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Abstract
Let (!,", µ) be a measure space, and 1 ≤ p ≤ ∞. A subspace E ⊆ L p(µ) is said
to do stable phase retrieval (SPR) if there exists a constant C ≥ 1 such that for any
f , g ∈ E we have

inf
|λ|=1

∥ f − λg∥ ≤ C∥| f |− |g|∥. (0.1)

In this case, if | f | is known, then f is uniquely determined up to an unavoidable
global phase factorλ;moreover, the phase recoverymap isC-Lipschitz. Phase retrieval
appears in several applied circumstances, ranging from crystallography to quantum
mechanics. In this article, we construct various subspaces doing stable phase retrieval,
and make connections with $(p)-set theory. Moreover, we set the foundations for an
analysis of stable phase retrieval in general function spaces. This, in particular, allows
us to show that Hölder stable phase retrieval implies stable phase retrieval, improving
the stability bounds in a recent article of M. Christ and the third and fourth authors.
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We also characterize those compact Hausdorff spaces K such that C(K ) contains an
infinite dimensional SPR subspace.
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1 Introduction

There are many situations in mathematics, science, and engineering where the goal
is to recover some vector f from |T f |, where T is a linear transformation into a
function space. Note that if |λ| = 1 then it is impossible to distinguish f and λ f in
this way. The linear transformation T is said to do phase retrieval if this ambiguity
is the only obstruction to recovering f . That is, given a vector space H and function
space X , a linear operator T : H → X does phase retrieval if whenever f , g ∈ H
satisfy |T f | = |Tg| then f = λg for some scalar λ with |λ| = 1. Phase retrieval
naturally arises in situations where one is only able to obtain the magnitude of linear
measurements, and not the phase. Notable examples in physics and engineering which
require phase retrieval include X-ray crystallography, electron microscopy, quantum
state tomography, and cepstrum analysis in speech recognition. The study of phase
retrieval in mathematical physics dates back to at least 1933 when in his seminal
work Die allgemeinen Prinzipien der Wellenmechanik [65] W. Pauli asked whether
a wave function is uniquely determined by the probability densities of position and
momentum. In other words, Pauli asked whether | f | and | f̂ | determine f ∈ L2(R)
up to multiplication by a unimodular scalar. The mathematics of phase retrieval has
since grown to be an important and well-studied topic in applied harmonic analysis.

As any application of phase retrieval would involve error, it is of fundamental
importance that the recovery of f from |T f | not only be possible, but also be stable.
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We say that T does stable phase retrieval if the recovery (up to a unimodular scalar) of
f from |T f | is Lipschitz. If X is finite dimensional, then T does phase retrieval if and
only if it does stable phase retrieval [12, 22]. However, if X is infinite dimensional and
T is the analysis operator of a frame or a continuous frame, then T cannot do stable
phase retrieval [2, 23]. Here, a collection of vectors (ψt )t∈! ⊆ H is a continuous frame
of a Hilbert space H over a measure space (!,", µ) if the map f )→ (⟨ f ,ψt ⟩)t∈!
is an embedding of H into L2(µ). One of the main goals of this paper is to use the
theory of subspaces of Banach lattices to present a unifying framework for stable phase
retrieval which encompasses the previously studied cases and allows for stable phase
retrieval in infinite dimensions.

Let X = L p(µ), or, more generally, a Banach lattice. Let E ⊆ X be a subspace.
We say that E does phase retrieval as a subspace of X if whenever | f | = |g| for some
f , g ∈ E we have that f = λg for some scalar λ with |λ| = 1. Given a constant
C > 0, we say that E does C-stable phase retrieval as a subspace of X if

inf
|λ|=1

∥ f − λg∥ ≤ C
∥∥| f |− |g|

∥∥ for all f , g ∈ E . (1.1)

We may define an equivalence relation∼ on E by f ∼ g if f = λg for some scalar λ

with |λ| = 1. Then, E does phase retrieval as a subspace of X if and only if the map
f )→ | f | from E/∼ to X is injective. Furthermore, E does C-stable phase retrieval
as a subspace of X if and only if the map f )→ | f | from E/∼ to X is injective and
the inverse is C-Lipschitz. By introducing stable phase retrieval into the setting of
Banach lattices, we are able to apply established methods from the subject to attack
problems in phase retrieval, and conversely we hope that the ideas and questions in
phase retrieval will inspire a new avenue of research in the theory of Banach lattices.
Before starting the meat of the paper, we present some additional motivation, give an
outline of our major results, and state some of the important ideas and theorems from
Banach lattices which we will be applying. We conclude the paper by listing many
open questions concerning stable phase retrieval in this new setting.

1.1 Motivation and applications

The inequality (1.1) arises in various circumstances. For instance, in crystallography
and optics, one seeks to recover an unknown function F ∈ L2(Rd) from the absolute
value of its Fourier transform F̂ . If one also seeks stability, this translates into an
inequality of the form

inf
|λ|=1

∥F − λG∥L2 ≤ C∥|F̂ |− |Ĝ|∥L2 , (1.2)

which one would want to be valid for F,G in a subspace E ⊆ L2(Rd)which incorpo-
rates the additional constraints F,G are known to satisfy. Using Plancherel’s theorem
to write ∥F − λG∥L2 = ∥F̂ − λĜ∥L2 , one sees that the inequality (1.2) reduces to
(1.1), up to passing to Fourier space and making the change of notation f = F̂ and
g = Ĝ. We refer the reader to the surveys [42, 47] and references therein for a fur-
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ther explanation of the importance of phase retrieval in optics, crystallography, and
other areas. In particular, these articles explains why, in practice, physical experiments
are often able to measure the magnitude of the Fourier transform, but are unable to
measure the phase.

A second scenariowhere phase retrieval appears is quantummechanics. In this case,
one wants to identify situations where | f | and | f̂ | determine f ∈ L2(R) uniquely. As
already mentioned, Pauli asked whether this could true for all f ∈ L2(R). However,
a counterexample to this conjecture was given in 1944: There exists f , g ∈ L2(R)
such that | f | = |g| and | f̂ | = |̂g| but f is not a multiple of g. This leads to the natural
question of whether one can build “large" subspacesG ⊆ L2(R) for which | f | and | f̂ |
determine f ∈ G ⊆ L2(R) uniquely. By passing to the phase space L2(R)× L2(R),
we see that G has the above property if and only if E := {( f , f̂ ) : f ∈ G} does phase
retrieval as a subspace of L2(R)×L2(R), i.e., knowing h, k ∈ E and |h| = |k| implies
h is a unimodular multiple of k. This also naturally leads to the question of stability
of Pauli phase retrieval, by requiring (1.1) hold on E . In this case, using Plancherel’s
theorem to return to G, (1.1) on E translates into the inequality

inf
|λ|=1

∥ f − λg∥L2 ≤ C
(
∥| f |− |g|∥L2 + ∥| f̂ |− |̂g|∥L2

)
for f , g ∈ G. (1.3)

For a non-exhaustive collection of results on Pauli phase retrieval and its generaliza-
tions, see [8, 42, 49, 50] and references therein. To our knowledge, the question of
stability in the Pauli Problem is essentially unexplored. However, the results presented
here in conjunction with [28] give a relatively large class of subspaces of L2(Rd) sat-
isfying (1.3).

Finally, we mention that phase retrieval has grown to become an exciting and
important topic of research in frame theory [12–14, 18, 27, 34, 42]. A frame for a
separable Hilbert space H is a sequence of vectors (φ j ) j∈J in H such that there exists
uniform bounds A, B > 0 so that

A∥ f ∥2 ≤
∑

j∈J
|⟨ f ,φ j ⟩|2 ≤ B∥ f ∥2 for all f ∈ H . (1.4)

The analysis operator of a frame (φ j ) j∈J of H is the map ' : H → ℓ2(J ) given by
'( f ) = (⟨ f ,φ j ⟩) j∈J . Note that the uniform upper bound B in the frame inequality
(1.4) guarantees that ' : H → ℓ2(J ) is bounded, and the uniform lower bound A
gives that ' is an embedding of H into ℓ2(J ). Given a frame (φ j ) j∈J of H , the
canonical dual frame (φ̃ j ) j∈J is defined by φ̃ j = ('∗')−1φ j for all j ∈ J and
satisfies

f =
∑

j∈J
⟨ f , φ̃ j ⟩φ j =

∑

j∈J
⟨ f ,φ j ⟩φ̃ j for all f ∈ H . (1.5)

Frames have many applications and play a fundamental role in signal processing
and applied harmonic analysis. One important reason for this is that the analysis
operator ' is an embedding of H into ℓ2(J ), which allows for the application of
filters, thresholding, and other signal processing techniques. Another reason is that
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(1.5) gives a linear, stable, and unconditional reconstruction formula for a vector in
terms of the frame coefficients.

A frame (φ j ) j∈J is said to do phase retrieval if whenever f , g ∈ H and
(|⟨ f ,φ j ⟩|) j∈J = (|⟨g,φ j ⟩|) j∈J , there exists a unimodular scalar λ such that f = λg.
A frame is said to do stable phase retrieval if there exists a constant C ≥ 1 such that
for all f , g ∈ H ,

inf
|λ|=1

∥ f − λg∥H ≤ C∥|'( f )|− |'(g)|∥ℓ2(J ). (1.6)

Using the fact that the analysis operator' : H → ℓ2(J ) is an embedding, we see that a
frame does stable phase retrieval if and only if the subspace'(H) ⊆ ℓ2(J ) does stable
phase retrieval in the sense of (1.1). In finite dimensions, phase retrieval for frames is
automatically stable. However, in infinite dimensions, it is necessarily unstable. As we
will see, this is due to the fact that the ambient Hilbert lattice ℓ2(J ) is atomic, whereas
the construction of SPR subspaces from [24] is done in the non-atomic lattice L2(R).
For further investigations on the instability of phase retrieval for frames—including
generalizations to continuous frames and frames in Banach spaces—see [2, 23].

As mentioned previously, phase retrieval problems arise in applications when con-
sidering an operator T : H → X , which embeds a Hilbert space H into a function
space X . In particular, the inequality (1.2) arises by taking T to be the Fourier trans-
form, and (1.6) arises by taking T to be the analysis operator of a frame. A particularly
important choice for T is the Gabor transform (see [3, 44] for recent advances in Gabor
phase retrieval). As should now be evident, the question of stability for each of these
phase retrieval problems can be translated into a special case of (1.1), by taking
E := T (H).

1.2 An overview of the results

The examples from Sect. 1.1 show that the inequality (1.1) unifies various phase
retrieval problems. However, as mentioned previously, phase retrieval for frames is
unstable in infinite dimensions, and it was only recently that the first examples of
infinite dimensional SPR subspaces of real L2(µ) spaces were constructed [24]. The
purpose of this article is twofold. First, we construct numerous examples of subspaces
of L p(µ) doing stable phase retrieval. For this, we use various isometric Banach space
techniques, modifications of the “almost disjointness"methods in classical Banach lat-
tice theory, randomconstructions, and analogues of some constructions fromharmonic
analysis. Secondly, we prove several structural results about SPR subspaces of L p(µ),
and even general Banach lattices. Notably, both the characterization of real SPR in
terms of almost disjoint pairs (Theorem 3.4), as well as the equivalence of SPR and its
Hölder analogue (Corollary 3.12) hold for all Banach lattices. Our results also extend
those in the recent article [28], which uses orthogonality and combinatorial arguments
akin to Rudin’s work [68] on $(p)-sets to produce examples of subspaces of (real or
complex) L p(µ) doing Hölder stable phase retrieval.

We now briefly overview the paper. In Sect. 2, we recall some basic terminology
and results from Banach lattice theory in order to make the paper accessible to a
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wider audience. Most notably, in Sect. 2.1 we collect basic facts related to the Kadec–
Pelczynski dichotomy. Such results give structural information about closed subspaces
ofBanach lattices that are dispersed, i.e., that do not contain normalized almost disjoint
sequences. As we will show in Theorem 3.4, a subspace of a (real) Banach lattice does
stable phase retrieval if and only if it does not contain normalized almost disjoint
pairs. In Theorem 2.1, we collect various facts about dispersed subspaces; finding
SPR analogues of these results will occupy much of the paper. In particular, although
SPR is much stronger than being dispersed, in Theorem 5.1 we will show that every
closed infinite dimensional dispersed subspace of an order continuous Banach lattice
contains a further closed infinite dimensional subspace doing SPR. The preliminary
section finishes with Sect. 2.2, which recalls basic facts about complex Banach lattices.

Section 3 collects various results on stable phase retrieval that hold for general
Banach lattices. In particular, in Sect. 3.1 we make the aforementioned connection
between stable phase retrieval and almost disjoint pairs (see Theorem 3.4). In Sect. 3.2,
we show that if the phase recovery map is Hölder continuous on the ball, then it is
Lipschitz continuous on the whole space (Corollary 3.12). This follows from The-
orem 3.10, which shows that failure of stable phase retrieval can be witnessed by
“well-separated" vectors. The equivalence between stable phase retrieval and Hölder
stable phase retrieval allows us to improve some results from [28], yielding the first
examples of infinite dimensional closed subspaces of complex L2(µ) doing stable
phase retrieval.

In Sect. 4, we build infinite dimensional SPR subspaces using a variety of different
techniques. In particular, we prove in Corollary 4.8 an analogue of statement (iii) of
Theorem 2.1; namely, that for every dispersed subspace E ⊆ L p[0, 1] (1 ≤ p ≤ ∞),
we can build a closed subspace E ′ ⊆ L p[0, 1] isomorphic to E , and doing stable phase
retrieval. Moreover, for p < 2 and q ∈ (p, 2], we will show that any closed subspace
of L p(µ) isometric to Lq(µ) does SPR in L p(µ), see Proposition 4.1. Regarding
sequence spaces, in Sect. 4.2 we show that ℓ∞ embeds into itself in an SPR way,
while no infinite dimensional subspace of ℓp does SPR when 1 ≤ p < ∞. Sect. 4.3
constructs SPR subspaces of rearrangement invariant spaces using random variables.
This, in particular, tells us that subspaces spanned by iid Gaussian and q-stable random
variables will do SPR in a variety of spaces, including all L p-spaces in which they can
be found.Here,we recall that “iid” stands for “independent and identically distributed”,
and by a sequence of iid Gaussians we mean a sequence of independent random
variables all of which have standard normal distribution (see [24] for more precise
definitions as well as other applications of iid vectors to phase retrieval). Finally,
Sect. 4.4 provides some basic stability properties of SPR subspaces.

Section 5 contains a study of the structure of SPR subspaces of L p(µ), for a finite
measure µ. We begin with the aforementioned Theorem 5.1, which is applicable for
general order continuous Banach lattices, but for which much of the proof occurs in
L1(µ). Indeed,wewill show that the generalization to order continuousBanach lattices
follows from the result in L1(µ) by arguing via the Kadec–Pelczynski dichotomy.

Note that from the classical results in Theorem 2.1 (a)-(d) it follows that if E is
dispersed in L p(µ) and 1 ≤ q < p <∞, then E may be viewed as a closed subspace
of Lq(µ), and it is dispersed in Lq(µ). In Theorem 5.3 we show that if 2 ≤ p <∞,
there are closed subspaces E ⊆ L p(µ) which do SPR (and hence are dispersed in
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Lq(µ) for all 1 ≤ q ≤ p), but fail to do SPR when viewed as a closed subspace
of Lq(µ) for all 1 ≤ q < p. However, by Theorem 5.6, if p < 2, then any SPR
subspace E ⊆ L p(µ) also does SPR when viewed as a closed subspace of Lq(µ) for
any 1 ≤ q ≤ p. Whether there is an SPR analogue of statement (v) of Theorem 2.1
remains an open problem.

Section 6 is devoted to the study of infinite dimensional SPR subspaces of C(K ).
The main result is Theorem 6.1 which states that for a compact Hausdorff space K ,
the space C(K ) of continuous functions over K admits a (closed) infinite dimensional
SPR subspace if and only if the Cantor–Bendixson derivative K ′ of K is infinite. The
paper finishes with Sect. 7, which discusses various avenues for further research.

2 Preliminaries

As many of our results hold in the generality of Banach lattices, we briefly summarize
some of the standard notations and conventions from this theory. For the most part, our
conventions alignwith the Refs. [7, 61].Moreover, the statements of our results require
minimal knowledge of Banach lattices to understand; it is simply the proofs that use
the technology and terminology from this theory. Unless otherwise mentioned, all
L p-spaces, C(K )-spaces and Banach lattices are real. When a result is applicable for
complex scalars, we will explicitly state this. The word “subspace" is to be interpreted
in the vector space sense. If a result requires the subspace to be closed or (in)finite
dimensional, we will state this.

Recall that a vector lattice is a vector space, equipped with a compatible lattice-
ordering (see [7] for a precise definition). For a vector lattice X , the positive cone of
X is denoted by X+ := { f ∈ X : f ≥ 0}. The infimum of f , g ∈ X is denoted
by f ∧ g, and the supremum is denoted by f ∨ g. The modulus of f is defined as
| f | := f ∨ (− f ), and elements f , g ∈ X are said to be disjoint if | f | ∧ |g| = 0. A
weak unit is an element e ∈ X+ for which | f | ∧ e = 0 implies f = 0. For a net ( fα)
in X , the notation fα ↓ 0 means that fα is decreasing and has infimum 0. A subspace
E ⊆ X is a sublattice if it is closed under finite lattice operations; it is an ideal if
f ∈ E and |g| ≤ | f | implies g ∈ E .
A Banach lattice is a Banach space which is also a vector lattice, and for which one

has the compatibility condition ∥ f ∥ ≤ ∥g∥ whenever | f | ≤ |g|. Note that the SPR
inequality (1.1) remains well-defined when L p(µ) is replaced by an arbitrary Banach
lattice. As we will see, several of our results on SPR are also valid in this level of
generality. Common examples of Banach lattices include L p-spaces, C(K )-spaces,
Orlicz spaces, and various sequence spaces. In this case, the ordering is pointwise, i.e.,
f ≤ g means f (t) ≤ g(t) for all (or almost all in the case of measurable functions) t
in the domain of f and g.

A Banach lattice X is order continuous if for each net ( fα) satisfying fα ↓ 0 we

have fα
∥·∥X−−→ 0. L p-spaces are order continuous for 1 ≤ p < ∞, but C(K )-spaces

are not (unless they are finite dimensional). To transfer results from L1(µ) to more
general Banach lattices, we will make use of the AL-representation procedure. For
this, let X be an order continuous Banach lattice with a weak unit e. It is known that X
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can be represented as an order and norm dense ideal in L1(µ) for some finite measure
µ. That is, there is a vector lattice isomorphism T : X → L1(µ) such that RangeT is
an order and norm dense ideal in L1(µ). Note that T need not be a norm isomorphism,
though T may be chosen to be continuous with T e = 1. Moreover, RangeT contains
L∞(µ) as a norm and order dense ideal. It is common to identify X with RangeT
and view X as an ideal of L1(µ). Such an inclusion of X into L1(µ) is called an
AL-representation of X . We refer to [61, Theorem 1.b.14] or [39, Section 4] for details
on AL-representations.

2.1 The Kadec–Pelczynski dichotomy

Here, we briefly recap the literature on subspaces which do not contain almost disjoint
normalized sequences. Recall that a sequence (xn) in a Banach lattice X is said to
be a normalized almost disjoint sequence if ∥xn∥X = 1 for all n, and there exists a
disjoint sequence (dn) in X such that ∥xn − dn∥X → 0. Following [15, 40, 41], a
closed subspace of a Banach lattice that fails to contain normalized almost disjoint
sequences will be called dispersed. The classical Kadec–Pelczynski dichotomy (c.f.
[61, Proposition 1.c.8]) states that for a subspace E of an order continuous Banach
lattice X with weak unit, either

(i) E fails to be dispersed, i.e., E contains an almost disjoint normalized sequence,
or,

(ii) E is isomorphic to a closed subspace of L1(!,", µ).

As we will see in Theorem 3.4, for real scalars, a subspace does stable phase retrieval
if and only if it does not contain normalized almost disjoint pairs. Hence, the Kadec–
Pelczynski dichotomy will provide a tool to analyze such subspaces.

In L p(µ) for 1 ≤ p < ∞ and a probability measure µ, the Kadec–Pelczynski
dichotomy can be improved. Indeed, we summarize the literature in the following
theorem.

Theorem 2.1 Let 1 ≤ p <∞ and µ be a probability measure. For a closed subspace
E of L p(µ), the following are equivalent:

(a) E is dispersed, i.e., E contains no almost disjoint normalized sequences;
(b) There exists 0 < q < p such that ∥ · ∥L p ∼ ∥ · ∥Lq on E;
(c) For all 0 < q < p, ∥ · ∥L p ∼ ∥ · ∥Lq on E;
(d) E is strongly embedded in L p(µ), i.e., convergence in measure coincides with

norm convergence on E.

Moreover,

(i) For p ̸= 2, a closed subspace of L p[0, 1] is dispersed if and only if it contains
no subspace isomorphic to ℓp.

(ii) For p > 2, a closed subspace of L p[0, 1] is dispersed if and only if it is isomor-
phic to a Hilbert space.

(iii) For p < 2 and any q ∈ (p, 2], there is a closed subspace of L p[0, 1] which is
both dispersed and isometric to Lq [0, 1].
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(iv) For p ̸= 2, L p[0, 1] cannot be written as the direct sum of two dispersed
subspaces.

(v) There exists an orthogonal decomposition L2[0, 1] = E ⊕ E⊥ with both E and
E⊥ dispersed in L2[0, 1].

Proof The equivalence of (b), (c) and (d) is [4, Proposition 6.4.5]. Other than the
isometric portion of statement (iii), the rest of the statements are neatly summarized
in [40, Propositions 3.4 and 3.5], with references to various textbooks for proofs. An
isometric embedding of Lq [0, 1] into L p[0, 1] for q ∈ (p, 2) is given in [61, Corollary
2.f.5]. An isometric embedding of ℓ2 into L p[0, 1] for 1 ≤ p < ∞ is given in [4,
Proposition 6.4.12]. ⊓⊔

Remark 2.2 One of the goals of this article is to find SPR analogues of the results in
Theorem 2.1. However, we should mention that the connection between Theorem 2.1
and SPR has already been implicitly made in [28]. Recall that a subset$ ⊆ Z is called
a $(p)-set if the closed subspace generated by the set of exponentials {e2π inx : n ∈
$} ⊆ L p(T) satisfies the equivalent conditions in Theorem 2.1. Such sets have been
deeply studied [9, 20, 69], and have many interesting properties. For example, Rudin
[68] showed that for all integers n > 1, there are $(2n)-sets that are not $(q)-sets
for every q > 2n. Moreover, Bourgain [19] extended Rudin’s theorem to all p > 2.
On the other hand, when p < 2, and $ is $(p), then it is automatically $(p + ε)

for some ε > 0 [11, 45]. Since |e2π inx | ≡ 1, complex exponentials cannot do stable
phase retrieval. However, by replacing e2π inx by sin(2πnx) or other trigonometric
polynomials with non-constant moduli, [28] is able to use combinatorial arguments
in the spirit of Rudin to produce SPR subspaces of L p(µ) when the dilation set $ is
sufficiently sparse.

2.2 Complex Banach lattices

Complex Banach lattices are defined as complexifications of real Banach lattices, and
in the case of complex function spaces like C(K ) and L p(µ), agree with the standard
definition. More precisely, by a complex Banach latticewe mean the complexification
XC = X ⊕ i X of a real Banach lattice, X , endowed with the norm ∥x + iy∥XC =
∥|x + iy|∥X , where the modulus | · | : XC→ X+ is the mapping given by

|x + iy| = sup
θ∈[0,2π ]

{x cos θ + y sin θ}, for x + iy ∈ XC. (2.1)

We refer to [1, Section 3.2] and [70, Section 2.11] for a proof that themodulus function
is well-defined, and behaves as expected.

With the above definition, one can define complex sublattices, complex ideals, etc.
However, we will not need this. We do, however, note that if T : X → Y is a real
linear operator between real Banach lattices, then we may define the complexification
TC : XC→ YC of T via TC(x + iy) = T x + iT y. The map TC is C-linear, bounded,
and if T is a lattice homomorphism then TC preserves moduli, i.e., T |z| = |TCz| for
z ∈ XC. When we work with complex Banach lattices XC, we will use these facts
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to identify XC as a space of measurable functions on some measure space, and then
work pointwise. How to do this will be explained later in the paper.

3 General theory

In this section, we present several results on (stable) phase retrieval that are valid in
general Banach lattices. We begin with the definitions:

Definition 3.1 Let E be a subspace of a vector lattice X . We say that E does phase
retrieval if for each f , g ∈ E with | f | = |g| there is a scalar λ such that f = λg.

Definition 3.2 Let E be a subspace of a real or complex Banach lattice X . We say that
E does C-stable phase retrieval if for each f , g ∈ E we have

inf
|λ|=1

∥ f − λg∥ ≤ C∥| f |− |g|∥. (3.1)

If E does C-stable phase retrieval for some C , we simply say that E does stable phase
retrieval (SPR for short).

Note that if a subspace E of a real or complex Banach lattice X does C-stable phase
retrieval, then so does its closure.

3.1 Connections with almost disjoint pairs and sequences

Whenconsideringwhether a subspace E ⊆ X does phase retrieval, there is one obvious
obstruction. If f , g ∈ E are non-zero disjoint vectors, then | f − g| = | f + g| =
| f |+ |g|, but f − g cannot be a multiple of f + g. Hence, if E is to do phase retrieval,
then it cannot contain disjoint pairs. Similarly, if E is to do stable phase retrieval, then
it cannot contain “almost" disjoint pairs. As we will now see, in the real case, these
are the only obstructions to (stable) phase retrieval.

Definition 3.3 Let E be a subspace of a real or complex Banach lattice X . We say that
E contains ε-almost disjoint pairs if there are f , g ∈ SE (here and below, SE = {e ∈
E : ∥e∥ = 1} stands for the unit sphere of E) such that ∥| f |∧ |g|∥ < ε. If E contains
ε-almost disjoint pairs for all ε > 0, we say that E contains almost disjoint pairs.

Theorem 3.4 Let E be a subspace of a Banach lattice X, C ≥ 1 and ε > 0. Then,

(i) If E does C-stable phase retrieval, then it contains no 1
C -almost disjoint pairs;

(ii) If E contains no ε-almost disjoint pairs, then it does 2
ε -stable phase retrieval.

In particular, E does stable phase retrieval if and only if it does not contain almost
disjoint pairs.

Proof (i): Suppose that E does C-stable phase retrieval, but there are f , g ∈ E such
that ∥ f ∥ = ∥g∥ = 1 but ∥| f |∧ |g|∥ < 1

C . Define h1 = f + g and h2 = f − g. Then
since the identity

|| f + g|− | f − g|| = 2(| f | ∧ |g|)
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holds in any vector lattice by [7, Theorem 1.7], we have

∥|h1|− |h2|∥ = 2∥| f | ∧ |g|∥ < 2
C
.

On the other hand, h1 + h2 = 2 f has norm 2, and h1 − h2 = 2g also has norm 2.
This contradicts that E does C-stable phase retrieval.

(ii): A classical Banach lattice fact (see, e.g., [10, Remark after Lemma 3.3]) is that
every Banach lattice embeds lattice isometrically into some space of the form

(
⊕

i∈I
L1(!i ,"i , µi )

)

∞
.

Since both stable phase retrieval and existence of almost disjoint pairs are invariant
under passing to and from closed sublattices, wemay assumewithout loss of generality
that X is of this form.

Suppose E does not do 2
ε -stable phase retrieval. Find f = ( fi ), g = (gi ) ∈ E such

that ∥ f − g∥, ∥ f + g∥ > 2
ε ∥| f |− |g|∥. For each i ∈ I let

Ii = {t ∈ !i : sign ( fi (t)) = sign (gi (t)) , or one of fi (t), gi (t) is zero}.

Then

I ci := !i\Ii = {t ∈ !i : sign ( fi (t)) = −sign (gi (t))}.

We compute that

| f |− |g| = (| fi |− |gi |)i∈I = (| fi |Ii |− |gi |Ii |)i∈I + (| fi |I ci |− |gi |I ci |)i∈I .

So, since the modulus is additive on disjoint vectors,

∣∣| f |− |g|
∣∣ =

(∣∣| fi |Ii |− |gi |Ii |
∣∣)
i∈I +

(∣∣| fi |I ci |− |gi |I ci |
∣∣)
i∈I .

Now, by definition of Ii we have

(∣∣| fi |Ii |− |gi |Ii
∣∣∣∣)i∈I =

(∣∣ fi |Ii − gi |Ii
∣∣)
i∈I

and

(∣∣| fi |I ci |− |gi |I ci |
∣∣)
i∈I =

(∣∣ fi |I ci + gi |I ci
∣∣)
i∈I .
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Notice next that d1 := ( fi |I ci − gi |I ci )i∈I and d2 := ( fi |Ii + gi |Ii )i∈I are disjoint.
Moreover,

∥ f − g − ( fi |I ci − gi |I ci )i∈I ∥ = ∥( fi |Ii − gi |Ii )i∈I ∥ =
∥∥(∣∣| fi |Ii |− |gi |Ii |

∣∣)
i∈I

∥∥

≤ ∥| f |− |g|∥ < ε

2
∥ f − g∥.

Similarly,

∥ f + g − ( fi |Ii + gi |Ii )i∈I ∥ = ∥( fi |I ci + gi |I ci )i∈I ∥ =
∥∥(∣∣| fi |I ci |− |gi |I ci |

∣∣)
i∈I

∥∥

≤ ∥| f |− |g|∥ < ε

2
∥ f + g∥.

By assumption, we have that both f + g and f − g are non-zero. Hence, by [7,
Lemma 1.4], and the fact that |d1| ∧ |d2| = 0 we have

| f − g|
∥ f − g∥ ∧

| f + g|
∥ f + g∥ ≤

| f − g − d1|
∥ f − g∥ ∧ | f + g|

∥ f + g∥ +
|d1|

∥ f − g∥ ∧
| f + g|
∥ f + g∥

≤ | f − g − d1|
∥ f − g∥ ∧ | f + g|

∥ f + g∥ +
|d1|

∥ f − g∥ ∧
| f + g − d2|
∥ f + g∥ .

It follows that
∥∥∥∥
| f − g|
∥ f − g∥ ∧

| f + g|
∥ f + g∥

∥∥∥∥ ≤
∥ f − g − d1∥
∥ f − g∥ + ∥ f + g − d2∥

∥ f + g∥ < ε.

Thus, we have constructed normalized ε-almost disjoint vectors f+g
∥ f+g∥ and

f−g
∥ f−g∥

in E . ⊓⊔

Remark 3.5 After this paper was complete, Bilokopytov [16] contacted us with a
streamlined proof of Theorem 3.4, which also avoids the extra constant 2. We expect
the proof to be published independently.

Remark 3.6 Implication (i) of Theorem3.4 holdswhen theBanach lattice X is replaced
by any vector lattice equipped with an absolute norm. Here, a norm on a vector lattice
X is absolute if ∥| f |∥ = ∥ f ∥ for all f ∈ X ; see [17, 56, 66] for more information.
The proof of Theorem 3.4 also shows that a subspace of a Banach lattice does phase
retrieval if and only if it does not contain disjoint non-zero vectors. A compactness
argument then yields that in finite dimensions, phase retrieval implies stable phase
retrieval. Indeed, consider the map SE × SE → R, ( f , g) )→ ∥| f | ∧ |g|∥. Then this
map is continuous, so its image is compact, which allows one to conclude that the
existence of almost disjoint pairs implies the existence of a disjoint pair. In infinite
dimensions, it is relatively easy to construct subspaces doing phase retrieval but failing
stable phase retrieval.

Proposition 3.7 Every infinite dimensional Banach lattice has a closed subspace
which does phase retrieval but not stable phase retrieval.
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Proof By [6, p. 46, Exercise 13], any infinite dimensional Banach lattice X contains a
normalized disjoint positive sequence, which we shall index as consisting of vectors
(ui )i∈N and (vs)s∈S ; here, S denotes the set of all two-element subsets ofN (the order
is not important). We fix an injection φ : N2 → N and consider the vectors

fi = ui +
∑

j ̸=i

2−4φ(i, j)v{i, j}.

The sum above converges, and we have

∥ui − fi∥ ≤ εi , where εi =
∑

j

2−4φ(i, j).

Then
∑

i εi = ∑
i, j 2

−4φ(i, j) ≤ ∑
m 2−4m = 1/15, hence, by [4, Theorem 1.3.9],

( fi ) is a Schauder basic sequence. Also, 1 ≤ ∥ fi∥ ≤ 16/15 for each i , so this basis
is semi-normalized. We shall show that E = span [ fi : i ∈ N] fails stable phase
retrieval, but has phase retrieval.

To show the failure of SPR, let, for i ̸= j ,ψ(i, j) = max{φ(i, j),φ( j, i)}. Clearly
ψ(i, j) = ψ( j, i), and lim j ψ(i, j) =∞ for any i .Note that fi∧ f j = 2−4ψ(i, j)v{i, j},
hence

∥ fi ∧ f j∥ = 2−4ψ(i, j) −→
i, j→∞

0.

Next we show that E does phase retrieval. Pick non-zero f , g ∈ E , with | f | = |g|;
we have to show that f = ±g. To this end, write f = ∑

i ai fi and g = ∑
i bi fi . We

can expand

f =
∑

i

ai ui +
∑

{i, j}∈S

(
ai2−4φ(i, j) + a j2−4φ( j,i)

)
v{i, j},

and likewise for g. Comparing the coefficients with ui , we conclude that, for every i ,
|ai | = |bi |. By switching signs in front of f and g, and by re-indexing, we can assume
that a1 = b1 > 0. We have to show that the equality ai = bi holds for every i > 1.

The preceding reasoning shows that ai = 0 iff bi = 0. Suppose both ai and bi are
different from 0. Comparing the coefficients with v{i, j}, we see that

∣∣2−4φ(1,i)a1 + 2−4φ(i,1)ai
∣∣ =

∣∣2−4φ(1,i)b1 + 2−4φ(i,1)bi
∣∣,

which is only possible if sign ai = sign bi . ⊓⊔

Example 3.8 Theorem 3.4 fails for complex spaces. Indeed, define E as the complex
span of {(1, 1, 1), (i, 1,−1)} ⊆ C3,wherewe equipC3 with themodulus |(a, b, c)| :=
(|a|, |b|, |c|). Clearly, E contains vectors f , gwith | f | = |g| but such that f −λg is not
zero for any λ ∈ C. Hence, E fails phase retrieval. However, one can easily compute
that E contains no disjoint vectors, which by compactness yields the non-existence
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of almost disjoint vectors. Moreover, as observed in [28], a complex subspace that
contains two linearly independent real vectors cannot do complex phase retrieval. In
particular, if E ⊆ X is subspace of a Banach lattice X with dim E ≥ 2, then the
canonical subspace EC ⊆ XC fails to do phase retrieval.

Remark 3.9 Theorem 3.4 shows that for real scalars, the study of subspaces doing sta-
ble phase retrieval is equivalent to the study of subspaces lacking almost disjoint pairs.
As mentioned in Sect. 2.1, there is a vast literature on closed subspaces lacking almost
disjoint normalized sequences. Clearly, if E contains an almost disjoint normalized
sequence, then it fails to do stable phase retrieval. However, the converse is not true.
For example, the standard Rademacher sequence (rn) in L p[0, 1], 1 ≤ p < ∞, is
dispersed by Khintchine’s inequality, but |rn| ≡ 1 for all n. Moreover, if one adds
a single disjoint vector to a dispersed subspace, one produces a dispersed subspace
failing phase retrieval. Nevertheless, as mentioned in Sect.1.2, many of the results in
Theorem 2.1 have SPR analogues.

3.2 Hölder stable phase retrieval and witnessing failure of SPR on orthogonal
vectors

In [28], the following terminology was introduced in the setting of L p-spaces: A
subspace E of a real or complex Banach lattice X is said to doγ -Hölder stable phase
retrieval with constant C if for all f , g ∈ E we have

inf
|λ|=1

∥ f − λg∥X ≤ C∥| f |− |g|∥γX (∥ f ∥X + ∥g∥X )1−γ . (3.2)

The utility of this definition arose from a construction in [28] of SPR subspaces of
L4(µ) which are dispersed in L6(µ). Applying certain Hölder inequality arguments,
[28] was then able to deduce that such subspaces do 1

4 -Hölder stable phase retrieval in
L2(µ). The idea in [28] is to begin with an orthonormal sequence (rk), and instead of
comparing | f | to |g|, one compares | f |2 to |g|2. Assuming the integrability condition
rk ∈ L4(µ) with uniformly bounded norm, and various orthogonality and mean-zero
conditions on the products rkr j , the orthogonal expansion f = ∑

k akrk leads to an
orthogonal expansion

| f |2 =
∑

k ̸= j

aka jrkr j +
∑

k

|ak |2sk + ∥ f ∥2L2
1, sk = |rk |2 − 1.

The products rkr j encode how the subspace “sits" in L4(µ), i.e., they encode the
lattice structure. However, analyzing | f |2 rather than | f | allows one to work alge-
braically. As was shown in [28], if one imposes appropriate orthogonality conditions,
the subspace E spanned by rk will do stable phase retrieval in L4(µ). Reference [28]
then gives examples of such rk built from dilates of a single function P , with |P| not
identically constant. Verifying that such sequences (rk) satisfy the required orthog-
onality conditions is then a combinatorial exercise, using sparseness of the dilates
to get non-overlapping supports with respect to the basis expansion. This sparseness
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naturally leads to E lying in higher L p-spaces, so that by interpolating, one concludes
that E does Hölder stable phase retrieval in L2(µ) with γ = 1

4 if p = 6, and γ → 1
2

as p→∞.
The purpose of this section is to show that—at the cost of dilating the constant—

Hölder stable phase retrieval is equivalent to stable phase retrieval. For real scalars,
this can already be deduced from the almost disjoint pair characterization in Theorem
3.4. However, the proof below works equally well for complex scalars. The following
theorem was proven in [5] for phase retrieval using a continuous frame for a Hilbert
space. We extend it here to subspaces of Banach lattices.

Theorem 3.10 Let (X , ∥ · ∥) be a Banach lattice, real or complex. Fix linearly inde-
pendent f , g ∈ X, and suppose that Y = span{ f , g} is equipped with a Hilbert space
norm ∥ · ∥H , which is K -equivalent to ∥ · ∥. Then there exist f ′, g′ ∈ Y so that

min
|λ|=1

∥ f − λg∥ ≤ K min
|λ|=1

∥ f ′ − λg′∥, (3.3)

and

(∥ f ′∥2 + ∥g′∥2) 12 ≤ K min
|λ|=1

∥ f ′ − λg′∥, (3.4)

and

∥| f |− |g|∥ ≥ ∥| f ′|− |g′|∥. (3.5)

Remark 3.11 Conditions (3.3) and (3.5) state that replacing ( f , g) by ( f ′, g′) tightens
the SPR inequality up to the universal factor K . The condition (3.4) states that f ′ and
g′ are “almost orthogonal” (in fact, the proof shows that they are orthogonal in the
Hilbert space H = (Y , ∥ · ∥H )); it also permits us to witness the failure of SPR on
f ′, g′ with controlled norm.
In general, by John’s Theorem, every 2-dimensional space is

√
2-equivalent to a

Hilbert space, but in certain cases a better estimate can be obtained. For instance, if
X = L2(µ), then for the inherited norm on Y we have K = 1 and f ′ orthogonal to
g′. If X is a Banach lattice, which is r -convex and s-concave (1 < r ≤ 2 < s <∞)
with constants M (r)(X) and M(s)(X) respectively, then, by [71, Theorem 28.6], there
exists ∥ · ∥H for which

K ≤ M (r)(X)M(s)(X)2α, whereα = max
{
1
r
− 1

2
,
1
2
− 1

s

}
.

In particular, for X = L p, there exists ∥ ·∥H for which K ≤ 2|1/p−1/2|. [71, Corollary
28.7] provides similar results for operator ideals (Schatten spaces).

In certain applications of Theorem 3.10 (such as Theorem 5.3), the norm ∥ · ∥H
arises not from the Hilbert space with the minimal Banach–Mazur distance to Y , but
from an equivalent Euclidean norm on some subspace E (with Y ⊆ E ⊆ X ). In this
setting K may exceed

√
2.
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To prove Theorem 3.10, we need to represent elements of X as measurable
functions. As mentioned in the proof of Theorem 3.4, every (real) Banach lattice
X embeds lattice isometrically into a space of the form

(⊕
i∈I L1(!i ,"i , µi )

)
∞ .

Hence, throughout the proof we can assume that elements of X are functions on
a measure space. In the complex case, a similar reduction is possible. Indeed, let
X be a complex Banach lattice. By the discussion in Sect. 2.2, we can assume that
X = ZC is the complexification of some (real) Banach lattice Z . We can then let
T : Z →

(⊕
i∈I L1(!i ,"i , µi )

)
∞ be a lattice isometric embedding. The com-

plexification TC maps X into the complexification of
(⊕

i∈I L1(!i ,"i , µi )
)
∞. The

codomain of thismap is still
(⊕

i∈I L1(!i ,"i , µi )
)
∞, but now interpreted as aBanach

lattice over the complex field (cf. [1, Exercises 3 and 5 on page 110]). Since T is one-
to-one, the definition of TC tells us that TC is one-to-one. Moreover, as mentioned
in Sect. 2.2, TC preserves moduli. Finally, by [1, Lemma 3.18 or Corollary 3.23], TC
preserves norm. Thus, everything in the SPR inequality is preserved, so, analogously
to the real case, we may assume throughout the proof that the complex Banach lattice
X is a space of complex-valued functions.

Proof of Theorem 3.10 By scaling, we assume that, on Y , ∥ · ∥ ≤ ∥ · ∥H ≤ K∥ · ∥. By
replacing g by a unimodular scalar times g, we assume

min
|λ|=1

∥ f − λg∥H = ∥ f − g∥H .

This latter condition is equivalent to ⟨ f , g⟩ ≥ 0. Indeed,

∥ f − λg∥2H = ⟨ f , f ⟩+ ⟨g, g⟩ − 2ℜ
(
λ⟨ f , g⟩

)
.

This is minimized when λ is the conjugate phase of ⟨ f , g⟩. This is minimized when
λ = 1 iff ⟨ f , g⟩ ≥ 0.

Consider fr := f − r( f + g) and gr := g − r( f + g) for r ∈ [0, 1/2]. We let R
be the first instance of ⟨ f − r( f + g), g− r( f + g)⟩ = 0. This is possible since when
r = 0, the inner product is non-negative, and when r = 1

2 , it is negative. Note that

∥ fr − gr∥H = ∥ f − g∥H .

Thus, since fR and gR are orthogonal,

min
|λ|=1

∥ fR − λgR∥H = min
|λ|=1

∥ f − λg∥H .

We will take f ′ = fR and g′ = gR . To see (3.3), we compute

min
|λ|=1

∥ f − λg∥ ≤ min
|λ|=1

∥ f − λg∥H = min
|λ|=1

∥ f ′ − λg′∥H ≤ K min
|λ|=1

∥ f ′ − λg′∥.

(3.6)
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Moreover, as f ′ and g′ are orthogonal in H ,

K min
|λ|=1

∥ f ′ − λg′∥ ≥ min
|λ|=1

∥ f ′ − λg′∥H = (∥ f ′∥2H + ∥g′∥2H )
1
2 ≥ (∥ f ′∥2 + ∥g′∥2) 12 .

(3.7)

This gives (3.4).
We now verify (3.5). To see this, we prove

|| fr |− |gr || ≤ || f |− |g|| for r ∈
[
0,

1
2

]
. (3.8)

We represent X ⊆ L0(!) and let t ∈ !. We will prove that

|| fr (t)|− |gr (t)|| ≤ || f (t)|− |g(t)|| for r ∈
[
0,

1
2

]
. (3.9)

Note that (3.9) is simply a claim that an elementary inequality holds for complex
numbers. Write f (t) = a + ib and g(t) = c + id. Multiplying f (t) and g(t) by a
unimodular scalar, we rotate so that d = −b. WLOG, |a| ≥ |c|; then, multiplying by
−1 if necessary, we also assume a ≥ 0. We have

fr (t) = a − r(a + c)+ ib, gr (t) = c − r(a + c)− ib.

Now, we note that our assumptions give || fr (t)|− |gr (t)|| = | fr (t)|− |gr (t)| for 0 ≤
r ≤ 1

2 . Indeed, ℑ( fr (t)) = −ℑ(gr (t)) and (ℜ( fr (t)))2 ≥ (ℜ(gr (t)))2 for 0 ≤ r ≤ 1
2

by elementary computations. Taking r = 0, || f (t)|− |g(t)|| = | f (t)|−|g(t)|.Hence,
we must prove

| fr (t)|− |gr (t)| ≤ | f (t)|− |g(t)| for r ∈
[
0,

1
2

]
.

This inequality is true for all r ≥ 0. Indeed, recall first that a ≥ c. By the Fundamental
Theorem of Calculus, for any convex function φ and w ≥ 0, we have φ(a − w) −
φ(c − w) ≤ φ(a) − φ(c). In our case, the function h(s) =

√
s2 + b2 is convex and

r(a + c) ≥ 0; therefore,

| fr (t)|− |gr (t)| = h(a − r(a + c))− h(c − r(a + c)) ≤ h(a)− h(c)

= | f (t)|− |g(t)|.

⊓⊔

Corollary 3.12 Let E be a subspace of a real or complex Banach lattice X, and γ ∈
(0, 1]. If E does γ -Hölder stable phase retrieval in X with constant C > 0 then E

does stable phase retrieval in X with constant
√
2(
√
8C)

1
γ .
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Proof Let f , g ∈ E with ∥ f ∥ = 1 and ∥g∥ ≤ 1 such that

(∥ f ∥2 + ∥g∥2) 12 ≤
√
2 inf
|λ|=1

∥ f − λg∥. (3.10)

In particular,

2−1/2 ≤ inf
|λ|=1

∥ f − λg∥ ≤ 2.

As E does C-stable γ -Hölder phase retrieval, we have that

2−1/2 ≤ inf
|λ|=1

∥ f − λg∥ ≤ C∥| f |− |g|∥γ (∥ f ∥+ ∥g∥)1−γ ≤ 21−γC∥| f |− |g|∥γ .

(3.11)

Thus, we have that C1/γ 23/(2γ )−1∥| f | − |g|∥ ≥ 1 and inf |λ|=1 ∥ f − λg∥ ≤ 2. It
follows that

inf
|λ|=1

∥ f − λg∥ ≤ (23/2C)1/γ ∥| f |− |g|∥. (3.12)

To prove (3.12) we have assumed that ∥ f ∥ = 1 and ∥g∥ ≤ 1. However, by scaling we
have that any f , g ∈ E which satisfy (3.10) also satisfy (3.12).

We now consider any pair of linearly independent vectors x, y ∈ E . By Theorem
3.10 there exists f , g ∈ E which satisfy (3.10) such that

min
|λ|=1

∥x − λy∥ ≤
√
2 min
|λ|=1

∥ f − λg∥ and ∥|x |− |y|∥ ≥ ∥| f |− |g|∥.

Thus, we have that

min
|λ|=1

∥x − λy∥ ≤ 21/2(23/2C)1/γ ∥|x |− |y|∥.

This proves that E does 21/2(23/2C)1/γ -stable phase retrieval. ⊓⊔

Remark 3.13 The constant
√
2(
√
8C)

1
γ in Corollary 3.12 arises by using the worst

case scenario K =
√
2 from Theorem 3.10. This constant can certainly be optimized;

for example, if one also takes into account the distance from E to a Hilbert space.

To conclude this sectionwegive a simple proof that in finite dimensions, phase retrieval
is automatically stable.

Corollary 3.14 Let X be a real or complex Banach lattice, and E a finite dimensional
subspace of X. If E does phase retrieval, then E does stable phase retrieval.

Proof The real case has already been dealt with in Remark 3.6, but the argument we
provide below works for both real and complex scalars. Indeed, by Theorem 3.10, if
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E fails to do stable phase retrieval then we can find, for each N ∈ N, functions fN , gN
with ∥ fN∥ = 1, ∥gN∥ ≤ 1,

(∥ fN∥2 + ∥gN∥2)
1
2 ≤
√
2 min
|λ|=1

∥ fN − λgN∥, (3.13)

and

2 ≥ min
|λ|=1

∥ fN − λgN∥ > N∥| fN |− |gN |∥. (3.14)

By compactness, after passing to subsequences, we may assume that fN
∥·∥−→ f

and gN
∥·∥−→ g, for some f , g ∈ E . Since ∥ fN∥ = 1 for all N , it follows that ∥ f ∥ = 1.

Moreover, from (3.14) and continuity of lattice operations, we see that ∥| f |−|g|∥ = 0.
Hence, | f | = |g| ̸= 0. Fix a phase λ. By (3.13), we have

(∥ fN∥2 + ∥gN∥2)
1
2 ≤
√
2∥ fN − λgN∥.

Passing to the limit, we see that

1 ≤ (∥ f ∥2 + ∥g∥2) 12 ≤
√
2∥ f − λg∥.

Hence, f ̸= λg. It follows that E fails to do phase retrieval. ⊓⊔

Remark 3.15 Note that theBanach lattice X inCorollary 3.14 is not assumed to befinite
dimensional. This is of some note, as, unlike for closed spans, the closed sublattice
generated by a finite set can be infinite dimensional.

4 Examples

4.1 Building SPR subspaces via isometric theory

Asmentioned in Theorem 2.1, when 1 ≤ p < 2 and q ∈ (p, 2], one can find isometric
copies of Lq [0, 1] in L p[0, 1]. As we will now see, such subspaces must do SPR.

Proposition 4.1 Suppose p, q ∈ [1,∞), and either (1) 1 ≤ p < q ≤ 2, or (2)
q = 2 < p < ∞. There exists an ε > 0 such that if E ⊆ L p[0, 1] is (1 + ε)-
isomorphic to F ⊆ Lq [0, 1], then E does SPR in L p[0, 1].

Proof We only handle case (1), as (2) is very similar. Suppose, for the sake of contra-
diction, that E fails SPR. Then by Theorem 3.4, E contains c-isomorphic copies of
ℓ2p, for any c > 1. Consequently, for any such c we can find norm one f , g ∈ E so
that ∥ f + g∥L p , ∥ f − g∥L p ≥ c−121/p. However, by the Clarkson inequality in Lq ,

∥ f + g∥q ′Lq
+ ∥ f − g∥q ′Lq

≤ 2(∥ f ∥qLq
+ ∥g∥qLq

)q
′−1 ≤ (1+ ε)q

′
2q
′
,
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where 1/q + 1/q ′ = 1. However, the left side is ≥ c−q
′
21+q ′/p, and it is easy to see

that 1+ q ′/p > q ′. Hence, we get a contradiction if ε > 0 is sufficiently small. ⊓⊔

Corollary 4.2 If either 1 ≤ p < q ≤ 2, or q = 2 < p < ∞, then L p[0, 1] contains
an SPR subspace isometric to Lq [0, 1].

Proof It is well known (see e.g. [51, Section 9]) that, under the above conditions,
L p[0, 1] contains an isometric copy of Lq [0, 1]. By Proposition 4.1, that copy does
SPR. ⊓⊔

4.2 Existence of SPR embeddings into sequence spaces

Proposition 4.3 If a Banach space E embeds into ℓ∞(α) for some infinite cardinal α
(which happens, in particular, when E itself has density character α), then there is an
isomorphic SPR embedding of E inside of ℓ∞(α).

The fact that any Banach space E of density character α embeds isometrically into
ℓ∞(α) is standard.We recall the construction for the sake of completeness: Let (xi )i∈I
be a dense subset of E of cardinality α; for each i find x∗i ∈ SE∗ so that x∗i (xi ) = ∥xi∥.
Then E → ℓ∞(α) : x )→ (x∗i (x))i∈I is the desired embedding. Similarly, one can
show that if E is a dual space, with a predual of density character α, then E embeds
isometrically into ℓ∞(α).

To establish Proposition 4.3, it therefore suffices to prove:

Lemma 4.4 For any infinite cardinal α, there exists an isometric SPR embedding of
ℓ∞(α) into itself.

To prove Lemma 4.4, we rely on the following.

Lemma 4.5 Suppose E is a (real or complex) Banach space, and x, y ∈ E have norm
1. Then there exists a norm 1 functional f ∈ E∗ so that | f (x)| ∧ | f (y)| ≥ 1/5.

Proof Suppose first that dist (y,Fx) ≤ 2/5 (here F is either R or C). Find t ∈ F
so that ∥y − t x∥ ≤ 2/5. By the triangle inequality, |t | ≥ 3/5. Find f ∈ E∗ so
that ∥ f ∥ = 1 = f (x). Then | f (y)| ≥ |t || f (x)| − ∥y − t x∥ ≥ 1/5. The case of
dist (x,Fy) ≤ 2/5 is handled similarly.

Now suppose dist (x,Fy), dist (y,Fx) > 2/5. By Hahn-Banach Theorem, there
exist norm one g, h ∈ E∗ so that g(x) ≥ 2/5, g(y) = 0, h(y) ≥ 2/5, and h(x) = 0.
Then f := (g + h)/∥g + h∥ has the desired properties. Indeed, ∥g + h∥ ≤ 2, hence

| f (x)| ≥ 1
2

(
|g(x)|− |h(x)|

)
≥ 1

5
,

and likewise, | f (y)| ≥ 1/5. ⊓⊔

Proof of Lemma 4.4 For the sake of brevity, we shall use the notation E = ℓ∞(α),
and E∗ = ℓ1(α). Pick a dense set ( fi )i∈I in SE∗ , with |I | = α. Define an isometric
embedding J : E → ℓ∞(I ) : x )→ ( fi (x))i∈I . We shall show that, for every
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x, y ∈ SE and ε > 0, there exists i so that | fi (x)| ∧ | fi (y)| ≥ 1/5 − ε. Once this
is done, we will conclude that ∥|J x | ∧ |J y|∥ ≥ 1/5 for any x, y ∈ SE , which by
Theorem 3.4 tells us that J is indeed an SPR embedding.

By Lemma 4.5, there exists f ∈ SE∗ so that | f (x)|∧ | f (y)| ≥ 1/5. By Goldstine’s
Theorem, there exists f ′ ∈ SE∗ so that | f ′(x)| ∧ | f ′(y)| ≥ 1/5− ε/2. Find i so that
∥ f ′ − fi∥ ≤ ε/2. Then

| fi (x)| ∧ | fi (y)| ≥ | f ′(x)| ∧ | f ′(y)|− ∥ f ′ − fi∥ ≥
1
5
− ε,

which proves our claim. ⊓⊔

Remark 4.6 We can define the canonical embedding of E into C(BE∗) (with BE∗ =
{e∗ ∈ E∗ : ∥e∗∥ ≤ 1} equipped with its weak∗ topology) by sending e ∈ E to the
function e∗ )→ e∗(e). The above reasoning shows that this embedding is SPR. For
separable E , more can be said—see Proposition 6.2 below.

Remark 4.7 If an atomic lattice is order continuous (which ℓ∞ of course is not), then the
“gliding hump” argument shows the non-existence of infinite dimensional dispersed
subspaces. The lattice c is not order continuous, but it has no infinite dimensional
dispersed subspaces. This is because c contains c0 as a subspace of finite codimension,
hence any infinite dimensional subspace of c has an infinite dimensional intersection
with c0.

Combining the results from this and the previous subsection, we see that, often,
the collection of dispersed subspaces of a Banach lattice coincides with those that do
SPR, up to isomorphism (cf. Question 7.1 below). Indeed, we have the following:

Corollary 4.8 For every dispersed subspace E ⊆ L p[0, 1] (1 ≤ p ≤ ∞), there exists a
closed subspace E ′ ⊆ L p[0, 1] isomorphic to E, and doing stable phase retrieval. The
same result holds with L p[0, 1] replaced by C[0, 1], C(.), c or any order continuous
atomic Banach lattice.

Proof By Theorem 2.1, for 1 ≤ p <∞ and p ̸= 2, a closed subspace of L p[0, 1] is
dispersed if and only if it contains no subspace isomorphic to ℓp. A result of Rosenthal
[67] states that for 1 ≤ p < 2, a subspace of L p[0, 1] that does not contain ℓp must be
isomorphic to a subspace of Lr for some r ∈ (p, 2]. By Corollary 4.2, one can build
an SPR copy of Lr in L p.

In the case 2 ≤ p <∞,Theorem 2.1 states that any dispersed subspace of L p[0, 1]
must be isomorphic to a Hilbert space. By Corollary 4.2, L p[0, 1] contains an SPR
copy of ℓ2. To dealwith the case p =∞, note that L∞[0, 1] is isomorphic (as aBanach
space) to ℓ∞, and use Lemma 4.4 together with the fact that ℓ∞ lattice isometrically
embeds in L∞[0, 1].

For order continuous atomic lattices and c, there are no infinite dimensional dis-
persed subspaces by Remark 4.7. The claim for C[0, 1] and C(.) will be proven in
Proposition 6.2 below, when we analyze SPR subspaces of C(K )-spaces. As we will
see in the proof of Proposition 6.2, the fact that every separable Banach space embeds
into C[0, 1] and C(.) in an SPR fashion ultimately follows from Remark 4.6. ⊓⊔
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4.3 Explicit constructions of SPR subspaces using random variables

In this subsection, we construct SPR subspaces of a rather general class of function
spaces by considering the closed span of certain independent random variables. The
use of sub-Gaussian random vectors has been widely successful in building random
frames for finite dimensional Hilbert spaces which do stable phase retrieval whose
stability bound is independent of the dimension [25, 26, 35, 54, 55]. However, different
distributions for randomvariableswill allow for the constructionof subspaceswhichdo
stable phase retrieval and are not isomorphic to Hilbert spaces.We begin by presenting
a technical criterion for SPR.

Proposition 4.9 Suppose X is a Banach lattice of measurable functions on a probabil-
ity measure space (!, µ) which contains the indicator functions and has the property
that for every ε > 0 there exists δ = δ(ε) > 0 so that ∥χS∥ > δ whenever µ(S) > ε.
Suppose, furthermore, that E is a subspace of X, which has the following property:
There exist α > 1/2 and β > 0 so that, for any norm one f ∈ E, we have

µ
({

ω ∈ ! : | f (ω)| ≥ β
})
≥ α. (4.1)

Then E is an SPR-subspace.

Proof Suppose f , g ∈ E have norm 1. By the Inclusion–Exclusion Principle,

µ
({

ω ∈ ! : | f (ω)| ≥ β, |g(ω)| ≥ β
})
≥ 2α − 1.

Thus, ∥| f | ∧ |g|∥ ≥ βδ(2α − 1). ⊓⊔

The above proposition is applicable, for instance, when X is a rearrangement invari-
ant (r.i. for short; see [61] for an in-depth treatment) space on (0, 1), equipped with
the canonical Lebesgue measure λ. Examples include L p spaces, and, more generally,
Lorentz and Orlicz spaces (once again, described in great detail in [61]; for Lorentz
spaces, see also [33]). Below we describe some SPR subspaces, spanned by indepen-
dent identically distributed random variables.

Suppose f is a random variable, realized as a measurable function on (0, 1)
(with the usual Lebesgue measure λ). Then independent copies of f—denoted by
f1, f2, . . .—can be realized on ((0, 1), λ)ℵ0 . By Caratheodory’s Theorem (see e.g.
[58, p. 121]), there exists a measure-preserving bijection between ((0, 1), λ)ℵ0 and
((0, 1), λ). Therefore, we view f1, f2, . . . as functions on (0, 1).

Suppose now that, in the above setting, the following statements hold:

(i) f belongs to X , and has norm one in that space;
(ii) There exists r so that, if f1, . . . , fn are independent copies of f , and

∑
i |ai |r =

1, then
∑

i ai fi is equidistributed with f ;
(iii) There exists β > 0 so that P(| f | > β) > 1/2.

In this situation, if f1, f2, . . . are independent copies of f (viewed as elements of X ,
per the preceding paragraph), then span [ fi : i ∈ N] is an SPR copy of ℓr in X .
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We should mention two examples of random variables with the above properties:
Gaussian ((ii) holds with r = 2) and q-stable (q ∈ (1, 2); (ii) holds with r = q).
The details can be found in [4, Section 6.4]. For the Gaussian variables, the proba-
bility density function is d f (x) = ce−x

2/2, with c depending on the normalization.
For the q-stable variables with characteristic function t )→ ce−|t |

q
(with c ensuring

normalization), the Fourier inversion formula gives the density function

d f (x) =
c
π

∫ ∞

0
cos(t x)e−t

q
dt .

In both cases, d f is continuous (in the latter case, due to Dominated Convergence
Theorem), hence there exists β > 0 so that

P(| f | > β) = 1−
∫ β

−β
d f >

3
4
.

It is known that Gaussian random variables belong to L p for p ∈ [1,∞), while
the r -stable random variables (1 < r < 2) lie in L p if and only p ∈ [1, r). Moreover,
the results from [61, p. 142–143] tell us that Ls(0, 1) ⊂ L p,q(0, 1) for s > p (this
is a continuous inclusion, not an isomorphic embedding). If r > p, then the r -stable
variables belong to L p,q(0, 1) (indeed, take s ∈ (p, r); then the r -stable variables
live in Ls(0, 1), which in turn sits inside of L p,q(0, 1)). Likewise, one shows that any
Lorentz space L p,q(0, 1) contains Gaussian random variables.

The above reasoning implies:

Proposition 4.10 Suppose 1 ≤ p < ∞ and 1 ≤ q ≤ ∞ (when p = 1, assume in
addition q <∞). Then L p,q(0, 1) contains a copy of ℓ2 that does SPR. If, in addition,
1 ≤ p < r < 2, then L p,q(0, 1) contains a copy of ℓr that does SPR.

4.4 Stability of SPR subspaces under ultraproducts and small perturbations

We show that SPR subspaces are stable under ultraproducts, and under small perturba-
tions (in the sense of Hausdorff distance). These results hold for both real and complex
spaces.

Proposition 4.11 Suppose U is an ultrafilter on a set I , and, for each i ∈ I , Ei is a
C-SPR subspace of a Banach lattice Xi . Then

∏
U Ei is a C-SPR subspace of

∏
U Xi .

We refer the reader to [46] or [32, Chapter 8] for information on ultraproducts of
Banach spaces and Banach lattices.

Proof We have to show that, for any x, y ∈ ∏
U Ei , there exists a modulus one λ so

that ∥x − λy∥ ≤ C∥|x | − |y|∥. To this end, find families (xi ) and (yi ), representing
x and y respectively. Then for each i there exists λi so that |λi | = 1 and ∥xi −
λi yi∥ ≤ C∥|xi | − |yi |∥. As ultraproducts preserve lattice operations, |x | and |y| are
represented by (|xi |) and (|yi |), respectively, hence ∥|x |− |y|∥ = limU ∥|xi |− |yi |∥.
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By the compactness of the unit torus, there exists λ = limU λi , with |λ| = 1. Then
∥x − λy∥ = limU ∥xi − λi yi∥, which leads to the desired inequality. ⊓⊔
Remark 4.12 Proposition 4.11 can be used to give an alternative proof of Corollary
4.2. First find a family of finite dimensional subspaces Fk ⊆ Lq(0, 1), ordered by
inclusion, so that ∪k Fk is dense in Lq(0, 1), and each Fk is isometric to ℓ

nk
q for

some nk (one can, for instance, take subspaces spanned by certain step functions). A
reasoning similar to that of [32, Theorem 8.8] permits us to find a free ultrafilter U
so that

∏
U Fk contains an isometric copy of Lq(0, 1). A fortiori,

∏
U ℓq contains an

isometric copy of Lq(0, 1) (call it E).
Proposition 4.10 proves that L p(0, 1) contains a subspace, isometric to ℓq (spanned

by Gaussian random variables for q = 2, q-stable random variables for q < 2) which
does SPR. By Proposition 4.11,

∏
U ℓq embeds isometrically into

∏
U L p(0, 1), in

an SPR fashion. By [46],
∏

U L p(0, 1) can be identified (as a Banach lattice) with
L p(!, µ), for some measure space (!, µ).

Let X be the (separable) sublattice of L p(!, µ) generated by E . By [61, Corollary
1.b.4], X is an L p space. [58, Corollary, p. 128] gives a complete list of all separable
L p spaces; all of them lattice embed into L p(0, 1). Thus, we have established the
existence of an SPR embedding of E = Lq(0, 1) into L p(0, 1).

To examine stability of SPR under small perturbations, we introduce the notion of
one-sided Hausdorff distance between subspaces of a given Banach space. If E, F
are subspaces of X , define d1H (E, F) as the infimum of all δ > 0 so that, for every
x ∈ F with ∥x∥ ≤ 1 there exists x ′ ∈ E with ∥x − x ′∥ < δ (this “distance” is not
reflexive, hence “one-sided”). Note also that, for x as above, there exists x ′′ ∈ E with
∥x ′′∥ = ∥x∥ and ∥x − x ′′∥ < 2δ; indeed, one can take x ′′ = ∥x∥

∥x ′∥ x
′.

By “symmetrizing” d1H , we obtain the classical Hausdorff distance: if E and F
are subspaces of X , let dH (E, F) = max{d1H (E, F), d1H (F, E)}. For interesting
properties of dH , see [21], and references therein.

Proposition 4.13 Suppose E is an SPR subspace of a Banach lattice X. Then there
exists δ > 0 so that any subspace F with d1 H (E, F) < δ is again SPR.

From this we immediately obtain:

Corollary 4.14 For any Banach lattice X, the set of its SPR subspaces is open in the
topology determined by the Hausdorff distance.

Remark 4.15 See [40, Proposition 3.10] for a similar stability result for dispersed
subspaces of a Banach lattice.

Proof of Proposition 4.13 Suppose E doesC-SPR.We shall show that, if d1 H (E, F) <
1/(2
√
2(C + 1)), then F does C ′-SPR, with

1
C ′

= 1
C

( 1√
2
− 2d1H (E, F)

)
− 2d1H (E, F).

Suppose, for the sake of contradiction, that F fails to do C ′-SPR. Find f , g ∈ F
so that min|λ|=1 ∥ f − λg∥ = 1 and ∥| f | − |g|∥ = c < 1/C ′. By Theorem 3.10, we
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can find f ′, g′ ∈ F so that

min
|λ|=1

∥ f ′ − λg′∥ ≥ 1√
2
, ∥| f ′|− |g′|∥ ≤ c, and ∥ f ′∥+ ∥g′∥ ≤ 2.

For any δ > d1H (E, F), there exist f ′′, g′′ ∈ E so that ∥ f ′′ − f ′∥ < δ∥ f ′∥ and
∥g′′ − g′∥ < δ∥g′∥. The triangle inequality implies:

∥| f ′′|− |g′′|∥ ≤ ∥| f ′|− |g′|∥+ δ(∥ f ′∥+ ∥g′∥) ≤ c + 2δ;

min
|λ|=1

∥ f ′′ − λg′′∥ ≥ min
|λ|=1

∥ f ′ − λg′∥ − δ(∥ f ′∥+ ∥g′∥) ≥ 1√
2
− 2δ.

As E does C-SPR, we conclude that

1√
2
− 2δ ≤ C(c + 2δ),

and consequently,

1√
2
− 2d1H (E, F) ≤ C(c + 2d1H (E, F)) < C

(
1
C ′

+ 2d1H (E, F)
)
,

which contradicts our choice of C ′. ⊓⊔
Balan proved that frames which do stable phase retrieval for finite dimensional

Hilbert spaces are stable under small perturbations [12]. The following extends this
to infinite dimensional subspaces of Banach lattices.

Corollary 4.16 Suppose (ei ) is a semi-normalized basic sequence in a Banach lattice
X, so that span [ei : i ∈ N] does SPR in X. Then there exists ε > 0 so that if ( fi ) ⊆ X
and

∑
i ∥ei − fi∥ < ε then span [ fi : i ∈ N] does SPR in X.

Remark 4.17 In real L2, Corollary 4.16 can be strengthened. Suppose (ei ) is a sequence
of normalized independent mean-zero random variables, spanning an SPR-subspace
of L2. Then there exists an ε > 0 with the following property: if ( fi ) is a collection of
normalized independent mean-zero random variables so that (ei , f j ) are independent
whenever i ̸= j , and supi ∥ei − fi∥ ≤ ε, then span [ fi : i ∈ N] ⊆ L2 does SPR as
well. For the proof, recall that there exists γ > 0 so that the inequality ∥|u|∧ |v|∥ ≥ γ

holds for any norm one u, v ∈ span [ei : i ∈ N]. Let ε = γ /4. We will show that, for
any norm one x, y ∈ F = span [ fi : i ∈ N], we have ∥|x | ∧ |y|∥ ≥ γ /2.

Write x = ∑
i αi fi and y = ∑

i βi fi , and define x ′ = ∑
i αi ei , y′ =

∑
i βi ei .

Then

∥x − x ′∥2 =
∥∥∥∥∥
∑

i

αi ( fi − ei )

∥∥∥∥∥

2

=
∑

i

|αi |2∥ fi − ei∥2 ≤ ε2
∑

i

α2
i = ε2.

Similarly, ∥y− y′∥ ≤ ε. Therefore, ∥|x |− |x ′|∥, ∥|y|− |y′|∥ ≤ ε, hence ∥|x |∧ |y|∥ ≥
∥|x ′| ∧ |y′|∥ − 2ε. But ∥|x ′| ∧ |y′|∥ ≥ γ , hence ∥|x | ∧ |y|∥ ≥ γ /2.
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5 SPR in Lp-spaces

In this section, we investigate the relations between dispersed and SPR subspaces of
L p, as well as the relation between doing SPR in L p versus doing SPR in Lq .

Theorem 5.1 Every infinite dimensional dispersed subspace of an order continuous
Banach lattice X contains a further closed infinite dimensional subspace that does
SPR.

Proof We first prove the claim for L1(!, µ), with µ a finite measure. Let E be a
closed infinite dimensional subspace of L1(!, µ) containing no normalized almost
disjoint sequence. By Theorem 2.1, E also does not contain ℓ1. By [57], every closed
infinite dimensional subspace of L1(!, µ) almost isometrically contains ℓr for some
1 ≤ r ≤ 2. Since E does not contain ℓ1, it follows that there exists r > 1 such that
for all ε > 0, ℓr is (1 + ε)-isomorphic to a subspace of E . Let α > 0 be such that
ℓ21 is not (1 + α)-isomorphic to a subspace of ℓr . Such an α exists by the Clarkson
argument in Proposition 4.1. We now claim that for 0 < ε < α, every subspace of
L1 that is (1+ ε)-isomorphic to ℓr must do stable phase retrieval. Indeed, if E failed
SPR, it would contain for all γ > 0 a (1 + γ )-copy of ℓ21. Thus, for all γ > 0, we
have that ℓ21 is (1+ γ )(1+ ε)-isomorphic to a subspace of ℓr . However, this gives a
contradiction if γ > 0 is small enough such that (1+ γ )(1+ ε) < 1+ α.

Now let E be a closed infinite dimensional dispersed subspace of an order contin-
uous Banach lattice X . Replacing E be a separable subspace of E , we may assume
that E is separable. Using that every closed sublattice of an order continuous Banach
lattice is order continuous, replacing X by the closed sublattice generated by E in X ,
we may assume that X is separable. It follows in particular that X has a weak unit. By
the AL-representation theory, there exists a finite measure space (!, µ) such that X
can be represented as an ideal of L1(!, µ) satisfying

(i) X is dense in L1(!, µ) and L∞(!, µ) is dense in X ;
(ii) ∥ f ∥1 ≤ ∥ f ∥X and ∥ f ∥X ≤ 2∥ f ∥∞ for all f ∈ X .

Since E contains no almost disjoint normalized sequence, the Kadec–Pelczynski
dichotomy [61, Proposition 1.c.8] guarantees that ∥ · ∥X ∼ ∥ · ∥L1 on E . In par-
ticular, we may view E as a closed infinite dimensional subspace of L1(µ). We claim
that E contains no almost disjoint sequence when viewed as a subspace of L1. Indeed,
suppose there exists a sequence (xn) in E with ∥xn∥L1 = 1 for all n, and a disjoint
sequence (dn) in L1 with ∥xn − dn∥L1 → 0. Then in particular, xn converges to 0 in
measure. By [31, Theorem 4.6], xn

un−→ 0 in X . That is, for all u ∈ X , we have that
∥|xn| ∧ |u|∥X → 0. Thus, by [31, Theorem 3.2] there exists a subsequence (xnk ) and
a disjoint sequence (dk) in X such that ∥xnk − dk∥X → 0. Since ∥xn∥L1 = 1 and
∥ · ∥X ∼ ∥ · ∥L1 on E , this contradicts that E contains no normalized almost disjoint
sequence.

By the beginning part of the proof, we may select an infinite dimensional closed
subspace E ′ of E that does SPR in L1. In other words, there exists ε > 0 such that for
all f , g ∈ E ′ with ∥ f ∥L1 = ∥g∥L1 = 1 we have

∥| f | ∧ |g|∥L1 ≥ ε.
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Since ∥·∥X ∼ ∥·∥L1 on E , the same is true on E ′, sowemay view E ′ as a closed infinite
dimensional subspace of X . We claim that it contains no normalized almost disjoint
pairs. Indeed, if f , g ∈ E ′ with ∥ f ∥X = ∥g∥X = 1, then ∥ f ∥L1 ∼ ∥g∥L1 ∼ 1. Now,
using that E ′ does SPR in L1 and property (ii) of the embedding, we have

∥| f | ∧ |g|∥X ≥ ∥| f | ∧ |g|∥L1 ! ε.

Thus, E ′ contains no normalized almost disjoint pairs when viewed as a subspace of
X . It follows that E ′ does SPR in X . ⊓⊔

Question 5.2 With Corollary 4.8 and Theorem 5.1 in mind, we ask the following:
If a Banach lattice X contains an infinite dimensional dispersed subspace E , does it
contains an infinite dimensional SPR subspace? If so, can we construct an infinite
dimensional SPR subspace E ′ with E ′ ⊆ E ⊆ X?

Our next results are motivated by the equivalence between statements (a)-(d) in
Theorem 2.1 and the discussion in Remark 2.2. Note that it follows from Theorem
2.1 (a)-(d) that if E is dispersed in L p(µ) and 1 ≤ q < p, then E may be viewed as
a closed subspace of Lq(µ), and it is dispersed in Lq(µ). It is then natural to ask the
following question: Let µ be a finite measure and 1 ≤ q < p. Let E be a subspace
of L p(µ) ⊆ Lq(µ). What is the relation between E doing SPR in L p(µ) versus E
doing SPR in Lq(µ)? It is easy to see that if E does SPR in Lq(µ), then E does SPR
in L p(µ) if and only if ∥ · ∥L p ∼ ∥ · ∥Lq on E . We will now show that E doing SPR
in L p(µ) does not imply E does SPR in Lq(µ), even though the property of being
dispersed passes from L p(µ) to Lq(µ).

Theorem 5.3 For all 2 ≤ p < ∞ there exists a closed subspace E ⊆ L p[0, 1] such
that E does stable phase retrieval in L p[0, 1] but E fails to do stable phase retrieval
in Lq [0, 1] for all 1 ≤ q < p.

Proof Let 2 ≤ p < ∞. It will be convenient to build the subspace E ⊆ L p[0, 2]
instead of L p[0, 1]. Let (r j )∞j=1 be the Rademacher sequence of independent,
mean-zero, ±1 random variables on [0, 1]. For all j ∈ N, we let g j = r j +
2 j/p1[1+2− j ,1+2− j+1). Let E = span j∈Ng j .

We first prove for all 1 ≤ q < p that E fails to do stable phase retrieval in Lq [0, 2].
We have for all j ̸= i that ∥g j − gi∥qLq

= ∥g j + gi∥qLq
≥ 2q−1. On the other hand,

|r j | = |r j+1| and lim ∥2 j/p1[1+2− j ,1+2− j+1)∥qLq
= 0.Thus, lim ∥|g j |−|g j+1|∥qLq

= 0.
This shows that E fails to do stable phase retrieval in Lq [0, 2].

We now prove that E does stable phase retrieval in L p[0, 2]. Note that by Khint-
chine’s Inequality there exists B ≥ 0 so that (

∑ |a j |2)1/2 ≤ ∥
∑

a jr j∥L p ≤
B(

∑ |a j |2)1/2 for all scalars (a j ) ∈ ℓ2. Thus, we have for all f = ∑
a jr j and
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x = f + ∑
a j2 j/p1[1+2− j ,1+2− j+1) ∈ E that

∥ f ∥pL2([0,1]) ≤ ∥x∥
p
L p([0,2]) =

∥∥∥
∑

a jr j
∥∥∥
p

L p([0,1])
+

∑
|a j |p

≤ B p
(∑

|a j |2
)p/2

+
(∑

|a j |2
)p/2

= (B p + 1)∥ f ∥pL2([0,1]).

This computation shows that the map g j )→ r j extends linearly to a map E ⊆
L p[0, 2]→ L2[0, 1], x )→ f , establishing an isomorphism between E and a Hilbert
space. ByTheorem3.10 andRemark 3.11 it suffices to prove that there exists a constant
δ > 0 so that if x, y ∈ E and f , g ∈ L2[0, 1] with f = 1[0,1]x and g = 1[0,1]y such
that ∥ f ∥L2 = 1, ∥g∥L2 ≤ 1, and ⟨ f , g⟩ = 0 then ∥|x |− |y|∥L p ≥ δ.

We now claim that it suffices to prove that there exists ε > 0 such that

if ∥|x1(1,2)|− |y1(1,2)|∥L p < ε then ∥| f |2 − |g|2∥2L2
≥ δ. (5.1)

Indeed, as all the Lq norms are equivalent on the span of the Rademacher sequence,
there exists a uniform constant K > 0 so that the following holds:

∥| f |2 − |g|2∥2L2
=

∫
(| f |2 − |g|2)2

=
∫
(| f |− |g|)(| f | + |g|)(| f |2 − |g|2)

≤ ∥| f |− |g|∥L2∥(| f | + |g|)(| f |2 − |g|2)∥L2

≤ K∥| f |− |g|∥L2 ≤ K∥| f |− |g|∥L p .

Here, the constant K comes from bounding

∥(| f | + |g|)(| f |2 − |g|2)∥L2 ≤ K . (5.2)

To get this upper estimate, note that, by Hölder’s Inequality,

∥(| f | + |g|)(| f |2 − |g|2)∥L2 = ∥(| f | + |g|)(| f | + |g|)(| f |− |g|)∥L2

≤ ∥| f | + |g|∥2L6
∥| f |− |g|∥L6,

hence, by Triangle Inequality,

∥(| f | + |g|)(| f |2 − |g|2)∥L2 ≤
(
∥ f ∥L6 + ∥g∥L6

)3
. (5.3)

Further, both f and g belong to the span of independent Rademachers, on which all the
L p norms are equivalent (for finite p). Since we know that ∥ f ∥L2 = 1 and ∥g∥L2 ≤ 1,
this gives a bound for the right-hand side of (5.3), which, in turn, implies (5.2).
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To finish the proof of the claim, note that if ∥|x1(1,2)| − |y1(1,2)|∥L p ≥ ε then
∥|x |− |y|∥L p ≥ ε and if ∥|x1(1,2)|− |y1(1,2)|∥L p < ε then ∥|x |− |y|∥L p ≥ δK−1.

We now establish (5.1) with ε = 1/8 and δ = 1. Let x = ∑
a j (r j +

2 j/p1[1+2− j ,1+2− j+1)) and y = ∑
b j (r j +2 j/p1[1+2− j ,1+2− j+1)). We let f = ∑

a jr j
and g = ∑

b jr j and assume that ∥ f ∥2L2
= ∑ |a j |2 = 1, ∥g∥2L2

= ∑ |b j |2 ≤ 1 and
⟨ f , g⟩ = ∑

a jb j = 0. We may assume that

(∑
||a j |− |b j ||p

)1/p
= ∥|x1(1,2)|− |y1(1,2)|∥L p < ε = 1/8. (5.4)

All that remains is to prove that ∥| f |2 − |g|2∥2L2
≥ δ. We have from (5.4) that ||a j |−

|b j || ≤ 1/8 for all j ∈ N. Hence, ||a j |2− |b j |2| ≤ 1/4 for all j ∈ N as |a j |+|b j | ≤ 2.
As r2j = 1[0,1] for all j ∈ N, we have that

f 2 − g2 = ( f − g)( f + g) = 2
∑

j>i

(a jai − b jbi )r jri +
∑

(a2j − b2j )1. (5.5)

Note that (5.5) gives an expansion for f 2− g2 in terms of the ortho-normal collection
of vectors {1[0,1]} ∪ {r jri } j>i . Thus we have that

2−1∥| f |2 − |g|2∥2L2
≥ 2

∑

j>i

|a jai − b jbi |2

=
∑

j∈N

∑

i∈N
|a jai − b jbi |2 −

∑

j∈N
|a2j − b2j |2

=
∑

j∈N

((
∑

i∈N
|a jai |2 + |b jbi |2

)

−
(

2a jb j
∑

i∈N
aibi

))

−
∑

j∈N
|a2j − b2j |2

=
∑

j∈N

(
∑

i∈N
|a jai |2 + |b jb j |2

)

−
∑

j∈N
|a2j − b2j |2 as

∑
aibi = 0

=
(
∥ f ∥4L2

+ ∥g∥4L2

)
−

∑

j∈N
|a2j − b2j |2

≥
(
∥ f ∥4L2

+ ∥g∥4L2

)
− 1

4

∑

j∈N
|a2j − b2j | as |a2j − b2j | ≤ 1/4

≥
(
∥ f ∥4L2

+ ∥g∥4L2

)
− 1

4
(∥ f ∥2L2

+ ∥g∥2L2
)

= 3
4
+ ∥g∥2L2

(
∥g∥2L2

− 1
4

)
as ∥ f ∥L2 = 1

≥ 3
4
− 1

8
as ∥g∥L2 ≤ 1.

Hence, ∥| f |2 − |g|2∥2L2
≥ 3/2− 1

4 > 1 = δ. ⊓⊔
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Example 5.4 In the special case p = 2, Theorem 5.3 could have been proven using a
result in [24]. Indeed, as above, let (r j ) denote the Rademacher sequence, realized on

the interval [0, 1]. Define g j = r j +2
j
2 1[1+2− j ,1+2− j+1). We can think of the sequence

(g j ) as being defined on afinitemeasure space.Note that ∥2 j
2 1[1+2− j ,1+2− j+1)∥L2 = 1.

Hence, for the same reason as in [24], span{g j } does SPR in L2. However, recall
that the Rademacher sequence does not do phase retrieval; we’ve also scaled the
additional indicator functions to be perturbative in L1. Hence, for i ̸= j we have
∥|gi |− |g j |∥L1 = 1

2i +
1
2 j , whereas the other side of the SPR inequality is of order 1.

This provides an example of a subspace E ⊆ L2(µ) ⊆ L1(µ) that does SPR in L2(µ)

but not in L1(µ).

The next result contrasts with Theorem 5.3 by showing, in particular, that if E does
SPR in both L p and Lq then we can both “interpolate” the SPR, and “extrapolate it
downward”.

Theorem 5.5 Suppose µ is a probability measure and 1 ≤ q < p < ∞. Let E be a
closed subspace of L p (real or complex). Assume that ∥ · ∥L p ∼ ∥ · ∥Lq on E, and E
does stable phase retrieval in Lq . Then for all 1 ≤ r ≤ p, ∥ · ∥Lr ∼ ∥ · ∥L p on E, and
E does stable phase retrieval in Lr .

Proof From the discussion on the Kadec–Pelczynski dichotomy (see Sect. 2.1), we
know that, as E ⊆ Lq(µ) does SPR, then ∥ · ∥L p ∼ ∥ · ∥Lr on E , whenever r < p.

Assume first that q < r ≤ p. Let C > 0 so that the Lq and L p norms are C-
equivalent on E , and let K > 0 so that E does K -stable phase retrieval in Lq . As
q < r ≤ p we have for all f , g ∈ E that

inf
|λ|=1

∥ f − λg∥Lr ≤ C inf
|λ|=1

∥ f − λg∥Lq ≤ CK∥| f |− |g|∥Lq ≤ CK∥| f |− |g|∥Lr .

(5.6)

Thus, E does stable phase retrieval in Lr .
We now turn to the case 1 ≤ r < q. By the previous argument, E does stable phase

retrieval in L p. Hence, the L p norm is equivalent to the L1 norm on E , and hence the
L p norm is equivalent to the Lr norm on E . Let C > 0 so that the L p and Lr norms
are C-equivalent on E , and let K > 0 so that E does K -stable phase retrieval in L p.
Let θ be the value so that q−1 = θr−1 + (1− θ)p−1. By Hölder’s inequality, for any
f , g ∈ E,

∥| f |− |g|∥Lq ≤ ∥| f |− |g|∥θLr
(
∥ f ∥L p + ∥g∥L p

)1−θ

≤ C∥| f |− |g|∥θLr
(
∥ f ∥Lr + ∥g∥Lr

)1−θ
. (5.7)

Therefore, for any f , g ∈ E , we have

inf
|λ|=1

∥ f − λg∥Lr ≤ inf
|λ|=1

∥ f − λg∥Lq ≤ K∥| f |− |g|∥Lq

≤ CK∥| f |− |g|∥θLr
(
∥ f ∥Lr + ∥g∥Lr

)1−θ
.
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Thus, E does θ -Hölder stable phase retrieval in Lr . By Corollary 3.12, it follows that
E does stable phase retrieval in Lr . ⊓⊔

In Theorem 5.3, we showed that when 2 ≤ p <∞ an SPR-subspace E ⊆ L p[0, 1]
need not do SPR in Lq [0, 1] for any 1 ≤ q < p. Our next result shows that the case
1 ≤ p < 2 is completely different.

Theorem 5.6 Let (!, µ) be a probability space and let E be a closed infinite dimen-
sional subspace of L p(!, µ). Consider the following statements:

(i) E does stable phase retrieval in L p(!, µ).
(ii) E does stable phase retrieval in L1(!, µ) and ∥ · ∥L p ∼ ∥ · ∥L1 on E.
(iii) There exists α > 0 such that for all x, y ∈ E,

µ({t ∈ ! : |x(t)| ≥ α∥x∥L p and |y(t)| ≥ α∥y∥L p }) > α. (5.8)

Then for all 1 ≤ p < ∞, (iii) ⇔ (ii) ⇒ (i). Moreover, if 1 ≤ p < 2, all three
statements are equivalent.

Proof (iii) ⇒ (ii): Note that condition (iii) implies that E contains no normalized

α
1+ 1

p -disjoint pairs, when viewed in the L p norm. Hence, E does SPR in L p, which
implies that ∥ · ∥L p ∼ ∥ · ∥L1 on E . Using this in condition (iii), we conclude that
E contains no normalized almost disjoint pairs, when viewed in the L1 norm, hence
does SPR in L1.

(ii) ⇒ (i): Let C > 0 so that ∥x∥L p ≤ C∥x∥L1 for all x ∈ E . Let K > 0 so that
E does K -stable phase retrieval in L1. Thus, for all x, y ∈ E we have that

min
|λ|=1

∥x − λy∥L p ≤ C min
|λ|=1

∥x − λy∥L1 ≤ CK∥|x |− |y|∥L1 ≤ CK∥|x |− |y|∥L p .

Thus, E does CK -stable phase retrieval in L p(!).
(i) ⇒ (i i i): Let 1 ≤ p < 2 and assume that (i) is true but (iii) is false. We first

note that condition (i) implies that ∥ · ∥L1 ∼ ∥ · ∥L p on E . We may choose a sequence
of pairs (xn, yn)∞n=1 in E and α > 0 such that ∥xn∥L p = ∥yn∥L p = 1, with

µ({t ∈ ! : |xn| ∧ |yn| ≥ n−1})→ 0, but ∥|xn| ∧ |yn|∥L p ≥ 2α. (5.9)

As (|xn| ∧ |yn|)∞n=1 converges in measure to 0 and is uniformly bounded below in
L p norm, after passing to a subsequence we may find a sequence of disjoint subsets
(!n)

∞
n=1 ⊆ ! such that

∥(|xn| ∧ |yn|)1!c
n
∥L p = ∥|xn| ∧ |yn|− (|xn| ∧ |yn|)1!n∥L p → 0. (5.10)

Let εn ↘ 0 with ε1 < α/2. After passing to a subsequence, we may assume
that ∥xn1!n∥L p ≥ α for all n ∈ N. As (!n)

∞
n=1 is a sequence of disjoint subsets

of the probability space (!, µ), we have that µ(!n) → 0. Thus, after passing to
a further subsequence we may assume that ∥x j1!n∥L p < εn for all j < n. Again,
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after passing to a further subsequence we may assume that there exists values (βn)
∞
n=1

such that lim j→∞ ∥x j1!n∥L p = βn for all n ∈ N. Furthermore, we may assume that
∥x j1!n∥L p < βn + εn/2 for all j > n. As (! j )

∞
j=1 is a sequence of disjoint sets, we

have for all N ∈ N that

lim
j→∞

∥x j∥pL p
≥ lim

j→∞

N∑

n=1

∥x j1!n∥pL p
=

N∑

n=1

β
p
n .

In particular, we have that βn → 0. Hence, after passing to a further subsequence of
(xn)∞n=1 we may assume that βn < εn/2 for all n ∈ N. Thus, ∥x j1!n∥L p < εn for all
j > n. In summary, we have that for all n ∈ N, ∥xn1!n∥L p ≥ α and for all j ̸= n, we
have ∥x j1!n∥L p < εn .

As ε1 < α/2, we have in particular that ∥x j − xn∥L p ≥ α/2 for all j ̸= n. We
have that (xn)∞n=1 is a semi-normalized sequence in a closed subspace of L p which
does not contain ℓp. Thus, by [67, Theorem 8], (xn)∞n=1 is equivalent to a semi-
normalized sequence in L p′(ν) for some p < p′ ≤ 2 and probability measure ν.
We may assume after passing to a subsequence that (xn)∞n=1 is weakly convergent in
L p′(ν). Thus, the sequence (x2n − x2n−1)∞n=1 converges weakly to 0 in L p′(ν). As
L p′(ν) has an unconditional basis, after passing to a further subsequence, we may
assume that (x2n − x2n−1)∞n=1 is C-unconditional for some constant C .

As L p′(ν) has type p′ and (x2n − x2n−1)∞n=1 is unconditional, we have that (x2n −
x2n−1)∞n=1 is dominated by the unit vector basis of ℓp′ . We will prove that there
exists a constant K so that for all N ∈ N there exists k ∈ N such that the finite
sequence (x2n − x2n−1)k+N

n=k+1 K -dominates the unit vector basis of ℓNp . As p < p′,
this would contradict that (x2n − x2n−1)∞n=1 is dominated by the unit vector basis of
ℓp′ . Alternatively, one could use that L p has type p, the uniform containment of ℓNp ,
and [67, Theorem 13] to get that E contains a subspace isomorphic to ℓp, which, in
view of Theorem 2.1, contradicts that E does stable phase retrieval in L p.

Let N ∈ N and ε > 0. Let k ∈ N be large enough so that 2εk N < 2−1α. Let
(a j )

k+N
j=k+1 be a sequence of scalars. We have that

∥∥∥∥∥∥

k+N∑

j=k+1

a j (x2 j − x2 j−1)

∥∥∥∥∥∥

p

L p

≥
k+N∑

n=k+1

∥∥∥∥∥∥

k+N∑

j=k+1

a j (x2 j − x2 j−1)

∥∥∥∥∥∥

p

L p(!2n)

≥
k+N∑

n=k+1

⎛

⎜⎝21−p∥an(x2n − x2n−1)∥pL p(!2n)
−

∥∥∥∥∥∥

∑

j ̸=n

a j (x2 j − x2 j−1)

∥∥∥∥∥∥

p

L p(!2n)

⎞

⎟⎠

≥
k+N∑

n=k+1

⎛

⎝21−pα p|an|p − 2pε p
k

⎛

⎝
∑

j ̸=n

|a j |

⎞

⎠
p⎞

⎠

≥
k+N∑

n=k+1

⎛

⎝21−pα p|an|p − 2pε p
k N

p−1 ∑

j ̸=n

|a j |p
⎞

⎠
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≥
(
21−pα p − 2pε p

k N
p

) k+N∑

n=k+1

|an|p

≥ 2−pα p
k+N∑

n=k+1

|an|p.

Now that we have established that all three statements in Theorem 5.6 are equivalent
for 1 ≤ p < 2, we can show the implication (ii)⇒(iii) for 1 ≤ p < ∞. Indeed, we
assume (ii) holds. Since E does SPR in L1, by (ii)⇒(iii) for p = 1, we deduce that
there exists α > 0 such that for all x, y ∈ E ,

µ({t ∈ ! : |x(t)| ≥ α∥x∥L1 and |y(t)| ≥ α∥y∥L1}) > α. (5.11)

Now we use the second assumption of (ii) to replace the L1 norm with the L p norm
in (5.11). ⊓⊔

6 C(K)-spaces with SPR subspaces

Throughout this section, subspaces are assumed to be closed and infinite dimensional,
unless otherwise mentioned. Recall that a non-empty compact Hausdorff space is
called perfect if it has no isolated points, and scattered (or dispersed) if it contains no
perfect subsets. For a compact Hausdorff space K , we define its Cantor–Bendixson
derivative K ′ to be the set of all non-isolated points of K . Clearly K ′ is closed, and
K = K ′ iff K is perfect; otherwise, K ′ is a proper subset of K . Also, if K contains a
perfect set S, then S lies inside of K ′ as well.

Theorem 6.1 Suppose K is a compact Hausdorff space. Then C(K ) has an SPR sub-
space if and only if K ′ is infinite.

The proof depends on an auxiliary result, strengthening Remark 4.6.

Proposition 6.2 Every separable Banach space embeds isometrically into C(.), and
into C[0, 1], as a 10-SPR subspace (here . is the Cantor set).

Proof Fix a separable Banach space E . Let K be the unit ball of E∗, with its weak∗

topology. By Lemma 4.5 and Remark 4.6, the natural isometric embedding j : E →
C(K ) (taking e into the function K → R : e∗ )→ e∗(e)) is such that ∥| j x | ∧ | j y|∥ ≥
1/5 whenever ∥x∥ = 1 = ∥y∥. As K is compact and metrizable, there exists a
continuous surjection .→ K [53, Theorem 4.18]; this generates a lattice isometric
embedding of C(K ) into C(.), hence one can find an isometric copy of E ⊆ C(.)

so that ∥|x | ∧ |y|∥ ≥ 1/5 whenever x, y are norm one elements of E .
View . as a subset of [0, 1]. Then there exists a positive unital isometric extension

operator T : C(.)→ C[0, 1]—that is, for f ∈ C(.), T f |. = f ; T 1 = 1; ∥T ∥ = 1;
and T f ≥ 0 whenever f ≥ 0. The “standard” construction of T involves piecewise-
affine extensions of functions from . to [0, 1]; for a more general approach, see
the proof of [4, Theorem 4.4.4]. One observes that ∥|T x | ∧ |T y|∥ ≥ ∥|x | ∧ |y|∥,
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hence, if E ⊆ C(.) has the property described in the preceding paragraph, then
∥|T x | ∧ |T y|∥ ≥ 1/5 whenever x, y ∈ E have norm 1.

By Theorem 3.4, the copies of E in C(.) and C[0, 1] described above do 10-SPR.
⊓⊔

The next result is standard topological fare (cf. [63, Theorem 29.2]).

Lemma 6.3 Suppose K is a compact Hausdorff space, and t ∈ U ⊆ K, where U is
an open set. Then there exists an open set V so that t ∈ V ⊆ V ⊆ U.

Proof of Theorem 6.1 Suppose first that K ′ is finite (in this case, K must be scattered).
To show that any subspace E ⊆ C(K ) fails SPR, consider C0(K , K ′) = { f ∈
C(K ) : f |K ′ = 0}. Then dimC(K )/C0(K , K ′) = |K ′| <∞, hence E∩C0(K , K ′) is
infinite dimensional aswell. It suffices therefore to show that every infinite dimensional
subspace of C0(K , K ′) fails SPR.

Note that, in the case of finite K ′, C0(K , K ′) can be identified with c0(K\K ′) as
a Banach lattice. Indeed, any f ∈ c0(K\K ′) is continuous on K\K ′, since this set
consists of isolated points only. Extend f to a function f̃ : K → R with f̃ |K ′ = 0,
f̃ |K\K ′ = f . Note that for any c > 0, the set {t ∈ K\K ′ : | f (t)| ≥ c} = {t ∈ K :
| f̃ (t)| ≥ c} is finite, hence closed; consequently, {t ∈ K : | f̃ (t)| < c} is an open
neighborhood of any element of K ′. From this it follows that f̃ is continuous.

On the other hand, pick h ∈ C0(K , K ′). We claim that h|K\K ′ ∈ c0(K\K ′)—
that is, {t ∈ K\K ′ : |h(t)| > c} is finite for any c > 0. Suppose, for the sake of
contradiction, that this set is infinite for some c. By the compactness of K , this set
must have an accumulation point, which must lie in K ′. This, however, contradicts the
continuity of h.

A “gliding hump” argument shows that no subspace of c0(K\K ′) does SPR. From
this we conclude that no subspace of C(K ) does SPR if K ′ is finite.

Now suppose K contains a perfect set. By [58, Theorem 2, p. 29], there exists
a continuous surjection φ : K → [0, 1]. This map generates a lattice isometric
embedding T : C[0, 1] → C(K ) : f )→ f ◦ φ. However, C[0, 1] contains SPR
subspaces, by Proposition 6.2.

It remains to prove that C(K ) contains an SPR copy of c0 when K is scattered, and
K ′ is infinite. Note first that K ′\K ′′ must be infinite. Indeed, otherwise any point of
K ′′ = K ′\(K ′\K ′′) will be an accumulation point of the same set, and K ′′ will be
perfect, which is impossible.

Observe also that any t ∈ K ′\K ′′ is an accumulation point of K\K ′. Indeed,
suppose otherwise, for the sake of contradiction. Then t has an open neighborhood
W , disjoint from K\K ′. If U is another open neighborhood of t , then so is U ∩ W .
As t is an accumulation point of K ,U ∩W must meet K , hence also K ′. This implies
t ∈ K ′′, providing us with the desired contradiction.

Find distinct points t1, t2, . . . ∈ K ′\K ′′. For each i find an open set Ai ∋ ti
so that t j /∈ Ai for j ̸= i . Lemma 6.3 permits us to find an open set Ui so that
ti ∈ Ui ⊆ Ui ⊆ Ai . Replacing U2 by U2\U1, U3 by U3\U1 ∪U2, and so on, we can
assume that the sets Ui are disjoint. Lemma 6.3 guarantees the existence of open sets
Vi so that, for every i , ti ∈ Vi ⊆ Vi ⊆ Ui .
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As noted above, each ti is an accumulation point of K\K ′. Therefore, we can
find distinct points (s ji )∞j=1 ⊆ (K\K ′) ∩ Vi . For each n, let Sn be the closure of

{s j,2n : j ∈ N} (note Sn ⊆ V2n ⊆ U2n). Note that there exists x (n) ∈ C(K ) such that:

(i) 0 ≤ x (n) ≤ 1 everywhere.
(ii) x (n)|Sn = 1/2.
(iii) x (n)(s1,2n−1) = 1.
(iv) x (n)(sn,2i ) = 1/2 for 1 ≤ i ≤ n − 1.
(v) x (n) = 0 on (K\U2n)\{s1,2n−1, sn,2, sn,4, . . . , sn,2n−2}.

To construct such an x (n), recall that s1,2n−1, sn,2, sn,4, . . . , sn,2n−2 are isolated points
of K , hence the function g, defined by g(s1,2n−1) = 1, g(sn,2i ) = 1/2 for 1 ≤ i ≤
n − 1, and g = 0 everywhere else, is continuous. Further, by Urysohn’s Lemma,
there exists h ∈ C(K ) so that 0 ≤ h ≤ 1/2 = h|Sn , vanishing outside of U2n . Then
x (n) = g + h has the desired properties.

We claim that (x (n)) is equivalent to the standard c0-basis. Indeed, suppose (αn) ∈
c00, with ∨n|αn| = 1. We need to show ∥∑

n αnx (n)∥ = 1. The lower estimate on the
norm is clear, since x = ∑

n αnx (n) attains the value of αn at s1,2n−1.
For an upper estimate, note that x vanishes outside of ∪mUm , and on Um if m is

large enough. If m is odd (m = 2n − 1), then the only point of Um where x does
not vanish is s1,2n−1, which we have already discussed. If m is even (m = 2n), then
|x | ≤ 1/2 except for the points si,2n (i > n); at these points, x equals (αn + αi )/2,
which has absolute value not exceeding 1.

It remains to show that E = span [x (n) : n ∈ N] does SPR. In light of Proposi-
tion 3.4, if suffices to prove that ∥|x | ∧ |y|∥ ≥ 1/3 for any norm one x, y ∈ E . Write
x = ∑

n αnx (n) and y = ∑
n βnx (n). Find n and m so that |αn| = 1 = |βm |. If n = m,

then both |x | and |y| equal 1 at s1,2n−1, so ∥|x | ∧ |y|∥ = 1.
Otherwise, assume, by relabeling, that n < m. If |αm | ≥ 1/3, then

∥|x | ∧ |y|∥ ≥ |x(s1,2m−1)| ∧ |y(s1,2m−1)| = |αm | ∧ |βm | ≥
1
3
.

The case of |βn| ≥ 1/3 is treated similarly. If |αm |, |βn| < 1/3, then |x(sm,2n)| = |αn+
αm |/2 > 1/3, and similarly, |y(sm,2n)| > 1/3, which again gives us ∥|x |∧|y|∥ ≥ 1/3.

⊓⊔
Question 6.4 The proof of Theorem 6.1 shows that K ′ is infinite iff C(K ) contains an
SPR copy of c0. If K is “large” enough (in terms of the smallest ordinal α for which
K (α) is finite), what SPR subspaces (other than c0) does C(K ) have? Note that c0
is isomorphic to c = C[0,ω] (ω is the first infinite ordinal). If K (α) is infinite, does
C(K ) contain an SPR copy of C[0,ωα]?

In the spirit of Proposition 4.1, it is natural to ask which (isometric) subspaces of
C(K ) are necessarily SPR. Below we give a “very local” condition on a Banach space
E (finite or infinite dimensional) which guarantees that any isometric embedding of
E into C(K ) has SPR.

Recall (see [48]) that a Banach space E is called uniformly non-square if there exists
ε > 0 so that, for any norm one f , g ∈ E we have min{∥ f + g∥, ∥ f − g∥} < 2− ε.
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Note that E fails to be uniformly non-square iff for every ε > 0 there exist norm one
f , g ∈ E so that ∥ f + g∥, ∥ f − g∥ > 2 − ε. In the real case, this means that E
contains ℓ21 (equivalently, ℓ2∞) with arbitrarily small distortion. This is incompatible
with uniform convexity or uniform smoothness.

Proposition 6.5 Any uniformly non-square subspace of C(K ) does SPR.

Proof Suppose E is a non-SPR subspace of C(K ); we shall show that it fails to be
uniformly non-square. To this end, fix ε ∈ (0, 1/2); by Theorem 3.4, there exist norm
one f , g ∈ E with ∥| f | ∧ |g|∥ < ε. Pointwise evaluation shows that

| f | ∨ |g| + | f | ∧ |g| ≥ | f + g| ≥ | f | ∨ |g|− | f | ∧ |g|.

As the ambient lattice is an M-space, we have ∥| f | ∨ |g|∥ = 1, hence

1− ε < ∥| f | ∨ |g|∥ − ∥| f | ∧ |g|∥ ≤ ∥ f + g∥ ≤ ∥| f | ∨ |g|∥+ ∥| f | ∧ |g|∥ < 1+ ε.

Replacing g by −g, we conclude that 1− ε < ∥ f − g∥ < 1+ ε.
Let u = ( f + g)/∥ f + g∥ and v = ( f − g)/∥ f − g∥. Then

∥∥u − ( f + g)
∥∥ =

∣∣1− ∥ f + g∥
∣∣ < ε,

and similarly,
∥∥v − ( f − g)

∥∥ < ε. Then

∥u + v∥ ≥
∥∥( f + g)+ ( f − g)∥ −

∥∥u − ( f + g)
∥∥−

∥∥v − ( f − g)
∥∥ > 2− 2ε,

and likewise, ∥u− v∥ > 2− 2ε. As ε is arbitrary, E fails to be uniformly non-square.
⊓⊔

For infinite dimensional subspaces, Proposition 6.5 is only meaningful when K is
not scattered. Indeed, if K is scattered, thenC(K ) is c0-saturated [36, Theorem 14.26],
hence any infinite dimensional subspace of C(K ) contains an almost isometric copy
of c0 [60, Proposition 2.e.3]. In particular, such subspaces contain almost isometric
copies of ℓ21, hence they cannot be uniformly non-square.

In light of Proposition 6.5, we ask:

Question 6.6 Which Banach spaces E isometrically embed into C(K ) in a non-SPR
way?

Note that containing an isometric copy of ℓ2∞ (and consequently, failing to be
uniformly non-square) does not automatically guarantee the existence of a non-SPR
embedding into C(K ) (in this sense, the converse to Proposition 6.5 fails). In the
following examplewe look at isometric embeddings only; one canmodify this example
to allow for sufficiently small distortions.

Proposition 6.7 There exists a 3-dimensional space E, containing ℓ2∞ isometrically
(and consequently, failing to be uniformly non-square), so that, if K is a Hausdorff
compact, and J : E → C(K ) is an isometric embedding, then ∥|J x | ∧ |J y|∥ ≥ 1/3
for any norm one x, y ∈ E.
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The following lemma is needed for the proof, and may be of interest in its own
right.

Lemma 6.8 Suppose K is a Hausdorff compact, E is a Banach space, and J : E →
C(K ) is an isometric embedding. Denote by F the set of all extreme points of the unit
ball of E∗. Then, for any x, y ∈ E, ∥|J x | ∧ |J y|∥ ≥ supe∗∈F |e∗(x)| ∧ |e∗(y)|.

Proof Standard duality considerations tell us that J ∗ : M(K ) → E∗ (M(K ) stands
for the space of Radon measures on K ) is a strict quotient—that is, for any e∗ ∈ E∗

there exists µ ∈ M(K ) so that ∥µ∥ = ∥e∗∥ and J ∗µ = e∗. Further, we claim
that, for any e∗ ∈ F , there exists t ∈ K so that J ∗δt ∈ {e∗,−e∗}. Indeed, the set
S = {µ ∈ M(K ) : ∥µ∥ ≤ 1, J ∗µ = e∗} is weak∗-compact, hence it is the weak∗-
closure of the convex hull of its extreme points.We claim that any such extreme point is
also an extreme point of {µ ∈ M(K ) : ∥µ∥ ≤ 1}. Indeed, suppose µ = (µ1 +µ2)/2,
with ∥µ1∥, ∥µ2∥ ≤ 1. Then e∗ = (J ∗µ1 + J ∗µ2)/2, which guarantees that e∗ =
J ∗µ1 = J ∗µ2, so µ1, µ2 ∈ S, and therefore, they coincide with µ.

To finish the proof, recall that the extreme points of {µ ∈ M(K ) : ∥µ∥ ≤ 1} are
point evaluations and their opposites. ⊓⊔

Proof of Proposition 6.7 To obtain E , equip R3 with the norm

∥(x, y, z)∥ = max
{
|x |, |y|, 1

2

(
|x | + |y| + |z|

)}
. (6.1)

Clearly {(x1, x2, 0) : x1, x2 ∈ R} gives us an isometric copy of ℓ2∞ in E . Note
that the unit ball of E∗ is a polyhedron with vertices (±1, 0, 0), (0,±1, 0), and
(±1/2,±1/2,±1/2); we denote this set of vertices by F . In light of Lemma 6.8,
we have to show that, for any norm one x = (x1, x2, x3) and y = (y1, y2, y3) in E ,
there exists e∗ ∈ F so that |e∗(x)| ∧ |e∗(y)| ≥ 1/3.

In searching for e∗, we deal with several cases separately. Note first that, if |x1| ∧
|y1| ≥ 1/3, then e∗ = (1, 0, 0) has the desired properties. The case of |x2|∧|y2| ≥ 1/3
is treated similarly. Henceforth we assume |x1| ∧ |y1|, |x2| ∧ |y2| < 1/3. In light of
(6.1), we need to consider three cases:

(i) |x1| = 1 = |y2| or |x2| = 1 = |y1|.
(ii) Either |x1| ∨ |x2| = 1 and |y1| + |y2| + |y3| = 2, or |y1| ∨ |y2| = 1 and |x1| +

|x2| + |x3| = 2.
(iii) |x1| + |x2| + |x3| = 2 = |y1| + |y2| + |y3|.
In all the three cases, we look for e∗ = (ε1, ε2, ε3)/2, with ε1, ε2, ε3 = ±1 selected
appropriately.

Case (i). We shall assume x1 = 1 = y2, as other permutations of indices and
choices of sign are handled similarly. Select ε1 = 1, and take ε3 so that ε3x3 ≥ 0.
Pick ε2 = 1 if ε1y1 + ε3y3 ≥ 0 and ε2 = −1 otherwise. Then |x2| < 1/3, hence

e∗(x) = 1
2

(
ε1 + ε2x2 + ε3x3

)
≥ 1− |x2|

2
>

1− 1/3
2

= 1
3
.
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Further,

|e∗(y)| = |ε1y1 + ε2 + ε3y3|
2

≥ 1
2
.

Case (ii). We deal with x1 = 1 (and consequently, |y1| < 1/3) and |y1| + |y2| +
|y3| = 2, as other possible settings can be treated similarly. Let ε1 = 1. If |x2| < 1/3,
select ε3 so that ε3x3 ≥ 0. Pick ε2 so that ε2y2 and ε3y3 have the same sign. Then

|e∗(x)| ≥ 1+ |x3|− |x2|
2

≥ 1− |x2|
2

≥ 1− 1/3
2

= 1
3
,

and

|e∗(y)| ≥ |y2| + |y3|− |y1|
2

= 2− 2|y1|
2

≥ 2− 2 · 1/3
2

= 2
3
.

Suppose, conversely, that |x2| ≥ 1/3, hence |y2| < 1/3. Let ε2 = sign x2. Select
ε3 so that ε1y1 and ε3y3 are of the same sign. Then |x3| ≤ 2− (1+ |x2|) = 1− |x2|,
hence

|e∗(x)| ≥ 1+ |x2|− |x3|
2

≥ 2|x2|
2
≥ 1

3
.

On the other hand, 2− |y2| = |y1| + |y3| and

|e∗(y)| ≥ |y1| + |y3|− |y2|
2

= 2− 2|y2|
2

≥ 2− 2 · 1/3
2

≥ 2
3
.

Case (iii). If |x1|, |x2| < 1/3, let ε3 = sign x3, and select ε1, ε2 so that both ε1y1
and ε2y2 have the same sign as ε3y3. Then

|e∗(x)| ≥ |x3|− |x1|− |x2|
2

= 2− 2(|x1| + |x2|)
2

≥ 2− 4 · 1/3
2

= 1
3
,

and

|e∗(y)| = |y1| + |y2| + |y3|
2

= 1.

The case of |y1|, |y2| < 1/3 is handled similarly.
Now suppose neither of the above holds. Up to a permutation of indices, we assume

that |x1| ≥ 1/3 (hence |y1| < 1/3), and |y2| ≥ 1/3 (hence |x2| < 1/3). Then let
ε1 = sign x1 and ε3 = sign x3. Pick ε2 so that sign ε2y2 = sign ε3y3, then

|e∗(x)| ≥ |x1| + |x3|− |x2|
2

= 2− 2|x2|
2

≥ 2− 2 · 1/3
2

= 2
3
,

and likewise,
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|e∗(y)| ≥ |y2| + |y3|− |y1|
2

≥ 2
3
. ⊓⊔

7 Open problems

We now list some open questions and directions for further research. The reader can
find additional questions embedded throughout the paper.

Question 7.1 (Classification of SPR subspaces): Given a Banach lattice X , it is of
interest to classify the closed subspaces of X that do SPR. This question, of course,
can be interpreted in various ways. Possibly the crudest of these is to classify the
closed subspaces of X doing SPR up to Banach space isomorphism. One can then
refine this classification by tracking the optimal SPR and isomorphism constants. On
the other hand, one can ask about the “structure" of the collection of SPR subspaces
of X . For example, whether certain natural candidates do SPR, or whether they have
a further subspace/perturbation which does SPR. Compare with [24, Theorem 1.1],
which, within a restricted class of subspaces of L2(R), is able to classify those that do
SPR.

Phase retrieval is most often studied in terms of recovering a function f from
|T f | where T is a linear transformation, such as the Fourier transform or Gabor
transform. However, any use of phase retrieval in applications requires sampling at
only finitely many points. Gabor frames are constructed by sampling the short-time
Fourier transform at a lattice; however, any frame constructed by sampling the Gabor
transform at an integer lattice cannot do phase retrieval. There has been significant
recent interest in determining which sampling points allow for constructing frames
which do phase retrieval [3, 43, 44].

The problem of sampling continuous frames which do stable phase retrieval to
obtain frames which do stable phase retrieval was introduced in [37] and was shown
to be connected to important integral norm discretization problems in approximation
theory (such as in [29, 30, 52, 59]). In [38] it is proven that if (xt )t∈! is a bounded
continuous frame of a separable Hilbert space H then there exist sampling points
(t j ) j∈J in ! such that (xt j ) j∈J is a frame of H . The corresponding quantitative and
finite dimensional theorem in [59] gives that for each β > 0 there are universal
constants B > A > 0 so that if (xt )t∈! is a continuous Parseval frame of an n-
dimensional Hilbert space H and ∥xt∥ ≤ βn1/2 for all t ∈ ! then there exists m on
the order of n sampling points (t j )mj=1 in ! so that (m−1/2xt j )

m
j=1 is a frame of H

with lower frame bound A and upper frame bound B. The proof of the above theorem
relies on the celebrated solution to the Kadison–Singer Problem and its connection to
frame partitioning [62, 64]. It is natural to consider if this discretization theorem holds
as well for stable phase retrieval, and the following question is stated in [37].

Question 7.2 Let C,β > 0. Do there exist constants D, κ > 0 so that for all n ∈ N
there exists m ≤ Dn so that the following is true: Let H be an n-dimensional Hilbert
space, (!, µ) a probability space, and (xt )t∈! a continuous Parseval frame of H which
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does C-stable phase retrieval such that ∥xt∥ ≤ β
√
n for all t ∈ !. Then there exists

a sequence of sampling points (t j )mj=1 ⊆ ! such that (m−1/2xt j )
m
j=1 is a frame of H

which does κ-stable phase retrieval.

Note that if (xt )t∈! is a continuous Parseval frame of H over a probability space !

then the analysis operator '(x) = (⟨x, xt ⟩)t∈! is an isometric embedding of H into
L2(!). We have that the continuous frame (xt )t∈! does C-stable phase retrieval if
and only if the range of the analysis operator '(H) does C-stable phase retrieval as a
subspace of L2(!). In Theorem 5.3 we prove that there exists a subspace E ⊆ L2(!)

such that E does stable phase retrieval as a subspace of L2(!) but that E does not do
stable phase retrieval as a subspace of L1(!). As shown by Theorem 5.6, doing stable
phase retrieval in L1(!) gives a lot of useful additional structure. This motivates the
following problem.

Question 7.3 Let C,β > 0. Do there exist constants D, κ > 0 so that for all n ∈ N
there exists m ≤ Dn so that the following is true: Let H be an n-dimensional Hilbert
space, (!, µ) a probability space, and (xt )t∈! a continuous Parseval frame of H with
analysis operator ' such that '(H) does C-stable phase retrieval as a subspace of
L1(!) and as a subspace of L2(!), and ∥xt∥ ≤ β

√
n for all t ∈ !. Then there exists

a sequence of sampling points (t j )mj=1 ⊆ ! such that (m−1/2xt j )
m
j=1 is a frame of H

which does κ-stable phase retrieval.

The previous two questions on constructing frames by sampling continuous frames
relate to discretizing the L2-norm on a subspace of L2(!). There is significant interest
in approximation theory on discretizing the L p-norm on finite dimensional subspaces
of L p(!) which are called Marcinkiewicz-type discretization problems [29, 30, 52,
59]. For p ̸= 2, it is too much to ask for the number of sampling points to be on the
order of the dimension of the subspace. This leads to the following general problem
on discretizing stable phase retrieval.

Question 7.4 Let E ⊆ L p(!) be an n-dimensional subspace for some 1 ≤ p < ∞
and probability space !. Let C > 0 and let f : N→ N be strictly increasing. What
properties on E imply that there exists m ≤ f (n) and sampling points (t j )mj=1 ⊆ !

so that the subspace {(m−1/px(t j ))mj=1 : x ∈ E} does C-stable phase retrieval in ℓmp ?
What properties on E imply that there existsm ≤ f (n), sampling points (t j )mj=1 ⊆ !,
and weights (w j )

m
j=1 with

∑m
j=1 |w j |p = 1 so that the subspace {(w j x(t j ))mj=1 : x ∈

E} does C-stable phase retrieval in ℓmp ?
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