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Abstract— Uncertainty quantification is crucial in modeling
critical care systems, where external factors such as clinical
disturbances significantly impact decision-making. This study
employs Bayesian variational autoencoders (BVAEs) to quantify
inherent randomness in clinical data (aleatoric uncertainty) and
detect uncertainty in the biases and weights of the neural
network model (epistemic uncertainty). Focusing on fluid
therapy, the proposed BVAE models aim to detect hemorrhage
incidents through out-of-distribution (OoD) data detection. The
models' ability to self-identify QoD scenarios not only provides a
measure of confidence in their predictions but also highlights
areas where additional data collection could enhance
performance. Simulation results show promising outcomes,
particularly in identifying hemorrhage through increased model
uncertainty in QoD scenarios.
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I. INTRODUCTION

Fluid therapy is a medical treatment to restore intravascular
volume in critical care scenarios, such as hemorrhagic shock
and severe dehydration [1-2]. Optimal fluid management is a
complex task due to intricate interactions between patient
hemodynamic variables and drug infusion. Over-aggressive
fluid infusion may lead to severe complications such as sepsis,
underscoring the need for timely and prompt fluid management

[3].

In recent years, there has been a growing interest in
utilizing computational methods and novel modeling
algorithms to develop automated medication dosing tools in
critical care scenarios [3-10]. In [5], a novel model-free
reinforcement learning approach was proposed to control the
mean arterial pressure (MAP) in response to fluid infusion. In
[6], a radial basis function-Galerkin (RBF-Galerkin) [7]
optimal control method was used to automatically adjust fluid
infusion dosages in hypovolemic scenarios. In [11], a
computer-assisted mechanism was suggested for the
continuous adjustment of fluid dosages.
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Conventional physiological models often struggle with
overconfidence in predictions, lacking the ability to handle
medical decision-making's complexity and uncertainty, which
compromises their generalizability and predictability. In
critical care scenarios, these uncertainties may arise from
several factors, such as the interaction of multiple medications
in comorbidities or the occurrence of clinical disturbances
during the treatment [12]. These factors represent out-of-
distribution (OoD) scenarios, situations unseen by the model
during training but encountered in testing. Without specific
training to recognize these scenarios, the model may make
decisions for which it has not been adequately prepared [13],
leading to improper hemodynamic predictions and dosing
recommendations.

Uncertainty quantification can detect OoD scenarios and
provide an estimate of variability and unpredictability in
physiological systems. In the context of fluid therapy, external
factors such as active hemorrhage may be seen as a clinical
disturbance influencing treatment strategies. The hemorrhage
represents an QoD scenario, and its proper identification
proves highly beneficial in designing effective resuscitation
regimens, and this work aims to address it.

This work presents a novel uncertainty quantification
method in physiological modeling using Bayesian variational
autoencoders (BVAEs). The BVAE unifies autoencoder
learning, variational inference, and Bayesian neural network
(BNN) concepts in a single framework [14]. It offers several
advantages, including generative modeling, robustness to
overfitting, precise control over latent space, and the ability to
quantify uncertainties. Unlike conventional neural networks
(NNs) that estimate fixed values for weights, BNNs model
weights as a distribution. The BVAE not only has the power of
a variational autoencoders (VAE) to quantify inherent
randomness in data (aleatoric uncertainty) but can also detect
uncertainty in the biases and weight of the NN model
(epistemic uncertainty) [15]. Focusing on fluid therapy in
hemorrhagic scenarios, we develop BVAE models for robust
uncertainty quantification (OoD detection). The ability of our
models to quantify uncertainties not only provides a measure of
the model’s confidence in its predictions but also highlights



areas where additional data collection could enhance the
model’s performance. This feature bolsters the model’s utility
and reliability in real-world critical care applications. To the
best of the authors’ knowledge, this work is pioneering in
considering both epistemic and aleatoric uncertainties in
critical care scenarios.

II. METHODOLOGY

In this section, the structure and training methodology of
the BVAE is explained. BVAE is a powerful tool for modeling
probability distribution of dataset and estimating uncertainty
[14]. The BVAE used in this work has a single encoder and
multiple decoders, as shown in Fig. 1. However, it could be
extended to include multiple encoders, if needed. In fact, the
BVAE is a VAE with a network constructed by BNN serving
as the decoder. Therefore, weights of the decoder are treated as
a distribution rather than fixed values. It can be viewed as a
variational encoder and an ensemble of decoders, with the
output being an average over different decoders.

In the BVAE framework, the inputs maps into a probability
distribution over latent space. After sampling from the
probability distribution, the data passes through a Bayesian
network to model uncertainty by proposing a probability
distribution for each weight. Within this framework, the
decoder parameters £ and the latent state x are considered as
random variables with corresponding posteriors p(f | D) and
p(y|x,a), respectively, where D is the dataset, y represents
the output reconstructed from the decoder, and o denotes the
fixed parameters associated with the encoder. The primary
objective encompasses optimizing « and simultaneously
estimating two posteriors.

The  estimation of  posteriors

p(BID)  and
p(y|x,) involves optimizing a reconstruction loss and a

negative log likelihood over posteriors, thereby integrating
both latent space x and model parameters S . Both posteriors

are intractable, necessitating the imposition of priors over x
and f to estimate them by constraining them to their prior. To

quantify the integration over latent variables x and decoder
parameters [, the following marginal likelihood is introduced

to emphasize the comprehensive nature of the model’s
assessment of both latent variables and model parameters:

P D)= [ [ p(y|x,B)p(x)dx p(B| D)d B (1)
where £ is generated by sampling from p(f|D), x is

generated by sampling form p(x), and the system outputs are
produced by sampling from p(y|x, f).

The loss function for the BVAE model comprises three
components:

1. Kullback-Leibler (KL) Divergence 1 (KLI): Representing
the KL Divergence between the approximate posterior of
the latent variables and the prior, this term is formulated as:
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Fig. 1. Bayesian Variational Autoencoder (BVAE) Framework
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where g(x | y) is the approximate posterior of the latent
variables given input data, and p(x) is the prior. This term

encourages the distribution of the latent variables to be
close to the prior (usually a standard Gaussian).

2. KL Divergence 2 (KL2): This term is the KL divergence
between the approximate posterior and the prior of the
weights in the BNN and is formulated as:

KL2 =Dy, (q(B| D)l p(B)) 3)

where g(f | D) is the approximate posterior of the weights
and p(f) is the prior. This term encourages the
distribution of weights to be close to the prior.

3. Negative Log-Likelihood (NLL): This term measures how
well the BVAE is able to reconstruct the input data. It is
often the mean squared error (MSE) or binary cross-entropy
(BCE) between the original input and the reconstructed
output. It is formulated as:

NLL =—log p(y | x, B) 4)

where p(y|x,f) is the likelihood of the data, given the
latent variables and the weights.

The total loss function is constructed as:

Ly = KL1+KL2+ NLL (5)

to ensure that the BVAE learns a useful latent space (through
KLT1), the BNN learns a distribution over weights that explain
the data (through KL2), and the reconstructed output is as close
as possible to the original input (through NLL).

III. RESULTS AND DISCUSSION

In this study, we utilized a BVAE approach to detect the
incidence of hemorrhage as an unexpected external factor
(OoD detection) during fluid therapy. By integrating the power
of VAE and BNN in a unified framework, the proposed BVAE
provides a robust and effective method for -capturing
uncertainty in physiological modeling. We employed two
separate datasets: one for training and the other for testing the
BVAE model. For training, we used a clinical dataset from a
study conducted at the Department of Anesthesia, South
Hospital, Stockholm, Sweden [16], which did not include
active hemorrhage cases. For testing the BVAE, we used an



animal dataset with active hemorrhage from a study at the
Resuscitation Research Laboratory, University of Texas
Medical Branch [17].

In the clinical study [16], 10 individual human subjects
were infused with the Ringer’s Acetate, a crystalloid fluid, at a
volume rate of 25 ml/kg over a period of 30 minutes.
Following the infusion, an observation period of 150 minutes
was maintained. Notably, there was no pre-infusion
hemorrhage volume during the study. Blood pressure was
measured every 5 minutes during the study. We computed the
MAP from the systolic and diastolic blood pressure
measurements using the following formula [18]:

Systollic pressure + 2 x Diastolic pressure
3

MAP = (6)

In the animal study [17], 10 sheep were subjected to a
hemorrhage rate of 25 ml/kg within the initial 15 minutes, after
which the hemorrhage was stopped, except at times t = 52 and t
= 72 minutes where additional hemorrhages of 5 ml/kg were
introduced for two minutes for each subject. These instances
represented unexpected bleeding during transition to the
hospital. Fluid resuscitation with Lactated Ringer's solution
was initiated 30 minutes after the commencement of the study.
Throughout the 180-minute period, MAP measurements were
recorded every 5 minutes. The model input data included fluid
infusion and hemorrhage rates, while the output data consisted
of the corresponding MAP values.

The training dataset consisted of 1800 MAP samples from
human subjects, all of whom experienced no hemorrhage. The
diversity in human subjects aimed to capture a wide range of
physiological variations. To assess the model’s robustness in
the presence of active hemorrhage, we conducted tests using
180 samples from the animal data, specifically chosen to
represent active hemorrhage as an OoD scenario during
treatment.

The BVAE architecture employed in this work consisted
of two layers of conventional NN for the encoder, comprising
10 and 5 nodes, and two layers of BNN for decoder, with 5 and
10 nodes, respectively. The training and optimization process
involved minimizing loss function (2) using Adam optimizer
with a learning rate of 0.001 over 100 epochs of training. These
configurations were empirically determined through an
iterative search process, balancing computational feasibility
and model performance. To validate the model’s performance,
we employed the Early Stopping methodology [19]. The
dataset was split into training and validation sets, with the
validation set consisting of 30% of the training data. At the end
of the training process, the model achieved a MSE of 0.086 on
the validation set.

Fig. 2 shows the results from testing the model on an
individual animal subject. Fig. 2a shows the treatment
scenarios of infusion and hemorrhage, while Fig. 2b compares
predicted and real MAP values, highlighting the areas of
uncertainty. Notably, Fig. 2b demonstrates increased
uncertainty in the model’s predictions during hemorrhage
events, as indicated by a wider uncertainty boundary affecting
MAP values. This heightened uncertainty indicates the model’s

ability to detect OoD scenario, i.e., hemorrhage incidences, not
encountered during training. To analyze the model’s
performance and accuracy, three performance metrics were
employed: root mean square error (RMSE), mean absolute
error (MAE), and median absolute percentage error (MDAPE).
The results shown in Table I suggest the model’s effectiveness
in capturing the MAP dynamics. Additionally, we performed a
linear regression test [20] on the dataset to highlight the
significant linear correlation between MAP and the
hemorrhage profile. This analysis implies that the observed
higher uncertainty during sudden drops in MAP values can be
attributed to the impact of hemorrhage events on MAP.

The model’s ability to detect OoD scenarios provides a
measure of the model’s confidence in its predictions. In
addition, it highlights areas where additional data collection
could improve the model’s performance. This feature,
therefore, enhances the model’s utility and reliability in real-
world applications, particularly in critical areas such as fluid
resuscitation.

The incorporation of uncertainty quantification in our
modeling approach plays a pivotal role in advancing the design
of optimal fluid management strategies in critical care
scenarios. By precisely capturing uncertainty through BVAE,
we can offer a subtle understanding of the inherent variability
and unpredictability in healthcare scenarios. This detailed
uncertainty information serves as a crucial input for developing
model-based reinforcement learning (MBRL) control
algorithms. In reinforcement learning (RL), the agent adapts its
strategy by recognizing the need for increased exploration in
the environment, when confronted with higher uncertainty in
model’s output. Leveraging this insight, our future direction
involves utilizing the MBRL agent to dynamically adjust fluid
management policies in response to higher uncertainty,
actively exploring and gaining more knowledge about the
evolving physiological state. This adaptive response enhances
fluid management strategies, promising potential for future
research and application in dynamic clinical settings.

While the current study focuses on hemorrhagic scenarios,
the modular nature of the BVAE framework suggests potential
applicability to diverse patient populations and medical
conditions within critical care. To fortify its versatility, we will
explore model’s performance in different scenarios for the
same subject, ensuring its robustness to intra-patient
variability. Furthermore, we aim to evaluate its adaptability by
testing model across different subjects, providing insights into
its responsiveness to inter-patient variability. In addition,
ongoing research and collaboration are essential to validate and
customize the model for different healthcare settings, ensuring
its robustness and effectiveness in enhancing clinical decision-
making.

The current study primarily focused on fluid management
strategies in hemorrhagic scenarios. However, the effects of
multiple drug infusions, which are often a combination of
critical care interventions, have not been incorporated into the
models. Future research could explore the integration of
multiple drugs and their interactions to provide a more
comprehensive understanding of the complex physiological
dynamics during treatment.


https://www.naomedical.com/blog/calculating-map-blood-pressure-nao-medical/
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Fig. 2. (a) Infusion and hemorrhage profiles of an animal subject, (b)
Comparing predictied MAP with actual data, along with uncertainity bounds

TABLE I. PERFORMANCE METRICS FOR ALL SUBJECTS
RMSE (%) MAE (%) MDAPE (%)
MEAN 1.77 1.20 0.91
STD 0.44 0.29 0.30

This study emphasizes the significance of uncertainty
modeling in fluid therapy, primarily centering around the
impact of hemorrhagic events. Incorporating additional
hemodynamic endpoints, such as blood volume and cardiac
output, could potentially enhance the applicability of the
proposed approach. Future directions may involve expanding
the model to consider a broader range of hemodynamic
variables, enabling a more comprehensive evaluation of fluid
management strategies across various clinical scenarios.

IV. CONCLUSION

In this study, we developed BVAE models to capture
uncertainties in physiological systems, focusing specifically on
fluid therapy in hemorrhagic scenarios. The simulation
outcomes were promising, particularly in detecting
hemorrhages by assigning increased uncertainty to OoD

scenarios. We plan to conduct a comprehensive comparison
with leading modeling techniques and perform an in-depth
statistical analysis to further affirm the effectiveness of our
methodology. Upon refining and validating our model’s
accuracy, we aim to develop an automated fluid management
system that enhances decision-making in critical care.
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