L)

Check for

updates

PRogramAR: Augmented Reality End-User Robot
Programming

BRYCE IKEDA and DANIEL SZAFIR, University of North Carolina at Chapel Hill, USA

The field of end-user robot programming seeks to develop methods that empower non-expert programmers
to task and modify robot operations. In doing so, researchers may enhance robot flexibility and broaden the
scope of robot deployments into the real world. We introduce PRogramAR (Programming Robots using Aug-
mented Reality), a novel end-user robot programming system that combines the intuitive visual feedback of
augmented reality (AR) with the simplistic and responsive paradigm of trigger-action programming (TAP) to
facilitate human-robot collaboration. Through PRogramAR, users are able to rapidly author task rules and
desired reactive robot behaviors, while specifying task constraints and observing program feedback contextu-
alized directly in the real world. PRogramAR provides feedback by simulating the robot’s intended behavior
and providing instant evaluation of TAP rule executability to help end users better understand and debug
their programs during development. In a system validation, 17 end users ranging from ages 18 to 83 used
PRogramAR to program a robot to assist them in completing three collaborative tasks. Our results demon-
strate how merging the benefits of AR and TAP using elements from prior robot programming research into
a single novel system can successfully enhance the robot programming process for non-expert users.

CCS Concepts: «+ Human-centered computing — Mixed / augmented reality; Usability testing + Com-
puter systems organization — Robotic autonomy; External interfaces for robotics;

Additional Key Words and Phrases: End-user robot programming, Trigger-Action Programming (TAP), Aug-
mented Reality (AR), Human-Robot Interaction (HRI), Human-Robot Collaboration (HRC)

ACM Reference Format:
Bryce Ikeda and Daniel Szafir. 2024. PRogramAR: Augmented Reality End-User Robot Programming. ACM
Trans. Hum.-Robot Interact. 13, 1, Article 15 (2024), 20 pages. https://doi.org/10.1145/3640008

1 INTRODUCTION

The proliferation of general computing technology necessitated the development of end-user
tools, such as spreadsheets, for users who were not professional software developers. The
increasing number of robot deployments (more than 3 million robots operate in factories today
[61]) creates a similar need for end-user robot programming. In pursuit of this goal, prior work
in end-user robot programming has offered different programming paradigms (e.g., imperative
[40], dataflow [33]) and representations (e.g., Hierarchical Finite State Machines [59], Behavior
Trees [64]) to aid non-experts with programming robots. Recent work has begun extending these
methods by using mixed reality technologies to improve an end user’s understanding of robot
activities in 3D space [7, 15, 28, 31, 44, 49, 62, 68, 72]. However, these methods do not easily

Authors’ address: B. Ikeda and D. Szafir, 232 S Columbia St, 209 Sitterson Hall, Computer Science Department, University
of North Carolina at Chapel Hill, Chapel Hill, NC 27514; e-mails: bikeda@cs.unc.edu, dszafir@cs.unc.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
ACM 2573-9522/2024/03-ART15
https://doi.org/10.1145/3640008

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024.

https://doi.org/10.1145/3640008
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3640008
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3640008&domain=pdf&date_stamp=2024-03-11

15:2 B. Ikeda and D. Szafir

allow for programming complex reactive robot behaviors that are common in real-world robotics
applications. Beyond the most common applications (e.g., manufacturing), we envision robots
playing a valuable role in assisting individuals with everyday tasks. These tasks may include
cleaning dishes or putting away groceries, where reactive robot behaviors are often necessary for
coordinating interactions with humans. Such tasks require users define where objects are placed,
triggers for actions, and multiple pick-and-place activities. For instance, when a user washes a
dish and places it on a drying rack, a robot reacts by picking up the dish, drying it, and placing it
in a user-defined location within a cabinet.

In pursuit of this vision, we combine the rich medium of Augmented Reality (AR) with
Trigger-Action Programming (TAP). TAP, also known as event-driven programming, has
gained popularity as a user-friendly approach for end-user programming, allowing users with no
prior coding experience to develop successful reactive programs [77]. As a result, TAP has been
adopted across a wide range of real-world domains, including project management, security sys-
tems, and smart hubs [69, 78]. In TAP, users define a set of circumstances known as triggers that
initiate actions once the triggering conditions are met. In the context of dishwashing, users can
create a rule such as “IF a dish is on the drying rack, THEN dry the dish and place the dish in the
cabinet.” This rule prompts a robot to wait until it detects a dish on the drying rack, picking it up
when detected, drying it, then placing it in a pre-defined cabinet location. The simplicity of TAP po-
sitions it to be an effective tool for non-expert users seeking to program robots for everyday tasks.

While prior work has explored the general notion of robot event-condition-action rules (e.g.,
[22, 83]), TAP has only recently been investigated for end-user robot programming [48, 52, 73].
In this context, Leonardi et al. [48] used TAP to enable non-expert users to craft reactive social
robot behavior programs. Alternatively, Senft et al. [73] utilized TAP to enable non-expert users
to program coordinated robot actions for Human-Robot Collaboration (HRC) tasks. However,
these existing TAP systems are constrained by a 2D screen development paradigm, which restricts
users to defining programs and parameters in a manner disconnected from the actual operating
environment of the robot. Such setups have been observed to diminish users’ comprehension of the
contextual aspects of their task [6, 37, 55]. Conversely, an Augmented Reality Head-Mounted
Display (ARHMD) provides hands-free mobility, has a wider field of view, and supports users
in larger areas by allowing them to view the workspace from various perspectives. ARHMDs also
enable more accurate depth estimation of virtual imagery, providing better blending of virtual and
physical environments than 2D screens. In all previous studies focusing on TAP for robotics, users
consistently expressed a desire for visual feedback and debugging support when building their
trigger-action rules, as well as their own mental model of the system [48, 52, 73]. Our insight is to
unlock the untapped synergies that exist between recent developments in AR and TAP, which we
actualize in developing PRogramAR as a new end-user robotics programming system. To do this,
we utilize an ARHMD to contextualize information directly in the user’s scene and thus providing
the following benefits. First, users can program the robot within the entire 3D workspace in which
it operates rather than being restricted to defining 2D zones on a tablet with a 2D field of view
from the robot’s camera as in the work of Senft et al. [73]. Second, users can verify and monitor
the correctness of their program by visualizing a simulated version of the robot’s behavior via the
robot’s 3D digital twin. Third, integrating TAP within AR, rather than displaying it on a separate
device (tablet or desktop), presents users with a cohesive and holistic system, reducing potential
confusion and frustration from context switching across devices. Fourth, users can freely position
the AR TAP interface without physically holding it, enabling them to effortlessly monitor both the
physical workspace and TAP rules simultaneously (useful in debugging).

Contributions. We introduce PRogramAR, a system for supporting non-expert programmers with
authoring reactive robot behaviors by adopting AR-based contextualization and simulation-based

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024.

PRogramAR: Augmented Reality End-User Robot Programming 15:3

rule evaluation. By integrating known components—AR and TAP—we enhance the user’s capabil-
ity to coordinate actions effectively during collaborative tasks with a robot. To evaluate PRogra-
mAR, we recruited 17 participants who used our system to author robot programs for three HRC
tasks. In this study, HRC is used to describe a human-robot team working together toward a shared
goal, based on terminology from prior work [7, 19, 73]. Overall, we contribute the following:

(1) PRogramAR, a system for making reactive programming of robot manipulators easier for
non-experts by combining AR and TAP;

(2) A validation of the benefits of merging AR and TAP, with data collected from a diverse
set of end users with a wide age range; and

(3) An open source code release of PRogramAR generalizable to various robots and AR head-
sets to foster reproducibility and encourage future research and extensions by the com-
munity, which can be found on the OSF website (https://osf.io/gvxu5).

2 RELATED WORK
Our work on PRogramAR is inspired by past research in robot programming, TAP, and AR.

2.1 Robot Programming

Prior research has investigated a variety of methods for robot programming. One prominent ap-
proach is that of skill demonstration (i.e., Learning from Demonstration (LFD)), in which users
define robot actions through kinesthetic teaching, teleoperation, or passive observation (see other
works [10, 71] for relevant surveys). One advantage of LFD systems is that programming is directly
embedded in the robot’s operational context (i.e., how the robot moves in the real 3D environ-
ment); however, LFD can be difficult to generalize to new environments and is often used to teach
arobot primitive motions, rather than to build coordination mechanisms that enable collaborative
human-robot tasks through reactive robot programs. Methods for program specification present an
alternative approach, where interfaces let users define and parameterize desired robot actions with
varying degrees of abstraction. For example, research has explored visual robot programming tools
where users allocate task execution through flow diagrams, behavioral trees, or block-based pro-
gramming interfaces [8, 35, 38, 40, 70]. However, to use such systems, end users are often required
to know fundamental programming concepts (e.g., variables, conditionals, loops), which may limit
system applicability. These systems also adhere to a traditional programming approach, requiring
users to specify the whole robot program before execution. Moreover, the feedback provided by
these systems is typically visualized on a 2D screen, thereby disconnecting it from the context of
program execution where the physical robot moves through 3D space. Likewise, teach pendants,
which are currently the industry standard for end-user programming of repetitive robots tasks, can
be complex and difficult to use for individuals who are not trained professionals [45, 66]. There-
fore, we have designed a new program specification system that eliminates the need for end users
to possess prior programming knowledge, and enables non-traditional programming workflows
that cater to users of all backgrounds. Furthermore, we leverage AR to provide immersive, visual
feedback in the real operational space, directly connecting program development with program
execution.

2.2 Trigger-Action Programming

TAP, which forms the foundation of popular tools such as If-This-Then-That (IFTTT), Zapier,
and SmartThings, has been successful in engaging users at all levels of programming proficiency
[13, 21, 23, 32]. Research has investigated various ways to refine this programming process by
improving support for user mental model formation when designing their trigger-action sets
[39], understanding common bugs that occur in TAP [11, 63], and explaining TAP behavior in an

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024.

https://osf.io/gvxu5

15:4 B. Ikeda and D. Szafir

understandable manner [84, 85]. More recently, researchers have begun to apply TAP to end-user
robot programming. For instance, a study by Leonardi et al. [48] found that TAP can be an effective
method for end users to personalize social behaviors for humanoid robots. Further research was
conducted by Manca et al. [52], who developed a visual analytics tool to understand the rules cre-
ated by end users. However, these systems focused solely on creating verbal responses to triggers
without considering scenarios where a user may want to coordinate physical tasks with a robot.
Senft et al. [73] built on this work in their Situated Live Programming (SLP) system, which
provides a TAP interface for physical task coordination between humans and robots. In SLP, users
can define regions in their workspace as zones containing objects and positions relevant to TAP
rules. SLP also incorporates live programming, which provides users with the flexibility to program
the initial robot actions, then gradually construct the complete program. With each step, users can
define new trigger-action pairs based on the current state of the environment, facilitating incre-
mental robot program development [73]. In contrast, traditional programming techniques require
users to specify the whole program before execution. Although promising, SLP uses a top-down
camera attached to the robot’s end-effector to visualize the scene on a tablet. This configuration
prohibits users from specifying zones outside the robot’s 2D camera view. In addition, the tablet
interface poses challenges in debugging TAP rules, as users may find it difficult to simultaneously
monitor both the virtual TAP scene and the physical actions performed by the robot in the real
world. Notably, a common message shared by users in prior work was that these systems lacked
feedback, such as the ability to observe rules in action before they were run on the actual robot or
support for rule executability. To address these drawbacks, we leveraged mixed reality technology
to provide intuitive visual feedback during programming in the form of a novel TAP system.

2.3 AR Robot Programming

AR has gained popularity in robotics due to its ability to provide contextual information in situ
within a user’s environment, potentially improving situational awareness, system usability, and
overall user interactions (see other works [1, 50, 75, 76, 81] for recent surveys of mixed real-
ity robotics). Prior research has explored various forms of AR, including 2D overlay displays,
projection-based displays, and AR tablets. The 2D overlay displays present a fixed view of the
robot’s workspace on a 2D computer screen, over which contextual information can be drawn [2,
73]. Projection-based displays directly project 2D visualizations into the user’s workspace, often
incorporating interaction mechanisms such as gesture tracking, smart touch tables, or program-
ming wands [3, 30, 31, 53]. Tablets offer mobility by overlaying AR content over the tablet camera
feed, enabling users to monitor the scene from any viewpoint [17, 26, 44, 47]. Utilizing the benefits
of AR, which stem from overlaying virtual information onto the real world, each of these viewing
modalities have enhanced the robot programming process for users. However, 2D overlays have
a limited field of view, as well as inhibit the user’s ability to communicate depth parameters, and
visual feedback is viewed separate from the real world. Projection-based displays are difficult to
transfer to new environments and restrict mobility, whereas tablets occupy the user’s hands and
constrain the interface to within the small size of the screen.

Therefore, ARHMDs have been used to alleviate these issues. ARHMDs free the user’s hands
of hardware, promote unrestricted mobility and interaction throughout the whole workspace, and
provide information directly contextualized in the user’s real world. As a result, ARHMDs have
been used to help industrial workers define robot trajectories and action primitives [18, 25, 68].
ARHMDs have also been used to communicate low-level robot sensor information to experts [19,
58] and to facilitate debugging robot programs for expert roboticists [42]. However, such systems
have been designed for specific professional workers rather than for non-expert end users. In other
studies, robot motion intent was communicated to users via the Robot Digital Twin but do not offer

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024.

PRogramAR: Augmented Reality End-User Robot Programming 15:5

Object
Tracker

Tracked
Objects

Zones, Rules, and

Rul
Commands Created Rules

Executable Rules Executable
AR Interface and Rule Library Rules

Action
Queried

Robot Simulates Robot Executes

“-"

Act Act '] —!
\ctions Motion ctions ¥

i

Planner

Robot Digital Twin Physical Robot

(b)

Fig. 1. We introduce PRogramAR, an AR TAP system that empowers non-expert users to program reactive
robot behaviors. We describe the benefits of combining augmented reality with TAP to ground program
development in the context of its execution (a) as implemented in our system architecture (b).

an easy way to author reactive robot actions for HRC tasks [72, 80]. Our approach in developing
PRogramAR is inspired by the work of of Kragic et al. [46], Bambusek et al. [7], and Gadre et al.
[29], who use AR to assist users in performing collaborative tasks with robots, to which we add
the lens of TAP for defining reactive robot behaviors.

3 SYSTEM DESIGN

PRogramAR is designed to make programming of robot manipulators easier by adopting AR-
based contextualization and simulation-based rule evaluation in combination with the benefits
of TAP. Our system, which draws on prototype designs and findings from prior research projects
(e.g., [9, 15, 48, 72, 73, 80]), is composed of seven components: (1) AR Interface, (2) Rule Manager,
(3) Object Tracker, (4) Rule Evaluator, (5) Motion Planner, (6) Physical Robot, and (6) Robot Digital
Twin (Figure 1(b)). An example of a full workflow from our system validation (Section 4) is depicted
in Figure 2. In the following sub-sections, we describe each component of our system design.

3.1 AR Interface

Users interact with PRogramAR through an AR Interface embedded directly within the human-
robot working environment (see Figure 1(a)). This interface helps users create rules that are de-
fined by triggers and paired actions that dictate when and how a robot should perform a task.
To ground TAP rules in the real world, users create, move, resize, and delete 3D zones within the
real environment to indicate regions relevant to triggers or actions (once created, each zone has
a different preset color and a unique zone number displayed above it for ease of reference). By
utilizing 3D zones, users gain complete expressibility as they can communicate depth informa-
tion in 3D spaces such as shelves. This is in contrast to prior work that relied on 2D zones, which
limited users’ ability to specify depth information. With our interface, PRogramAR supports both
traditional programming processes, where users define their full program before execution, and
live programming. In live programming, users can program TAP rules while the robot is planning
(regardless of planning time) or executing actions, although edits may require re-planning.

3.2 TAP Rules

PRogramAR currently supports combining triggers and actions into two types of TAP rules that
support a user’s mental model of a program: If-Then rules, as previously supported by Senft et al.

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024.

15:6 B. Ikeda and D. Szafir

A
Z0he3 Zone 4

+ Trigger

(d) (e (®)
Fig. 2. An example workflow for Task 2. Participants started with all objects in the robot’s workspace (a),
then created zones for each box and each place position (b). The goal was to move the boxes to the exchange

area so the participant could assemble the parts inside the boxes (c). Participants used the AR Interface to
create various TAP rules to be run on the robot (d—f).

[73], and our own addition of While-Do rules [39]. Triggers are parameterized by objects, recog-
nized items known to the system (tracked by the Object Tracker, with tracking described more in
Section 3.5), conditions (e.g., “is,” “in”), and zones. In our system, the currently supported triggers
include when (1) objects are in a zone (e.g., Box 1 is in Zone 2) or (2) objects are not in a zone (e.g.,
Box 2 is is not in Zone 3). Actions are parameterized by a robot action (e.g., “move”), objects, and
zones. Due to the limited capabilities of our robot, the only supported action is moving an object
from a zone or its current location, to another zone (e.g., move Box 2 inside Zone 3). When the
defined trigger is true, an If-Then rule executes its actions once before moving to the next rule. A
While-Do rule performs its associated actions continuously as long as the condition is true before
moving to the next rule. For instance, in a scenario where multiple objects need to be transferred
from one zone to another, an If-Then rule might move only one object before moving to the next
rule. In contrast, a While-Do rule might move all the objects before proceeding to execute the
next rule. To summarize, the current rules, triggers, and actions supported by PRogramAR are as
follows:

— Rules: If-Then and While-Do

— Trigger: Objects present within a zone

— Trigger: Objects absent within a zone

— Action: Moving objects from one zone to inside another zone
— Action: Moving objects from any location to inside a zone.

The simplest rule would consist of a single trigger, containing a single object-zone pair, and a
single action, also with a single object-zone pair. For example, a rule could be “If [Box 1] is [in]
[Zone 1], then [move] [Box 1] inside [Zone 2].” Users can also specify rules of arbitrary complex-
ity by using additional conditions connected by AND or OR logical operators in the rule triggers.

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024.

PRogramAR: Augmented Reality End-User Robot Programming 15:7

Each trigger can also have multiple actions connected by AND operators. Similar to SLP [73], PRo-
gramAR allows users to define, edit, and delete TAP rules at any time (prior, during, or post robot
execution). This creates a live programming environment to aid with debugging and progressively
building reactive robot programs at runtime. In contrast to SLP [73], which prompts users to fix
rule priority conflicts, PRogramAR executes TAP rules in a user-specified order that can be ad-
justed as needed (see Figure 2(f)). Moreover, PRogramAR leverages AR to make use of all three
dimensions of the user’s workspace. This enables users to specify programs for placing a box on
a shelf or, in future real-world scenarios, moving a plate from a dish rack into a cabinet. Such pro-
grams are challenging to express in SLP [73], which relies on a top-down view, as it lacks depth
perception, making it difficult to communicate spatial relationships accurately.

3.3 Rule Manager and Evaluator

As users create rules, they are maintained in a library within a Rule Manager, which communicates
with other system components to manage rule options, available zones, and tracked objects while
pushing updates to the AR interface. One key feature that goes beyond prior TAP systems such
as SLP [73] or that of Leonardi et al. [48] is the Rule Evaluator. This component continuously
checks whether the conditions of a rule are satisfied by the current state of the world. The Rule
Manager then pushes updates to the AR Interface to reflect the status of each rule. The purpose of
this feedback is to assist users with debugging their created rules by explicitly indicating whether
a rule should or should not be executed. If the output of the Rule Evaluator conflicts with a user’s
expectations, then they may need to either edit their rules, or validate the current state of the
world or virtual zones. Triggers and actions that evaluate to true, and are therefore in the queue to
be executed, are colored green. Rules that evaluate to false, and are therefore not going to execute,
are colored red (see Figure 2(f)). Red/green hues were chosen from a color blind accessible pallet
to provide a level of contrast easily differentiable by all users [60].

3.4 Motion Planner and Robot Simulation

PRogramAR leverages the Movelt! Task Constructor (MTC), an open source software for robot
manipulator action planning that is compatible with more than 150 robot platforms using Movelt
[36]. While our current implementation targets the Fetch robot, a mobile robot with a 7-degree of
freedom manipulator, other developers interested in utilizing or expanding PRogramAR can easily
adapt it to their own MTC-compatible robot by replacing the MTC bindings specific to Fetch (e.g.,
updating the platform configuration in the launch file) [82]. When users choose to simulate or
execute their program, the Rule Manager sends an action query to the Motion Planner. The MTC
framework facilitates the planning of robot manipulator actions by solving individual sub-tasks
and connecting them into a complete action plan [36]. For instance, a pick-and-place task can be
divided into stages such as robot approach, grasp pose, and lift direction. Each stage is solved
using a motion planning framework such as OpenRAVE or Movelt!, and subsequently connected
sequentially to generate the full motion plan [20, 24].

If the Motion Planner successfully generates a feasible motion plan for the programmed action,
users have the option to simulate individual rules using the Robot Digital Twin. The digital twin
is overlaid on top of the physical robot and demonstrates simulated motion plans contextualized
in the real world. Once users are satisfied the simulation, they may execute their program on the
physical robot. During this time, a digital twin continues to mirror the robot’s actions at twice the
robot’s speed, enabling users to preview the robot’s behavior both before and during execution
(see Figure 2(b)). At times, the Motion Planner may be unable to return a valid trajectory due to
unreachable zones or objects, or obstacles that could cause collisions. In such cases, the system
notifies users with an error message projected above the robot’s head stating, “Error: Zone too far

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024.

15:8 B. Ikeda and D. Szafir

or pick/place position too close to other boxes.” Users can then debug their program accordingly.
This approach is motivated by prior work emphasizing the importance of error detection and
prevention in enhancing programming success [35, 39].

3.5 AR Apparatus and Tracking

PRogramAR makes use of an ARHMD to present the main AR Interface and visualizations to users.
While our current implementation uses the HoloLens 2, PRogramAR is built on top of the OpenXR
application protocol interface (API), which allows any compatible mixed reality device, such as the
MagicLeap or Meta Quest, to run our application. PRogramAR relies on having a single fiducial
marker placed in the workspace for aligning the coordinate frames of the virtual environment
with the real world. The Object Tracker currently relies on external markers (in our validation
we used four Vive trackers with lighthouse base stations); in the future, this might be performed
directly using visual processing of the camera feeds from the ARHMD and/or robot. We derived
the translation and rotation matrices necessary for aligning and calibrating our various coordinate
systems (ARHMD, object tracking, and robot) as described by Peer et al. [65] such that user actions
and program specifications could be accurately mapped into robot plans and AR visual feedback
was appropriately displayed.

4 SYSTEM VALIDATION

To evaluate PRogramAR, we designed and conducted a validation study in which participants
programmed three collaborative tasks with a Fetch robot.

4.1 Environment

Participants used PRogramAR in a controlled laboratory setting using a 1.2m X 0.75m table as the
shared workspace. On one side of the table there was a .58m X 0.4m X .11m shelf, which the robot
could be programmed to place objects on. Unlike previous TAP systems that were limited to a
2D top-down view of the workspace, we demonstrate the benefits of an ARHMD by requiring 3D
placements of objects on the shelf on the left side of the robot’s workspace (Figure 3). This poses
a challenge for 2D interfaces when communicating depth information for TAP rules, especially
when the top-down camera view may be occluded by the roof of the shelf. To align with real-
world safety standards for human-robot shared workspaces [54, 79], the task space was divided
into three areas: (1) Robot workspace, where only the robot was allowed to work during execu-
tion, (2) Exchange area, where both the participant and the robot could enter while working, and
(3) Participant workspace, where only the participant could work (see Figure 3).

4.2 Programming Tasks

For this study, participants programmed a Fetch robot to perform three tasks that grew in com-
plexity and therefore increased potential for working in parallel toward a shared goal: (1) Kitting,
(2) Assembly-A, and (3) Assembly-B. These tasks were inspired by prior work [73] and real-world
use cases [54], and each had a time cap for completion. While kitting and assembly do resemble
manufacturing tasks, we believe the requirement of defining where objects are placed, triggers for
performing actions, and multiple pick and place activities are transferable to other service applica-
tions (putting away dishes/groceries or tidying rooms) where similar specifications are necessary:

Task 1. Kitting (20-minute cap): Participants put two screws, one metal bar, one gray round fas-
tener, and one black round fastener into four different boxes. Participants then pro-
grammed the robot to move the boxes from the exchange area to particular locations
within the robot workspace (numbered white squares in Figure 3).

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024.

PRogramAR: Augmented Reality End-User Robot Programming 15:9

Robot
Workspace

Participant
Workspace

Fig. 3. The task workspace was divided into three areas, the middle of which both the participant and the
robot could work in. The shelf on the left provided a 3D component to the workspace, which 2D interfaces
cannot account for.

Task 2. Assembly-A (15-minute cap): Participants programmed the robot to move boxes from the
robot workspace into the exchange area. Once received, participants assembled four items
from pieces in each container, placing them into white bins located nearby:.

Task 3. Assembly-B (25-minute cap): Participants programmed the robot to move boxes from the
robot workspace into the exchange area. Once received, the participant assembled the
pieces from each container, put the assembled object back in the container, and pro-
grammed the robot to move the boxes from the exchange area to one of the four initial
positions in the robot workspace.

To accomplish these tasks, the robot must be programmed to transfer objects to and from dif-
ferent zones and object locations within the workspace. Participants were tasked with assembling
objects that were chosen to be intentionally difficult to handle, with the aim of increasing the
probability of success for participants who collaborated in parallel, rather than sequentially, with
the robot. The collaborative behavior of working in parallel toward a shared goal was identified
when a participant actively engaged in their own physical tasks while the robot simultaneously
executed its own user-programmed tasks.

4.3 Participants and Procedure

For this study, approved by our university IRB, we recruited a total of 20 participants from our lo-
cal community through our university’s online research recruitment platform. Since PRogramAR
is intended for applications beyond manufacturing (e.g., services in the home), we recruited par-
ticipants of all age ranges and experience levels. Three participants had technical difficulties and
were unable to continue the study (e.g., failures with objects trackers or Wi-Fi connectivity). One
participant, aged 83, lacked the dexterity to manually assemble our task objects (screws and fas-
teners). Instead, this participant performed a modified version of our study, thus this participant’s
data is analyzed separately (see Section 5). As a result, our primary dataset includes 16 participants
(4 male, 10 female, 1 other, and 1 prefer not to say), summarized in Table 1. The average age of
the participants was 26.88 years (SD = 9.14) across a range of 18 to 58 years. Eight participants

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024.

B. Ikeda and D. Szafir

Table 1. Summary of Quantitative Results from Our Study

Measure Result
users who completed Task 1 11 (68.75%)
users who completed Task 2 10 (62.5%)

users who completed Task 3

11 (68.75%)

Mean completion time for Task 1
Mean completion time for Task 2
Mean completion time for Task 3

16m 4s (SD = 2m 39s)
12m 40s (SD = 2m 16s)
18m 155 (SD = 3m 355)

users who worked in parallel with the robot during Task 1 0 (0%)
users who worked in parallel with the robot during Task 2 9 (56.25%)
users who worked in parallel with the robot during Task 3 14 (87.5%)
Mean user age 26.88 (SD = 9.14)
users with no programming experience 8 (50%)
users owning IoT device(s) 7 (43.75%)
Mean prior experience using TAP (1-7) 3 (SD = 2.09)

Mean prior experience using AR (1-7)
Mean prior experience using robots (1-7)

2.81 (SD = 2.16)
2.19 (SD = 1.88)

Mean SUS score 77.81 (SD = 11.79)

(50%) reported having no computer programming experience, three (18.75%) reported 1 year or
less, and five (31.25%) reported 3 years or more. Seven (43.75%) of the participants indicated they
own an [oT device, such as a smart hub, and participants’ average familiarity with TAP was 3.00
(SD = 2.09) using a single item with a 7-point scale. Prior to the study, participants reported having
little previous experience working with robots (M = 2.18, SD = 1.88) or using virtual reality or AR
technology (M = 2.81, SD = 2.16 on 7-point scales) on a 7-point range. Our sample of participants
represents a broad distribution of age groups with different levels of experience, which reflects
many of our target end users.

Each participant’s session consisted of six phases: (1) Introduction, (2) Kitting, (3) Assembly-A,
(4) Assembly-B, and (5) Conclusion. In the first phase, participants were given time to read and
sign a consent form. Then the researcher explained what they would be doing and showed the
participant a 5-minute tutorial video explaining how to use PRogramAR to program the robot.
Then, the HoloLens was calibrated for the participant. Finally, participants were asked if they
had any questions before beginning the first task. In the second phase, participants began the
first task and a timer was started once they acknowledged they could see the interface in the
scene. For this task, they were given 20 minutes and were allowed to ask clarifying questions
on how the interface worked, but not how to complete the task. Once the robot correctly placed
the final object, the task was completed and the timer was stopped. In the third phase, for the
Assembly-A task, participants were given 15 minutes and were allowed to reuse the rules and the
zones created from the first task. The timer was started once the participant verbally confirmed
they could see the interface in the scene. Once the robot correctly placed the final object, the
task was completed and the timer was stopped. In the fourth phase, for the Assembly-B task,
participants were give 25 minutes and were allowed to reuse the rules and the zones created from
the first and second task. The timer was started once the participant verbally confirmed they
could see the interface in the scene. Once the robot correctly placed the final object, the task was
completed and the timer was stopped. In the fifth phase, following the final task, the researcher
conducted a verbal interview with participants to understand their experience using PRogramAR.
Then participants completed a questionnaire to gather demographics, and to assess the perceived

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024.

PRogramAR: Augmented Reality End-User Robot Programming 15:11

usability of our system via the System Usability Scale (SUS) [14]. Finally, in the sixth phase, the
researcher debriefed participants by explaining the goal of the study and compensated them with a
$15 gift card.

4.4 Analysis Method

To gather participants’ feedback regarding their experience with PRogramAR, we conducted and
recorded a semi-structured verbal interview with a pre-defined list of questions focused on the
participants’ interaction with the robot, the effectiveness of the programming tool, and their over-
all impressions of PRogramAR. We chose semi-structured interviews because it offers a balance
between structure and the flexibility to follow-up on unanticipated and interesting responses [27].
To transcribe the interview recordings, we used an intelligent verbatim approach, aligning spoken
data with written conventions while preserving the intended meaning and structure of the original
speech [56]. Our goal was to convey the key points and ideas in the conversation, rather than how
it was said, and to improve readability. Following the transcription of our data, we applied thematic
analysis, a method for identifying, organizing, and reporting patterns within a dataset, enabling us
to systematically summarize key features of verbal feedback gathered from participants. Thematic
analysis is performed in six steps: (1) familiarization with the data, (2) generating initial codes,
(3) searching for themes, (4) reviewing potential themes, (5) defining and naming themes, and
(6) producing the report [12]. Our analysis revealed three themes, discussed in Section 5: (1) user-
friendly robot programming, (2) supporting different levels of expression, and (3) supporting users
through in-situ contextualization.

5 RESULTS

Following the completion of the study, participants gave our system an average SUS rating of 77.81
(SD = 11.79), resulting in what is an above average rating. A number of participants struggled to
complete specific tasks within the designated time constraints. We believe that these instances
are largely due to participants, many of whom had no programming, AR, or robotics experience,
having a relatively short learning time (5 minutes) to become familiar with the many novel aspects
of our system. Overall, participants averaged 16 minutes, 4 seconds (SD = 2 minutes, 39 seconds)
to complete the first task, 12 minutes, 40 seconds (SD = 2 minutes, 16 seconds) to complete the
second task, and 18 minutes, 15 seconds (SD = 3 minutes, 35 seconds) to complete the third, and we
believe that with higher time caps, all participants would have eventually completed all tasks. In
general, Task 1 took longer than Task 2 because participants needed extra time to understand the
interface and the AR interactions. Participants could also re-purpose TAP rules created in Task 1
for Task 2, which saved time. As expected, Task 3 took the longest amount of time because it
involved moving objects between the participant workspace and the robot workspace twice, rather
than once (see Figure 4 for more details).

Over the course of the tasks, participants became comfortable, creating multiple rules at once
and working in parallel with the robot. The number of participants who performed their tasks
in parallel with the robot were 0 (0%) in Task 1, 9 (56.25%) in Task 2, and 14 (87.5%) in Task 3.
While this increase was affected by the task design (i.e., Task 3 was designed to generate more
opportunities for parallel task execution), participants stated that they became more comfortable
using PRogramAR and progressively let the robot perform tasks simultaneously with them:

P10:“Tt was good once I got used to it. I think if you were in this environment,
working this way ... it will seem comfortable, to me once you do it a few times
... By the third task, I was like, well, 'm going to be doing something while I'm
having it do something.”

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024.

15:12 B. Ikeda and D. Szafir

Task 1 Task 2 Task 3
25 25 25
20 20 20
= £ <
v15 £ 15 v15
[0) [0} (0]
£10 E10 £10
- = =
5 5 5
0 0 0
Participant Participant Participant

Fig. 4. The time it took for participants to complete each task. The programs created in Task 1 could be
reused for Task 2, resulting in quicker completion times for Task 2. Task 3 took the longest time because it
required more steps. Five participants in Task 1, six in Task 2, and five in Task 3 were unable to complete the
tasks within the allotted time. Their times are not shown within the graphs.

This emphasizes that with time to become comfortable, PRogramAR allowed users to man-
age their own tasks simultaneously with the robot’s tasks. In the following, we discuss other ad-
vantages and disadvantages of PRogramAR reported by participants grouped by the themes that
emerged from our analysis.

5.1 User-Friendly Robot Programming

Of the 16 participants, 13 (81.25%) commented on their positive experience using PRogramAR.
These participants in particular appreciated its simplicity especially for non-experts, as reflected
in the following comment:

P8“T don’t have to be a genius to be able to do this. It’s not super confusing . .. I
was actually surprised about that.”

Moreover, seven (43.75%) participants reported that using TAP within PRogramAR was less
intimidating than typical computer programming, whereas three (37.5%) participants without a
computer science background perceived that TAP was comparable to their current work applica-
tions and therefore felt familiar.

P11:T wasn’t really thinking about the coding element that much, which I think is
good, probably in the sense of being user friendly. I don’t think normal coding is
super user friendly.”

P16:“T've done this type of if-then work in other database management . .. that’s
why I feel like I got used to the rule language pretty quickly.”

This feedback highlights that TAP is perceived as user-friendly when applied in an AR environ-
ment and reinforces the notion that TAP can lower the barrier to entry for robot programming as
found in prior work [67]. When participants were asked if they believed that there was a group
of users who would have a hard time learning this interface, four (25%) said that it would be their
grandparents. On the contrary, one elderly participant (P7, age 83) who completed a modified
version of our study, due to difficulties manually assembling task objects, reported a positive ex-
perience learning and using PRogramAR. During the first two tasks, this participant was provided
additional guidance from the researcher, who helped them develop successful program for the first
two tasks. For the third task, due to the participant having difficulty putting objects together, they
were instructed to put them to the side without assembling them, and to continue with the task
as usual. For this modified task, the participant was able to successfully build their program in the

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024.

PRogramAR: Augmented Reality End-User Robot Programming 15:13

allotted time, without further guidance from the researcher. Including this participant’s response,
our SUS score rises to 79.12 (STD = 12.57). This experience suggests that users of all ages can adopt
this technology if well-designed guidance is provided during the initial familiarization phase. This
participant provided the following feedback on PRogramAR:

P7:“It was a simple interface to learn and just took a little to get used to ... I have
a 97 year old friend who refused to use a computer . .. he could have picked up on
this I'm sure.”

To further enhance the programming experience for users, color-coded TAP rules were added to
the Rule Manager (see Figure 2(f)). This feature indicated to users whether a rule could be executed
given the current state of the world. Our feedback revealed that four (25%) participants found this
feature to be particularly helpful for verifying the planned execution of created rules. For example:

P15:“T liked that it showed over here which rule is being executed and the high-
lighted true false condition, like when it was off or when a box was in a zone it
was highlighted true and the if condition column was highlighted green.”

P16:“T realized that the conditions weren’t true because the box wasn’t in that zone.
So that helped me move the zone back where the box was.”

This indicates that the color-coded TAP rule feedback served as an effective visual cue, enabling
users to make informed adjustments to their program. In summary, our user responses reinforce
previous findings that the TAP paradigm can be adopted by non-expert users, and that proper
feedback regarding TAP rules can enhance the programming process [48, 73, 77]. Furthermore,
it is encouraging that these ideas hold when providing TAP in AR to people of varying ages and
backgrounds.

5.2 Supporting Different Levels of Expression

As discussed by Senft et al. [73], our work similarly highlights that TAP supports different levels
of expression. When it came to the final task, participants were able to apply their own unique
strategies. Of the 11 participants who successfully completed the third task, 7 (63.36%) set up mul-
tiple zones for each object and placement position for their rules. All but 1 participant utilized a
live programming approach throughout this task, continuously building and editing blocks of rules
(see Figure 2). The remaining 4 (36.36%) participants preferred to use a smaller number of zones
that they moved around the workspace as the task progressed, also utilizing a live programming
approach. Across all three tasks, we observed a small number of participants adopting a traditional
programming process, defining all of the necessary rules for completing the task before execution.
Specifically, 1 (6.25%) participant in Task 1, 3 (18.75%) participants in Task 2, and 1 (6.25%) par-
ticipant in all three tasks used a traditional programming approach. Although participants had
the freedom to choose their strategies, it did not guarantee that their approach would be effective
or successful. One challenge that 5 (31.25%) participants encountered was keeping track of multi-
ple low-level rules. This was because participants often implemented too many zones and If-Then
rules. For example:

P9:“When [was adding the extra conditions and extra actions, I couldn’t remember
which ones I had already added . . . there’s just a lot going on.”

Seven (53.84%) participants recognized that there might have been a more optimal approach
than their initial implementation. Participants often attributed this difficulty to the time limit that
created a sense of pressure to quickly incorporate multiple If-Then rules, which was the perceived
easiest path. For example:

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024.

15:14 B. Ikeda and D. Szafir

P5:“T think if T had more time, I would have experimented . .. For the third test, I
started to look at the other command, While-Do, to see what that meant. If I had
more time to think of a more finessed trigger command, just but because the If-
Then was familiar, and I knew it could still execute the task at hand.”

Therefore, although participants were given the flexibility to generate TAP rules how they
wanted, future research should explore ways to assist users by automatically generating high-
quality rules that participants may modify after its creation. This becomes particularly crucial as
the complexity of real-world scenarios increases with a larger number of available rules, objects,
and zones.

5.3 Supporting Users through In-Situ Contextualization

A major characteristic of AR is its ability to merge virtual and physical worlds. Previous research
has examined this property to improve robot programming using ARHMDs [7, 16, 18]. One of the
benefits of incorporating an ARHMD into robot programming is that users are able to engage with
the AR interface from anywhere in their workspace, unencumbered by a physical monitor. This
benefit was recognized by two (12.5%) participants:

P16:“T like that no matter where I was sitting, I could kind of engage the interface.”
P17:“T like that if you feel like using this at home, you wouldn’t have a bunch of|
you might have a monitor, but it would just be like this and be pretty simple.”

Despite this positive feedback, one participant mentioned an alternate viewpoint. They would
have preferred using a computer, since it was what they were used to, indicating that some users
may be resistant to adopting technologies that are perceived as disruptive to existing workflows.
Another motivation for incorporating an ARHMD was to enable users to visualize the entire
workspace in which they were operating, rather than being limited to a single camera’s point
of view. During our study, two (12.5%) participants mentioned that they appreciated this feature.
For example:

P2:“T like that you can see what’s actually happening. I used VR glasses ... and
that was one of the ones where it’s a video game where you can’t really see your
surroundings. So it was cool how I have an idea about where you are, but also
seeing this other things.”

Furthermore, multiple participants successfully completed each task by utilizing PRogramAR
to define 3D location parameters on the shelf, which is difficult to do in prior work that utilized
2D screens. Another crucial feature that was provided by PRogramAR was the simulation compo-
nent, which displayed motion plans using the Robot Digital Twin. This feature has been shown
to improve safety and control in robotics applications when provided via an ARHMD [4, 37, 72].
Seven (43.75%) participants mentioned using the simulation to build confidence in their program,
with comments including the following:

P5:“Once I was able to have the If-Then statements do the simulation and make
sure that it did the task as I intended, I felt pretty confident.”

P20:“T think it was better when I simulated it because at least I knew there was a
pass ... it made me feel better about it, doing it the way that it was supposed to
and also just making sure that whatever I put as the rule was correct.”

Another participant envisioned the benefit of using the simulation tool when programming
more complex tasks for service robots deployed in the home:

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024.

PRogramAR: Augmented Reality End-User Robot Programming 15:15

P13:“For even more complicated tasks, like household chores or something robots
were capable of, that would be really helpful to see like exactly what’s going to
happen once you program some set path or set of actions.”

However, similar to prior observations (e.g., [16]), as participants became familiar with PRogra-
mAR and the capabilities of the robot, 11 (68.75%) participants no longer found it necessary to rely
on the simulation tool after the first task. One limitation of our simulation caused by the motion
planner was if a goal was located too far for the robot to reach or if occluding objects prevented
the robot from grabbing an object, no motion plan would be generated. Therefore, instead of pro-
viding a simulated motion plan, error messages describing these edge cases would be displayed
above the robot. Consequently, four (25%) participants struggled with the final task because they
had difficulty deciphering the meaning of the error messages. For example:

P6:“Twanted to know what that error meant about the zone. There was no guidance
on the panel ... at one point I realized that I had accidentally moved one of my
zones away from where I thought it was. I didn’t realize that I had done that.”

Therefore, future research should continue to explore methods of integrating error feedback
that naturally guides non-expert users toward identifying the source of program errors. Overall,
participant feedback provided promising evidence regarding our motivation to integrate TAP into
an ARHMD environment. For instance, participants derived confidence from using an ARHMD
to verify their program using the simulation tool for the first task. However, more work is nec-
essary to further understand the effectiveness of our system in the context of non-expert robot
programming.

6 DISCUSSION

In this study, we aimed to explore how the benefits of AR may enhance the process of program-
ming reactive robot behaviors using TAP. First, our work confirms prior findings demonstrating
that TAP is a user-friendly approach for enabling non-experts to programming robots. We ob-
served PRogramAR accommodating varying levels of expressivity, with some participants work-
ing in parallel with the robot, whereas others worked sequentially, and most of the participants
instinctively applied a live programming approach. It is also encouraging to see that these findings
hold when providing TAP in AR to people of varying ages (e.g., 18-83) and backgrounds, as mul-
tiple participants were able to complete the tasks within the given time frame using our system.
Second, the inclusion of AR visualizations, particularly the 3D digital twin simulation, provided
multiple users with confidence in their program execution. Participants also appreciated the abil-
ity to freely position the AR Interface anywhere in the scene and how AR allowed them to work
within the entire human-robot workspace. We believe that by combining AR and TAP, our design
of PRogramAR provides a starting point for future AR systems to build upon to provide richer ex-
pressions and visual debugging capabilities to users, thereby continuing to improve the end-user
robot programming experience for all.

6.1 Limitations and Future Work

Although our validation of PRogramAR shows promise, limitations and future challenges remain.
For example, the tasks programmed by users in our study were abstract (pick-and-place, generic
assembly, etc.) and limited by the object tracking and manipulation capabilities of our system.
Future work should examine more realistic and complicated tasks that initially motivated our
work, such as tidying rooms or putting away dishes. To enable the specification of TAP rules for
more real-world tasks, our system needs to incorporate the following: (1) a more advanced object

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024.

15:16 B. Ikeda and D. Szafir

detection and tracking algorithm such as Yolo [43]; (2) precise low-level manipulation capabilities
that include generalizable object grasping techniques (e.g., Contact-GraspNet [74]) and actions
such as twisting, opening, or deictic gestures (e.g., LFD [71]); and (3) increased TAP rule express-
ibility by including more object states such as dirty or clean dishes, social behaviors [48], and
trigger-action rules (e.g., As-long-as-Do, If-When-Then [39]). However, to utilize these capabili-
ties, PRogramAR will need to assist users with defining more complex robot programs. One way
to do this is through virtual kinesthetic teaching, where users directly manipulate a robot’s digital
twin to fine-tune action plans. Researchers could also utilize the AR headset’s egocentric camera
to record users physically demonstrating tasks. This demonstration could then be translated into
parameters for robot action programs. Developing such a system also unlocks opportunities to
leverage AR’s advantages in larger spaces, where users will need to create and keep track of more
rules and virtual objects. For example, the Robot Digital Twin could demonstrate complex tasks
like cooking and depict changes in object states (e.g., before and after food is cut or cooked) in a
larger kitchen environment. In lengthy tasks, a simulation tool could condense robot actions into
a shorter time frame, facilitating quick debugging by users. Studies within larger environments,
in which the workspace cannot be covered by a single viewpoint, may lead to greater insight into
the benefits of AR over a 2D interface. However, these capabilities currently pose as challenges
for future AR robot programming research, as they are not yet available in existing AR systems.
Another limitation of our study was the long planning times of our mobile manipulator. This was
a limitation of the solver that would cause the robot to collide with objects if planning was done
too quickly. To address this issue, future systems could continuously compute and store motion
plans to be used when an action is triggered. In addition, reducing the planning time for future
systems will help introduce more aspects of live programming, which could allow users to initiate
re-planning of robot trajectories quicker. Also problematic was the task times that constrained the
users. This constructed an artificial limitation that prevented some participants from fully explor-
ing the interface and creating desired rule sets. Therefore, future work might increase the task time
or incorporate state of the art language models such as GPT-4, which could quickly provide ap-
plicable rules for participants to reduce their mental load [34, 41]. For example, participants could
describe high-level goals using natural language, which could then be input into a large-language
model. Then, the model could generate the robot program rules and provide users with a subset
of task relevant trigger and action parameters for program customization. This approach would
provide users with code templates, eliminating the need to build rules from scratch. Moreover, this
could reduce the cognitive load for participants as they work with larger rule sets, a consequence
of more complex tasks, environments, and advanced robotics systems. Finally, future work should
investigate how to continue to incorporate error feedback that seamlessly guides non-expert users
to the source of program bugs. For example, PRogramAR could be improved by providing a sim-
ulated motion plan that highlights problematic collisions that may occur, rather than describing
errors in plain language [5, 51, 57].

7 CONCLUSION

In this work, we presented PRogramAR, a novel AR trigger-action robot programming system
that empowers non-expert users to create reactive robot behaviors for collaborative tasks. In the
development of PRogramAR, we integrated concepts from various domains of robot program-
ming and AR interface research into a unified and comprehensive system. Specifically, PRogra-
mAR introduces a unique combination of TAP, offering a high-level abstraction of robot program-
ming concepts, and AR feedback that is contextualized directly within the user’s environment to
facilitate the construction of accurate mental models of the programmed behavior. In our sys-
tem validation, individuals of different ages and levels of experience successfully developed and

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024.

PRogramAR: Augmented Reality End-User Robot Programming 15:17

deployed programs that enabled them to work in collaboration with the robot toward a shared
goal. Moreover, the feedback received from participants support the advantages of merging AR
and TAP in the context of robot programming. We look forward to further explorations of this
work in pursuit of a universally user-friendly robot programming system.

REFERENCES

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]
(9]
(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Gopika Ajaykumar, Maureen Steele, and Chien-Ming Huang. 2021. A survey on end-user robot programming. ACM
Computing Surveys 54, 8 (2021), 1-36.

Batu Akan, Afshin Ameri, Baran Cuiraklii, and Lars Asplund. 2011. Intuitive industrial robot programming through
incremental multimodal language and augmented reality. In Proceedings of the 2011 IEEE International Conference on
Robotics and Automation. IEEE, 3934-3939.

Rasmus S. Andersen, Simon Bogh, Thomas B. Moeslund, and Ole Madsen. 2016. Task space HRI for cooperative mobile
robots in fit-out operations inside ship superstructures. In Proceedings of the 2016 25th IEEE International Symposium
on Robot and Human Interactive Communication (RO-MAN’16). IEEE, 880—-887.

Pasquale Arpaia, Carmela Bravaccio, Giuseppina Corrado, Luigi Duraccio, Nicola Moccaldi, and Silvia Rossi. 2020.
Robotic autism rehabilitation by wearable brain-computer interface and augmented reality. In Proceedings of the 2020
IEEE International Symposium on Medical Measurements and Applications (MeMeA’20). IEEE, 1-6.

Giancarlo Avalle, Francesco De Pace, Claudio Fornaro, Federico Manuri, and Andrea Sanna. 2019. An augmented
reality system to support fault visualization in industrial robotic tasks. IEEE Access 7 (2019), 132343-132359. DOI : https:
//doi.org/10.1109/ACCESS.2019.2940887

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre. 2001. Recent advances in augmented reality.
IEEE Computer Graphics and Applications 21, 6 (2001), 34-47. DOI : https://doi.org/10.1109/38.963459

Daniel Bambusek, Zdenék Materna, Michal Kapinus, Vitézslav Beran, and Pavel Smrz. 2019. Combining interactive
spatial augmented reality with head-mounted display for end-user collaborative robot programming. In Proceedings
of the 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN’19). 1-8.
DOI: https://doi.org/10.1109/RO-MAN46459.2019.8956315

Emilia I. Barakova, Jan C. C. Gillesen, Bibi E. B. M. Huskens, and Tino Lourens. 2013. End-user programming archi-
tecture facilitates the uptake of robots in social therapies. Robotics and Autonomous Systems 61, 7 (2013), 704-713.
Sara Beschi, Daniela Fogli, and Fabio Tampalini. 2019. CAPIRCI: A multi-modal system for collaborative robot pro-
gramming. In Proceedings of the International Symposium on End User Development. 51-66.

Geoffrey Biggs and Bruce MacDonald. 2003. A survey of robot programming systems. In Proceedings of the Aus-
tralasian Conference on Robotics and Automation, Vol. 1. 1-3.

Will Brackenbury, Abhimanyu Deora, Jillian Ritchey, Jason Vallee, Weijia He, Guan Wang, Michael L. Littman, and
Blase Ur. 2019. How users interpret bugs in trigger-action programming. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems. 1-12.

Virginia Braun and Victoria Clarke. 2012. Thematic analysis. In APA Handbook of Research Methods in Psychology,
Vol. 2. Research Designs: Quantitative, Qualitative, Neurospychological, and Biological, H. Cooper, P. M. Camic, D. L
Long, A. T. Panger, D. Rindskopf, and K. J. Sher (Eds.). American Psychological Association, 57-71.

Julia Brich, Marcel Walch, Michael Rietzler, Michael Weber, and Florian Schaub. 2017. Exploring end user program-
ming needs in home automation. ACM Transactions on Computer-Human Interaction 24, 2 (2017), 1-35.

John Brooke. 1996. SUS: A quick and dirty usability scale. Usability Evaluation in Industry 189, 194 (1996), 4-7.
Connor Brooks and Daniel Szafir. 2020. Visualization of intended assistance for acceptance of shared control. In
Proceedings of the 2020 IEEE/RST International Conference on Intelligent Robots and Systems (IROS’20). 11425-11430.
DOI: https://doi.org/10.1109/IROS45743.2020.9340964

Yuanzhi Cao, Tianyi Wang, Xun Qian, Pawan S. Rao, Manav Wadhawan, Ke Huo, and Karthik Ramani. 2019. GhostAR:
A time-space editor for embodied authoring of human-robot collaborative task with augmented reality. In Proceedings
of the 32nd Annual ACM Symposium on User Interface Software and Technology. 521-534.

Sonia Mary Chacko and Vikram Kapila. 2019. An augmented reality interface for human-robot interaction in uncon-
strained environments. In Proceedings of the 2019 IEEE/RST International Conference on Intelligent Robots and Systems
(IROS’19). TEEE, 3222-3228.

Wesley P. Chan, Maram Sakr, Camilo Perez Quintero, Elizabeth Croft, and H. F. Machiel Van der Loos. 2020. Towards
a multimodal system combining augmented reality and electromyography for robot trajectory programming and ex-
ecution. In Proceedings of the 2020 29th IEEE International Conference on Robot and Human Interactive Communication
(RO-MAN’20). IEEE, 419-424.

Andre Cleaver, Faizan Muhammad, Amel Hassan, Elaine Short, and Jivko Sinapov. 2020. SENSAR: A visual tool for
intelligent robots for collaborative human-robot interaction. arXiv preprint arXiv:2011.04515 (2020).

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024.

https://doi.org/10.1109/ACCESS.2019.2940887
https://doi.org/10.1109/ACCESS.2019.2940887
https://doi.org/10.1109/38.963459
https://doi.org/10.1109/RO-MAN46459.2019.8956315
https://doi.org/10.1109/IROS45743.2020.9340964

15:18 B. Ikeda and D. Szafir

[20]

[21]

[22]

(23]

[26]
[27]

(28]

[29]

(30]

(31]
(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

(42]

David Coleman, Ioan Sucan, Sachin Chitta, and Nikolaus Correll. 2014. Reducing the barrier to entry of complex
robotic software: A Movelt! case study. arXiv preprint arXiv:1404.3785 (2014).

Yngve Dahl and Reidar-Martin Svendsen. 2011. End-user composition interfaces for smart environments: A prelimi-
nary study of usability factors. In Proceedings of the International Conference of Design, User Experience, and Usability.
118-127.

Michael De Rosa, Seth Goldstein, Peter Lee, Padmanabhan Pillai, and Jason Campbell. 2008. Programming modular
robots with locally distributed predicates. In Proceedings of the IEEE International Conference on Robotics and Automa-
tion. 3156-3162.

Anind K. Dey, Timothy Sohn, Sara Streng, and Justin Kodama. 2006. iCAP: Interactive prototyping of context-aware
applications. In Proceedings of the International Conference on Pervasive Computing. 254-271.

Rosen Diankov. 2010. Automated Construction of Robotic Manipulation Programs. Carnegie Mellon University.

Huy Dinh, Quilong Yuan, Iastrebov Vietcheslav, and Gerald Seet. 2017. Augmented reality interface for taping robot.
In Proceedings of the 2017 18th International Conference on Advanced Robotics (ICAR’17). 275-280. DOI : https://doi.org/
10.1109/ICAR.2017.8023530

Jared A. Frank, Matthew Moorhead, and Vikram Kapila. 2017. Mobile mixed-reality interfaces that enhance human-
robot interaction in shared spaces. Frontiers in Robotics and Al 4 (2017), 20.

Fiona Fylan. 2005. Semi-structured interviewing. In A Handbook of Research Methods for Clinical and Health Psychol-
ogy, J. Miles and P. Gilbert (Eds.). Oxford University Press, 65-78.

Samir Yitzhak Gadre, Eric Rosen, Gary Chien, Elizabeth Phillips, Stefanie Tellex, and George Konidaris. 2019. End-
user robot programming using mixed reality. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA’19). 2707-2713.

Samir Yitzhak Gadre, Eric Rosen, Gary Chien, Elizabeth Phillips, Stefanie Tellex, and George Konidaris. 2019. End-
user robot programming using mixed reality. In Proceedings of the 2019 International Conference on Robotics and
Automation (ICRA’19). 2707-2713. DOI : https://doi.org/10.1109/ICRA.2019.8793988

Ramsundar Kalpagam Ganesan, Yash K. Rathore, Heather M. Ross, and Heni Ben Amor. 2018. Better teaming through
visual cues: How projecting imagery in a workspace can improve human-robot collaboration. IEEE Robotics & Au-
tomation Magazine 25, 2 (2018), 59-71.

Yuxiang Gao and Chien-Ming Huang. 2019. PATI: A projection-based augmented table-top interface for robot pro-
gramming. In Proceedings of the ACM International Conference on Intelligent User Interfaces (IUI'19). 345-355.
Manuel Garcia-Herranz del Olmo, Pablo A. Haya, and Xavier Alaman. 2010. Towards a ubiquitous end-user program-
ming system for smart spaces. Journal of Universal Computer Science 16, 12 (2010), 1633-1649.

Dylan F. Glas, Takayuki Kanda, and Hiroshi Ishiguro. 2016. Human-robot interaction design using interaction com-
poser eight years of lessons learned. In Proceedings of the 2016 11th ACM/IEEE International Conference on Human-
Robot Interaction (HRI'16). IEEE, 303-310.

Maitrey Gramopadhye and Daniel Szafir. 2023. Generating executable action plans with environmentally-aware lan-
guage models. arXiv:2210.04964 [cs.RO] (2023).

Kelleher R. Guerin, Colin Lea, Chris Paxton, and Gregory D. Hager. 2015. A framework for end-user instruction of a
robot assistant for manufacturing. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation
(ICRA’15). IEEE, 6167-6174.

Michael Gorner, Robert Haschke, Helge Ritter, and Jianwei Zhang. 2019. Movelt! Task Constructor for task-level
motion planning. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA’19). 190-196.
DOI: https://doi.org/10.1109/ICRA.2019.8793898

Hooman Hedayati, Michael Walker, and Daniel Szafir. 2018. Improving collocated robot teleoperation with aug-
mented reality. In Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction (HRI'18).
ACM, 78-86. DOI : https://doi.org/10.1145/3171221.3171251

Gaoping Huang, Pawan S. Rao, Meng-Han Wu, Xun Qian, Shimon Y. Nof, Karthik Ramani, and Alexander J. Quinn.
2020. Vipo: Spatial-visual programming with functions for robot-IoT workflows. In Proceedings of the 2020 CHI Con-
ference on Human Factors in Computing Systems. 1-13.

Justin Huang and Maya Cakmak. 2015. Supporting mental model accuracy in trigger-action programming. In Pro-
ceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing. 215-225.

Justin Huang, Tessa Lau, and Maya Cakmak. 2016. Design and evaluation of a rapid programming system for service
robots. In Proceedings of the 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI’16). IEEE,
295-302.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. 2022. Language models as zero-shot planners:
Extracting actionable knowledge for embodied agents. In Proceedings of the International Conference on Machine
Learning. 9118-9147.

Bryce Ikeda and Daniel Szafir. 2022. Advancing the design of visual debugging tools for roboticists. In Proceedings of
the 2022 ACM/IEEE International Conference on Human-Robot Interaction (HRI’22). IEEE, 195-204.

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024.

https://doi.org/10.1109/ICAR.2017.8023530
https://doi.org/10.1109/ICAR.2017.8023530
https://doi.org/10.1109/ICRA.2019.8793988
https://doi.org/10.1109/ICRA.2019.8793898
https://doi.org/10.1145/3171221.3171251

PRogramAR: Augmented Reality End-User Robot Programming 15:19

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]
[57]

[58]

[59]
[60]
[61]

[62]

[63]

[64]

Peiyuan Jiang, Daji Ergu, Fangyao Liu, Ying Cai, and Bo Ma. 2022. A review of Yolo algorithm developments. Procedia
Computer Science 199 (2022), 1066—-1073.

Michal Kapinus, Vitézslav Beran, Zdenék Materna, and Daniel Bambusek. 2019. Spatially situated end-user robot
programming in augmented reality. In Proceedings of the IEEE International Conference on Robot and Human Interactive
Communication (RO-MAN’19). 1-8.

Michal Kapinus, Zdenék Materna, Daniel Bambusek, and Vitézslav Beran. 2020. End-user robot programming case
study: Augmented reality vs. teach pendant. In Companion of the 2020 ACM/IEEE International Conference on Human-
Robot Interaction. 281-283.

Danica Kragic, Joakim Gustafson, Hakan Karaoguz, Patric Jensfelt, and Robert Krug. 2018. Interactive, collaborative
robots: Challenges and opportunities. In Proceedings of the 27th International Joint Conference on Artificial Intelligence
(IJCAT’18). 18-25.

Jens Lambrecht and Jorg Kriiger. 2012. Spatial programming for industrial robots based on gestures and augmented
reality. In Proceedings of the 2012 IEEE/RST International Conference on Intelligent Robots and Systems. 466-472.
DOI: https://doi.org/10.1109/IROS.2012.6385900

Nicola Leonardi, Marco Manca, Fabio Paterno, and Carmen Santoro. 2019. Trigger-action programming for person-
alising humanoid robot behaviour. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Sys-
tems(CHI’'19). ACM, 1-13. DOI: https://doi.org/10.1145/3290605.3300675

Matthew B. Luebbers, Connor Brooks, Carl L. Mueller, Daniel Szafir, and Bradley Hayes. 2021. ARC-LfD: Using
augmented reality for interactive long-term robot skill maintenance via constrained learning from demonstration. In
Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA’21). 3794-3800.

Zhanat Makhataeva and Huseyin Atakan Varol. 2020. Augmented reality for robotics: A review. Robotics 9, 2 (2020),
21.

Ivo Maly, David Sedlacek, and Paulo Leitao. 2016. Augmented reality experiments with industrial robot in industry
4.0 environment. In Proceedings of the 2016 IEEE 14th International Conference on Industrial Informatics (INDIN’16).
IEEE, 176-181.

Marco Manca, Fabio Paterno, and Carmen Santoro. 2019. Analyzing trigger-action programming for personalization
of robot behaviour in iot environments. In Proceedings of the International Symposium on End User Development.
100-114.

Zdenék Materna, Michal Kapinus, Vitézslav Beran, Pavel Smrz, and Pavel Zem¢ik. 2018. Interactive spatial augmented
reality in collaborative robot programming: User experience evaluation. In Proceedings of the 2018 27th IEEE Interna-
tional Symposium on Robot and Human Interactive Communication (RO-MAN’18). IEEE, 80-87.

Eloise Matheson, Riccardo Minto, Emanuele G. G. Zampieri, Maurizio Faccio, and Giulio Rosati. 2019. Human-robot
collaboration in manufacturing applications: A review. Robotics 8, 4 (2019), 100.

John P. MclIntire, Paul R. Havig, and Eric E. Geiselman. 2012. What is 3D good for? A review of human performance
on stereoscopic 3D displays. In Head- and Helmet-Mounted Displays XVII; and Display Technologies and Applications
for Defense, Security, and Avionics VI, Vol. 8383. International Society for Optics and Photonics, 83830X.

Caitlin McMullin. 2023. Transcription and qualitative methods: Implications for third sector research. VOLUNTAS:
International Journal of Voluntary and Nonprofit Organizations 34 (2023), 149-153.

Dimitris Mourtzis, Vasilios Zogopoulos, and E. Vlachou. 2017. Augmented reality application to support remote main-
tenance as a service in the robotics industry. Procedia CIRP 63 (2017), 46-51.

F. Muhammad, A. Hassan, A. Cleaver, and J. Sinapov. 2019. Creating a shared reality with robots. In Proceedings of
the 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI’19). 614-615. DOIL : https://doi.org/
10.1109/HRI.2019.8673191

Hai Nguyen, Matei Ciocarlie, Kaijen Hsiao, and Charles C. Kemp. 2013. ROS Commander (ROSC): Behavior creation
for home robots. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation. IEEE, 467-474.
David Nichols. 2022. Coloring for Colorblindness. Retrieved January 16, 2024 from https://davidmathlogic.com/
colorblind/

International Federation of Robotics. 2021. IFR Presents World Robotics 2021 Reports. Retrieved January 16, 2024 from
https://ifr.org/ifr-press-releases/news/robot-sales-rise-again

Soh-Khim Ong, A. W. W. Yew, Naresh Kumar Thanigaivel, and Andrew Y. C. Nee. 2020. Augmented reality-assisted
robot programming system for industrial applications. Robotics and Computer-Integrated Manufacturing 61 (2020),
101820.

Mitali Palekar, Earlence Fernandes, and Franziska Roesner. 2019. Analysis of the susceptibility of smart home pro-
gramming interfaces to end user error. In Proceedings of the 2019 IEEE Security and Privacy Workshops (SPW’19). IEEE,
138-143.

Chris Paxton, Andrew Hundt, Felix Jonathan, Kelleher Guerin, and Gregory D. Hager. 2017. CoSTAR: Instructing
collaborative robots with behavior trees and vision. In Proceedings of the 2017 IEEE International Conference on Robotics
and Automation (ICRA’17). IEEE, 564-571.

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024.

https://doi.org/10.1109/IROS.2012.6385900
https://doi.org/10.1145/3290605.3300675
https://doi.org/10.1109/HRI.2019.8673191
https://doi.org/10.1109/HRI.2019.8673191
https://davidmathlogic.com/colorblind/
https://davidmathlogic.com/colorblind/
https://ifr.org/ifr-press-releases/news/robot-sales-rise-again

15:20 B. Ikeda and D. Szafir

[65]

[66]

(67]

(68]

[69]

[70]

(71]

[72]

(73]

(74]

[75]

[76]
(7]

(78]

(82]
(83]

(84]

(85]

Alex Peer, Peter Ullich, and Kevin Ponto. 2018. Vive tracking alignment and correction made easy. In Proceedings of
the 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR’18). 653—654. DOI : https://doi.org/10.1109/VR.

2018.8446435

Alexander Perzylo, Nikhil Somani, Stefan Profanter, Ingmar Kessler, Markus Rickert, and Alois Knoll. 2016. Intuitive

instruction of industrial robots: Semantic process descriptions for small lot production. In Proceedings of the 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’16). IEEE, 2293-2300.

Andrew Petersen, Michelle Craig, Jennifer Campbell, and Anya Tafliovich. 2016. Revisiting why students drop CS1.

In Proceedings of the 16th Koli Calling International Conference on Computing Education Research. 71-380.

Camilo Perez Quintero, Sarah Li, Matthew K. X. J. Pan, Wesley P. Chan, H. F. Machiel Van der Loos, and Elizabeth
Croft. 2018. Robot programming through augmented trajectories in augmented reality. In Proceedings of the 2018
IEEE/RS] International Conference on Intelligent Robots and Systems (IROS’18). IEEE, 1838-1844.

Amir Rahmati, Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. 2017. IFTTT vs. Zapier: A comparative study of
trigger-action programming frameworks. arXiv preprint arXiv:1709.02788 (2017).

Muhammet Ramoglu, Caglar Geng, and Kerem Rizvanoglu. 2017. Programming a robotic toy with a block coding
application: A usability study with non-programmer adults. In Proceedings of the International Conference of Design,

User Experience, and Usability. 652-666.

Harish Ravichandar, Athanasios S. Polydoros, Sonia Chernova, and Aude Billard. 2020. Recent advances in robot

learning from demonstration. Annual Review of Control, Robotics, and Autonomous Systems 3 (2020), 297-330.

Eric Rosen, David Whitney, Elizabeth Phillips, Gary Chien, James Tompkin, George Konidaris, and Stefanie Tellex.

2020. Communicating robot arm motion intent through mixed reality head-mounted displays. In Robotics Research.

Springer Proceedings in Advanced Robotics, Vol. 10. Springer, 301-316. DOI:https://doi.org/10.1007/978-3-030-

28619-4_26

Emmanuel Senft, Michael Hagenow, Robert Radwin, Michael Zinn, Michael Gleicher, and Bilge Mutlu. 2021. Situated

live programming for human-robot collaboration. In Proceedings of the 34th Annual ACM Symposium on User Interface
Software and Technology. 613-625.

Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, and Dieter Fox. 2021. Contact-GraspNet: Efficient 6-DoF

grasp generation in cluttered scenes. In Proceedings of the 2021 IEEE International Conference on Robotics and Automa-
tion (ICRA’21). IEEE, 13438-13444.

Ryo Suzuki, Adnan Karim, Tian Xia, Hooman Hedayati, and Nicolai Marquardt. 2022. Augmented reality and robotics:

A survey and taxonomy for AR-enhanced human-robot interaction and robotic interfaces. In Proceedings of the CHI
Conference on Human Factors in Computing Systems. 1-33.

Daniel Szafir. 2019. Mediating human-robot interactions with virtual, augmented, and mixed reality. In Proceedings
of the International Conference on Human-Computer Interaction. 124-149.

Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L. Littman. 2014. Practical trigger-action programming

in the smart home. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 803-812.

Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner, Jiyun Lee, Sarah Mennicken, Noah Picard, Diane Schulze, and
Michael L. Littman. 2016. Trigger-action programming in the wild: An analysis of 200,000 IFTTT recipes. In Proceed-
ings of the 2016 CHI Conference on Human Factors in Computing Systems. 3227-3231.

Ales Vysocky and Petr Novak. 2016. Human-robot collaboration in industry. MM Science Journal 9, 2 (2016), 903-906.

Michael Walker, Hooman Hedayati, Jennifer Lee, and Daniel Szafir. 2018. Communicating robot motion intent

with augmented reality. In Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction.

316-324.

Michael Walker, Thao Phung, Tathagata Chakraborti, Tom Williams, and Daniel Szafir. 2022. Virtual, augmented,

and mixed reality for human-robot interaction: A survey and virtual design element taxonomy. arXiv preprint
arXiv:2202.11249 (2022).

Melonee Wise, Michael Ferguson, Derek King, Eric Diehr, and David Dymesich. 2016. Fetch & Freight: Standard

platforms for service robot applications. In Proceedings of the Workshop on Autonomous Mobile Service Robots.

Hui Zhang and Michael J. Boyles. 2013. Visual exploration and analysis of human-robot interaction rules. In Proceed-

ings of SPIE: Visualization and Data Analysis 2013, Vol. 8654. SPIE, 154-167.

Lefan Zhang, Weijia He, Jesse Martinez, Noah Brackenbury, Shan Lu, and Blase Ur. 2019. AutoTap: Synthesizing

and repairing trigger-action programs using LTL properties. In Proceedings of the 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE’19). IEEE, 281-291.

Lefan Zhang, Weijia He, Olivia Morkved, Valerie Zhao, Michael L. Littman, Shan Lu, and Blase Ur. 2020. Trace2TAP:

Synthesizing trigger-action programs from traces of behavior. Proceedings of the ACM on Interactive, Mobile, Wearable

and Ubiquitous Technologies 4, 3 (2020), 1-26.

Received 14 February 2023; revised 2 November 2023; accepted 29 November 2023

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 15. Publication date: March 2024.

https://doi.org/10.1109/VR.2018.8446435
https://doi.org/10.1109/VR.2018.8446435
https://doi.org/10.1007/978-3-030-28619-4_26
https://doi.org/10.1007/978-3-030-28619-4_26

	1 INTRODUCTION
	2 RELATED WORK
	2.1 Robot Programming
	2.2 Trigger-Action Programming
	2.3 AR Robot Programming

	3 SYSTEM DESIGN
	3.1 AR Interface
	3.2 TAP Rules
	3.3 Rule Manager and Evaluator
	3.4 Motion Planner and Robot Simulation
	3.5 AR Apparatus and Tracking

	4 SYSTEM VALIDATION
	4.1 Environment
	4.2 Programming Tasks
	4.3 Participants and Procedure
	4.4 Analysis Method

	5 RESULTS
	5.1 User-Friendly Robot Programming
	5.2 Supporting Different Levels of Expression
	5.3 Supporting Users through In-Situ Contextualization

	6 DISCUSSION
	6.1 Limitations and Future Work

	7 CONCLUSION
	REFERENCESendgraf

