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In the inancial sphere, there is a wealth of accumulated unstructured inancial data, such as the textual disclosure documents
that companies submit on a regular basis to regulatory agencies, such as the Securities and Exchange Commission (SEC).
These documents are typically very long and tend to contain valuable soft information about a company’s performance that
is not present in quantitative predictors. It is therefore of great interest to learn predictive models from these long textual
documents, especially for forecasting numerical key performance indicators (KPIs). In recent years, there has been a great
progress in natural language processing via pre-trained language models (LMs) learned from large corpora of textual data.
This prompts the important question of whether they can be used efectively to produce representations for long documents,
as well as how we can evaluate the efectiveness of representations produced by various LMs. Our work focuses on answering
this critical question, namely the evaluation of the eicacy of various LMs in extracting useful soft information from long
textual documents for prediction tasks. In this paper, we propose and implement a deep learning evaluation framework that
utilizes a sequential chunking approach combined with an attention mechanism. We perform an extensive set of experiments
on a collection of 10-K reports submitted annually by US banks, and another dataset of reports submitted by US companies, in
order to investigate thoroughly the performance of diferent types of language models. Overall, our framework using LMs
outperforms strong baseline methods for textual modeling as well as for numerical regression. Our work provides better
insights into how utilizing pre-trained domain-speciic and ine-tuned long-input LMs for representing long documents can
improve the quality of representation of textual data, and therefore, help in improving predictive analyses.

CCS Concepts: · Computing methodologies →Machine learning; Information extraction; Natural language pro-
cessing.

Additional Key Words and Phrases: text regression, language models, long text documents, inancial documents, 10-K reports

1 INTRODUCTION

Unstructured data such as text is growing very fast in diferent domains. Especially, textual data from inancial
documents has been found to be beneicial in making predictions [8]. Utilizing such large volumes of textual data
requires natural language processing (NLP) and machine learning (ML) techniques. These techniques summarize
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the text as (a set of) numeric feature vectors, which are called representations or embeddings, and which can in
turn serve as inputs to machine learning models to predict some target variables.
The traditional approach for text-based learning is via the Term Frequency - Inverse Document Frequency

(TF-IDF) method [17], which can represent the document as a long numeric vector of TF-IDF scores for each
word. However, TF-IDF does not attempt to directly extract the latent semantic information within the text. The
current progress in text representations was initiated by word embedding methods, such as word2vec [25] and
GloVe [28], which capture both the lexical and semantic information of a document to some extent. The main
idea is to learn word representations based on the context of each word. However, these methods learn only a
single, static representation for each word, and do not take into consideration the phenomenon of polysemy,
where a word can change its meaning depending on the context (for example, the the word ‘bank’ in the inancial
context has a very diferent meaning compared to the ‘bank’ of a river). The state-of-the-art (SOTA) pre-trained
language models, such as GPT [29] and BERT [10] are built on top of the very efective Transformer-based
attention model [41], which can learn contextual word embeddings. These embeddings are dynamic in terms of
the surrounding block or context of the word, so that the same word can get diferent representations that are
most efective in capturing the lexical and semantic information. These models have shown SOTA performance on
a variety of downstream tasks such as question answering, text classiication, and regression. However, extracting
łgoodž representations for such long documents remains a challenging task: the length of the 10-K documents
poses both a methodological and ontological burden. Methodologically, inancial reports are signiicantly longer,
compared to the maximum length of a textual sequence that BERT [10]-based models can handle. For instance,
the Management Discussion and Analysis (MD&A) section of the 10-K reports that companies publish annually
is usually around 12,000 word-tokens. BERT-based models have a restriction on the maximum number of tokens,
around 512, with some newer models, such as Longformer [4] and BigBird [48], reaching up to 4,096 tokens.
Hence, to use these LMs on long documents directly would require signiicant truncations of the texts, leading
to information loss. Ontologically, the challenge is the classic machine learning task of extracting or learning
informative features that can represent the input well. This question becomes quite complex in the context
of representing a long document. Contextual word embeddings are well suited for this given their ability to
łunderstandž diferent meanings for a word in diferent contexts. However, it remains an open question as to how
to combine the various contextual word embeddings into an efective document level embedding.
An additional challenge is that the SOTA language models are pre-trained on massive and generic corpuses,

e.g., from web crawls, wiki media, and so on. However, to be efective for the inancial context, it is important
for LMs to learn domain-adapted and task-speciic representations of long documents in order to meaningfully
support predictive analyses. This can usually be achieved either by pre-training (from scratch) a domain-speciic
language model on a huge inancial corpus to adapt to its particular domain, or by ine-tuning a pre-trained LM
on a speciic inancial dataset for the downstream tasks, or by combining the two approaches of adapting the
LM to a particular inancial domain followed by ine-tuning on downstream tasks. Recently there have been
several attempts at pre-training BERT on large inancial corpuses to adapt it for tasks in the inancial domain. Liu
et al.[23], Huang et al. [16], Araci [3], and DeSola et al.[9], each pre-trained the BERT model from scratch on
inancial corpora, such as inancial news, corporate reports, inancial websites, and so on. Incidentally, all four
approaches are called FinBERT!

To address the long document representation challenge within the context of inancial disclosure documents,
we propose our evaluation framework called Fin-tuned Embeddings of Texts In Long Document Analysis
(FETILDA). Our approach is particularly designed for downstream predictive or regression tasks, where the
input document representations are combined with other numeric attributes (if available) to predict a target
response variable of interest, such as key performance indicators (e.g., return on assets, earnings per share),
stock volatility, and so on. FETILDA comprises a chunk-based deep learning framework, where a long document
is split into several smaller chunks and then each chunk is processed using an speciic language model (e.g.,
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BERT [10], FinBERT [16], Longformer [4], Nystromformer [44], etc.). The layers of the LM can remain frozen, or
they may be unfrozen for ine-tuning, or only the last layer can be frozen. The chunk level representations are
then pooled together using a Bi-LSTM model equipped with self-attention mechanism. The pooled chunks are
then aggregated into a document level representation, which serves as input to fully connected layers for target
variable prediction. This way, long documents can be represented by various LMs without signiicant information
loss due to truncation.

We experiment our evaluation framework using diferent corpora: i) FIN10K (All Public Companies): 10-K
reports for all US companies from 1996 to 2013 [22], and ii) US Banks: 10-K reports submitted annually to the
SEC by US banks for the period from 2006 to 2016. We have conducted extensive experiments using these datasets
and applied our evaluation framework to diferent predictive analysis regression tasks: i) analysis of a company’s
stock market volatility on the FIN10K dataset, and ii) predicting key performance indicators (KPIs) of a bank’s
inancial performance on the US Banks dataset: the indicators include Return on Assets (ROA), Earnings Per Share
(EPS), Return on Equity (ROE), Tobin’s Q Ratio (TQR), Leverage Ratio (LR), Tier 1 Capital Ratio (T1CR), Z-Score
(Z) and Market to Book Ratio (MBR). Our results compared against the diferent baseline methods show that our
approach is signiicantly better and yields SOTA results for long inancial text regression tasks. In summary, our
main contributions are:

• We propose an evaluation framework of language models for long document regression tasks in the
inancial domain. Our FETILDA approach is designed to learn efective document level representations via
a sequential chunking approach combined with an attention mechanism. As such, our approach combines
the best of both the attention-based Transformer model and Bi-LSTM recurrent networks.

• We conduct an extensive set of experiments to quantitatively examine the eicacy of language models in
long inancial document representation. We applied the framework on two diferent 10-K datasets, and on 9
diferent regression tasks (in terms of the target variable). We show that through our evaluation framework,
pre-trained domain speciic LMs outperforms several diferent baseline methods, and achieves SOTA results
on long inancial documents.

2 RELATED WORK

Machine learning plays an important role in inancial analytics. One of the important areas of inance is investment
stock return forecasting, as well as fundamentals forecasting and risk modeling, that mainly employ quantitative
or numeric data [12]. Diferent ML models such as Support Vector Machines (SVMs), single hidden layer Feed-
forward Neural Networks and Multi-layer Perceptrons (MLPs) were used for the prediction of future price
movements in [27]. They mainly used two sets of features for their ML classiiers: (1) handcrafted features formed
on the raw order book data and (2) features extracted using ML algorithms. Some other models such as Random
Forest [19], XGBoost [42], Bidirectional Long Short-Term Memory (Bi-LSTM) and stacked LSTMs [33] were also
implemented to predict business risk and stock volatility. The main limitation of these works is that they ignore
valuable textual data that can provide more insight into the intangible features such as sentiment, knowledge
capital, risk culture, and so on.

2.1 Textual Data: Sentiment Analysis

An approach to predict inancial quantitative variables is using inancial textual sources such as news reports,
analyst assessments, earnings call transcripts, and company iling reports. And much work has been done in
analyzing the value of the soft information that inancial reports contain over the years, such as in [11]. In [35],
textual features were created by using the negative words in the Harvard-IV-4 TagNeg dictionary and constructing
a document-term matrix from the news stories. These features were used to predict irms’ earnings and stock
returns. A novel tree-structured LSTM was proposed to automatically measure the usefulness of inancial news
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using both text and cumulative abnormal returns [6]. A dual-layer attention-based neural network model was
developed to predict stock price movement using the text in inancial news [47]. Estimating the value of text in
inancial news is important because it drives the investment decision making process.
Financial sentiment analysis is challenging because of lack of labeled data speciic to this domain. Moreover,

the general-purpose pre-trained language models fail to capture the inancial context. [3] proposed the FinBERT
model, which can be ine-tuned on the inancial sentiment analysis dataset (FiQA) to outperform the general
BERT model. Besides inancial news, in [21], the authors constructed textual features from 10-K reports. They
used these features to predict the future stock volatility indicating the efectiveness of text. A deep learning model
trained on the SEC ilings was used to improve the prediction of company’s stock price over the traditional ML
models [32].
The authors in [39] and [38] extracted additional textual features by expanding the L&M sentiment word

list [24] semantically and syntactically, using word2vec [25]. Similarly, the uncertainty word list in L&M dictionary
was expanded using word2vec to predict stock volatility [36]. The authors in [37] expanded the L&M dictionary
by training industry-speciic word embedding models using word2vec to predict volatility, analyst forecast
error and analyst dispersion. [34] showed how automatic domain adaption of the L&M sentiment list using
word2vec [25] improved the prediction of excess return and volatility. The aforementioned dictionary expansion
approaches used word2vec model to select the top � closest words to the words existing in the L&M dictionary.
Since word2vec is a model based on static word embeddings, it fails to capture the dynamic context of the words.

2.2 Language Models in Finance

In terms of domain-adapted pre-trained LMs, in the English-speaking Finance sphere, four models have been
proposed and implemented, all named FinBERT: Liu et al. [23], Huang et al. [16], Araci [3], and DeSola et al.
[9], all of which are pre-trained to adapt to diferent inancial domains. Originally, in the general domain, BERT
[10] was pre-trained on two corpora: BooksCorpus (0.8 billion words), and English Wikipedia (2.5 billion words),
forming a total of 3.3 billion words, so the idea of these inancial language models is to take the original model,
and pre-train it on their respective inancial corpora.
Araci [3] was the irst to propose FinBERT as a pre-trained domain-adapted BERT [10] on a corpus called

TRC2-inancial, which includes 46,143 documents with more than 29M words and nearly 400K sentences, from a
set of Reuters news stories. In experimentation, they saw a 15% increase in accuracy for classiication tasks, a
signiicant margin. Liu et al. [23] focused on inancial news and dialogues present on websites, and collected
three inancial corpora: 13 million inancial news (15GB) and inancial articles (9GB) from Financial Web, totaling
24GB and 6.38 billion words; inancial articles from Yahoo! Finance, totaling 19GB and 4.71 billion words; and
question-answer pairs about inancial issues from Reddit, totaling 5GB and 1.62 billion words. They pre-trained
their model on these corpora to adapt it to the inancial news and dialogues domain. In experimentation, they saw
their model outperform BERT [10] on all the inancial tasks in their experiments, in terms of accuracy, precision,
and recall [23]. Huang et al. [16] focused on inancial and business communications that companies produce, and
collected a corpus of three types of data: 10-K and 10-Q reports, totaling 2.5 billion word tokens; earnings call
transcripts, totaling 1.3 billion word tokens; and analyst reports, totaling 1.1 billion word tokens [16]. They report
that their model outperforms BERT [10] in three sentiment analysis tasks, all by signiicant margins [16]. DeSola
et al. [9] introduced another domain-speciic pre-trained language model, also named FinBERT, for inancial NLP
applications. This model was trained on the 10-K ilings from 1998 to 1999 and from 2017 to 2019, totaling 497
million words, and it showed better performance than BERT on the masked LM and next sequence prediction
tasks.
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2.3 Long Document Language Models

Apart from LMs adapted to specialized domains, there has been a slew of papers on state-of-the-art pre-trained
LMs in the general domain, such as GPT-1 [29], GPT-2 [30], GPT-3 [5], T-5 [31], ELECTRA [7], and so on. These
are massive models trained on enormous corpora, but the challenge of representing long documents persists, in
that these models still cannot handle long textual sequences, due to the quadratic computational complexity that
they usually entail.
To tackle this challenge head-on, several recent works, such as Longformer [4], ETC [1], and BigBird [48],

have been proposed, all of which innovate on the self-attention mechanism in order to reduce the computational
complexity from quadratic to linear, which then enables it to process longer sequences of text. In addition,
more recent works on transformer models with linear attention, such as Reformer [20] and Nystromformer [44],
innovate on how to mathematically approximate the self-attention matrix calculations with less time and space
complexity, instead of changing the self-attention mechanism.

Longformer [4] replaces the full self-attention matrix, which scales quadratically with the length of the input
sequence, with three types of sparse attention schemes: sliding window attention, which selects only the entries
on the descending diagonal line of the self-attention matrix, with the ‘thickness’ of the line being a certain
size; dilated window attention, which adds gaps of a certain size in between the sliding window, making the
descending diagonal line dilated; global attention, which has certain speciic tokens attend to all the tokens across
the sequence, both horizontally and vertically, thereby enabling global contextual representation of the sequence.
Longformer was shown to outperform baseline methods consistently, and particularly, its results were more
apparent where the experiment required long contextual information.
Extended Transformer Construction (ETC) [1] is very similar to Longformer, with nuanced variations. ETC

replaces the full self-attention matrix with global-local attention, which splits the self-attention matrix into four
parts: global-to-global, which is a small square on the top left of the matrix, where certain special global tokens
attend to each other; global-to-long, which is a horizontal rectangle on the top right of the matrix, where global
tokens attend to regular tokens; long-to-global, which is a vertical rectangle on the bottom left of the matrix,
where regular tokens attend to global tokens; long-to-long, which is a compressed version of the descending
diagonal line in the large square on the bottom right of the matrix, essentially a sliding window attention
compressed into a rectangular matrix, where regular tokens attend to other regular tokens in its window. In
experimentation, ETC yielded state-of-the-art results, especially in question answering scenarios.

BigBird [48] extends further on ETC [1], adding random sparse attention into the mix, building on top of the
global-local attention mechanism of ETC. Random entries in the self-attention matrix are selected to generalize
over the full matrix. From a graph theory perspective, this means a shorter average path between any two nodes,
making it a better approximation of the full graph. And from a NLP perspective, in most texts, there tends to be
locality of reference, where a word relates closely with words around it, so BigBird tries to account for this with
their particular random sparse attention scheme.

2.4 Chunking-based Representation Schemes

Several papers proposed chunking-based approaches to enable representations of documents longer than the
maximum length of word-tokens that LMs can take, for various diferent downstream tasks. Yang et al. [46]
proposed a Siamese hierarchical matching model, using sentence blocks to construct representations for twin
documents at the same time, for the purpose of document matching. In their approach, the sentence block
representations are passed through a transformer model and the irst token of the resulting output is used as
the document representation. With this framework, they are able to handle maximum document lengths up to
2,048 word tokens, being able to take a maximum of 64 sentences, with the maximum length of each sentence
being 32. Since their downstream task was document matching, they chose the Siamese design for their model,
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which takes in two document inputs simultaneously to compare their similarity, while our evaluation framework
is oriented towards document regression, which utilizes a document to predict quantitative metrics. In terms
of the underlying architecture, they employ a sentence-level block merging mechanism that can take in łlong
formž documents not exceeding 2,048 word tokens, while our framework utilizes a paragraph-level chunking
and merging mechanism that can actually analyze real-world long documents in the inancial domain. For
example, even just one section of the 10-K reports that we learn on, namely, Item 7, averages around 12,000
words, and can be more than 24,000 tokens after tokenization. Therefore, instead of sentence-level blocks, we
use (paragraph-level) chunks, and we weigh these chunks using their respective attention scores obtained by a
self-attention mechanism. Finally, we pool the weighted chunks together into a document representation, using
a bi-LSTM network. In our experiments, we utilize diferent models that can enable us to have the maximum
chunk length range from 512 up to 8,192 word tokens, which then enables us to generate representations for
documents that average 24,000 word tokens.

Gong et al. [14] proposed a recurrent chunking mechanism for the purpose of machine reading comprehension,
where the machine is given a long document and a question, and is required to extract a piece of text from the
document as the answer to the questions. Towards that end, they needed the chunking mechanism to be such
that the separation point of various chunks would not cut the correct answer in half, nor prevent surrounding
contexts from being retained. Therefore, their main innovation is in enabling a more lexible chunking policy, and
in a recurrent chunking mechanism that can provide context surrounding a chunk segment. In experimentation,
they use BERT, which enables maximum sequence lengths ranging from 192 to 512 word tokens. Our framework
takes a diferent approach to the chunking policy, since our goal is the extraction of predictive inancial text
features from the document. Moreover, we also try to increase the maximum sequence length of a chunk up to
8,192 word tokens, which then allows us to take in more information in one chunk in an organic way.

In more recent work, Grail et al. [15] use a bi-GRU network to pool the chunks together, instead of a bi-LSTM
network. But the purpose of their framework is long document summarization, instead of extracting predictive
text features. In their approach, they use BERT as the LM, and therefore, can only process up to 512 word tokens
for a chunk. Further, they consider their approach to be an alternative to long sequence LMs such as Longformer.
Instead of considering long sequence LMs as alternatives, we incorporated them into our FETILDA framework.
Therefore, in our approach, we experiment with various underlying LMs for FETILDA, be it BERT-based models,
or long sequence LMs, or linear attention transformer LMs, enabling us to have diferent maximum sequence
lengths ranging from 512 to 8,192 tokens.

Fig. 1. FETILDA: Overall Framework.
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3 FETILDA: LONG DOCUMENT REPRESENTATION

Figure 1 shows the FETILDA framework. FETILDA irst splits a long document into smaller fragments or chunks,
then processes each chunk using a language model, all of whose layers are fully unfrozen for ine-tuning, then
pools the chunks together using a Bi-LSTM layer endowed with a self-attention mechanism into an aggregate
vector representation of the entire document. The chunk representations are extracted from the underlying
language model (BERT [10], FinBERT [16], Longformer [4], or Nystromformer [44]) using several diferent
pooling strategies including using the default pooler output and combining the features from the last few layers.
These chunk sequences are passed onto a Bi-LSTM model whose hidden context states and outputs are used to
learn chunk-level attention scores to extract the inal document embedding. Finally, the document embedding
is passed through the linear layers to obtain the inal target prediction. In addition, we perform task-speciic
ine-tuning on our entire model, including BERT, FinBERT, or Longformer, whose layers are fully unfrozen (or
can be kept frozen if only pre-trained inputs are to be used), using MSE as the loss function. Overall, as shown
in Figure 1, our methodology consists of four stages: (1) Chunk Generation, (2) Chunk-Level LM Pooling, (3)
Document-Level Attention Pooling, and (4) Model Training and Fine-Tuning. We shall describe each of these
next.

3.1 Chunk Generation

Fig. 2. Chunk Generation

Let � = {�1, �2, · · · , �� } denote a text corpus containing � long documents, where �� denotes the �-th document
in the corpus. We tokenize each document �� into a sequence of tokens {�1, �2, · · · , ��� }, where �� is the number of
tokens for document �� . The document token sequence is divided into chunks of length �, where � is the block
or chunk size. Thus, each document �� can be represented as a sequence of chunks {�1, �2, · · · , ���

}, with��

chunks of length �. We also prepend and append <CLS> and <SEP> tokens to each chunk, respectively, resulting
in chunks of size � + 2. The chunk size dictates a maximum of � + 2 tokens for each chunk �� = {�0, �1, · · · , ��, ��+1},
with �0 = <CLS> and ��+1 = <SEP>. We experiment with � + 2 = 512, � + 2 = 4096 and � + 2 = 8192, depending on
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the underlying language model used. For document where the last chunk has � < � tokens, we pad the last chunk
by appending the padding token (<PAD>) (� − �) times to keep the chunk length intact. For each chunk, we also
create an attention mask with [0] for padding tokens and [1] for non-padding tokens, which helps in attending
only to the valid tokens and not the <PAD> tokens. Figure 2 shows an excerpt from Item 1 from a company’s 10-K
report, and the tokenization and chunking process with four resulting chunks.

3.2 Chunk-Level Language Model Pooling

Fig. 3. Chunk Level Language Model Pooling For Chunk Embeddings.

Given the sequence of chunks for a document, {�1, �2, · · · , ���
}, we need to convert these into features vectors

{c1, c2, · · · , c��
}, that represent the token sequence in each respective chunk as a whole. We use SOTA language

models like BERT [10], Longformer [4], and FinBERT [16] to generate contextual token and chunk embeddings.
We thus input each chunk into the underlying language model, which typically outputs 12 hidden state layers
{�1, �2, · · · , �12}, where �� denotes layer � . The output of each of these layers contains � + 2 hidden state vectors
{z�0, z

�
1, · · · , z

�
�+1}, for � + 2 tokens in the chunk, each of which has a size of 768, which is the dimensionality of

the hidden states. The language model also yields a default pooler output, which is the embedding vector for
the <CLS> token, the irst token, of the last hidden state layer after processing and activation, denoted by z

12
0 .

Figure 3 shows the schematic of how we use the underlying language model to generate the hidden state layers,
as well as the default pooler output, which are then combined using various strategies outlined below to yield
the chunk embedding vector c� for each chunk �� within each document.
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Creating contextual embeddings is challenging, since a word can have diferent meanings in diferent contexts.
So it is important to irst create contextual token embeddings and then experiment with diferent strategies
to generate diferent chunk representations from these contextual embeddings. We therefore studied several
approaches for creating the inal chunk embedding vectors c� :

• Default pooler output: Since the <CLS> token embedding is an attention-weighted aggregation of all the
tokens in a given chunk, each chunk �� can therefore be represented by the default pooling output vector
z
12
0 as the chunk embedding vector c� . The size of c� is equal to the default hidden layer size of 768.

• Pooled hidden layers: The empirical evaluation conducted in BERT-as-a-Service [43] shows that using the
last hidden layer gives the highest accuracy, but they also observed that it could also be more biased since
it is the closest layer to the output layer. Hence, it is advisable to select the second-to-last hidden layer or a
combination of diferent layers. In implementing this idea in practice, we take the set of all � +2 hidden state
vectors from the penultimate layer, namely, {z110 , z

11
1 , · · · , z

11
�+1} and mean/max pool them into one vector of

size 768, which, after some non-linear activation, can be used as the chunk embedding vector c� . In addition,
we can also follow a similar approach by selecting the last four hidden layers, namely {z90, z

9
1, · · · , z

9
�+1

},
{z100 , z

10
1 , · · · , z

10
�+1

}, {z110 , z
11
1 , · · · , z

11
�+1}, and {z120 , z

12
1 , · · · , z

12
�+1}, and produce four mean/max pooled vectors

in the same way. These four vectors and mean/max are pooled into one vector, which on activation can be
used as the chunk embedding vector c� .

3.3 Document-Level Atention Pooling

Fig. 4. Atention Pooling via Bi-LSTM For Document Embeddings.

Given the chunk embedding vectors {c1, c2, · · · , c��
}, we need to aggregate them into an efective document

vector d� for document �� . Since the chunks are sequential in nature, we can accomplish this using a recurrent
Bi-LSTM model. However, not all chunks in a long document are equally important. It is crucial to score the
chunks based on their importance in the document. For this, we introduce chunk-level attention within the
Bi-LSTM model. Given a document, we input its chunk feature vectors {c1, c2, · · · , c��

} into the Bi-LSTM model.
The output and hidden state vectors of the Bi-LSTM for chunk � are then obtained by concatenating the outputs
and the hidden states in forward and backward pass, respectively. Formally,

o� =
−→
o� ⊕

←−
o� h� =

−→
h� ⊕

←−
h�
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where ⊕ denotes concatenation, −→ denotes forward and←− denotes backward models, and the h� and o� denote the
hidden and output state vectors for chunk �� , respectively (� also denotes the �-th element of the chunk sequence).
The attention score �� for each chunk is calculated by taking softmax over the product of outputs with the hidden
state context vector. The document feature vector d� (of size 768) is obtained by taking the weighted sum of the
chunks according to their attention scores, normalized by the number of chunks for that document. Formally,

�� = softmax

(

{

o
�
1 h� , o

�
2 h� , · · · , o

�
��
h�

}

)

d� =

∑��

�=1 � � · c�

��

Figure 4 shows an illustration of the document level attention pooling step. At the bottom are the chunk
embedding vectors c� as inputs, which are passed to the Bi-LSTM and attention modules to create the document
embedding d� .

3.4 Model Training

In the inal stage of training, we feed each 768-dimensional document feature vector d� to two additional fully
connected linear layers ��1 and ��2 (see Figure 1), with size 601 and 1, respectively, with a leaky ReLU activation
and a dropout layer applied to ��1. The last layer ��2 represents the output neuron to predict a target numeric
variable. In other words, we concatenate the historic score �ℎ��� (e.g., the previous year’s value for stock volatility
or return on assets, etc.) with the document vector d� so as to use both the numerical and textual features.
Formally,

d� = o��1 ⊕ �hist

where o��1 denotes the output features vector from ��1. Hence, ��1 has 601 neurons, the irst 600 of which are
textual features, and the last one is the historical numeric value, all of which are input to ��2 to predict the target
numeric score �̂. The loss function is MSE or mean squared error between the predicted and true target value.

4 EXPERIMENTS

We now showcase the efectiveness of our FETILDA framework on text regression tasks on very long inancial
documents. All of our experiments were conducted on a machine with 2.5Ghz Intel Xeon Gold 6248 CPU, 768GB
memory, and a NVIDIA Tesla V100 GPU with 32GB memory. The neural network models are implemented using
PyTorch v1.10 (pytorch.org) and the HuggingFace library (huggingface.co). Our code and datasets are publicly
available on github via https://github.com/Namir0806/FETILDA.

4.1 Data Description: 10-K Reports

A 10-K is a comprehensive report iled annually by a publicly traded company about its inancial performance
and is required by the U.S. Securities and Exchange Commission (SEC). [18] The SEC requires this report to keep
investors aware of a company’s inancial condition and to allow them to have enough information before they
buy or sell shares in the corporation, or before investing in the irm’s corporate bonds.

10-Ks thus give a clearer picture of everything a company does and what kinds of risks it faces [18]. However,
the length of 10-K reports has generally increased dramatically in recent years. According to a Wall Street Journal
article [26], the average 10-K report is getting longer, from about 30,000 words in 2000 to about 42,000 words in
2013. In the article, GE inance chief Jefrey Bornstein is reported to have said that not a retail investor on planet
earth could get through it, let alone understand it. Our goal, therefore, is to extract the soft information contained
in the textual data of these extremely lengthy 10-K reports, in order to better our predictions of forward-looking
KPIs.

ACM Trans. Knowl. Discov. Data.
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While the entire 10-K report is a very long disclosure document, Items 7/7A and 1A are considered as the
important subsections in a 10-K report [2]. Item 7 (MD&A) gives the company’s perspective on the business results
of the past inancial year. It is meant for the management to relate in its own words the analysis of their inancial
condition. Item 7A (Quantitative and Qualitative Disclosures about Market Risk) provides information about
the company’s exposure to market risk, such as interest rate risk, foreign currency exchange risk, commodity
price risk or equity price risk. Item 1A (Risk Factors) includes information about the most signiicant risks for a
company or its securities. The risk factors are typically reported in order of their importance. However, it focuses
on the risks themselves, and not necessarily on how the company addresses those risks. Some risks apply to the
entire economy, some only to the speciic industry sector or region, and some are directly related to the company.

We thus focus on Item 7/7A and Item 1A of the 10-K reports, which contain a treasure trove of soft information
that can be leveraged for predictive analytics tasks. Since the industry standard is to only use quantitative data to
predict future KPIs, we want to add the qualitative data coming from text into the mix, in order to achieve better
predictions.

4.2 Datasets and Target Metrics

4.2.1 FIN10K Dataset [22]. The FIN10K dataset [22], contains Item 7 of 10-K reports of US companies from 1996
to 2013, and the stock return volatilities twelve months before and after each report. Table 1 shows the statistics
for this dataset. Following earlier work [38], we use the reports from 1996 to 2000 as training and validation
data, and reports for each year from 2001 to 2006 as separate testing data. Further, we choose the irst 80% of the
reports from 1996 to 2000 as training data, and the remaining 20% as validation data. In the testing data, from
2001 to 2006, the number of documents is generally increasing, as well as the average document length, which
almost doubles from 2001 to 2006.

Table 1. FIN10K dataset [22] statistics.

Year 1996 - 2000 2001 2002 2003 2004 2005 2006
Number of total documents 8703 1825 2023 2866 2861 2698 2564
Average document length 5079.4 6245.6 8414.3 10324.7 11499.6 12528.1 12198.1

Prediction Task: Volatility. The regression task is to predict the stock return volatilities, based on data from
twelve months before and after each report. Volatility [38] is a common risk metric deined as the standard
deviation of a stock’s returns over a period of time. Historical volatilities are derived from time series of past
stock market prices as a proxy for inancial risk. Let �� be the price of a stock at time � . Holding the stock for one
period from time � − 1 to time � results in a simple net return of �� =

��
��−1

− 1 [40]. Therefore, the volatility of
returns for a stock from time � − � to � is deined as

� [�−�,� ] =

︄

∑�
�=�−� (�� − �̄)2

�
(1)

where �̄ =

∑�
�=�−� ��/(� + 1).

4.2.2 US Banks Dataset. We collected the 10-K ilings for all US banks for the period between 2006 and 2016
(from the SEC EDGAR website: www.sec.gov/edgar), as well as the corresponding quantitative target data from
theWRDS Center for Research in Security Prices (wrds-www.wharton.upenn.edu). While the entire 10-K report is
a very long disclosure document, as noted above, Items 7/7A and 1A are considered as the important subsections
in a 10-K report [2]. These subsections are themselves also quite long. The dataset statistics for the 10-K reports
for all US Banks for the period of 2006-2016 are reported in Table 2.
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Table 2. US bank dataset statistics.

Item 7/7A Item 1A
Number of total documents 5321
After extracting items 3396
Target data available 2500 2479
Average document length 12589.75 4435.69

The 10-K reports for US Banks (2006-2016) total 5321 documents, but not all reports have both the Item 7/7A
subsection. Out of the total, 3396 10-K reports have this important subsection. Furthermore, we found that not all
banks have all the eight target KPI values that we need for regression. Out of the 3396 documents, we have 2500
Item 7/7A and 2479 Item 1A, with their eight metrics in full as target data, which makes up the inal document set
used in our experiments. The average document length (in terms of the number of words) is 12590 for Item 7/7A,
though the average length of 4437 is considerably shorter for Item 1, as noted in Table 2. We sort the documents
chronologically from 2006 to 2016, and choose the irst 80% of the data for training, and the remaining 20% as
validation and testing data, with a 50/50 split between the latter two. In terms of target data normalization, for
each of the eight target metrics, we performed min-max scaling to normalize the data for training.

Prediction Task: Bank KPIs. For US banks our goal is to predict several KPI metrics using the 10-K reports. In
particular, we focus on eight metrics that indicate either the performance or risk of a given bank: Return on
Assets (ROA), Earnings per Share (EPS), Return on Equity (ROE), Tobin’s Q Ratio, Tier 1 Capital Ratio, Leverage
Ratio, Z-Score, and Market-to-Book Ratio. The target metrics are deined below.

• Return on Assets (ROA): ROA is calculated by dividing a company’s net income by total assets:

ROA =

Net Income

Total Assets
(2)

Higher ROA shows more asset eiciency and productivity.
• Return on Equity (ROE): According to [13], ROE is a measure of inancial performance calculated by
dividing net income by shareholders’ equity:

ROE =

Net Income

Total Equity
(3)

• Earning per share (EPS): EPS is an indicator of a company’s proitability. It is calculated as a company’s
proit divided by the outstanding shares of its common stock:

EPS =

Net Income − Preferred Dividends

End-of-Period Common Shares Outstanding
(4)

The higher a company’s EPS, the more proitable per share it is.
• Tobin’s Q Ratio (TQR): TQR represents the ratio of the market value of a irm’s assets to the replacement
cost of the irm’s assets:

TQR =

Equity Market Value + Liabilities Book Value

Equity Book Value + Liabilities Book Value
(5)

This ratio indicates how the market views the managers’ prospects of using irm’s asset to generate future
value for investors of the irm.

ACM Trans. Knowl. Discov. Data.



FETILDA: An Evaluation Framework for Efective Representations of Long Financial Documents • 13

• Leverage Ratio (LR): The Leverage Ratio measures the extent of debt inancing for a irm, therefore
assesses the ability of a company to meet its inancial obligations. It is given as:

LR =

Average Total Assets

Average Equity
(6)

• Tier 1 Capital Ratio (T1CR): The Tier 1 capital ratio is the ratio of a bank’s core Tier 1 capital to its total
risk-weighted assets:

T1CR =

Tier 1 Capital

Total Risk-Weighted Assets
(7)

These risk-weighted assets include all assets that are systematically weighted for credit risk.
• Z-score (Z): The Z-score links a bank’s capitalization with its return (ROA) and risk (volatility of returns).

Z-Score =
ROA + CAR

� (ROA)
(8)

where, � (ROA) is the standard deviation of ROA for a speciic time period, and CAR is the capital-to-assets
ratio.

• Market-to-Book Ratio (MBR): The Market-to-Book Ratio is used to evaluate a company’s current market
value relative to its book value, and is calculated by dividing the current stock price of all outstanding
shares by the book value:

MBR =

Market Capitalization

Total Book Value
(9)

4.3 Methods

We now outline the results of our framework on both the FIN10K and US Banks datasets. Overall, we experiment
with four diferent types of methods, three of which being baseline methods with which we compare the FETILDA
framework to evaluate the performance of our approach. In order to efectively compare diferent methods, all
results report the mean squared error (MSE). The methods are as follows:

• Numeric Regression [49]: We compare with linear regression (LR) and support vector regression (SVR)
models. These baselines methods take the historical score �ℎ��� and run (bivariate) regression model on it
to predict the target variable. These method therefore utilize only numerical data. The SVR method (from
[38]) uses the logarithm of the historic volatility for the prior twelve months.

• Word Feature Vector Models: These are traditional but still quite efective baseline methods, based on
the TF-IDF or LOG1P word vector representations, as given below:
TF-IDF [17]: In this baseline method, we use the term frequency - inverse document frequency features,
as the input document embeddings, which help in scoring important words.

– LOG1P+ [38]: This is the method used in the volatility regression task proposed by Tsai and Wang [38].
The word features are formed using LOG1P, calculated as LOG1P = ���(1 +�� (�, d)), where �� (�, d)
denotes the term count of a word � in a given document d. Furthermore, the logarithm of the stock return
volatility twelve months before each report is used as an additional numeric feature, and together, the
word features and numeric features are input into a Support Vector Regression model.

• FETILDA Framework: Here we use our framework, detailed in Section 3, with diferent large language
models, including domain speciic ones, as listed below. All methods use the default pooling strategy.
– FETILDA w/BERT: We use [10] as the underlying language model, setting the chunk size to 512 tokens.
– FETILDA w/FinBERT: Here we use FinBERT [16] as the LM, which was pre-trained on 10-K, 10-Q, and
analyst reports, with chunk size of 512 tokens.
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– FETILDA w/Longformer: To test the efectiveness of a bigger block size with a pretrained model, we
use our approach with Longformer [4] as the underlying language model, setting the chunk size to 4096
tokens.

– FETILDA w/Nystromformer: For an even bigger block size, but without a pretrained model (that is,
training from scratch), we use our approach with Nystromformer [44] as the underlying language model,
setting the chunk size to 8192 tokens, the number of layers to one, and the number of attention heads to
eight.

• Truncated LMs: Here, we experiment with truncated LM baselines, where the each model uses only
the irst chunk of each document and discards the rest of the document. The rest of the model training
is identical to the process detailed in Section 3.4. These baselines thus serve as ablated versions of our
chunking approach for each of the corresponding LMs.
– BERT Truncate: Here, we simply use the pretrained BERT [10] model with chunk size of 512.
– FinBERT Truncate: Here we use the inancial domain pretrained FinBERT model [16] as the underlying
language model to learn on the irst chunk of the document, with chunk size of 512 tokens.

– Longformer Truncate: This baseline uses pretrained Longformer [4], with 4096 as the chuck size, which
is considerably larger than the BERT/FinBERT baselines.

– Nystromformer Truncate: For Nystromformer [44] we set the chuck size as 8192, which is double that
for Longformer, so that we can evaluate the efect of truncating on with a very large context or chunk
size. We further use 8 attention heads, and one tranformer layer.

– BigBird Truncate: Here we use the large context BigBird [48] model, with a chunk size of 4096. This
also shows the comparison with a sparse-attention based approach.

With all four versions of FETILDA, namely using BERT, FinBERT, Longformer, and Nystromformer, and baseline
numerical regressions, word feature vector models, and truncated LMs, namely BERT, FinBERT, Longformer,
Nystromformer, and BigBird, we performed an extensive set of experiments, evaluating our approach in predicting
stock return volatility for the FIN10K dataset [22], and all eight diferent KPI metrics for the US banks dataset. For
the US banks dataset, the historical scores are numeric values of each of the eight metrics in the previous year of
the report. For the FIN10K dataset, they are the stock return volatilities twelve months before each report. In
addition to applying our approach as described in subsection 3.2 with fully unfrozen LM layers, enabling model
ine-tuning, we also report the efect of freezing all the LM layers and freezing only the last layer in FETILDA
when we apply it on both the US banks dataset and the FIN10K dataset [22]. This allows us to compare the efect
of ine-tuning versus the default pre-training approach.

4.4 Comparative Performance Results

In all four versions of FETILDA and truncated LMs, we train the model with varying learning rates from 10−1 to
10−8, and pick the epoch and parameters with the best validation loss. Due to the memory constraint of 32GB, for
a given document, the GPU can only process up to around 20,480 tokens at a time, so we truncate the rest if a
document goes beyond that length. However, this only happens for a minority of cases in our experiments, and
we do not truncate at all in our experiments with fully frozen language models. As mentioned above, we use
the default pooling strategy to extract chunk embedding vectors, and among the various FinBERT alternatives,
we use the Huang et al. FinBERT [16] model. We empirically show below that both these choices are in fact the
best ones among the diferent pooling and FinBERT variants, respectively. Finally, for both FETILDA (w/BERT,
w/FinBERT, w/LongFormer, and w/Nystromformer), all truncated LMs, and TF-IDF we select the best among the
following regression models based on the validation data: (1) Linear Regression, (2) Support Vector Regression,
using a RBF Kernel with� = 0.1 and � = 0.0001, and (3) Kernel Ridge Regression, using a RBF Kernel with � = 0.1
and � = 0.1, in addition to the variant based on the predicted output (from ��2) with MSE loss.
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4.4.1 FIN10K Dataset. Table 3 compares the performance of FETILDA variants with the other baseline methods
listed above. Note that LOG1P+:ALL refers to the model trained on the entire original text using the LOG1P
features, and LOG1P+:SEN refers to the model trained on only the sentiment bearing words taken from the L&M
dictionary [24]. For LOG1P+:ALL and LOG1P+:SEN, we report the results for these methods directly from their
paper [38]. We also include the results for the TF-IDF baseline. Among their methods, LOG1P+:SEN performs the
best for all years, except 2001. For the average over all test years, LOG1P+:SEN performs better than TF-IDF, even
though TF-IDF performs better than LOG1P+:SEN for 2001, 2002, and 2006. However, as we can observe, with the
exception of 2003, FETILDA outperforms LOG1P+:SEN by a large margin. Interestingly, FETILDA w/FinBERT
outperforms both BERT and Longformer on all the metrics. It is the best performing model over all the years,
with the exception of 2003. Looking at the last column, which shows the average performance across the years

2001-2006, FETILDA w/FinBERT is the best; it outperforms all previous baselines by a signiicant margin, establishing

new SOTA results.

Table 3 also shows what happens to the FETILDA variants if we freeze the layers of the language model and
use only the pre-trained embeddings, compared to ine-tuning through unfreezing all the layers or only freezing
the last layer. Interestingly, for the larger FIN10K dataset, ine-tuning results in a much better model for FinBERT,
although fully frozen FinBERT does well for 2001 and 2003, but not so much for BERT and Longformer. As such,
the domain-speciic pre-training in FinBERT followed by ine-tuning results in the best overall model.

Table 3. MSE Results on FIN10K. Best results in bold.

Model\Year 2001 2002 2003 2004 2005 2006 Average

SVR 0.174700 0.160020 0.187340 0.144210 0.136470 0.146380 0.150860
LOG1P+:ALL 0.180820 0.171750 0.171570 0.128790 0.130380 0.142870 0.154360
LOG1P+:SEN 0.185060 0.163670 0.157950 0.128220 0.130290 0.139980 0.150860
TF-IDF 0.123816 0.121450 0.218520 0.176087 0.148645 0.138113 0.154438
Truncated LMs

BERT Truncate (Fully Unfrozen) 0.123519 0.109091 0.188643 0.117910 0.099342 0.094656 0.122193
FinBERT Truncate (Fully Unfrozen) 0.123174 0.108862 0.187908 0.117288 0.098827 0.094146 0.121701
Longformer Truncate (Fully Unfrozen) 0.123086 0.108659 0.187317 0.116490 0.097997 0.093773 0.121220
BigBird Truncate (Fully Unfrozen) 0.124220 0.108205 0.185940 0.115778 0.097545 0.092892 0.120763
Nystromformer Truncate (Fully Unfrozen) 0.123561 0.108854 0.187848 0.116714 0.098098 0.093215 0.121382
FETILDA w/ LMs

FETILDA w/BERT (Fully Unfrozen) 0.128406 0.111145 0.180670 0.111339 0.094401 0.091456 0.119569
FETILDA w/FinBERT (Fully Unfrozen) 0.123321 0.108134 0.172562 0.106124 0.090766 0.088401 0.114885

FETILDA w/Longformer (Fully Unfrozen) 0.124797 0.109595 0.183509 0.113019 0.094623 0.090408 0.119325
FETILDA w/Nystromformer (Fully Unfrozen) 0.120945 0.108224 0.174019 0.109716 0.095050 0.093098 0.116842
FETILDA w/BERT (Last Layer Frozen) 0.129132 0.111559 0.181691 0.110962 0.093300 0.089595 0.119373
FETILDA w/FinBERT (Last Layer Frozen) 0.125969 0.109420 0.176483 0.108349 0.092103 0.089228 0.116925
FETILDA w/Longformer (Last Layer Frozen) 0.135215 0.114627 0.193750 0.117404 0.096162 0.089970 0.124521
FETILDA w/BERT (Fully Frozen) 0.121354 0.108529 0.175446 0.108837 0.093004 0.090500 0.116278
FETILDA w/FinBERT (Fully Frozen) 0.118620 0.113750 0.159487 0.108527 0.097878 0.095545 0.115635
FETILDA w/Longformer (Fully Frozen) 0.126380 0.109627 0.169686 0.108116 0.091884 0.089902 0.115932

Comparing with Truncated Models. Table 3 also shows how our evaluation framework compares with LMs in
Finance and Long Document LMs. Since these models have a ixed context/chuck size and do not create document
level representations, we truncate the models to use only the irst chunk from each document. However, we
study the efect of models with larger chuck sizes, ranging from 512 used for BERT/FinBERT, to 4096 used in
Longformer and BigBird (which also uses sparse attention), to 8192 used in Nystromformer. As we can see, none
of the truncated LM baselines methods outperform FETILDA w/FinBERT. Thus, truncating the documents is not
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an efective strategy. This provides strong evidence on the advantage of our framework that considers all the
chunks so that long documents can be processed without signiicant information loss, and that further allows
fair comparisons between diferent underlying LMs. For example, FinBERT Truncate achieves almost the same
performance as Longformer Truncate, which may lead one to prematurely conclude the futility of pre-trained
domain-speciic models such as FinBERT. However, truncated FinBERT can only łseež the irst 512 tokens of
the document, whereas truncated Longformer uses the irst 4096 tokens. However, when utilizing our chunking
framework, we observe that FinBERT can unleash its full potential and outperform Longformer, showcasing
the efectiveness of pre-trained domain-speciic LMs in inance. This due to the fact that now FinBERT and
Longformer, when used through FETILDA, can exploit the full text from the long document.

4.4.2 US Banks Dataset: Item 7/7A. Table 4 shows the performance comparison between the four versions
of our approach on Item 7/7A and baseline methods: truncated versions of all BERT, FinBERT, Longformer,
Nystromformer, and BigBird, TF-IDF for textual modeling with historic scores, and linear regression for numerical
modeling. For most metrics, our method outperforms the baseline methods (TF-IDF and linear regression), with

FETILDAw/Longformer and FETILDAw/Nystromformer performing the best in a majority of cases. As such, FETILDA
variants using all of the chunks outperform all other baselines on 6 out of the 8 metrics. In addition, we also see a
signiicant edge in the performance of FETILDA w/FinBERT in the prediction of ROA target values.

Table 4. MSE results on Item 7/7A. Best results in bold per KPI.

Models\Metrics ROA ROE EPS TQR T1CR LR Z MBR
TF-IDF 0.000879 0.010422 0.001022 0.022000 0.000767 0.002594 0.028926 0.005765
Linear Regression 0.001432 0.010096 0.001564 0.022587 0.000306 0.002441 0.030760 0.005757
Truncated LMs

BERT Truncate (Fully Unfrozen) 0.000769 0.007790 0.000873 0.020440 0.000396 0.002607 0.029508 0.005641
FinBERT Truncate (Fully Unfrozen) 0.000827 0.007458 0.000855 0.016940 0.000308 0.002599 0.028715 0.005655
Longformer Truncate (Fully Unfrozen) 0.000817 0.007462 0.001056 0.020103 0.000272 0.002446 0.033579 0.005889
BigBird Truncate (Fully Unfrozen) 0.000781 0.007422 0.000909 0.017403 0.000240 0.002576 0.029046 0.005617
Nystromformer Truncate (Fully Unfrozen) 0.000879 0.008459 0.000853 0.016444 0.000239 0.002596 0.027976 0.005591
FETILDA w/ LMs

FETILDA w/BERT (Fully Unfrozen) 0.000796 0.009227 0.000897 0.021409 0.000325 0.002502 0.029505 0.005651
FETILDA w/FinBERT (Fully Unfrozen) 0.000746 0.008901 0.000932 0.019150 0.000317 0.002535 0.029516 0.005657
FETILDA w/Longformer (Fully Unfrozen) 0.000813 0.008507 0.000858 0.017358 0.000296 0.002467 0.028697 0.005683
FETILDA w/Nystromformer (Fully Unfrozen) 0.000788 0.007338 0.000835 0.016862 0.000310 0.002503 0.029397 0.005735
FETILDA w/BERT (Last Layer Frozen) 0.000850 0.009903 0.000960 0.021728 0.000306 0.002469 0.029203 0.005798
FETILDA w/FinBERT (Last Layer Frozen) 0.000844 0.008543 0.000988 0.021425 0.000304 0.002445 0.029637 0.005678
FETILDA w/Longformer (Last Layer Frozen) 0.000849 0.008356 0.000851 0.016436 0.000291 0.002419 0.029011 0.005481

FETILDA w/BERT (Fully Frozen) 0.000890 0.010052 0.001109 0.022748 0.000328 0.002581 0.028966 0.005950
FETILDA w/FinBERT (Fully Frozen) 0.001093 0.009401 0.001906 0.021882 0.000447 0.002514 0.030094 0.005695
FETILDA w/Longformer (Fully Frozen) 0.000801 0.008501 0.000876 0.019053 0.000308 0.002436 0.028965 0.005957

Table 4 also shows the comparisons between applying FETILDA w/ LMs, and using LMs directly in truncated
mode. As we can see, the shorter window size models, namely BERT and FinBERT, when using all chunks,
performed better in some metrics and worse in some metrics compared to their truncated counterparts. This
may be due to the chunk attention weights not being well assigned in the document-level attention pooling
phase in a portion of shorter documents, as we examine in Section 4.6.1. As for longer window size LMs, namely,
Longformer and Nystromformer, we can observe that for the majority of the metrics, our framework is able to
further improve the performance of longer window LMs for long documents on six out of the eight metrics. On
the two metrics where Nystromformer truncate performs best, it demonstrates the beneit of having a larger
window size, as the window size in this case is 8, 196.
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Table 5. MSE results on Item 1A. Best results in bold per KPI.

Models\Metrics ROA ROE EPS TQR T1CR LR Z MBR
TF-IDF 0.001153 0.009350 0.000970 0.018660 0.000322 0.003117 0.029103 0.005922
Linear Regression 0.001407 0.010174 0.001577 0.022500 0.000299 0.002534 0.032102 0.005802
Truncated LMs

BERT Truncate (Fully Unfrozen) 0.000783 0.009169 0.000955 0.019806 0.000324 0.002655 0.031074 0.005991
FinBERT Truncate (Fully Unfrozen) 0.000774 0.007453 0.000861 0.017555 0.000290 0.002597 0.031737 0.005979
Longformer Truncate (Fully Unfrozen) 0.000925 0.008200 0.001645 0.017472 0.000221 0.002553 0.034199 0.005923
BigBird Truncate (Fully Unfrozen) 0.000816 0.006908 0.000963 0.015997 0.000318 0.002632 0.031801 0.006205
Nystromformer Truncate (Fully Unfrozen) 0.000790 0.007385 0.000882 0.017392 0.000275 0.002614 0.030956 0.006388
FETILDA w/ LMs

FETILDA w/BERT (Fully Unfrozen) 0.000811 0.008520 0.000820 0.019151 0.001353 0.002559 0.029614 0.004944
FETILDA w/FinBERT (Fully Unfrozen) 0.000867 0.008671 0.001171 0.017383 0.000385 0.002560 0.030583 0.004937
FETILDA w/Longformer (Fully Unfrozen) 0.000790 0.007940 0.000826 0.015620 0.000937 0.002527 0.030130 0.004555

FETILDA w/Nystromformer (Fully Unfrozen) 0.000780 0.007659 0.000925 0.016263 0.000226 0.002831 0.029426 0.005640
FETILDA w/BERT (Last Layer Frozen) 0.000774 0.007803 0.000824 0.017883 0.000726 0.002751 0.029729 0.004943
FETILDA w/FinBERT (Last Layer Frozen) 0.000850 0.008814 0.000834 0.018282 0.000485 0.002612 0.030115 0.004967
FETILDA w/Longformer (Last Layer Frozen) 0.000795 0.007409 0.000821 0.018100 0.000242 0.002715 0.030415 0.004894
FETILDA w/BERT (Fully Frozen) 0.000856 0.008788 0.001076 0.018572 0.000315 0.010919 0.030225 0.004908
FETILDA w/FinBERT (Fully Frozen) 0.000976 0.008626 0.001274 0.018254 0.000428 0.002471 0.032155 0.004911
FETILDA w/Longformer (Fully Frozen) 0.000811 0.008053 0.000854 0.018429 0.000930 0.002619 0.034284 0.004955

4.4.3 US Banks: Item 1A Section. Next, we report results on Item 1A. Table 5 shows the performance comparison
between our approach and baseline methods, namely truncated versions of BERT, FinBERT, Longformer, Nys-
tromformer, and BigBird; TF-IDF for textual modeling with historic scores, and linear regression for numerical
modeling. In ive out of eight metrics, FETILDA w/ LMs with our framework outperform other methods, with
FETIDA w/Longformer [4] performing the best in two metrics, and FETILDA w/BERT and FinBERT performing
the best in the other three metrics. Longformer truncate and BigBird truncate, both with a window size of 4, 096,
performed best on two of the metrics, demonstrating the beneits of a larger context size. The Item 1A section is
generally a shorter document, as shown in Table 2, and FETILDA is designed for long documents, so when our
framework trains on this corpus, it may sufer from the uneven spread of attention due to the document-level
attention pooling focusing on a few select chunks while ignoring the rest, as demonstrated in the case study
analysis below (see Section 4.6.2).

Table 5 also shows the comparisons between applying FETILDA with LMs and using LMs directly in truncate
mode. As for the shorter window size models, namely BERT and FinBERT, when applied in FETILDA, these
LMs performed better in a majority of metrics compared to using the it directly in truncate mode, with BERT
performing better in FETILDA for all metrics compared to BERT in truncate mode. As for longer window size
LMs, namely, Longformer and Nystromformer, we can observe that for the majority of the metrics, our framework
is again able to deliver extra performance on longer window LMs for long documents. Finally, even for these
shorter documents, using all of the chunks via the FETILDA approach results in the best performing model on
ive out of eight metrics, and a second best on the remaining three metrics.

4.5 Algorithmic Choices

Having shown the efectiveness of our FETILDA framework, we now present some results to justify some of the
algorithmic choices, such as which document-level pooling strategy and which chunk-level pooling strategy
does the best, and which FinBERT model performs the best.

4.5.1 Efectiveness of Document-level Atention Pooling. As elaborated in Subsection 3.3, in the FETILDA frame-
work, our approach to generating a document-level embedding from chunk-level embeddings is to pool them
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together using a Bi-LSTM layer with self attention. In this way, each chunk is weighted by its importance and
aggregated together. To showcase the efectiveness of this approach on a large corpus of long documents, we
performed three sets of additional experiments on the FIN10K dataset: i) truncating the document, so that we
use only the irst chunk of every document, ii) mean-pooling and iii) max-pooling the chunks together into one
document-level embedding. As we can see in Table 6, compared to these three simpler approaches, the advantage
and gains in using our document-level attention pooling approach are evident. Moreover, we can observe that
mean-pooling all the chunks together even performs slightly worse than just using the irst chunk of every
document. This means that our attention-based pooling approach efectively captures information from all the
chunks, whereas simpler pooling methods are not able to do so.

Table 6. Document level atention pooling: MSE results on FETILDA w/FinBERT (fully unfrozen) variants. Best results in

bold.

Model\Year 2001 2002 2003 2004 2005 2006 Average
FETILDA w/FinBERT (Bi-LSTM + Self Attention) 0.123321 0.108134 0.172562 0.106124 0.090766 0.088401 0.114885

FETILDA w/FinBERT (Only Using First Chunk) 0.123174 0.108862 0.187908 0.117288 0.098827 0.094146 0.121701
FETILDA w/FinBERT (Mean-Pooling Chunks) 0.122950 0.108655 0.187268 0.116554 0.098074 0.093308 0.121135
FETILDA w/FinBERT (Max-Pooling Chunks) 0.122072 0.108241 0.186018 0.115826 0.097591 0.092913 0.120444

4.5.2 Chunk-level Pooling Strategy. Recall that in subsection 3.2 we outlined several chunk-level pooling strategies
to create the inal chunk embeddings. These include: (1) the default pooling method (default pooler output)
using the hidden state of the irst token of the last layer, (2) mean pooling method using the hidden states of the
second-to-last layer, (3) mean pooling method using the hidden states of the last four layers, (4) max pooling
method using the hidden states of the second-to-last layer, and (5) max pooling method using the hidden states
of the last four layers. In Table 7, we present the comparative MSE results for these alternatives on Item 7/7A for
predicting ROA. We observe that the default pooler output yields the best results for both validation and testing
datasets. We thus chose the default pooling method using the hidden state of irst token of the last layer, and this
is used for the diferent versions of FETILDA in our experiments above.

Table 7. A comparison of diferent chunk-level pooling methods.

Results\Methods Mean pooling Max pooling Default pooling
Second-to-last layer Last four layers Second-to-last layer Last four layers Last layer

Validation MSE 0.0011465 0.0012064 0.0011102 0.0011188 0.0010205

Testing MSE 0.0008547 0.0008221 0.0007686 0.0008820 0.0007458

4.5.3 FinBERT Variants. As discussed in related work, there are four diferent FinBERT approaches proposed
recently. Out of these, the implementation for Liu et. al FinBERT [23] is not publicly available. We therefore
compare the three FinBERT implementations that are available: Araci [3], DeSola [9], and Huang et al. [16]. Table
8 shows the MSE results when predicting ROA using both textual data from Item 7/7A and numeric historic data
(using a learning rate of 0.001) for the US Banks dataset. The results show that Huang et al. implementation
results in the best performance. We thus choose the Huang et. al FinBERT [16] as the underlying FinBERT model
for FETILDA. Recall that this FinBERT model was pre-trained on a very huge inancial corpus containing 10-K
and 10-Q reports, earnings call transcripts, and analyst reports.
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Table 8. A comparison of three diferent models of FinBERT.

Results\Models Araci[3] DeSola et al.[9] Huang et al.[16]
Validation loss 0.0011482 0.0010539 0.0010205

Testing error 0.0007781 0.0008682 0.0007458

4.6 ualitative Analysis and Case Study

4.6.1 Sentence Sentiment and Document-level Atention Pooling. To discover insights into the nature of the
contents in the 10-K reports we have trained on, we irst performed a sentiment analysis of the the sentences
contained in these documents, both in the FIN10K dataset and US Banks dataset, using the inbert-tone model
developed by Huang et al. [16]. This model was ine-tuned on 10,000 manually annotated (positive, negative,
neutral) sentences from analyst reports, and classiies a given sentence with one of these 3 labels with a score
between 0 and 1. Tables 9 and 10 show the results of this analysis. As we can see, in the Item 7 section of 10-K
reports, which forms the entirety of the training data for the FIN10K experiments and one portion of the training
data for the US Banks experiments, the majority of sentences, around 70% to 75%, are all neutral sentences, with
over 90% conidence (i.e., the average score value) from the classiier. This indicates that the majority of the
textual content that we are training on is neutral content. Only around 10% to 15% of the sentences are negative,
and a smaller percentage of sentences are positive. And in the Item 1A section of 10-K reports in the US Banks
dataset, which is a shorter type of document focusing on risk factors, over half of the sentences are neutral, with
around 40% of the sentences negative and a small percentage of sentences positive. This brings up the question
of what the model will decide to focus on when making quantitative predictions, that is, whether attention will
be paid mostly to neutral sentences, or sentences that indicate some sort of positive or negative sentiment. We
explore this more in Section 4.6.2.
We also examined the chunk attention weights in the document-level attention pooling phase (see Section

3.3). Since this phase evaluates diferent chunks based on their importance and weighs the tokens in each chunk
accordingly, the process can afect which parts of the document the model ends up focusing on to capture
signals from, in order to make predictions. We decided to focus on the FIN10K dataset for this analysis as it is a
larger dataset, which can produce more representative conclusions. In examining documents where FETILDA
w/FinBERT did not perform well, we discovered that on account of the shortness of the document, the chunk
attention weights focused on one of the chunks with a very high weight, and on others with very low weights,
and some chunks even had zero weight. This was due to the fact that some chunks had mundane regulatory
content or padding at the end, but they also contained sentences that could be of importance to volatility change.
It was evident in this case that much of the information contained in the less weighed chunks was lost.
This led us to further investigate the relationship between the length of the document and the entropy of

the chunk attention weights, and how much this factor leads to information loss that afects performance. We
therefore calculated the entropy of all the chunk attention weights produced after training. Given a list of chunk
attention weights {�1, �2, ..., ��} (see Section 3.3) for document � , which all sum up to 1 since they are the result
of a softmax function, the chunk entropy is given as:

� = −

�︁

�=1

�� log(�� ) (10)

Higher entropy would mean that the weights are more spread out, giving attention to each chunk more evenly,
and lower entropy would mean that the weights are skewed, giving attention to few chunks while ignoring the
rest.
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Table 9. A sentiment analysis of documents from the FIN10K dataset.

1996-2000 2001 2002 2003 2004 2005 2006
Number of neutral sentences 969556 252398 396105 691779 734407 752487 701754

Percentage of neutral sentences 75.1% 75.5% 76.7% 78.0% 76.7% 77.3% 79.4%
Neutral average score 0.969249 0.967979 0.969975 0.971859 0.970663 0.971246 0.973817

Number of positive sentences 155546 34816 41887 68310 88937 94444 91481
Percentage of positive sentences 12.0% 10.4% 8.1% 7.7% 9.3% 9.7% 10.3%

Positive average score 0.931751 0.928670 0.927051 0.927983 0.935404 0.937857 0.940044
Number of negative sentences 166200 46983 78609 127057 133900 126587 90814

Percentage of negative sentences 12.9% 14.1% 15.2% 14.3% 14.0% 13.0% 10.3%
Negative average score 0.924655 0.920516 0.921983 0.921626 0.919780 0.917041 0.913382

Table 10. A sentiment analysis of documents from the US Banks dataset.

Item 7 Item 1A
Number of neutral sentences 977863 216876

Percentage of neutral sentences 79.9% 52.6%
Neutral average score 0.971906 0.945267

Number of positive sentences 129278 14170
Percentage of positive sentences 10.6% 3.4%

Positive average score 0.923350 0.892079
Number of negative sentences 116839 181097

Percentage of negative sentences 9.5% 43.9%
Negative average score 0.909770 0.944259

Fig. 5. Entropies of chunk atention weights produced by FETILDA w/FinBERT ater training on the FIN10K dataset.

Figure 5 shows a histogram of the results. Overall, the entropies ranged between 0 and 3.5, and though we see a
rough normal distribution for the majority of documents, a signiicant portion of the documents had low entropies
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between 0 and 0.5. For these documents, the chunk attention focuses only on a single or a few chunks. To examine
the implications of this further, we divided the training set into 7 buckets based on the chunk entropy value, and
calculated their respective average document lengths and the mean training losses (in terms of MSE), as shown
in Table 11. As we can observe, the length of the document has a proportional relationship with the entropy
of the chunk attention weights, which in turn has an inverse relationship with the MSE loss (or proportional
relationship with model performance). The longer documents have higher entropies, and the shorter documents
have lower entropies. In turn, lower entropy documents have worse performance, producing higher losses, and
higher entropy documents have better performance, producing lower losses.

Table 11. An analysis of chunk entropies produced by FETILDA w/FinBERT on the FIN10K.

Number of documents Average document length Mean training loss (MSE)
Entropy within [0.0, 0.5] 1343 1893.3 0.281587
Entropy within [0.5, 1.0] 1116 2792.5 0.247949
Entropy within [1.0, 1.5] 1273 3594.5 0.221757
Entropy within [1.5, 2.0] 1299 4746.3 0.177632
Entropy within [2.0, 2.5] 991 6478.5 0.171708
Entropy within [2.5, 3.0] 566 9187.0 0.181916
Entropy within [3.0, 3.5] 374 14200.0 0.148555

From this analysis, we conclude that our approach performs better on longer documents than on shorter
documents, because its document-level attention pooling weighs chunks more evenly in longer documents than
in shorter documents. This makes sense, as our approach is designed for long documents, and in the training
process, documents of varying lengths are fed to the framework, resulting in a generalized model that performs
well on long documents. Therefore, to handle shorter documents, a corpus could be divided into several buckets
based on document length, and separate models can be trained on diferent buckets of documents, which can
ine-tune each model more speciically tailored to the document length. This is part of future investigation.

4.6.2 Case Study Analysis. In order to gain insights into what our most efective model, FETILDA w/FinBERT,
learned from the FIN10K dataset, we designed a method to extract the łimportantž sentences learned from the
data. For a given document, we rated the łimportancež of each unique word in the following way. For a given
word-token �� that appears in chunk � of size �, we sum up the attention scores it gets from all other words in
the chunk, that is, how much attention it was paid to when querying each word in the chunk. Thereafter, we
take the weight �� that has been given to chunk � by the self-attention mechanism detailed in Section 3.3, which
determines how łimportantž each chunk is, and multiply it with the sum above to get the inal score for this
instance of �� , given as follows:

� (�� ) = ��

�︁

�=1

� ��

where � �� is the attention that �� gets from token � � (in the given chuck �). Next, for each sentence, we aggregate
the scores of each word together into a sentence attention score by averaging them over the length of the sentence.
Using this approach, we generated the top 30 sentences based on their attention score, from a document

that our method performed well on in the year that it performed best on, namely the 10-K report of Microtune

Inc. in 2006, and a document that it performed poorly on in the year that it performed worst on, namely the
10-K report of Federal Screw Works in 2003, in terms of squared error when predicting price log volatility. Some
examples sentences are shown in Table 12. Looking at these sentences, we can see a clear diference. For the
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good performance case, the top sentences were more informative to the company’s future prospects, whereas for
the bad performance case, the top sentences were more mundane accounting-related sentences.

Microtune Inc., 2006: Good Performance Federal ScrewWorks, 2003: Poor Perfor-

mance

łFurther, several existing and potential customers
have substantial internal technological capabil-
ities and could develop products internally that
compete with or replace our products.ž

łThe decrease resulted primarily from a decrease
in inventories.ž

łA decision by any of our signiicant customers to
internally design and manufacture products that
compete with our products could have a material
adverse efect on our business and results of oper-
ations.ž

łSales price increases in each of these years were
insigniicant.ž

łWe believe that our future results of operations
will continue to depend on the success of our
largest customers, on our ability to sell existing
and new products to these customers in signii-
cant quantities.ž

łCritical accounting policies the accompanying
inancial statements have been prepared in con-
formity with accounting principles.ž

łWe compete with, or may in the future compete
with, a number of major domestic and interna-
tional suppliers of integrated circuit and system
modules in the cable, digital TV and automotive
markets.ž

łIn an efort to increase the plan assets of the
qualiied pension plans, the company contributed
$2,850,000 to the plans’ funding in the fourth
quarter of iscal 2003.ž

łOur international operations, including our op-
erations in Germany, Taiwan, Japan, China and
Korea, the operations of our international sup-
pliers and our overall inancial results may be
adversely afected by events that occur in or oth-
erwise afect these countries.ž

łAccordingly, in the fourth quarter of iscal 2003,
the company recorded a non-cash charge of
$5,080,000, after-tax, related to the additional
minimum liability for certain underfunded pen-
sion plans which increased accumulated other
comprehensive loss in shareholders’ equity.ž

łWe cannot assure you that any acquisition or
joint venture will be successfully integrated with
our operations and the failure to avoid these or
other risks associated with such acquisitions or
investments could have a material adverse efect
on our business, inancial condition and results of
operations.ž

łInventories were reduced to relect lower de-
mand from our automotive customers and also
to relect the elimination of strike banks required
earlier but no longer necessary with the signing
of a new four year contract with the employees
of our Romulus division efective February 1,
2003.ž

łMany of these technologies compete efectively
with cable modem and cable telephony services
and do not require RF tuners like the ones that
we sell.ž

łFurther, the charge did not impact net income,
and will reverse should the fair value of the pen-
sion plans’ assets again exceed the accumulated
beneit obligations at March 31, 2004.ž

Table 12. Examples of top atention sentences from the 10-K report of Microtune Inc. in 2006 (good performance) and

Federal Screw Works in 2003 (poor performance), from the FIN10K dataset, using FETILDA w/FinBERT.
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Table 13. A sentiment analysis of top 30 key sentences generated by FETILDA w/FinBERT from the 10-K reports of Micro-

tune Inc. in 2006 and Federal Screw Works in 2003, for the FIN10K dataset.

Microtune Inc., 2006 Federal Screw Works, 2003
Number of neutral sentences 19 27
Neutral average score 0.957843 0.983552
Number of positive sentences 3 1
Positive average score 0.858830 0.618559
Number of negative sentences 8 2
Negative average score 0.935866 0.863191

To analyze these sentences more objectively, we applied sentiment analysis using the inbert-tone model
developed by Huang et al. [16]. Table 13 shows the general statistics from the result of this sentiment analysis.
In both cases, as a matter of course, a good number of neutral sentences garnered attention, since most of the
10-K reports are neutral sentences that are part of mundane regulatory ilings. In the case of good performance
for Microtune, Inc., 2006, attention was paid more to negative sentences that are classiied to be negative with a
high score, and some attention was paid to positive sentences that are classiied to be positive with a medium
score, but in the case of bad performance for Federal Screw Works, 2003, we see that attention was paid mostly to
neutral sentences that are classiied to be neutral with a very high score, and to just two negative sentences with
a medium score, and to one positive sentence with a low score. Thus, for better performance, it is important for
the attention in the framework to focus on the key parts of the document that are indicative of future trends.

We further analyze the sentiment of all the sentences in both documents, as well as the document lengths and
how that afects the entropy of the chunk attention weights produced in the document-level attention pooling
stage. Tables 14 and 15 show the results of our analyses. Overall, the good performance document is about 10
times the length as the bad performance document, and contains more sentiment-bearing sentences both in terms
of sentence count and percentage, which resulted in a big discrepancy in the entropies of their respective chunk
attention weights. This means that the model focused on just select parts of the bad performance document that
were mostly neutral, while focusing on each part of the good performance document more evenly. As a result,
the testing loss was much higher in the shorter document than the longer one.

Table 14. A sentiment analysis of all the sentences from the 10-K reports of Microtune Inc. in 2006 and Federal Screw

Works in 2003, from the FIN10K dataset.

Microtune Inc., 2006 Federal Screw Works, 2003
Number of neutral sentences 540 75

Percentage of neutral sentences 70.6% 79.8%
Neutral average score 0.957420 0.976197

Number of positive sentences 47 7
Percentage of positive sentences 6.1% 7.4%

Positive average score 0.914375 0.977220
Number of negative sentences 178 12

Percentage of negative sentences 23.3% 12.8%
Negative average score 0.932533 0.921442
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Table 15. An entropy analysis of the chunk atention weights generated by FETILDA w/FinBERT from the 10-K reports of

Microtune Inc. in 2006 and Federal Screw Works in 2003, from the FIN10K dataset.

Document length Entropy of chunk attention weights Testing loss (squared error)
Microtune Inc., 2006 24172 3.094900 0.029381

Federal Screw Works, 2003 2587 0.495800 0.441628

5 CONCLUSIONS

In this paper, we examined the eicacy of various diferent types of language models using the FETILDA
framework in generating efective document embeddings for very long inancial text documents, such as 10-K
public disclosures to the SEC, for which just one section, such as Item 7/7A, contains over 12000 words on average.
In our extensive set of experiments, we applied FETILDA with various diferent language models to the task of
predicting eight diferent KPIs for US Bank performance, as well as stock volatility prediction for US companies
from FIN10K. Our approach is shown to outperform previous baselines, yielding SOTA results on the various
regression tasks for the two datasets used, thus testifying to the eicacy of language models in representing long
inancial documents. With the FIN10K dataset especially, we demonstrated quite evidently the signiicance of the
improvement we get from taking a domain-speciic LM such as FinBERT and ine-tuning it on our particular
downstream task. We show this not only by how much FETILDA with fully unfrozen FinBERT outperforms
the baseline methods, but also by how ine-tuning FinBERT through unfreezing all its layers during training
yields better performance than using the frozen pretrained embeddings that the LM produces. Our work also
shows that using the whole document via chunk attention outperforms the standard approach that truncates the
document to only one chunk, even over LMs that have large context windows.
Our work opens avenues for follow-on research. For example, while the contextual models in FETILDA can

learn more efective document representations compared to baselines like TF-IDF, there is still scope for more
improvement. One could consider learning even larger domain-speciic pre-trained models for inancial text,
with larger blocks (e.g., using Longformer or Nystromformer instead of BERT for pre-training). We also plan
to explore alternative approaches to learn better document representations. For example, instead of using the
entire text, we can focus on the most important words, phrases, and sentences (e.g., sentiment bearing elements
within the text). We can derive better chunk-level and document-level embeddings in this manner. How to
select these informative elements from text remains an open challenge. Another promising avenue is to leverage
domain-speciic generative models in inance, such as FinGPT [45], and study how we can utilize generative
approaches for textual regression tasks.
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