
Bayesian Variational Autoencoders for Out-of-
Distribution Detection in Physiological Modeling: A 

Case Study in Fluid Therapy 

Elham Estiri 
College of Aeronautics and Engineering 

Kent State University 
Kent, OH, USA 
eestiri@kent.edu 

Hossein Mirinejad* 
College of Aeronautics and Engineering 

Kent State University 
Kent, OH, USA 
hmiri@kent.edu

Abstract— Uncertainty quantification is crucial in modeling 
critical care systems, where external factors such as clinical 
disturbances significantly impact decision-making. This study 
employs Bayesian variational autoencoders (BVAEs) to quantify 
inherent randomness in clinical data (aleatoric uncertainty) and 
detect uncertainty in the biases and weights of the neural 
network model (epistemic uncertainty). Focusing on fluid 
therapy, the proposed BVAE models aim to detect hemorrhage 
incidents through out-of-distribution (OoD) data detection. The 
models' ability to self-identify OoD scenarios not only provides a 
measure of confidence in their predictions but also highlights 
areas where additional data collection could enhance 
performance. Simulation results show promising outcomes, 
particularly in identifying hemorrhage through increased model 
uncertainty in OoD scenarios. 
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I. INTRODUCTION

Fluid therapy is a medical treatment to restore intravascular 
volume in critical care scenarios, such as hemorrhagic shock 
and severe dehydration [1-2]. Optimal fluid management is a 
complex task due to intricate interactions between patient 
hemodynamic variables and drug infusion. Over-aggressive 
fluid infusion may lead to severe complications such as sepsis, 
underscoring the need for timely and prompt fluid management 
[3].  

In recent years, there has been a growing interest in 
utilizing computational methods and novel modeling 
algorithms to develop automated medication dosing tools in 
critical care scenarios [3-10]. In [5], a novel model-free 
reinforcement learning approach was proposed to control the 
mean arterial pressure (MAP) in response to fluid infusion. In 
[6], a radial basis function-Galerkin (RBF-Galerkin) [7] 
optimal control method was used to automatically adjust fluid 
infusion dosages in hypovolemic scenarios. In [11], a 
computer-assisted mechanism was suggested for the 
continuous adjustment of fluid dosages. 

Conventional physiological models often struggle with 
overconfidence in predictions, lacking the ability to handle 
medical decision-making's complexity and uncertainty, which 
compromises their generalizability and predictability. In 
critical care scenarios, these uncertainties may arise from 
several factors, such as the interaction of multiple medications 
in comorbidities or the occurrence of clinical disturbances 
during the treatment [12]. These factors represent out-of-
distribution (OoD) scenarios, situations unseen by the model 
during training but encountered in testing. Without specific 
training to recognize these scenarios, the model may make 
decisions for which it has not been adequately prepared [13], 
leading to improper hemodynamic predictions and dosing 
recommendations. 

Uncertainty quantification can detect OoD scenarios and 
provide an estimate of variability and unpredictability in 
physiological systems. In the context of fluid therapy, external 
factors such as active hemorrhage may be seen as a clinical 
disturbance influencing treatment strategies. The hemorrhage 
represents an OoD scenario, and its proper identification 
proves highly beneficial in designing effective resuscitation 
regimens, and this work aims to address it. 

This work presents a novel uncertainty quantification 
method in physiological modeling using Bayesian variational 
autoencoders (BVAEs). The BVAE unifies autoencoder 
learning, variational inference, and Bayesian neural network 
(BNN) concepts in a single framework [14]. It offers several 
advantages, including generative modeling, robustness to 
overfitting, precise control over latent space, and the ability to 
quantify uncertainties. Unlike conventional neural networks 
(NNs) that estimate fixed values for weights, BNNs model 
weights as a distribution. The BVAE not only has the power of 
a variational autoencoders (VAE) to quantify inherent 
randomness in data (aleatoric uncertainty) but can also detect 
uncertainty in the biases and weight of the NN model 
(epistemic uncertainty) [15]. Focusing on fluid therapy in 
hemorrhagic scenarios, we develop BVAE models for robust 
uncertainty quantification (OoD detection). The ability of our 
models to quantify uncertainties not only provides a measure of 
the model’s confidence in its predictions but also highlights 
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areas where additional data collection could enhance the 
model’s performance. This feature bolsters the model’s utility 
and reliability in real-world critical care applications. To the 
best of the authors’ knowledge, this work is pioneering in 
considering both epistemic and aleatoric uncertainties in 
critical care scenarios. 

II. METHODOLOGY 
In this section, the structure and training methodology of 

the BVAE is explained. BVAE is a powerful tool for modeling 
probability distribution of dataset and estimating uncertainty 
[14]. The BVAE used in this work has a single encoder and 
multiple decoders, as shown in Fig. 1. However, it could be 
extended to include multiple encoders, if needed. In fact, the 
BVAE is a VAE with a network constructed by BNN serving 
as the decoder. Therefore, weights of the decoder are treated as 
a distribution rather than fixed values. It can be viewed as a 
variational encoder and an ensemble of decoders, with the 
output being an average over different decoders. 

In the BVAE framework, the inputs maps into a probability 
distribution over latent space. After sampling from the 
probability distribution, the data passes through a Bayesian 
network to model uncertainty by proposing a probability 
distribution for each weight. Within this framework, the 
decoder parameters β  and the latent state x  are considered as 
random variables with corresponding posteriors ( | )p Dβ  and 

( | , )p y x α , respectively, where D is the dataset, y represents 
the output reconstructed from the decoder, and α denotes the 
fixed parameters associated with the encoder. The primary 
objective encompasses optimizing α and simultaneously 
estimating two posteriors.  

The estimation of posteriors ( | )p Dβ  and 
( | , )p y x α involves optimizing a reconstruction loss and a 

negative log likelihood over posteriors, thereby integrating 
both latent space x  and model parameters β . Both posteriors 
are intractable, necessitating the imposition of priors over x  
and β  to estimate them by constraining them to their prior. To 
quantify the integration over latent variables x  and decoder 
parameters β , the following marginal likelihood is introduced 
to emphasize the comprehensive nature of the model’s 
assessment of both latent variables and model parameters: 

( | ) ( | , ) ( ) ( | )p y D p y x p x dx p D dβ β β= ∫ ∫  (1) 

where β  is generated by sampling from ( | )p Dβ , x  is 
generated by sampling form ( )p x , and the system outputs are 
produced by sampling from ( | , )p y x β . 

 The loss function for the BVAE model comprises three 
components: 

1. Kullback-Leibler (KL) Divergence 1 (KL1): Representing 
the KL Divergence between the approximate posterior of 
the latent variables and the prior, this term is formulated as: 

 

Fig. 1. Bayesian Variational Autoencoder (BVAE) Framework 

1 ( ( | ) || ( ))KLKL D q x y p x=  (2) 

where ( | )q x y  is the approximate posterior of the latent 
variables given input data, and ( )p x is the prior. This term 
encourages the distribution of the latent variables to be 
close to the prior (usually a standard Gaussian). 

2. KL Divergence 2 (KL2): This term is the KL divergence 
between the approximate posterior and the prior of the 
weights in the BNN and is formulated as: 

2 ( ( | ) || ( ))KLKL D q D pβ β=  (3)  

where ( | )q Dβ is the approximate posterior of the weights 
and ( )p β is the prior. This term encourages the 
distribution of weights to be close to the prior. 

3. Negative Log-Likelihood (NLL): This term measures how 
well the BVAE is able to reconstruct the input data. It is 
often the mean squared error (MSE) or binary cross-entropy 
(BCE) between the original input and the reconstructed 
output. It is formulated as: 

log ( | , )NLL p y x β= −   (4) 

where ( | , )p y x β  is the likelihood of the data, given the 
latent variables and the weights. 

 The total loss function is constructed as: 

1 2BVAEL KL KL NLL= + +  (5) 

to ensure that the BVAE learns a useful latent space (through 
KL1), the BNN learns a distribution over weights that explain 
the data (through KL2), and the reconstructed output is as close 
as possible to the original input (through NLL). 

III. RESULTS AND DISCUSSION 
In this study, we utilized a BVAE approach to detect the 

incidence of hemorrhage as an unexpected external factor 
(OoD detection) during fluid therapy. By integrating the power 
of VAE and BNN in a unified framework, the proposed BVAE 
provides a robust and effective method for capturing 
uncertainty in physiological modeling. We employed two 
separate datasets: one for training and the other for testing the 
BVAE model. For training, we used a clinical dataset from a 
study conducted at the Department of Anesthesia, South 
Hospital, Stockholm, Sweden [16], which did not include 
active hemorrhage cases. For testing the BVAE, we used an 



animal dataset with active hemorrhage from a study at the 
Resuscitation Research Laboratory, University of Texas 
Medical Branch [17]. 

In the clinical study [16], 10 individual human subjects 
were infused with the Ringer’s Acetate, a crystalloid fluid, at a 
volume rate of 25 ml/kg over a period of 30 minutes. 
Following the infusion, an observation period of 150 minutes 
was maintained. Notably, there was no pre-infusion 
hemorrhage volume during the study. Blood pressure was 
measured every 5 minutes during the study. We computed the 
MAP from the systolic and diastolic blood pressure 
measurements using the following formula [18]: 

2
3

Systollic pressure Diastolic pressureMAP + ×
=  (6) 

In the animal study [17], 10 sheep were subjected to a 
hemorrhage rate of 25 ml/kg within the initial 15 minutes, after 
which the hemorrhage was stopped, except at times t = 52 and t 
= 72 minutes where additional hemorrhages of 5 ml/kg were 
introduced for two minutes for each subject. These instances 
represented unexpected bleeding during transition to the 
hospital. Fluid resuscitation with Lactated Ringer's solution 
was initiated 30 minutes after the commencement of the study. 
Throughout the 180-minute period, MAP measurements were 
recorded every 5 minutes. The model input data included fluid 
infusion and hemorrhage rates, while the output data consisted 
of the corresponding MAP values. 

The training dataset consisted of 1800 MAP samples from 
human subjects, all of whom experienced no hemorrhage. The 
diversity in human subjects aimed to capture a wide range of 
physiological variations. To assess the model’s robustness in 
the presence of active hemorrhage, we conducted tests using 
180 samples from the animal data, specifically chosen to 
represent active hemorrhage as an OoD scenario during 
treatment. 

 The BVAE architecture employed in this work consisted 
of two layers of conventional NN for the encoder, comprising 
10 and 5 nodes, and two layers of BNN for decoder, with 5 and 
10 nodes, respectively. The training and optimization process 
involved minimizing loss function (2) using Adam optimizer 
with a learning rate of 0.001 over 100 epochs of training. These 
configurations were empirically determined through an 
iterative search process, balancing computational feasibility 
and model performance. To validate the model’s performance, 
we employed the Early Stopping methodology [19]. The 
dataset was split into training and validation sets, with the 
validation set consisting of 30% of the training data. At the end 
of the training process, the model achieved a MSE of 0.086 on 
the validation set. 

Fig. 2 shows the results from testing the model on an 
individual animal subject. Fig. 2a shows the treatment 
scenarios of infusion and hemorrhage, while Fig. 2b compares 
predicted and real MAP values, highlighting the areas of 
uncertainty. Notably, Fig. 2b demonstrates increased 
uncertainty in the model’s predictions during hemorrhage 
events, as indicated by a wider uncertainty boundary affecting 
MAP values. This heightened uncertainty indicates the model’s 

ability to detect OoD scenario, i.e., hemorrhage incidences, not 
encountered during training. To analyze the model’s 
performance and accuracy, three performance metrics were 
employed: root mean square error (RMSE), mean absolute 
error (MAE), and median absolute percentage error (MDAPE). 
The results shown in Table I suggest the model’s effectiveness 
in capturing the MAP dynamics. Additionally, we performed a 
linear regression test [20] on the dataset to highlight the 
significant linear correlation between MAP and the 
hemorrhage profile. This analysis implies that the observed 
higher uncertainty during sudden drops in MAP values can be 
attributed to the impact of hemorrhage events on MAP. 

The model’s ability to detect OoD scenarios provides a 
measure of the model’s confidence in its predictions. In 
addition, it highlights areas where additional data collection 
could improve the model’s performance. This feature, 
therefore, enhances the model’s utility and reliability in real-
world applications, particularly in critical areas such as fluid 
resuscitation. 

The incorporation of uncertainty quantification in our 
modeling approach plays a pivotal role in advancing the design 
of optimal fluid management strategies in critical care 
scenarios. By precisely capturing uncertainty through BVAE, 
we can offer a subtle understanding of the inherent variability 
and unpredictability in healthcare scenarios. This detailed 
uncertainty information serves as a crucial input for developing 
model-based reinforcement learning (MBRL) control 
algorithms. In reinforcement learning (RL), the agent adapts its 
strategy by recognizing the need for increased exploration in 
the environment, when confronted with higher uncertainty in 
model’s output. Leveraging this insight, our future direction 
involves utilizing the MBRL agent to dynamically adjust fluid 
management policies in response to higher uncertainty, 
actively exploring and gaining more knowledge about the 
evolving physiological state. This adaptive response enhances 
fluid management strategies, promising potential for future 
research and application in dynamic clinical settings. 

While the current study focuses on hemorrhagic scenarios, 
the modular nature of the BVAE framework suggests potential 
applicability to diverse patient populations and medical 
conditions within critical care. To fortify its versatility, we will 
explore model’s performance in different scenarios for the 
same subject, ensuring its robustness to intra-patient 
variability. Furthermore, we aim to evaluate its adaptability by 
testing model across different subjects, providing insights into 
its responsiveness to inter-patient variability. In addition, 
ongoing research and collaboration are essential to validate and 
customize the model for different healthcare settings, ensuring 
its robustness and effectiveness in enhancing clinical decision-
making. 

The current study primarily focused on fluid management 
strategies in hemorrhagic scenarios. However, the effects of 
multiple drug infusions, which are often a combination of 
critical care interventions, have not been incorporated into the 
models. Future research could explore the integration of 
multiple drugs and their interactions to provide a more 
comprehensive understanding of the complex physiological 
dynamics during treatment.  

https://www.naomedical.com/blog/calculating-map-blood-pressure-nao-medical/
https://www.naomedical.com/blog/calculating-map-blood-pressure-nao-medical/
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Fig. 2. (a) Infusion and hemorrhage profiles of an animal subject, (b) 
Comparing predictied MAP with actual data, along with uncertainity bounds 

TABLE I.  PERFORMANCE METRICS FOR ALL SUBJECTS 

 RMSE (%) MAE (%) MDAPE (%) 

MEAN 1.77 1.20 0.91 
STD 0.44 0.29 0.30 

This study emphasizes the significance of uncertainty 
modeling in fluid therapy, primarily centering around the 
impact of hemorrhagic events. Incorporating additional 
hemodynamic endpoints, such as blood volume and cardiac 
output, could potentially enhance the applicability of the 
proposed approach. Future directions may involve expanding 
the model to consider a broader range of hemodynamic 
variables, enabling a more comprehensive evaluation of fluid 
management strategies across various clinical scenarios. 

IV. CONCLUSION  
In this study, we developed BVAE models to capture 

uncertainties in physiological systems, focusing specifically on 
fluid therapy in hemorrhagic scenarios. The simulation 
outcomes were promising, particularly in detecting 
hemorrhages by assigning increased uncertainty to OoD 

scenarios. We plan to conduct a comprehensive comparison 
with leading modeling techniques and perform an in-depth 
statistical analysis to further affirm the effectiveness of our 
methodology. Upon refining and validating our model’s 
accuracy, we aim to develop an automated fluid management 
system that enhances decision-making in critical care. 
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