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The present study aims to investigate the palaeoenvironmental changes around Sattal Lake, Kumaun Lesser
Himalaya spanning the last 1670 years. Based on multi proxy analysis (i.e., grain size, mineral magnetism, clay
mineralogy, Total Organic Carbon (TOC) and carbon isotopes), supported by a robust radiocarbon chronology,
three major environmental phases were identified. Warm, wet phases occurred between 1,150-650 cal yr BP and
260 cal yr BP to the present. These phases coincide closely with the Medieval Climatic Anomaly (MCA) and
modern warming, respectively. These warm/wet events were due to elevated precipitation, resulting in high lake
levels and an expansion of the lake margin, which were marked by lower 5'C values, comparatively higher sand
concentration, TOC values and magnetic susceptibility (yif). The inference of a modern warm phase is supported
by high resolution instrumental data. The MCA, which is marked by elevated amounts of coarse grained (sand)
detrital material, is inferred to be an interval of strengthened of monsoonal intensity, which correlates with
available monsoon records from various continental paleoclimate archives. Following the MCA a cold and dry
phase was observed to occur between 610 and 260 cal yr BP, corresponding to the Little Ice Age (LIA). The LIA,
which was characterized by high silt and clay concentration, high §'3C, low TOC and reduced magnetic sus-
ceptibility (yif), is inferred to represent an interval of low lake levels, likely reflecting an episode of weakened
monsoonal intensity.

major component of the regional system, which in turn, is important for
the large population of South Asia and variability in the ISM’s intensity

1. Introduction

Palaeoclimate research plays a major role for better understanding of
past climatic variability on longer time spans. The Indian subcontinent is
one of the largest monsoon dominated regions on Earth. The climate of
Indian Himalayan region, particularly in the Kumaun Lesser Himalaya,
is mainly controlled by the Indian Summer Monsoon (ISM)/SW
monsoon, Western Disturbances and the NE monsoon (Kotlia et al.,
2012; Joshi et al., 2017; Venkateshwarlu et al., 2023). The ISM is a
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has had a profound impact on the socioeconomic condition of this region
through time (Mishra et al., 2013). It is one of the major sources of fresh
water for the peoples of Indian subcontinent (Reddy and Gandhi, 2022).
In addition, the rise and demise of civilizations, migration of peoples,
beginning of agriculture and development of urban settlements have all
been directly or indirectly related to fluctuations in the ISM and asso-
ciated climate conditions (Kathayat et al., 2017). It is therefore
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important to use palaeoclimatic data to investigate the variability of the
monsoon system over longer time scales such as the Quaternary
(Thompson et al., 1997; Fleitmann et al., 2003).

Paleoclimate records developed in India, including lacustrine (Kotlia
et al., 2010; Veena et al., 2014; Phartiyal et al., 2020; Niederman et al.
2021), loess (Dar et al., 2015; Lone et al., 2022), peat bogs (Phadtare,
2000; Riihland et al., 2006; Bhattacharya et al., 2021), speleothems
(Sinha et al., 2011; Kotlia et al., 2015), tree rings (Yadav et al., 2014;
Shah et al., 2018),glacier (Benn and Owen, 1998; Kumar et al. 2008;
Bolch et al., 2012; Bisht et al., 2020) and marine archives (Gupta et al.,
2003; Balaji, 2022) have been used to document climatic variability
during late Holocene in different parts of the Indian subcontinent. These
palaeoclimate records are important for refining global and regional
climate models which are being used to help anticipate the future
climate conditions. Geochemical traces preserved in sediment records
can be used to decipher palaeoenvironmental and palaeoecological
histories (Meyers and Teranes, 2001). The chemical and physical char-
acteristics of lake sediment, loess, peat bogs, speleothems and ocean
sediments can serve as potential proxies providing crucial information
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on climatic fluctuations during the late Quaternary.

Lake sediment deposits are one of the major continental archives
used to study past climatic fluctuations as variations in palaeohydrology
are reflected in the geochemical, physical and biological properties
preserved within these lacustrine sediment records (Mishra, 2014).
Extant lakes are ideal for studying the traces of monsoonal fluctuation
and climate change in the past.Freshwater lakes in the Himalayan region
are structurally controlled closed basins that serve as major sinks for
sediment deposition, carbon sequestration, as well as record signatures
of past climatic conditions (Mishra, 2014). The lakes present in this
region are subject to internal and external pressures, such as tectonic,
climatic and geomorphic activity and strongly influenced by both nat-
ural and anthropogenic forces (Kotlia and Joshi, 2013). Multi-proxy
analysis of lake sediments is helpful for reconstructing palae-
oenvironmental and palaeomonsoonal changes by providing climatic
records spanning the late Holocene at a decadal-to-centennial-scale
resolution.

Here, we reconstruct late Holocene palaeoenvironmentaland palae-
ohydrological changes in Kumaun Lesser Himalaya using multi-proxy
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Fig. 1. Location map of the study area with coring site in SattalLake, Uttarakhand,

this figure legend, the reader is referred to the Web version of this article.)

India.(noted in red in inset map). (For interpretation of the references to colour in



P. Chand et al.

analysis of carbon isotopes (3'3C), grain size, mineral magnetism, total
organic carbon (TOC) and clay mineralogy from a lake core retrieved
from the Sattal Lake, Uttarakhand. We also compare our reconstructed
palaeoclimatic record with the other local and regional paleoclimate
records to develop a better understanding of the palaeoclimate condi-
tions that characterized this region during the last two millennia.

2. Study area

Sattal Lake (29° 20’ 54.51°N, 79° 31’ 54.77>" E; 1300 m asl) is an
interconnected group of seven fresh water bodies situated in the Nainital
district of Uttarakhand, India (Fig. 1). It is a relatively large lake,
covering an area of 0.19 km? with a maximum width of 0.27 km and
length of 0.74 km, with a depth that varies from 1.00 m to 14.38 m.
Geologically the area is comprised of mainly the Nagthat, Blaini, Siwalik
and Ramgarh formations with Sattal Lake situated in Nagthat Formation
(Valdiya, 1980). The Main Boundary Thrust (MBT) and Ramgarh Thrust
(RT) are observed in the study region (Fig. 2).The lake is structurally
controlled and the catchment comprised chiefly of slate, quartzite, schist
and sandstone associated with the above mentioned formations (Val-
diya, 1980).This lake is a suitable site for preserving past climate records
because it is a closed basin surrounded by dense forest with no outlet,
thus, leading to the lake being the main sediment depocenter. Presently,
the lake has no active inlet or river channel. The lake is mainly fed by the
surface runoff during monsoon season with lesser amounts of freshwater
contributed by groundwater. The undisturbed nature of sediment
accumulation supports using temporal changes in different proxies (i.e.
sediment texture, mineral magnetism, stable isotopes and sediment
geochemistry) as a direct measure of the variability in the intensity of
the ISM. Similar to other places in the Himalayan region, Sattal expe-
riences a mild climate throughout the year (Harris et al. 2020). The
instrumental data for last 120 years are shown in Fig. 3 (see Harris et al.,
2020).

In general, the Indian summer monsoon contributes~85% of total
average annual precipitation with the remainder of precipitation asso-
ciated with western Disturbances (Bustamante et al., 2016). The rainfall
data indicate that average annual precipitation between 1901 and 2020
CE varied between 70.50 and 185.11 mm/yr (Fig. 3a). The temperature
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Fig. 3. A graph showing fluctuating trend of the meteorological parameters (a)
average annual rainfall, (b) average annual temperature, during last 120 years
from 1901 to 2020 (data downloaded from CRUTS 4.7).
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data for this same interval indicate that mean annual temperature varies
between 2 °C and 27 °C (Fig. 3b).

3. Materials and methods
3.1. Sample collection and preparation

During the fieldwork in June 2018, a 42 cm sediment core was
retrieved from the deepest part (29 ° 21’ 02.8’* N:79 ° 32’ 02.7"’ E; water
depth 14.38 m) of Sattal lake by using a gravity piston corer with 7.62
cm diameter. The core was lithologically described using sediment
texture/structure and Munsellcolour and with light and dark colored
minerals and organic rich layers noted. The core was sub-sampled at 0.5
cm resolution; however, the volume of sediment available at this reso-
lution was not sufficient to analyze the full suite of proxies. Merged
samples were analyzed at 1 cm intervals for mineral magnetism, 2 cm
intervals for carbon isotopes and TOC and 3 cm intervals for grain size
and X-ray diffraction analysis. The sub-samples were air dried and
packed in a zip lock plastic bags and stored for further analytical pro-
cesses. Three organically rich bulk sediment samples were selected for
AMS 4C dating. A total of 21samples were analyzed for isotopic analysis
and the same samples were also used for the analysis of Total Organic
Carbon (TOC) by using an Isotopic Ratio Mass Spectrometer (IRMS). A
total of 36 samples were selected for environmental magnetic analysis.
Fifteen samples were used for grain size analysis using a particle size
analyzer and the same samples were also used for clay mineralogy using
X-ray diffraction.

3.2. AMS C dating

Three bulk sediment samples were analyzed for 14C at the Inter
University Accelerator Center (IUAC), New Delhi. Several plant roots
and other organic material such as woods, leaves, etc. were present at
the top of the core. Therefore, the sediment samples were assessed
visually by using a microscope and potentially problematic organic
materials were removed. Approximately 5-10 g of bulk sediment was
transferred into a 50 ml centrifuge tube, followed by an Acid-Base-Acid
(ABA) treatment usingl M HCI and 0.1 N NaOH solutions. Further, the
samples were centrifuged several times and rinsed, cleaned and
neutralized with Milli-Q water. Following neutralizing, the samples
were dried and a known amount of was placed in tin capsules and
combusted at 950 °C in an element analyzer. The graphitization of the
samples was done at 550 °C by graphitizing reaction using Fe as a
catalyst and intake of He. The'#C measurements of graphitized samples
were carried out using AMS based on a 500kVPelletron accelerator. The
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Fig. 4. Age depth model illustrate '*CAMS dates for the Sattal Lake sediment
core with the rate of sedimentation estimated for specific intervals.
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generated ages were calibrated using IntCal 20 in OxCal ver. 4.4. Finally,
an age-depth model was prepared by using linear interpolation method
(Fig. 4).

3.3. Environmental magnetism

Variations in environmental magnetism are used for inferring
palaeoclimate changes (Maher et al., 1994). Thirty-six samples were
analyzed following standard procedures (King and Channell, 1991) at
the Paleomagnetic Laboratory of Research School of Earth Sciences,
Australian National University (ANU), Canberra. The samples were air
dried and tightly packed in a 2 cm® nonmagnetic plastic containers for
magnetic analysis. The magnetic susceptibility (y1r) was analyzed using
AGICO MFK-1 Kappa Bridge with low frequency (0.46 kHz), which
shows the concentration of magnetic minerals in the sample.

3.4. Stable carbon isotopes and TOC

A total of 21 samples were analyzed for stable carbon isotopes (5'3C)
and TOC, following standard procedures (Agrawal et al., 2015),at the
geochemical laboratory of the Birbal Sahni Institute of Palaeosciences,
Lucknow. For 8'3C analysis, 1g of bulk sediment sample was transferred
into a centrifuge tube and treated with 5% HCI in a hot water bath at
50 °C for 1 h to remove carbonate, and this process was repeated thrice
for each sample. Further, the samples were centrifuged with Milli-Q
water by using a centrifuge machine at 3000 rpm to remove soluble
salts and acids and dried in an oven at 45 °C. The dried samples were
pulverized in an agate mortar and filled into the tin capsules for further
analysis. An auto sampler was used to feed the tin capsules into the
Elemental Analyzer (Flash EA, 2000 HT). During combustion of the
samples, CO5 gas was injected into the Continuous Flow Isotope Ratio
Mass Spectrometer (CRIRMS, MAT 253) connected with a Con-Flow IV
interface for isotopic analysis. The TOC was determined by the peak area
generated through addition of the integrated m/z 44, 45 and 46 signals
noticed in the CF-IRMS.

3.5. Sediment texture and XRD analysis

A total of 15 samples were analyzed for sediment texture and using
XRD at geochemical laboratory of Birbal Sahni Institute of Paleo-
sciences, Lucknow by using laser particle size analyzer and X-Ray
diffractometer, respectively. To prepare samples for granulometric
analysis, visible plant material was removed, and to remove carbonate,
organic carbon and other contamination, the samples were treated with
several chemicals including 136 g of sodium acetate, 88 g of sodium
citrate, and 84 g of sodium bicarbonate solution/liter. After each
chemical treatment, the samples were rinsed with Milli-Q water,
centrifuged and then decanted three times (Knuze, 1965). A Malvern
Mastersizer2000 was used to analyze the sand, silt and clay fractions.
Further, the output data was processed by Gradistat software (Blott and
Pye, 2001) to obtain different sediment parameters.

For separation of clay, 45 ml of Milli-Q water was added and well
mixed with the initially processed samples and kept in a centrifuge tube
on a stable base for about 7 hr. The uppermost 15 ml of water was
decanted into a centrifuge tube and centrifuged for 10 min at 3000 rpm.
The clays, thus separated, were mounted on a glass slide as oriented
aggregates for preparing clay slides, which was further used for miner-
alogical study by X-ray diffractometer with PANalytical Pro and Cu-Ka
radiation on the 2rm fraction (Liu et al., 2004).

4. Results and discussion
4.1. Chronology

The chronology of the Sattal Lake sediment core is based on three
AMS '4C dates obtained on bulk sediment samples at depths of 41 cm,
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Table 1
The'*C AMS dates obtained for the Sattal Lake sediment core.
Sample  IUACLabID  Depth ¢ Calibrated Weighted
No. (cm) age (yr age 2-c (cal. mean of
BP) yr BP) calibrated age
(yr BP)
STL-13 IUACD#5119 13 503 + 551-505 529
23
STL-16 TUACD#5120 16 808 + 732-676 700
23
STL-41 IUACD#5117 41 1735 1706-1550 1644
+ 25

16 cm and 13 cm (Table 1). An age-depth model developed using these
radiocarbon dates was used to establish a chronology for the entire core
(Fig. 4).The age -depth model indicates limited change in the sedimen-
tation rate from the base of the core at ~1,670 cal yr BP to the Present.
The highest rate of sedimentation, which is0.026 cm/yr, occurred be-
tween 1640 and 700 cal yr BP (41-16 cm). The lowest rate of sediment,
which was 0.018 cm/yr occurred between 700 and 530 cal yr BP (16-13
cm).Overall, the sedimentation rate in Sattal Lake varied from 0.018
cm/yr to 0.026 cm/yr with an average rate of about 0.022 cm/yr. A
similar rate of sedimentation characterizes various lakes in India, e.g.
0.055 and 0.077 cm/yr in Kumaun Himalaya (Kusumgar et al., 1989),
0.047 cm/yr in Higher Central Himalaya (Bhushan et al., 2017), 0.019
cm/yr in Karnataka (Sandeep et al., 2017), 0.031 cm/yr in Kerala
(Veena et al., 2014),0.029 cm/yrin Kashmir(Babeesh et al., 2019),
0.039 cm/yr in Rajasthan and 0.029 cm/yr in Tamil Nadu (Sekar et al.,
2005).

4.2. Palaeoenvironmental proxies

Considering the age-depth model and successive changes in multi
proxy parameters, such as 613C, TOC, yif, sediment texture and clay
mineralogy, the complete profile of the sediment core has been divided
into four different climatic zones and is discussed as below.

4.2.1. Sediment texture

Grain size distribution in lake sediment serves as a crucial proxy to
comprehend the transport energy, lake level fluctuation and provenance
(Conroy et al.,, 2008; Gyantha et al., 2017). Precipitation plays an
important role in erosion, transportation and deposition of sediments
from the catchment into the lake (Conroy et al., 2008). During high level
of precipitation, increased velocity of the transporting medium enhances
the influx of coarse sediment into the lake basin. During intervals of
lowered precipitation, a greater proportion of fine sediments are carried
to the center of the lake due to the decreased velocity and discharge of
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streams draining the catchment (Conroy et al., 2008). Hence, we
interpret sediment containing a higher proportion of coarse particles to
reflect high rainfall; whereas, a larger proportion of fine particles re-
flects reduced precipitation. The textural analysis demonstrates that the
silt, clay and sand size particles are distributed throughout the entire
profile of the sediment core. Overall, the concentration of silt is highest,
followed by clay and sand (Fig. 5). In Zone STL-I (42-28 cm; 1,670-1,
150 cal yr BP), the concentration of silt varies from 75.2 to 77.1%, and
clay and sand concentrations vary from 13.8 to 15.2% and 8.8-10.2%,
respectively. In Zone STL-II (28-14 c¢cm; 1,150-610 cal yr BP), the frac-
tion of silt varies between 70.1 and 73.4%, and sand and clay fractions
vary from 11.8 to 16.6% and 13.3-15.5%, respectively. Zone STL-II is
characterized by the highest concentration of sand, while the silt con-
centration is lowest. In Zone STL-III (14-6 cm; 610-260 cal yr BP) sand
concentration (8.9-12.1%) decreases, while the silt fraction
(74.4-76.3%) increases relative to the previous zone with the fraction of
clay varying between 13.5 and 14.8%. In Zone STL-IV (6-0 cm; 260-10
cal yr BP), the silt fraction varies between 73.4 and 74.6% and clay
fraction from 11.1 to 12.8%, while the sand fraction increases to
12.6-15.5%.

4.2.2. Magnetic susceptibility (yi)

Magnetic minerals are found everywhere and their presence in soil
and sediment samples provides a sensitive substrate for recording
changes in the environmental condition (Maher et al., 1994). Based on
origin, the magnetic minerals derived from catchment areas can be
primary or secondary. Primary magnetic minerals are passed down from
the original rocks, while secondary magnetic minerals are created dur-
ing the process of soil formation or pedogenesis. As a result of chemical
weathering, the iron present in ferromagnesian minerals is leached out.
Under appropriate Eh-pH conditions, the ferrous ions undergo oxidation
to produce magnetite (Maher and Thompson, 1995). Magnetite is
considered a secondary magnetic mineral and can be considered pedo-
genic. Rates of pedogenesis are positively correlated with precipitation.
Thus, low (high) rainfall would produce low (high) amounts of pedo-
genic magnetite, which delivered to the lake through erosion and
transportation, would result in low (high) magnetic susceptibility (Bal-
sam et al., 2011). Hence, intervals characterized by high magnetic sus-
ceptibility () values are inferred to reflect phases of elevated erosion
and detrital flux driven by high rainfall. The mechanism of sediment
transport, deposition, and/or diagenetic responses can all be affected by
environmental changes occurring over a variable time intervals (Ver-
osub and Roberts, 1995). Magnetic susceptibility (yf) shows the overall
concentration of magnetic materials contained in a natural sample
(Walden et al., 1999). In the sediment core, the yj¢ values ranges from
2.26 to 5.58 x 1077 m3/kg (Fig. 5). The highest (5.58 x 1077 m3/kg)

55 6 65 7 7.5  8-29.0 -30.0 -31.0 -32.0 -33.0 2.00

4.00 6.00 5.0 80 11.0 140 _17.0 680 71.0 74.0 77.0 80.0 10.0 120 14.0 16.0

v 1] ~TOC (%)

Age (Cal. yr BP)

Lake core

- — - - L
Zone STLIV 0 C0%) ~LiS©10'm’kg)  —+-%SAND ~+%SILT % CLAY
Zone STLIII
Zone STL1I
Zone STL I

Fig. 5. A multi-proxy record of inferred climatic changes in Sattal Lake, Kumaun Lesser Himalaya based on fluctuations of stable carbon isotopes (§*3C), TOC (%),
magnetic susceptibility (y)and sediment texture. These data are holistically used to divide the record into four zones (STL-I to STL-IV).
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and lowest (2.26 x 1077 mg/kg) values are observed at a depth of 16 cm
and 7 cm, respectively. In Zone STL-I, the yjs values range from 2.98 to
3.54 x 10~ m3/kg. In Zone STL-II, the yj¢ values are increased and range
from 3.78 to 5.58 x 1077 m®/kg. Zone STL-III is characterized by an
abrupt decrease in yj¢ values (2.26-4.46 x 1077 m3/kg) with the lowest
values occurring at 7 cm. In Zone STL-IV, the yjr values increase with
some notable episodes characterized by low yjs values (2.63 x 1077
ms/kg).

4.2.3. Stable carbon isotopes ICRl®)

Stable isotopic studies of lake sediment can provide great insight into
lake response to hydroclimate fluctuations (Hammarlund and Buchardt,
1996).The 8'3C values mainly reflect the organic matter accumulated in
the sediment which was carried out into the lake from the catchment
(Hillaire et al., 1989; Meyers, 2003). Less negative or richer 513C values
suggest a large proportion of C4 plants with lower precipitation, whereas
more negative 5'3C values indicate a high proportion of C3 plants with
high precipitation (Sandeep et al., 2017). Hence, the variability of §'°C
value in the lake sediments is inferred to reflect changes in the vegeta-
tion cover in the catchment. The 8'3C values of the lake sediment in
entire profile ranges from —32.4%o to —29.1%o (Fig. 5). The highest
value (—29.1%o) and lowest value (—32.4%o) recorded at a depth of 30
cm and 20 cm, respectively. In Zone STL-I, the values range from
—29.1%0 to —29.8%0. In Zone STL-II, an abrupt decrease in the 5'3C
values occurs with the lowest value of —32.4%.. In Zone STL-III, a
gradual increase in the 8'3C value occurs, with values ranging from
—29.3%o to —31.8%o. In Zone STL-IV, the §'3C values are characterized
by an overall decreasing trend, ranging from —30.6%o to —32.1%o.

4.2.4. Total organic carbon (TOC)

The TOC value of the lake sediment reflects the productivity within
the lake and organic input from the surrounding catchment area (Wang
et al., 2001; Meyers, 2003). TOC is used as palaeoenvironmental proxy
and is mainly influenced by the variables like precipitation, temperature
and other lake conditions (Ji et al., 2005; Xu et al., 2006). During hot
and humid conditions aquatic and terrestrial plants produce more
biomass; whereas, during cold and dry conditions plant growth is
reduced due to decreased photosynthesis, resulting in lower primary
productivity. Therefore, a higher value of TOC in the lake sediment is
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inferred to reflect warm and wet conditions and lower TOC values are
inferred to reflect cold, dry conditions (Talbot and Livingstone, 1989).
The TOC content of the entire profile varies from 6% to 7.7% (Fig. 5). In
Zone STL-I, TOC ranges from 6% to 6.4% with limited variation. In Zone
STL-II, TOC gradually increases reaching a peak of 7.7% at 20 cm. Zone
STL-III is characterized by an, overall decreasing trend with little fluc-
tuation and values varying from 6.4 to 6.8%. Zone STL-1V, is charac-
terized by an overall increasing trend (6.4-7.6%) towards the top of the
profile.

4.2.5. Clay mineralogy

Illite is thought to result from the physical weathering of rocks in the
dry and cold conditions (Liu et al., 2004). Kaolinite is a secondary
mineral derived through the chemical weathering of mica, feldspar,
amphibole or pyroxene under warm and humid conditions (Fagel et al.,
2003). Chlorite is an alteration product of mafic mineral such as
amphibole, pyroxene and biotite, and it is also derived from the
weathering and erosion of sedimentary rock under mild conditions
(Chamley, 1989). The clay minerals present in Sattal Lake are mainly the
product of the physical and chemical weathering of the rocks of different
formation (Fig. 2), consisting of sedimentary and metamorphic rocks,
that surrounds the lake. The Sattal core is characterized by notable
amounts of chlorite, illite and kaolinite. In addition to clay minerals,
quartz is also present in the traces associated with illite. A fluctuating
trend isobserved in the abundance of clay minerals throughout the Sattal
profile. Chlorite is the dominant clay mineral, ranging from 40.28 to
43.76% with an average value of 42.18%. Illite and kaolinite range from
27.13 to 34.38% and 10.25-20.28%, respectively (Fig. 6). Quartz + illite
vary from 9.39 to 13.65% with an average value of 11.87%. In Zone
STL-I, chlorite, illite, kaolinite and illite + quartz range from 41.74 to
42.73%, 30.29-34.38%, 10.25-15.58% and 10.68-13.34%, respec-
tively. In Zone STL-II, an increasing trend is observed in kaolinite, which
ranges from 13.28 to 17.8%, and decreasing trend is observed in illite,
with its lowest value (27.13%) occurring at 15 cm. Chlorite and quartz
+ illite show limited variation in this zone. Zone STL-III is characterized
by an abrupt decrease in kaolinite with its lowest value (15.14%)
occurring at 9 cm. A gradual increase in illite and chlorite
(27.13-30.95% and 41.38-43.76%, respectively) occurs in this zone. In
Zone STL-1V, a gradual decrease in illite and chlorite (from 29.71 to
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28.48%and 43.76 to 40.28%, respectively), occurs together with an
increase in kaolinite.

5. Palaeoenvironmental reconstruction during the late holocene

The results and inferences derived from the various climatic proxies
are used to develop a zonal-based paleoenvironmental reconstruction
for the interval captured by the Sattal sediment record.

5.1. Zone STL-I (42-28 cm; 1,670-1,150 cal yr BP)

The sediment texture shows fluctuation in climatic conditions and is
characterized by stable magnetic susceptibility (yi). A slight decrease in
the sand fraction indicates relatively less erosion under dry environ-
ment. A decreasing trend of illite supports less weathering under cold
and dry climatic conditions while the fluctuating trend of kaolinite in-
dicates a variable climate. The fluctuating concentration of chlorite also
supports fluctuating climatic conditions during this interval. The limited
variation in TOC and 8'3C values suggests muted variations in climatic
conditions. Based on the multi-proxy analysis, we interpret that this
region experienced relatively stable climate conditions between
1,670-1,150 cal yr BP.

5.2. Zone STL-III (28-14 cm; 1,150-610 cal yr BP)

Overall the increase in TOC suggests high productivity within the
lake and catchment under warm and wet conditions. The relative
decrease in the §!°C values also indicates warm and wet conditions
during this interval. The gradual increase of sand and overall decrease in
silt and clay fractions indicates higher erosion in the catchment mainly
due to high rainfall under humid or wet conditions. Such conditions also
result in an increase lake volume and lake level due to relatively high
rainfall. The elevated average sedimentation rate for this interval (0.026
cm/yr) supports the inference of increased productivity, likely driven by
high rainfall as and increased warm condition. The overall increasing
trend of yjr suggests a relatively high detrital influx into the lake from the
catchment due to high rainfall under warm and humid conditions. The
yif values also indicate a close relationship between erosional process
and detrital input into the lake basin. Increased kaolinite and decreased
illite indicate higher rate of weathering and also suggest a warm/humid
climate. Overall, all these inferences, drawn from the different proxy
data, point toward the warm and moist conditions and increased
monsoon intensity during this time period, which corresponds to the
MCA.

5.3. Zone STL-III (14-6 cm; 610- 260 cal yr BP)

A gradual decrease in sand concentration indicates less erosion in the
catchment due to reduced rainfall, inferred to reflect less humid con-
ditions. Decreasing trend of sand concentration also suggests low lake
level. The rising trend of silt and clay fractions indicates low influx from
the catchment area, suggesting a low energy depositional environment
under dry conditions. A relatively low sedimentation rate (0.023 cm/yr)
compared to the Zone STL-II also supports the inference that this zone is
characterized by reduced rainfall and dry conditions. The relative in-
crease of 5'3C suggests the onset of cold and dry conditions with
decreasing TOC also supporting this inference. The decrease in TOC
driven by reduced autochthonous productivity, is likely a result of
moisture limitation of primary productivity. Relative lower values of yi¢
further support less detrital input into the lake from the catchment. The
increasing trend of illite and decreasing trend of kaolinite indicate
reduced rates of weathering and further suggest this interval was char-
acterized by relatively cold and dry conditions. Overall, the multi-proxy
analysis suggests that this part of the profile is characterized by cold and
dry climatic condition from 610 to 260 cal yr BP which corresponds to
the LIA.
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5.4. Zone STL-IV (6-0 cm; 260-10 cal yr BP)

Elevated sand concentration indicates this interval was characterized
by a high energy depositional environment. The increased sand content
also indicates enhanced erosion and higher detrital influx into the lake
due to higher precipitation. Hence, the relatively wet climatic conditions
and high lake level can be inferred to have existed post-LIA. This zone is
characterized by increased TOC and yj¢ that indicate a period of higher
productivity and intensification of the hydrologic cycle suggesting
higher rainfall under warm and humid conditions. The reduced §'3C
values suggest a relatively high proportion of C3 plants and high
contribution of organic matter into the lake from the catchment due to
high rainfall under warm/humid condition. The gradual increase of
kaolinite and the decrease in illite as well as chlorite further support the
inference of elevated weathering. Overall, the multi-proxy analysis
points towards the warm and humid conditions during this period,
coinciding with the instrumental data as well, which depicts the trend of
rising regional temperature since 1900 AD to present (Fig. 3b).

6. Comparison and correlation with the other palaeoclimatic
studies

To better understand monsoon variability during the MCA, LIA and
modern warm period in the Kumaun Lesser Himalaya, we have sum-
marized and compared our findings from Sattal Lake with other high
resolution palaeoclimatic records from the Indian Himalayan region.
The present study shows a strong monsoonal activity and warm and wet
conditions in the Kumaun Lesser Himalaya between 1,150-610 cal yr
BP. The timing of this warm, wet phase during the late Holocene cor-
relates with regional evidence of the MCA. A warm and wet episode
correlative with the timing of the MCA is evidenced in records devel-
oped from palaeolakes, modern lakes and cave deposits in the Himala-
yan region. Kusumgar et al. (1995) reconstructed palaeoclimate using
multi-proxy analysis of a lake sediment core recovered from Manasar
Lake, Jammu and Kashmir and found that medieval warming started at
~ 900 cal yr BP. On the basis of pollen analysis from Dewar Lake
(Garhwal Himalaya), Chauhan and Sharma (2000) documented the
existence of a warm, wet phase from 1500 to 900 cal yr BP. A peat
bog-based climate reconstruction from Naychhudwari Bog (Himachal
Pradesh) also suggests that the MCA interval was characterized by warm
and wet conditions (Chauhan, 2006). Riihland et al. (2006) also re-
ported warm and wet conditions in the central Himalaya from 780 cal yr
BP onwards. A paleoclimate record, developed based on a sediment core
recovered from Demagiri Lake (Mizoram), suggest that the interval be-
tween 850 and 400 cal yr BP was characterized by humid conditions
(Mandaokar et al., 2008). A reconstruction of climate variability and
palaeovegetation change for LoktakLake, NE Himalaya revealed warm
and humid conditions from 1650 to 600 cal yr BP (Nautiyal and Chau-
han, 2009). Based on the geochemical analysis of Badanital Lake sedi-
ments, Kotlia and Joshi (2013) documented that warm and wet
conditions, resulting from enhanced monsoon precipitation, occurred
between 920 and 440 cal yr BP. Warm and humid conditions were re-
ported from 740 to 590 cal yr BP from Triloknath Glacier, Lahaul
Himalaya (Bali et al., 2017).A warm and wet phase during 1120-760 cal
yr BP was reported from a periglacial lake in the Garhwal Himalaya
(Shukla et al., 2020). Multi-proxy analysis of sediment recovered from a
proglacial lake in Ladakh, Phartiyal et al. (2020) observed warm con-
ditions from 1270 to 960 cal yr BP. Lastly, Rawat et al. (2021) reported
similar findings from Badnikund Lake in Garhwal Himalaya, suggesting
a strengthened monsoon and warm conditions existed from 1000 to 700
cal yr BP.

In the Sattal area, cold and dry climatic conditions existed from 610
to 260 cal yr BP, which broadly corresponds to the timing of the LIA.
Previous work has identified that this interval was characterized an
overall weakening of the monsoon and dry and less humid conditions
(Shukla et al., 2020; Rawat et al., 2021). The cold and dry conditions
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between 600 and 500 cal yr BP were reported by Shah et al. (2020)
based on a record developed from WularLake, Kashmir. Shukla et al.
(2020) studied an exposed section of periglacial lake in the Garhwal
Himalaya by using multi-proxy analysis and inferred regional glaciers
gained volume and extremely cold conditions existed between ~ 650
and 300 cal yr BP during the LIA when. Rawat et al. (2021) reported
similar findings from Badnikund Lake in Garhwal Himalaya, indicating
weakening of monsoon and cold climatic condition during the LIA
(500-320 cal yr BP). Geochemical proxies from Badanital Lake provide
evidence for the expression of the LIA between 440 and 160 cal yr BP in
the Garhwal Himalaya. A wet phase between ~430 and 170 cal yr BP in
the Kumaun Lesser Himalaya, is evidenced in a stalagmite from Chu-
lerasim Cave (Kotlia et al., 2012). Additional speleothem studies from
the region document the existence of cool, wet conditions during the LIA
(Liang et al. 2015; Kotlia et al. 2015). Lastly, Yadav and Singh (2002)
reported cool and dry episodes in this region between ~ 420 and 70 cal
yr BP. The comparative analysis between the Sattal Lake record and
previous studies suggest that resolving the nature of hydroclimate
variability in the northern Indian Himalaya remains an outstanding
opportunity, requiring additional research.

The uppermost part of the lake core (6-0 cm; 260-10 cal yr BP) is
characterized by warm and humid conditions, corresponding to the
modern warm period. Shah et al. (2020) documented the existence of
warm, humid conditions in Kashmir Himalaya from the 19th to early
20th century. Consistent with the Sattal Lake record, Kotlia and Joshi
(2013) reported modern warming trend from 1840 AD onwards in the
Garhwal Himalaya. Lastly, Mann et al. (2009) also reported that the
monsoon began to intensify at the beginning of 19th century, coinciding
with rising atmospheric temperatures.

7. Conclusion

Based on the multi proxy analysis (i.e. sediment texture, magnetic
susceptibility (yi), clay mineralogy, carbon isotope (5!°C) and TOC)
supported by a robust radiocarbon chronology, our study captures late
Holocene climate and environmental change for Kumaun, Lesser
Himalaya. The42 cm long lake sediment core documents climate and
depositional history extending from 1670 cal yr BP to the present. The
limited variation in the 8'3C, clay mineralogy, TOC, magnetic suscep-
tibility and sediment texture in the lower part of the profile suggest that
relatively stable climate conditions prevailed regionally from 1670 to
1150 cal yr BP. The Sattal Lake record also suggest that the warm and
wet phases with varying magnitude prevailed in this region between
1150 and 610 cal yr BP and from 260 cal yr BP to the present, coinciding
with the Medieval Climate Anomaly (MCA) and modern warming,
respectively. During these warm phases, an increase in lake level,
marked by the relative high sand fraction, higher magnetic suscepti-
bility, high TOC and decreasing 8'3C value, is suggestive of humid
conditions and of increased monsoon intensity. An increase in the
strength of the ISM likely led to the observed increase in chemical
weathering and erosion in the catchment area. Furthermore, the cold
and less humid phase that existed between 610 and 260 cal yr BP cor-
responds to the LIA. Lowered lake levels observed during this interval,
suggestive of cold and less humid conditions, likely reflect a weakening
the ISM. Relatively cool, less humid conditions are evidenced by low
magnetic susceptibility, high 5'>C values, low TOC, high clay and silt
fractions and high amounts of illite. The results from Sattal Lake are
consistent with existing studies in Indian Himalayan region.
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