3.12)

〈 〉
= 0,

〈
•

〉
= 1.(3.13)

Proof. The only identities which is not straightforward are (3.7) and (3.8).

The proof of these identities are similar to that of [KK20, Proposition 4.7]

and [KR21, Proposition 2.22]. We only prove (3.7), the other one is analo-

gous.

Let us denote by F the seam surface on the left-hand side of the identity

and by Gt, Gb and G the seamed surfaces on the right-hand side, where t and

b stand for dot on top and dot on bottom. As surfaces, Gt and Gb and Gt
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are identical, they only differ by their dot distributions. There is a canonical

one-to-one correspondence between adm(G), adm(Gb) and adm(Gt). Let c

be an element of adm(G). There are 4 possible local models for c. They are

given in Figure 5.

(a) (b) (c) (d)

Figure 5. The four possible local models for an coloring c
of G. Hash means facet has color 1 while solid white means
facet has color 2.

In cases (c) (resp. (d)), one has

〈Gt, c〉 = α1 〈G, c〉 and 〈Gb, c〉 = α2 〈G, c〉

(resp. 〈Gt, c〉 = α1 〈G, c〉 and 〈Gb, c〉 = α2 〈G, c〉)

therefore, in both of these cases, 〈Gt, c〉+〈Gb, c〉−E1 〈G, c〉 = 0. The admis-

sible colorings of G of types (a) and (b) are in a one-to-one correspondence

with admissible colorings of F . Let c be a coloring of type (a) of G, with

the corresponding coloring of F still denoted by c. On the one hand, one

has:

θ1(G, c) = θ1(F, c), χ(G) = χ(F ) + 2, χ(G1(c)) = χ(F1(c)) + 2, θ(G) = θ(F ),

On the other hand, 〈Gt, c〉 = 〈Gb, c〉 = α1 〈G, c〉. Hence

〈Gt, c〉+ 〈Gb, c〉 − E1 〈G, c〉 = (α1 − α2) 〈G, c〉 = −α1 − α2

α2 − α1

〈F, c〉 = 〈F, c〉 .

If the coloring c is of type (d), a similar computation gives as well 〈F, c〉 =

〈Gt, c〉+ 〈Gb, c〉 −E1 〈G, c〉. Summing over all admissible colorings, one ob-

tains 〈F 〉 = 〈Gt〉+ 〈Gt〉 − E1 〈G〉. �

Formulas (3.7), (3.11), and (3.13) coincide with the corresponding for-

mulas for the 2-dimensional TQFT assigned to the Frobenius pair (R,A),

see Section 1.1.

As in Section 1.1, one can introduce the hollow and star dots, which will

satisfy the same relations as earlier.

We’ll see in Section 3.4 that the state spaces associated to collections

of planar circles in this theory coincide with those for the (R,A) TQFT.
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Seams correspond to σ-defect lines in Section 2.2. Allowing them to end on

the boundary enriches (R,A)-TQFT, see examples at the end of Section 3.5.

3.2. An evaluation over Rω with defect lines. Instead of completing

the surface F1(c) to a closed surface F 1(c), which has Euler characteristic

divisible by two, one can keep χ(F1(c)) in the evaluation formulas (3.2),

(3.3) at the cost of adding
√
−1 to the ground ring R to make sense of

(−1)χ(F1(c))/2.

Denote by Zω = Z[ω]/(ω2 + 1) the ring of Gaussian integers and let

(3.14) Rω = Zω ⊗Z R = Zω[E1, E2]

be the ring obtained from R by formally adding a square root ω of −1.

Furthermore, denote Aω = Rω ⊗R A. The pair (Rω, Aω) is a Frobenius

extension of rank two, with {1, X} a basis of Aω as a free graded Rω-module.

We give an alternative evaluation of seamed surfaces in this new algebraic

context, using the ring Rω, together with the rings

Rωα = Zω ⊗Z Rα = Z[α1, α2, ω]/(ω2 + 1)

and

RωαD = RαD[ω]/(ω2 + 1) = Zω[α1, α2, (α1 − α2)−1].

There are ring inclusions

Rω ⊂ Rωα ⊂ RωαD.

Define the evaluation of F at a coloring c and the overall evaluation of F

by

〈F, c〉ω := ω2θ1(c)+χ(F1(c)) α
n1(c)
1 α

n2(c)
2

(α2 − α1)χ(F )/2
= ω−θ(F ) 〈F, c〉 ,(3.15)

〈F 〉ω :=
∑

c∈adm(F )

〈F, c〉ω = ω−θ(F ) 〈F 〉 .(3.16)

Note that 〈F, c〉ω ∈ RωαD while 〈F 〉ω ∈ Rω for any seamed surface F . Thus,

〈F 〉 is an homogeneous symmetric polynomial in α1 and α2 of degree deg(F )

with coefficients in the ring of Gaussian integers Zω = Z[ω]/(ω2 + 1).

Lemma 3.6. Evaluation of seamed surfaces satisfies the following local re-

lations: 〈 〉
ω

=

〈
•
〉
ω

+

〈
•

〉
ω

− E1

〈 〉
ω

,(3.17)
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ω

= ω

〈
•

〉
ω

− ω

〈
•
〉
ω

,(3.18)

〈
•

〉
ω

+

〈
•
〉
ω

= E1

〈 〉
ω

,(3.19)

〈
• •

〉
ω

= E2

〈 〉
ω

,(3.20)

〈
• •

〉
ω

= E1

〈
•

〉
ω

− E2

〈 〉
ω

(3.21)

〈 〉
ω

= −

〈 〉
ω

= −ω

〈 〉
ω

,(3.22)

〈 〉
ω

= ω

〈 〉
ω

,(3.23)

〈 〉
ω

= 0,

〈
•

〉
ω

= 1.(3.24)

From relation (3.18) we see that the seam line is now σ± scaled by ω

rather than just σ± as in equation (3.8). Multiplicative factor ω−θ(F ) in the

equation (3.16) tells us how other formulas, including equations (2.12) and

(2.13), will modify in this evaluation.

3.3. Universal construction. The universal construction constructs func-

tors from a cobordism category to an algebraic category. It was introduced

by Blanchet–Habegger–Masbaum–Vogel [BHMV95] and used to build foam

state spaces in [Kho04, RW20, KR21]. For this construction, one needs an

evaluation of closed objects, such as cobordisms, that is, a map from the

isomorphism classes of closed n-manifolds to some commutative ring. In the

cases we consider the evaluation is 〈·〉 or 〈·〉ω.

In favorable situations, functors obtained by the universal construction

are TQFTs. However, this is not always the case. In particular these functors

can fail to be monoidal.

Suppose Cob is a category of cobordisms, S is a commutative unital ring

and

τ : EndCob(∅)→ S

a monoid homomorphism. Here EndCob(∅) is the monoid of isomorphism

classes of cobordisms with the empty boundary as elements and the disjoint
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union as the composition. The map τ should take composition of cobordisms

to the product of corresponding elements in S. In particular it maps the

empty n-cobordism ∅n = Id∅n−1 to 1S. In these notations we distinguish

between the empty n-cobordism ∅n and the empty (n− 1)-cobordism ∅n−1.

The former is the identity endomorphism of the latter.

Let M be an object of Cob. Define F̃τ (M) to be the free S-module

generated by HomCob(∅,M). For any W in Hom(M, ∅), define the S-linear

map ϕW : F̃τ (M) → S on basis elements V ∈ HomCob(∅,M) by ϕW (V ) =

τ(W ◦ V ). Finally, let

Fτ (M) = F̃τ (M)

/ ⋂
W∈HomCob(∅,M)

Ker(ϕW )

be the quotient module, Fτ (M) ∈ S-mod. Thus, Fτ (M) is the quotient of

the free S-module F̃τ (M) by the kernel of a suitable bilinear form. For a

cobordism W representing a generator of F̃τ (M), denote by [W ] its equiv-

alence class in Fτ (M). One extends F to a functor by defining for any

W ∈ HomCob(M1,M2) and V ∈ F̃τ (M1):

Fτ ([W ])([V ]) = [W ◦ V ].

Bilinear pairing. For every object M in Cob, evaluation τ induces an

R-bilinear pairing (·, ·)τ on Fτ (M): If W1 and W2 are two elements of

HomCob(∅,M), define

(3.25) ([W1], [W2])τ = τ(W1 ◦W2) = ϕW1
(W2),

where W1 ∈ HomCob(M, ∅) is the mirror image of W1. This pairing is non-

degenerate at least on the right. We did not require skew-invariance of τ

under the flip (often related to orientation-reversal of closed cobordisms),

where ring S would carry a bar involution, with τ(W ) = τ(W ) for closed

cobordisms W . This condition would make the bilinear form skew-invariant

as well. In our examples, the involution on the ring is the identity and

τ(W ) = τ(W ) for closed cobordisms W , making the bilinear form (·, ·)τ
symmetric.

3.4. Category of seamed surfaces. Seamed surfaces can be extended to

a category whose objects are finite disjoint unions of marked circles. Marks

(or defects) on circles are endpoints of seams ending on the boundary of a

surface.

A marked circle is a circle equipped with a PL-embedding in R2. It carries

a finite number (possibly none) of marked points, also called seam points.

Each marked point carries a co-orientation, that is a preferred direction in a
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circle at this point. Equivalently, we say that a co-orientation is a preferred

side of a circle near a marked point. Marked points and their co-orientations

are depicted by red solid arrows on circles. If one chooses an orientation o of

a seam circle, co-orientation at each marked point either agrees or disagrees

with o. If the orientation agrees, respectively disagrees, with co-orientation,

we label the point as + point (plus point), respectively, − point (minus

point), relative to this orientation. Reversing the orientation of the circle

flips plus and minus points. If there are as many plus as minus points,

the circle is called balanced. This notion does not depend on the choice of

orientation. If a circle has no marked point it is unmarked.

An object of the category SeSu is a finite collection C of disjoint marked

circles in the plane. We call such C a marked embedded one-manifold or

meom, for short.

Let us orient circles in C so that outermost circles are oriented clock-

wise. When all outermost circles are removed, the outermost circles in the

remaining one-manifold must have anticlockwise orientation, and so on. It-

erating this condition, we come to a canonical choice of orientation o(C) for

circles in any C.

−
−

−−

+

+

+

+

−

+

+

−
−

Figure 6. Example of a meom. Orientations are depicted by
thin black arrows ( ) and marks are indicated by triangular
red arrows ( ). The outer left circle is not balanced, the
others are.

Since marked points in C carry co-orientations, each point is either com-

patibly oriented relative to o(C) (a + point) or oppositely oriented (a −
point). On a given circle in C, we can encode the sequence of orientations

as a sequence of signs ` = (`1, . . . , `k), `i ∈ {+,−}, up to cyclic order, as we

go along the circle following its orientation.

If an object C is a single circle in the plane, necessarily clockwise oriented,

with the sequence of signs `, we denote it by S1
` .

We say that C is balanced if it has as many plus signs as minus signs in

the collection of sequences for its circles. For instance, if C has three circles,
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with cyclic sequences {(+ + +), (− − +), (−−)}, it is balanced. Note that

C may be balanced without individual circles having this property. Notice

also that the assignment of pluses and minuses to marked points depends

not only on their co-orientations but also on the parity of the circle in its

nesting in C, that is, whether its orientation in the plane is clockwise or

anticlockwise.

More generally, to C we associate its weight w(C), the difference between

the number of pluses and minuses on its circles. A meom C is balanced if

and only if w(C) = 0.

A circle is called odd, respectively even, if it has an odd, respectively

even, number of seam points. A meom C is called even if each circle in it is

even.

If C0 and C1 are two meoms, a seamed cobordism from C0 to C1 is a

compact surface F equipped with a proper PL-embedding in R2× [0, 1] and

with finitely many disjoint simple curves with co-orientations in F (seams)

and dots such that:

• The embedding of F is transverse to R2 × {0, 1}.
• The seams of F are properly embedded and transverse to the bound-

ary.

• The boundary of F is equal to C0 × {0} t C1 × {1}.
• Marked points of C0 and C1 coincide with the intersection of seams

of F and the boundary. Their co-orientations agree with the ones

induced by seams.

	

		

R2 × {0}

R2 × {1}

Figure 7. Diagrammatic summary of conventions for orien-
tation and co-orientations.

Our orientation conventions for surfaces and their top and bottom bound-

aries are the following. Orientation of a surface F induces an orientation of

its top boundary ∂1F by sticking the first vector of an orientation basis out

of the surface, see Figure 7. The second vector then shows the direction for

the boundary orientation. For the bottom boundary ∂0F the convention is

the opposite: when the second vector of an orientation basis points out, the

first vector shows induced orientation of the boundary. We also adopt the
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convention that

∂F = ∂1F t (−∂0F ).

In Figure 7 top and bottom horizontal lines indicate parts of circles in

R2×{1} and R2×{0}, respectively. Marked points, shown as red triangles at

these boundary lines, inherit co-orientations from those of seamed arcs. Top

marked point is a minus point, the three marked points at the bottom edge

have signs (−+−), reading from left to right. The seam with both endpoints

on the bottom connects a + and a − endpoints (different signs). An edge

betweeen the top and the bottom boundary connects two − enpoints (same

sign on both).

Meoms and seamed cobordisms between them, up to rel boundary iso-

topies in R2× [0, 1], form a category denoted SeSu. Composition is given by

superposition and rescaling.

In SeSu a morphism from C0 to C1 exists iff w(C0) = w(C1), that is,

if they have the same weight. Indeed, such a morphism may have several

seamed arcs connecting marked points on the same boundary ∂iF , i = 0, 1,

and connecting marked points of ∂0F to the points of ∂1F . Seamed arcs

of the first type connect a plus point and a minus point, each contributing

zero to w(Ci). Seamed arcs of the second type connect points of ∂0F and

∂1F of the same sign, contributing zero to w(C0) − w(C1). Consequently,

w(C0) = w(C1).

Remark: We chose to present the setup with orientations mainly for

convenience. However it is in order to point out less data is needed and

that, in fact, orientations of circles and surfaces can almost be ignored.

In our setup, a collection C of circles in R2 is oriented so that any surface

F embedded in R2 × [0, 1] can be compatibly oriented, together with its

boundary. These orientations also allow to assign signs to all marked points

on the boundary of F .

What’s useful is the relative index of two marked points on ∂F carry-

ing co-orientations to see if they can be boundary points of a single seam.

Marked points of ∂F , with co-orientations, decompose as a disjoint union of

two sets. For any two points p0 and p1 in the opposite sets it is possible to

replace F by a surface F ′ in R2× [0, 1] with the same boundary and bound-

ary co-orientations as in F , such that p0 and p1 are connected by a seam

in F ′. Equivalently, F can be completed by a surface F ′′ with ∂F = ∂F ′′

and F ′′ lying ’outside’ of F with F ∪ F ′′ a closed surface in R3, such that

p0 and p1 are connected by a seam in F ′′ and, consequently, belong to the

same defect circle (seamed circle) in F ∪F ′′. Points p0 and p1 from the same
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subset cannot be connected by a seam in F or in any such replacement F ′

or complement F ′′.

Applying the universal construction to 〈·〉 and 〈·〉ω and the category SeSu

yields functors, denoted 〈·〉 and 〈·〉ω, respectively. These are functors

〈·〉 : SeSu −→ R−gmod, 〈·〉ω : SeSu −→ Rω−gmod,

from SeSu to the category of graded R-modules, respectively graded Rω-

modules, and homogeneous module homomorphisms. The images of objects

of SeSu by these functors, that is, 〈C〉 and 〈C〉ω, are called state spaces of

C.

Suppose F : C0 → C1 is a seam surface. It follows from the definition of

evaluation of seam surface that the R-module map 〈F 〉 (resp. Rω-module

map 〈F 〉ω) is homogenous and its degree is given by the formula:

deg 〈F 〉 = deg 〈F 〉ω = −χ(F ) + 2d(F ).

3.5. State spaces for functors 〈·〉 and 〈·〉ω. The state space 〈∅1〉 ∼= R

of the empty collection of circles is a rank one free R-module generated by

[∅2], where ∅2 is the empty surface. If a meom C is unbalanced (that is,

w(C) 6= 0), there are no cobordisms from the empty meom ∅1 into it and

〈C〉 = 0, 〈C〉ω = 0.

Given meoms C and C ′, there is a natural injective graded R-module

homomorphism

(3.26) 〈C〉 ⊗R 〈C ′〉 −→ 〈C t C ′〉

intertwining monoidal structures on the category SeSu and the category

of graded R-modules. This functor is not monoidal, though. The above

homomorphism is not an isomorphism, in general, since we can take C

and C ′ unbalanced, with zero state spaces, but make C tC ′ balanced, with

〈C t C ′〉 6= 0. A simple example is choosing an unbalanced circle for C, with

even number of marked points, and taking C ′ = C !, the mirror image of C.

The natural tube cobordism from ∅1 to CtC !, composed with its reflection,

evaluates to ±2. This implies nontriviality of the state space C t C !.

Lemma 3.7. The state space 〈S1〉 of a single unmarked circle is isomorphic

to A as a graded R-module.

Proof. We first construct a map from A to 〈S1〉. Recall that A is a free R-

module and that 1, X is a basis of A. Define Φ : A −→ 〈S1〉 as the R-module

map which maps 1 to the class of and X to the class of • .
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Let us first show that the map Φ is surjective. By R-linearity, it is enough

to show that any element of the form [F ] with F ∈ HomSeSu(∅,S1) has a

preimage by Φ. Using the neck-cutting relation (3.7) one obtains that [F ]

equals an R-linear combination of three surfaces. Two of them are disjoint

unions of and closed seamed surfaces. One of them is the disjoint

union of • and a closed seamed surface. Evaluate closed seam surfaces,

we see that [F ] is the an R-linear combination of and • . Hence, Φ

is surjective.

Let us now show that Φ is injective. It is enough to show that
[ ]

and
[
•
]

are linearly independent. We can compute the matrix of the

R-bilinear pairing (3.25) on this set:


〈
•

〉 〈
•

〉
〈 • 〉 〈

•
• 〉

 =

(
0 1
1 E1

)
.

This matrix is invertible, proving that
[ ]

and
[
•
]

are linearly inde-

pendent. �

We remind the reader that in this lemma A is viewed as a module, not

as a ring, and its generator 1 lives in degree −1.

One can easily adapt the previous proof to obtain the following propo-

sition.

Proposition 3.8. Let C be a meom in SeSu obtained by inserting an un-

marked circle S1 into one of the regions of a meom C ′ as an innermost

circle. Then 〈C〉 ' A⊗R 〈C ′〉.

Corollary 3.9. The state space
〈
tki=1S1

〉
of a collection of k unmarked

circles is isomorphic to A⊗k as a graded R-module.

The same isomorphism holds for arbitrarily nested collections of un-

marked circles.

Each circle corresponds to a tensor factor. Using relations in Lemma 3.5,

maps associated to generating cobordisms between unmarked circles can be
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identified with the following maps:〈 〉
= σ+ : A→ A,

〈 〉
= σ− : A→ A,

〈 〉
= ε : A→ R,

〈 〉
=

R → A
1R 7→ 1A

,

〈
•
〉

=
R → A

1R 7→ X
,〈 〉

= ∆: A→ A⊗ A,

〈 〉
= m : A→ A⊗ A.

The maps are those of the (1+1)-dimensional TQFT (R,A) and the σ-defect

circles, so the theory 1 of Sections 1 and 2 appears out of evaluation 〈·〉.

Let us denote by S1
+− the balanced seamed circle in the plane with two

seam points. It is unique up to planar isotopy.

Lemma 3.10. Suppose that γ is a separating closed curve on a seamed sur-

face F that intersects seams transversely in exactly two points with opposite

co-orientations. Then the following relation holds:

〈
γ

〉
!

=

〈
•

〉
−

〈 • 〉
.(3.27)

Notation ! above the equal sign emphasizes the fact this local relation is

valid provided that a global condition (γ being a separating curve) is satis-

fied.

Proof. Let us denote by F the seam surface on the left-hand side of the

identity and by G1 and G2 the seamed surfaces on the right-hand side. As

surfaces G1 and G2 are identical, they only differ by their dot distributions.

Denote by G the seam surface which is identical to G1 and G2 but with

the visible dot removed. There is a canonical one-to-one correspondence

between adm(G), adm(G1) and adm(G2). Let c be an element of adm(G).

There are 4 possible local types of c. They are given in Figure 8.
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(a) (b) (c) (d)

Figure 8. The four possible local types of a coloring c of G.
Hash means facet has color 1 while solid white means facet
has color 2.

In cases (c) (resp. (d)), one has

〈G1, c〉 = 〈G2, c〉 = α2 〈G, c〉

(resp. 〈G1, c〉 = 〈G2, c〉 = α1 〈G, c〉),

therefore, in both of these cases, 〈G2, c〉 − 〈G1, c〉 = 0.

The admissible colorings of G of types (a) and (b) are in a one-to-one

correspondence with admissible colorings of F . Let c be a coloring of type

(a) of G, with the corresponding coloring of F still denoted by c. On the

one hand, one has:

θ1(G, c) = θ1(F, c), χ(G) = χ(F ) + 2,

χ(G1(c)) = χ(F1(c)) + 1, θ(G) = θ(F ) + 1.

The last identity comes from γ being a separating curve of F and implies

〈F, c〉 = − 〈G, c〉
α2 − α1

.

On the other hand, 〈G1, c〉 = α1 〈G, c〉 and 〈G2, c〉 = α2 〈G, c〉 so that,

finally, 〈F, c〉 = 〈G1, c〉 − 〈G2, c〉.
If the coloring c is of type (b), a similar computation gives as well 〈F, c〉 =

〈G1, c〉 − 〈G2, c〉. Summing over all admissible colorings, one obtains 〈F 〉 =

〈G1〉 − 〈G2〉. �

Corollary 3.11. The state space
〈
S1

+−
〉

is isomorphic to A as a graded

R-module.

Sketch of the proof. Same argument as for Lemma 3.7 shows that
〈
S1

+−
〉

is

generated by and • . One shows similarly that these elements are

R-linearly independent. �

The behavior of the functor 〈·〉 on disjoint unions of circles with marked

points is not fully monoidal, even if the circles are balanced.

First, consider the seamed surface S1
+− × S1 given by taking meom S1

+−,

a balanced circle with two marks in the plane, and multiplying by the circle
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S1 to get a standardly embedded torus in R3 with two seamed circles. The

evaluation of this surface〈
S1

+− × S1
〉

= −2 6= 2 = rkR
〈
S1

+−
〉

is minus two, different from two, which is the rank of
〈
S1

+−
〉

as a free R-

module. Usually, in the TQFT land, multiplying an (n− 1)-manifold M by

a circle and evaluating gives the dimension of the state space associated to

the manifold M . In the example above, the evaluation is −2 rather than 2,

perhaps implying the need to make the latter a super-module sitting in odd

degree and hinting that we cannot expect monoidality property on the nose

without further modifications.

Similarly, the evaluation
〈
S1

++ × S1
〉

= 2, but the circle S1
++ is unbal-

anced, with the trivial state space of zero dimension. Of course, a cross-

section S1
++ t S1

−− of S1
++ × S1 is balanced, while individual circles in it

are not, with the state space
〈
S1

++ t S1
−−
〉

nontrivial, showing a failure of

monoidality for trivial reasons.

Next, consider the following six elements of 〈S+− t S+−〉:[ ]
,

[
•

]
,

[
•

]
,[ ]

,

[
• •

]
and

[
•

]
.

The surfaces are listed in the order of increasing degree, which is−2, 0, 0, 0, 2, 2

in this order. The matrix of the R-bilinear pairing (Gram matrix) on these

elements is:

(3.28)


0 0 0 0 1 1
0 0 1 1 E1 E1

0 1 0 1 E1 E1

0 1 1 −2 E1 −E1

1 E1 E1 E1 E2
1 E2

1 − E2

1 E1 E1 −E1 E2
1 − E2 −E2

1 + 2E2


Its determinant is 4E2

1 − 16E2 = 4(E2
1 − 4E2) = 4D, which is not a zero

divisor in R. Consequently, these six elements are R-linearly independent

in
〈
S1

+− t S1
+−
〉

and span a graded submodule isomorphic to R6, of graded

rank (q + q−1)2 + 1 + q2.

The natural map of state spaces〈
S1

+−
〉
⊗R
〈
S1

+−
〉
−→

〈
S1

+− t S1
+−
〉

given by putting two seamed surfaces with boundary S1
+− next to each other

is injective. It takes products of standard basis vectors for S1
+− to the first,

second, third and fifth surfaces, among the six elements above. In particular,
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this map is not surjective, missing the free R-module generated by the two

other surfaces, given by a seamed tube, either with a dot or undecorated.

In particular, the state spaces
〈
S1

+− t S1
+−
〉

and
〈
S1

+−
〉
⊗
〈
S1

+−
〉

are not

isomorphic. With more work, one can check that the above six surfaces are

a basis of
〈
S1

+− t S1
+−
〉
.

We see that the functor 〈·〉, even restricted to meoms with every cir-

cle balanced, is not a monoidal functor from the category of seamed sur-

faces with boundary embedded in R3 to the category of graded R-modules,

strengthening non-monoidality property observed at the beginning of this

section.

The matrix (3.28) becomes unimodular if we invert 2 and D, but we

don’t explore this here. Note also that the value of the closed genus three

surface is 2D, see (1.20).

Finally, let us inspect the state space 〈S1
4〉, where S1

4 = S1
+−+− is the

circle with four seam points with alternating co-orientations, see Figure 9.

•
•

Figure 9. S1
4 is on the left; in the middle is a seamed surface

from the empty web ∅ to S1
4, and on the right, its flat repre-

sentation.

One can show using the neck-cutting relation that the following four

elements generate 〈S1
4〉:

• •

The matrix of the R-bilinear pairing on these vectors is:
0 0 1 −1
0 0 1 1
1 1 E1 0
−1 1 0 E1


The determinant of this matrix is 4, which is not a zero divisor. Hence, 〈S1

4〉
is a free R-module of rank 4 and graded rank 2(q+ q−1). At the same time,〈
S1

+−
〉

and 〈S1〉 are free R-modules of rank 2 and graded rank q + q−1. We

see that rank and graded rank of the module
〈
S1
`

〉
assigned to a circle with a

balanced sequence ` = (`1, . . . , `2k) of signs may depend on k. This is a more

subtle phenomenon than the observation that
〈
S1
`

〉
= 0 for an unbalanced

` due to absence of seamed embedded surfaces bounding S1
` .
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Sequence ` rank graded rank

∅ 2 q + q−1

+− 2 q + q−1

++−− 2 q + q−1

+−+− 4 2(q + q−1)

Table 2. Ranks and graded ranks of the space
〈
S1
`

〉
for bal-

anced ` of short length.

Even more substantial dependence of
〈
S1
`

〉
on the choice of a balanced

sequence ` is investigated in [KKK] for a deformation of evaluation 〈·〉.
The rank of the state space

〈
S1
`

〉
depends not only on the length of ` but

also on its cyclic ordering. Consider S1
4′ := S1

++−−. One can show that 〈S1
4′〉

is generated by

and

•

and that these two elements are linearly independent, thus 〈S1
4′〉 is a free

R-module of graded rank q + q−1. Table 2 collects rank and graded rank

information for state spaces
〈
S1
`

〉
, for shortest balanced sequences `. Cyclic

permutation of the sequence does not change the state space.

This somewhat unusual behavior improves in the alternative evaluation

〈·〉ω. Our original reason for considering evaluation 〈·〉ω was to rederive some

of the constructions of Caprau [Cap08, Cap09] and Clark, Morrison, and

Walker [CMW09] via an evaluation framework. We encourage the reader to

match the relations in [Cap09, Section 3.2] with those in Lemma 3.6 above.

Orienting a seamed line, as done in [Cap09], is equivalent to co-orienting it,

as in [CMW09] and the present paper, as long as the ambient surface comes

with an orientation.

Using the neck-cutting relation for 〈·〉ω one obtains an analogue of Propo-

sition 3.8.

Proposition 3.12. Let C be an object of SeSu obtained by inserting an

unmarked circle S1 into one of the regions of a meom C ′ as an innermost

circle. Then 〈C〉ω ' A⊗R 〈C ′〉ω.

Lemma 3.13. Let C be an object of SeSu with (at least) one balanced circle

S. Let C ′ be obtained from C by changing marked points on S to obtain

another balanced circle S ′. Then 〈C〉ω ' 〈C ′〉ω.
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Proof. It is enough to consider the case where S ′ and S differ by a pair of

adjacent marked points with opposite co-orientation:

S = and S ′ = .

Relations (3.22) and (3.23) imply that the morphisms〈 〉
ω

: 〈S ′〉ω → 〈S〉ω and ω

〈 〉
ω

: 〈S〉ω → 〈S
′〉ω

are mutually inverse isomorphisms. �

Corollary 3.14. Let C be an object of SeSu which consists of k balanced

circles, possibly nested. Then 〈C〉ω is isomorphic to A⊗kω as a graded Rω-

module. In particular, it is free of graded rank (q + q−1)k.
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