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We study the relationship between the dynamics of the action 
α of a discrete group G on a von Neumann algebra M , and 
structural properties of the associated crossed product inclu-
sion L(G) ⊆ M �α G, and its intermediate subalgebras. This 
continues a thread of research originating in classical struc-
tural results for ergodic actions of discrete, abelian groups 
on probability spaces. A key tool in the setting of a non-
commutative dynamical system is the set of quasinormalizers 
for an inclusion of von Neumann algebras. We show that the 
von Neumann algebra generated by the quasinormalizers cap-
tures analytical properties of the inclusion L(G) ⊆ M �α G
such as the Haagerup Approximation Property, and is essen-
tial to capturing “almost periodic” behavior in the underly-
ing dynamical system. Our von Neumann algebraic point of 
view yields a new description of the Furstenberg-Zimmer dis-
tal tower for an ergodic action on a probability space, and 
we establish new versions of the Furstenberg-Zimmer struc-
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ture theorem for general, tracial W ∗-dynamical systems. We 
present a number of examples contrasting the noncommuta-
tive and classical settings which also build on previous work 
concerning singular inclusions of finite von Neumann algebras.

© 2024 Elsevier Inc. All rights reserved.

1. Introduction

An ongoing thread of research in von Neumann algebras concerns the relationship 
between the structure of discrete groups and dynamical systems, and the structure of 
the von Neumann algebras they generate. A natural site for such questions is the crossed 
product construction, which arises from the action α of a discrete group G on a von 
Neumann algebra M ⊆ B(H). The crossed product M �α G is a von Neumann algebra 
on H ⊗ �2(G) which contains an isomorphic copy of M , as well as a copy of the von 
Neumann algebra L(G) generated by the left regular representation of G on �2(G). The 
inclusions M ⊆ M �α G and L(G) ⊆ M �α G are key to understanding the relationship 
between the structure of M �α G, the group G, and the group action.

The main results of this paper relate the dynamics of the action α to structural 
properties of the inclusion L(G) ⊆ M �α G and, more generally, inclusions of the form 
N�αG ⊆ M�αG with N ⊆ M . Interest in this area originated in the case where M is an 
abelian von Neumann algebra – in particular, the dynamics of an action on a probability 
space, in relation to the structure of the associated group-measure space construction. 
A principal object of interest at the von Neumann algebra level is the group of unitary 
normalizers of the inclusion, which has been shown to relate closely to the spectrum of 
the action. For an inclusion B ⊆ M of von Neumann algebras, the (unitary) normalizers
comprise the set N (B ⊆ M) = {u ∈ U(M) : uBu∗ = B}, a subgroup of the unitary 
group of M which generates a von Neumann algebra between B and M . The inclusion 
B ⊆ M is said to be singular if the generated von Neumann algebra N (B ⊆ M)′′ is 
equal to B, and regular if it is all of M .

An ergodic, measure-preserving action σ of a discrete, abelian group G on a probability 
space X produces a masa (maximal abelian subalgebra) L(G) in the crossed product 
L∞(X) �σ G. Nielsen [31] showed that this masa is singular if and only if the action is 
weak mixing. Packer [32] showed, more generally, that the von Neumann algebra of the 
normalizer of L(G) in L∞(X) �σ G is the intermediate subalgebra A0 �σ G, where A0 is 
the invariant subalgebra of L∞(X) generated by the eigenfunctions of σ. In particular, 
we have that A0 = L∞(X) (in which case the action is compact) if and only if the masa 
L(G) is regular (in this case it is called a Cartan subalgebra of L∞(X) �σ G).

Similar characterizations are known beyond the case of an abelian acting group, 
though the situation is more complicated. As part of a larger work on profinite actions, 
Ioana [24] showed that, for an ergodic action G �σ (X, μ), the von Neumann subalgebra 
L∞(Y ) �σ G ⊆ L∞(X) �σ G corresponding to the maximal compact quotient of the 
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action is generated by the set of quasinormalizers of L(G) in L∞(X) �σ G. These results 
were proved for countable groups and standard measure spaces. For an inclusion B ⊆ M

of von Neumann algebras, the set of quasinormalizers [33] is the collection QN (B ⊆ M)
of elements x ∈ M with the property that there exist x1, . . . , xn ∈ M such that

xB ⊆
∑
i

Bxi, and Bx ⊆
∑
i

xiB.

A more general object is the set QN (1)(B ⊆ M) of one-sided quasinormalizers. An 
element x ∈ M is a one-sided quasinormalizer of B if it satisfies the weaker condition 
that there exist y1, . . . , yn ∈ M such that

Bx ⊆
∑
i

yiB.

For a general inclusion B ⊆ M , the following relationship holds for the von Neumann 
algebras generated by normalizers and (one-sided) quasinormalizers:

N (B ⊆ M)′′ ⊆ QN (B ⊆ M)′′ ⊆ vN(QN (1)(B ⊆ M)).

In what follows, we will refer to these objects (respectively) as the normalizing algebra, 
the quasinormalizing algebra, and the one-sided quasinormalizing algebra for the inclu-
sion. They are generally not equal: an example of Grossman and the sixth named author 
[20] shows that the first inclusion may be proper; examples of Fang, Gao, and Smith [18]
show that the second may also be proper (we discuss these further in Section 3). How-
ever, when B is a masa, they coincide. Thus, Ioana’s result [24] coincides with Packer’s 
[32] when the acting group G is abelian. An alternative proof of the same result was 
obtained in [10] in the context of progress on an extended Neshveyev-Størmer rigidity 
conjecture.

This paper concerns analogous questions in the setting of a W ∗-dynamical system
(M, G, α, ρ), consisting of an ergodic action α of a (possibly uncountable) discrete group 
G on a von Neumann algebra M preserving a fixed, faithful, normal state ρ on M . As a 
starting point, in light of the results for abelian groups and von Neumann algebras, we 
consider two questions: first, whether the quasinormalizer (rather than the normalizer) 
for the inclusion L(G) ⊆ M �α G is necessary to capture the dynamics of the compact 
part of the action; second, whether results analogous to those of [24] mentioned above 
hold in this more general context. We answer both questions affirmatively, and explore 
numerous generalizations and applications. An outline of the paper and summary of the 
results follows.

Any quasinormalizer for a subalgebra B of a von Neumann algebra (N, ϕ) gives rise 
to a finitely generated B-module in L2(N, ϕ). Section 2 includes background and pre-
liminaries on W ∗-dynamical systems, and modules over finite von Neumann algebras.

Section 3 concerns the relationship between normalizers and quasinormalizers of the 
inclusion L(G) ⊆ M�αG. Theorem 3.6 describes an example which shows that the strict 
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analogue of Packer’s result for normalizers does not hold in this setting, by exhibiting an 
ergodic action σ of a group G on the hyperfinite II1 factor R which is not weak mixing, 
but for which the inclusion L(G) ⊆ R �σ G is singular. As a consequence, we build on 
results of Grossman and the sixth author on the relationship between singularity and 
the analytical properties of subfactor inclusions. Theorem 3.7 presents a basic structural 
result for normalizers of the inclusion L(G) ⊆ N �α G associated to a compact, ergodic 
action of an i.c.c. group on a tracial von Neumann algebra. We deduce from this a 
number of further examples in which we are able to compute the von Neumann algebras 
generated by normalizers and quasinormalizers, such as the situation of a profinite action 
of a discrete group on a probability space.

The main results of Section 4 extend Proposition 6.9 of [24] to ergodic W ∗-dynamical 
systems, and characterize quasinormalizers of subalgebras of L(G) in M �α G in terms 
of the dynamics of the underlying system (M, G, α, ρ). Although our approach to The-
orem A (stated below) is similar in outline to the one appearing in [24], our methods 
are different, since measure-theoretic tools are not available. Key tools from [4] and [5]
isolate the finite-dimensional invariant subspaces of the induced Koopman representa-
tion on L2(M, ρ) associated to the system, and the “compact quotient” in this setting is 
modeled by the K ronecker subalgebra MK , generated by elements of M with compact 
orbit under the group action.

Theorem A. Let M be a von Neumann algebra and ρ a normal, faithful state on M . 
Suppose that a discrete group G acts ergodically by ρ-preserving automorphisms on M . 
Then

QN (L(G) ⊆ M �α G)′′ = MK �α G.

The second part of Section 4 specializes to the case of a discrete group acting on a 
tracial von Neumann algebra (M, τ), in such a way that a von Neumann subalgebra N ⊆
M is left invariant. The associated system (N ⊆ M, G, α, τ) is called a W ∗-dynamical 
extension system, and we consider the dynamics of the action relative to the subalgebra 
N . In this case, the subspace PN,M of relatively almost periodic elements of M (see 
Definition 4.9) captures the quasinormalizer of the inclusion N �αG ⊆ M �αG in terms 
of the dynamics of the action.

Theorem B. Let (N ⊆ M, G, σ, τ) be a W ∗-dynamical extension system and assume that 
QN (N ⊆ M)′′ = M . Then N ⊆ PN,M ⊆ M is a G-invariant von Neumann subalgebra 
and vN(QN (1)(N �σ G ⊆ M �σ G)) = PN,M �σ G.

In the final part of Section 4, we apply these methods to present several von Neumann 
algebraic versions of the Furstenberg-Zimmer structure theorem for actions of groups on 
probability spaces [19,46], including the following result.
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Theorem C. Let (N ⊆ M, G, σ, τ) be a W ∗-dynamical extension system. Then one can 
find an ordinal α and a G-invariant von Neumann subalgebra N ⊆ Qβ ⊆ M for every 
β � α satisfying the following properties:

1. For all β � β′ � α we have N = Qo ⊆ Qβ ⊆ Qβ′ ⊆ M .
2. For every successor ordinal β + 1 � α we have Qβ+1 = P ′′

Qβ ,M
and

vN(QN (1)(Qβ �σ G ⊆ M �σ G)) ⊆ Qβ+1 �σ G.

3. For every limit ordinal β � α we have ∪γ<βQγ
SOT = Qβ and ∪γ<βQγ �σ G

SOT =
Qβ �σ G.

4. There are nets (gλ)λ ⊆ G and (uλ)λ ⊆ U(Qα) such that for every nonzero x, y ∈
M �Qα we have

lim
λ

‖EQα
(xuλσgλ(y))‖2 = 0.

As a consequence, we obtain the following purely von Neumann algebraic description 
of the classical Furstenberg-Zimmer tower, using quasinormalizers and relatively almost 
periodic elements, recapturing a previously unpublished result [15] of the third-named 
author and Peterson.

Theorem D ([15]). Let G 
σ
� X be a probability measure-preserving (p.m.p. in the sequel) 

ergodic action of a countable discrete group G on a standard probability space X and let 
(G 

σ
� Xβ)β�α be the corresponding Furstenberg-Zimmer tower. Let M = L∞(X) �σ G

and Mβ = L∞(Xβ) �σ G be the corresponding crossed product von Neumann algebras. 
Then the following hold:

1. For all β � β′ � α we have the following inclusions L(G) = Mo ⊆ Mβ ⊆ Mβ′ ⊆
Mα ⊆ M .

2. For every successor ordinal β + 1 � α we have that vN(QN (1)(Mβ ⊆ M)) =
QN (Mβ ⊆ M)′′ = Mβ+1. Moreover, there is a sequence (gβn)n ⊆ G such that for 
every x, y ∈ L∞(X) � L∞(Xβ+1) we have

lim
n→∞

‖EL∞(Xβ)(xσgβ
n
(y))‖2 = 0.

3. For every limit ordinal β � α we have ∪γ<βL∞(Xγ)
SOT

= L∞(Xβ) and also 

∪γ<βMγ
SOT = Mβ.

4. There is an infinite sequence (gn)n ⊆ G such that for every nonzero x, y ∈ L∞(X) �
L∞(Xα) we have

lim ‖EL∞(Yα)(xσgn(y))‖2 = 0.

n→∞
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In Section 5 we turn to analytical properties of the inclusion L(G) ⊆ M �α G. Here, 
we assume the group G acts compactly and ergodically on a finite von Neumann alge-
bra (M, τ), preserving the trace. The Haagerup approximation property for finite von 
Neumann algebras was developed in [16] as a counterpart to the Haagerup property 
for groups [21]. The two properties weaken the notion of amenability for von Neumann 
algebras and discrete groups, respectively, and encompass many more useful examples, 
including free groups and their associated von Neumann algebras. It was shown in [16]
that a (countable) discrete group G has the Haagerup property if and only if L(G) satis-
fies the von Neumann algebraic version. A relative version of the Haagerup property for 
inclusions B ⊆ N of finite von Neumann algebras first appeared in [6] and has been em-
ployed extensively, for instance, in Popa’s celebrated results on the class of HT algebras 
[33]. Notably, the relative Haagerup property for an inclusion B ⊆ N is not a weakening 
of relative amenability; there are examples of inclusions for which the latter condition 
holds, but not the former [8]. Our main result in Section 5 builds on the methods and 
results of Section 4 to show that in the above setting, the relative Haagerup property 
for the inclusion L(G) ⊆ M �α G encodes the dynamics of the group action.

Theorem E. If G is a discrete group and (M, G, α, τ) an ergodic, trace-preserving W ∗-
dynamical system, then L(G) ⊆ M �α G has the relative Haagerup property if and only 
if the action α is compact.

Theorem E combines with Theorem A to establish a fully general noncommutative 
analogue of Proposition 6.9 of [24]. The same main tools from [4] and [5] are employed 
in the proof; versions of those results suitable for our purposes are stated in Lemmas 5.5
and 5.7.

Remark 1.1. During the preparation of this paper, the authors became aware of the 
preprint [26] which has some overlap in subject matter. Although there is some overlap 
in techniques between that note and this one (e.g., the authors develop some variations 
on the methods in [4] and [5]), there is little overlap in the results.

2. Background and preliminaries

We recall in this section basic facts about von Neumann algebras, W ∗-dynamical 
systems and extension systems, and modules over finite von Neumann algebras to be 
used in the sequel (the reader may consult the books [2], [42], [44] for further details). 
Let N be a von Neumann algebra and ϕ a normal, faithful state on N . The centralizer
of ϕ is the von Neumann subalgebra Nϕ = {x ∈ N : ϕ(xn) = ϕ(nx), n ∈ N} of N . Note 
that the restriction of ϕ to Nϕ is a trace, so Nϕ is a finite von Neumann algebra. We 
denote the GNS space associated to ϕ by L2(N, ϕ) (or, simply, L2(N) when the context 
is clear), and the canonical cyclic and separating vector in L2(N, ϕ) by Ωϕ (or leave 
off the subscript when context allows). When N is in standard form on L2(N, ϕ), the 
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embedding x �→ xΩϕ induces a norm on N which we denote by ‖·‖2. There also exists a 
conjugate linear isometry J on L2(N, ϕ), which is the polar part of the preclosed map 
xΩϕ �→ x∗Ωϕ, and satisfies N ′ = JNJ .

2.1. W ∗-dynamical systems

A W ∗-dynamical system (or, simply, a system) is a quadruple (M, G, α, ρ) consisting 
of a von Neumann algebra M with a normal, faithful state ρ : M → C (i.e. M is σ-
finite), together with a strongly continuous action α of a locally compact group G on M
by ρ-preserving automorphisms. In this paper, the group G will always be assumed to 
be discrete (possibly uncountable). Since we will often make reference to the following 
well-known concepts, we remind the reader of their definitions.

Definition 2.1.

(i) A system is said to be ergodic if the scalar multiples of the identity are the only 
elements of M fixed by αg, g ∈ G.

(ii) A system is compact if for any x ∈ M , the orbit Orb(x) = {αg(x) : g ∈ G} has 
compact closure in the ‖·‖2-norm.

(iii) A system in which the action α of a discrete group G on a von Neumann algebra 
M leaves a von Neumann subalgebra N ⊆ M (globally) invariant will be called a 
W ∗-dynamical extension system (or, simply, an extension system) and denoted by 
a quadruple (N ⊆ M, G, α, ρ).

If (M, G, α, ρ) is a system with M in standard form on L2(M, ρ), there is a faithful, 
normal representation π of M on L2(M, ρ) ⊗ �2(G), given by

π(x)(ξ ⊗ δh) = α−1
h (x)ξ ⊗ δh, ξ ∈ L2(M,ρ), h ∈ G,

and a unitary representation u of G on L2(M, ρ) ⊗ �2(G), given by

ug(ξ ⊗ δh) = ξ ⊗ δgh, ξ ∈ L2(M,ρ), h ∈ G.

Note that for g ∈ G and x ∈ M we have the relation

ugπ(x)u∗
g = π(αg(x)).

The von Neumann algebra on L2(M, ρ) ⊗ �2(G) generated by π and u is known as the 
crossed product, and is denoted by M �αG. The crossed product is the w∗-closure of the 
∗-algebra of finite linear combinations of operators of the form π(x)uh, x ∈ M , h ∈ G, 
which we will denote by xuh for brevity. The functional ρ̂ defined on finitely nonzero 
sums by
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ρ̂(
∑
g∈G

xgug) = ρ(xe) (2.1.1)

extends to a normal, faithful state on M �αG. It follows from this construction that the 
GNS space L2(M �αG, ̂ρ) is isomorphic to L2(M, ρ) ⊗�2(G), and that both M and L(G)
are (unital) von Neumann subalgebras of M �α G. Note in particular that G-invariance 
of ρ implies that the centralizer of ρ̂ in M �α G contains L(G).

An essential tool for investigating the inclusion L(G) ⊆ M �α G is Jones’s ba-
sic construction. In this setting, it is the von Neumann subalgebra 

〈
M �α G, eL(G)

〉
of B(L2(M �α G, ̂ρ)) generated by M �α G and the orthogonal projection eL(G) :
L2(M �α G, ̂ρ) → L2(L(G)). It can be shown that 

〈
M �α G, eL(G)

〉
= (JL(G)J)′, i.e., 〈

M �α G, eL(G)
〉

consists of operators T ∈ B(L2(M �α G, ̂ρ)) that commute with the 
right action of L(G) on L2(M�αG, ̂ρ). It follows that the projections in 

〈
M �α G, eL(G)

〉
are in bijective correspondence with the right L(G)-submodules of L2(M �α G, ̂ρ).

2.2. Modules over finite von Neumann algebras

We recall here some basic facts about modules over finite von Neumann algebras, to 
be used in the sequel. Let N be a finite von Neumann algebra, with a fixed faithful 
normal trace τ . A left (respectively, right) N -module is a Hilbert space H, paired with 
a normal, unital homomorphism (respectively, anti-homomorphism) π of N into B(H). 
This note will focus primarily on right modules. If (H, π) is a right N -module, then there 
exist a set S, a projection p ∈ B(�2(S))⊗N , and a unitary U : H → p(�2(S) ⊗ L2(N))
which intertwines π with the representation I ⊗ JNJ of JNJ on p(�2(S) ⊗ L2(N)), so 
the two spaces are isomorphic as N -modules. This is proved in [2, Proposition 8.2.2] for 
separable left N -modules where S can be taken to be N, and has an easy extension to 
the general case, as noted in the footnote on [2, p. 124].

If (H, π) is a right N -module, for x ∈ N and η ∈ H, we simply denote π(x)η by ηx. 
Any element ξ ∈ H gives rise to an (possibly unbounded) operator Lξ : L2(N) → H, 
defined on the dense subspace NΩ by Lξ(xΩ) = ξx. If Lξ extends to a bounded operator, 
that is, there is some C > 0 such that ‖ξn‖ � C ‖n‖2 for all n ∈ N , then the vector ξ
is said to be left-bounded. The set H0 of left-bounded vectors of H is a dense subspace 
of H. Moreover, for any ξ, η ∈ H0, the operator L∗

ξLη ∈ B(L2(N)) commutes with the 
right action of N on L2(N), so defines an element of N itself. In this way, H0 is endowed 
with an N -valued inner product, given by 〈ξ, η〉 = L∗

ξLη, with the additional property 
that L∗

ξ(η) = 〈ξ, η〉Ω for any ξ, η ∈ H0.
A right N -module H is said to be finitely generated if there exist ξ1, . . . , ξn ∈ H such 

that H is the closure of 
∑

i ξiN . A Gram-Schmidt argument shows that, in this case, the 
ξi may be taken to be left-bounded vectors which are orthonormal with respect to the N -
valued inner product. That is, if H is finitely generated, then there exist η1, . . . , ηn ∈ H0

such that H =
∑

i ηiN , and for each i, j we have 〈ηi, ηj〉 = δijpj for some projection 
pj ∈ N . It follows that any ζ ∈ H0 may be expressed uniquely as a Fourier series over 
N by
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ζ =
∑
i

ηi 〈ηi, ζ〉 .

The above identification of right N -modules with subspaces of �2(S) ⊗ L2(N) maps 
the finitely generated right N -modules to those of the form p(�2(S) ⊗ L2(N)), where 
p ∈ B(�2(S))⊗N has the form ⊕n

k=1qk, for projections q1, . . . , qn ∈ N . An immediate 
consequence of this, which we will use implicitly in what follows, is that submodules of 
finitely generated modules are also finitely generated.

For further use, we continue by recalling a result on finitely generated bimodules from 
[18, Lemma 3.4] which, in turn, was inspired by [33, Theorem 1.4.2].

Theorem 2.2 ([18]). Let N ⊆ (M, τ) be an inclusion of tracial von Neumann algebras. 
Suppose that H ⊆ L2(M) is an N -bimodule, and that H is a finitely generated right 
N -module with an orthonormal basis of length k. Let PH be the orthogonal projection 
of L2(M) onto H. Then there exists a sequence of projections zn ∈ N ′ ∩ M such that 
limn→∞ zn = 1 in SOT and for each n there exist finitely many elements xn,1, . . . , xn,k ∈
M that are N -orthogonal and satisfy

znPHzn(xΩ) =
k∑

i=1
xn,iEN (x∗

n,ix)Ω, for all x ∈ M.

Next we highlight a consequence of Theorem 2.2 which is needed in the sequel. For 
the reader’s convenience we include a complete proof.

Theorem 2.3. Let N ⊆ (M, τ) be an inclusion of tracial von Neumann algebras. Suppose 
that H ⊆ L2(M) is an N -bimodule that is finitely generated as a right N -module. Let 
ξ1, . . . , ξn ∈ H. Then for every ε > 0 there are η1, . . . , ηn ∈ M with ‖ξi − ηi‖2 < ε

16
for all 1 � i � n together with N -orthogonal elements x1, . . . , xk ∈ M such that for all 
ai, bi ∈ (N)1 with 1 � i � n we have

‖
∑
i

aiξibi −
∑
i,j

xjEN (x∗
jaiηibi)‖2 � ε. (2.2.1)

Moreover, for every ζ ∈ M we have

‖
∑
i

xiEN (x∗
i ζ)‖2 � ‖ζ‖2. (2.2.2)

If ξi ∈ M ∩ H then we can take ηi = ξi above. In particular, this holds for every 
ξ ∈ QN (1)(N ⊆ M).

Proof. Let ηi ∈ M be such that ‖ξi − ηi‖2 < ε
16n so that ‖ηi − PH(ηi)‖2 < ε

8n . By 
Theorem 2.2 one can find a sequence of projections zl ∈ N ′∩M such that zl → 1 in SOT 
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and for every l there exist N -orthogonal elements xs
l ∈ M for 1 � s � j (j depending 

on the length of orthonormal basis of H) such that for all η ∈ M we have

zlPHzl(η) =
∑
s

xs
lEN ((xs

l )∗η). (2.2.3)

Since zl → 1 in SOT we have that PH − zlPHzl → 0 in SOT as l → ∞. Thus there is l
large enough such that we have ‖PH(ηi) −zlPHzl(ηi)‖2 � ε

8n for all i. For every a, b ∈ N

and ξ0 ∈ L2(M) we have PH(aξ0b) = aPH(ξ0)b and since zl ∈ N ′ ∩ M we also have 
zlPHzl(aξ0b) = azlPHzl(ξ0)b. Thus we conclude that for all ai, bi ∈ (N)1 with 1 � i � n

we have

‖
∑
i

aiξibi − zlPHzl

(∑
i

aiξibi

)
‖2 �

∑
i

‖aiξibi − zlPHzl(aiξibi)‖2

�
∑
i

(
2‖ξi − ηi‖2 + ‖PH(aiηibi) − zlPHzl(aiηibi)‖2 + ε

8n

)
� ε

4 +
∑
i

‖PH(ηi) − zlPHzl(ηi)‖2 � ε

4 + ε

8 � ε

2 .

Combining this with (2.2.3) we get (2.2.1). Also notice that (2.2.3) gives (2.2.2).
When ξi ∈ M we can obviously take ηi = ξi. When ξ ∈ QN (1)(N ⊆ M) one can find 

y1, . . . , yj ∈ M such that Nξ ⊆
∑

i yiN . Letting H to be the linear closure of NξN we 
see that H is an N -bimodule that is finitely generated as a right N -module. Then the 
conclusion follows from the previous part. �

We conclude this section with some remarks on right modules arising in the setting 
of crossed products. Let (M, G, ρ, α) be a W ∗-dynamical system, and denote by M �αG

the associated crossed product. Then the GNS space L2(M �αG, ̂ρ) (where ρ̂ is the state 
defined in Equation (2.1.1)) is a right L(G)-module, which may be identified with the 
right L(G)-module �2(G) ⊗ L2(M, ρ), via the isomorphism which extends

mgΩρ̂ �−→ δg ⊗mΩρ, m ∈ M, g ∈ G.

Then any η ∈ L2(M �α G, ̂ρ) may be expressed as a function g �→ η(g) ∈ L2(M, ρ), with ∑
g∈G ‖η(g)‖2

2 < ∞. Likewise, any x ∈ L(G) may be expressed as a square-summable 
sequence (βh)h∈G. Under this identification, the right action of L(G) on L2(M �α G, ̂ρ)
is given by the convolution formula

(ηx)(h) =
∑
k∈G

βk−1hη(k). (2.2.4)

We will use this identification and convolution formula in our investigation of submodules 
of L2(M �α G, ̂ρ) in Section 4.
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3. Normalizers and quasinormalizers of L(G) ⊆ M �α G

In this section, we present several classes of examples of actions α of a discrete group G
on a von Neumann algebra M for which L(G) is singular in the crossed product M �αG, 
while nontrivial quasinormalizers of L(G) exist (see Theorem 3.6 and Corollary 3.10). 
These results accomplish two goals. First, they show that unitary normalizers in the 
associated crossed product are not sufficient to capture the dynamics of such an action, 
so the precise statements of the results of Nielsen, [31], and Packer, [32], which inspired 
this work do not hold in this setting. Second, they expand a collection of examples 
introduced in [20] of inclusions of von Neumann algebras which are singular, but do not 
satisfy the weak asymptotic homomorphism property. Recall the following definition.

Definition 3.1. An inclusion B ⊆ M of finite von Neumann algebras, with conditional ex-
pectation EB : M → B, satisfies the weak asymptotic homomorphism property (WAHP)
if there is a net (uλ)λ of unitaries in B such that for any x, y ∈ M ,

‖EB(xuλy) −EB(x)uλEB(y)‖2 → 0.

The WAHP was introduced in [40], where it was shown that any inclusion satisfying 
the WAHP is singular. This property has been useful in constructing examples of singular 
inclusions, as singularity is generally hard to verify using the definition. The WAHP is 
known to be equivalent to singularity of B ⊆ M when B is a masa [43]. By contrast, 
Grossman and Wiggins [20] produced inclusions N ⊆ M of II1 factors which are singular, 
but do not satisfy the WAHP. These inclusions had finite Jones index; they showed, more 
generally, that no finite index inclusions satisfy the WAHP.

A more general version of the WAHP has been useful in the study of one-sided quasi-
normalizers. Specifically, a triple inclusion B ⊆ N ⊆ M of finite von Neumann algebras 
satisfies the relative WAHP if there is a net (uλ)λ of unitaries in B such that for any 
x, y ∈ M ,

‖EB(xuλy) −EB(EN (x)uλEN (y))‖2 → 0.

It is well-known that if B ⊆ N ⊆ M satisfies the relative WAHP then N absorbs all one-
sided quasinormalizers of B in M . In [18, Theorem 3.1] a converse result was established 
which asserts, essentially, that this analytic property characterizes the von Neumann 
algebra generated by the one-sided quasinormalizers of B.

Theorem 3.2 ([18]). Let B ⊆ (M, τ) be tracial von Neumann algebras and denote by 
N := vN(QN (1)(B ⊆ M)). Then B ⊆ N ⊆ M satisfies the relative WAHP.

Using this result one can establish that the relative WAHP actually “descends” to all 
subgroups of U(B) that generate B as a von Neumann algebra. As we will see shortly, 
this upgrade is very useful in applications. We include only a brief proof, largely based 



12 J.P. Bannon et al. / Advances in Mathematics 443 (2024) 109535
on prior techniques [34,9,18,28,7] and we encourage the reader to consult these results 
beforehand.

Theorem 3.3. A triple inclusion B ⊆ N ⊆ M of finite von Neumann algebras has the 
relative WAHP if and only if for every subgroup B ⊆ U(B) satisfying B′′ = B one can 
find a net (gλ)λ ⊆ B such that for any x, y ∈ M we have

‖EB(xgλy) − EB(EN (x)gλEN (y))‖2 → 0. (3.0.1)

Proof. We only prove the forward implication as the converse is straightforward. Assume 
by contradiction there is a subgroup B ⊆ U(B) satisfying B′′ = B for which (3.0.1) does 
not hold. Thus using the same argument from the proof of [34, Corollary 2.3] one can 
find a scalar C > 0 and a finite subset ∅ �= F ⊂ M �N such that for all b ∈ B,∑

x,y∈F

‖EB(x∗by)‖2
2 � C. (3.0.2)

Consider the basic construction B ⊆ M ⊆ 〈M, B〉 = {M, eB}′′ ⊆ B(L2(M)), where 
eB : L2(M) → L2(B) is the canonical orthogonal projection. Let Tr be the canonical 
semifinite trace on 〈M, B〉 given by Tr(xeBy) = τ(xy) for all x, y ∈ M . Let ξ :=∑

x∈F xeBx
∗ ∈ 〈M, B〉+ and notice 0 < Tr(ξ) < ∞. Using eBmeB = EB(m)eB for all 

m ∈ M together with other basic calculations and (3.0.2) we see for all b ∈ B,

Tr(ξbξb∗) =
∑

x,y∈F

Tr(xeBx∗byeBy
∗b∗) =

∑
x,y∈F

Tr(eBx∗byeBy
∗b∗xeB) =

=
∑

x,y∈F

Tr(EB(x∗by)eBEB(y∗b∗x)) =
∑

x,y∈F

‖EB(x∗by)‖2
2 � C.

(3.0.3)

Let K = co{bξb∗ : b ∈ B}w and denote by η ∈ K the unique element of minimal ‖ ·‖2,Tr-
norm. Fix b ∈ B. Since Tr is a trace then ‖bηb∗‖2,Tr = ‖η‖2,Tr. Also, since B is a group 
then bηb∗ ∈ K. Thus uniqueness implies that bηb∗ = η for all b ∈ B and since B′′ = B

we conclude that η ∈ B′ ∩ 〈M, B〉+. One can also check that Tr(η) � Tr(ξ) < ∞. 
Furthermore, (3.0.3) entails η �= 0.

Now consider the orthogonal projection eN : L2(M) → L2(N) and notice that eN ∈
N ′ ⊆ B′. Moreover, as JeN = eNJ we also have eN ∈ JB′J = 〈M, B〉 and hence 
eN ∈ B′ ∩ 〈M, B〉. Next we can see that for every b ∈ B,

eNbξb∗ = beNξb∗ =
∑
x∈F

beNxeBx
∗b∗ =

∑
x∈F

bEN (x)eBx∗b∗ = 0.

Taking convex combinations and weak limits, this further implies that eNη = 0. Thus 
ηeN = 0 and hence η ∈ (1 − eN )(B′ ∩ 〈M, B〉)(1 − eN ). Taking a suitable spectral 
projection of η one can find a projection 0 �= p ∈ (1 − eN )(B′ ∩ 〈M, B〉)(1 − eN ) such 
that Tr(p) < ∞.
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Denote by Q := vN(QN (1)(B ⊆ M)) and let eQ : L2(M) → L2(Q) be the canoni-
cal orthogonal projection. On the one hand, using verbatim the same arguments from 
the proof of the implication (ii) ⇒ (i) in [18, Theorem 3.1] (see page 9/line -2 – 
page 10/line 10) we get that p � eQ. On the other hand, as B ⊆ N ⊆ M satisfy 
the relative WAHP, implication (i) ⇒ (iii) in [18, Theorem 3.1] yields Q ⊆ N and hence 
eQ � eN . Altogether, these imply p � eN . Since p � 1 − eN we get that p = 0, which is 
a contradiction. �

The relative WAHP is closely connected to the following notion of relative weak mixing 
for trace-preserving W ∗-dynamical extension systems.

Definition 3.4. Let M = (N ⊆ M, G, α, τ) be a τ -preserving W ∗-dynamical extension 
system and let B ⊆ N be a G-invariant von Neumann subalgebra. Then M is called 
weak mixing relative to B if there exist nets (bλ)λ ⊆ U(B) and (gλ)λ ⊆ G such that for 
all x, y ∈ M �N we have

‖EB(xbλαgλ(y))‖2 → 0.

When M is separable the nets can be replaced with sequences.

We note in passing that this generalizes Popa’s notion of relative weak mixing for 
actions, described in [36, Definition 2.9]. Indeed, it is rather easy to check if one could 
pick (bλ)λ to have only finitely many values then Definition 3.4 is equivalent to Popa’s 
notion. For instance, this is the case when B ⊆ Z(M) (one can pick bλ = 1). Thus, when 
M is abelian, Definition 3.4 recovers the notion of weak mixing for extensions introduced 
by Furstenberg and Zimmer in the 70’s, [19,46]. Finally, when B = N = C1, this recovers 
the notion of weak mixing for trace-preserving actions of G on M .

For further use we record the following result connecting relative weak mixing with 
relative WAHP. Its proof is a straightforward application of Theorem 3.3 and other 
existing methods in the literature ([28], [7], [18]) and we include it here only for the sake 
of completness.

Lemma 3.5. Let M = (N ⊆ M, G, α, τ) be a τ -preserving W ∗-dynamical extension system 
and let B ⊆ N be a G-invariant von Neumann subalgebra. Then M is weak mixing 
relative to B if and only if the triple inclusion B �α G ⊆ N �α G ⊆ M �α G has the 
relative WAHP.

Proof. First we show the forward implication. Let (bλ)λ∈Λ ⊂ U(B) and (gλ)λ∈Λ ⊆ G be 
such that for every ξ, ζ ∈ M �N we have

‖EB(ξbλαgλ(ζ))‖2 → 0. (3.0.4)
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Next we show the net xλ := bλugλ ∈ U(B �α G) witnesses the relative WAHP for 
B �α G ⊆ N �α G ⊆ M �α G. Notice this is equivalent to showing that for every 
0 �= y, z ∈ (M �α G) � (N �α G) we have

‖EB�αG(yxλz)‖2 → 0. (3.0.5)

Fix ε > 0. Using the Kaplansky density theorem one can find finite subsets Eε, Fε ⊂ G

and yε =
∑

g∈Eε
yεgug, zε =

∑
h∈Fε

zεhuh with yεg, z
ε
h ∈ M �N such that

‖y − yε‖2 <
ε

4‖z‖ and ‖z − zε‖2 <
ε

4‖yε‖
. (3.0.6)

Using (3.0.6) together with the triangle inequality for all λ ∈ Λ we have

‖EB�αG(yxλz)‖2 � ε

2 + ‖EB�αG(yεxλzε)‖2

� ε

2 +
∑

g∈Eε,h∈Fε

‖EB�αG(yεgugbλugλz
ε
huh)‖2

= ε

2 +
∑

g∈Eε,h∈Fε

‖EB(αg−1(yεg)bλαgλ(zεh))‖2.

(3.0.7)

Since yεg ∈ M �N then αg−1(yεg) ∈ M �N . Using (3.0.4), for every g ∈ Eε, h ∈ Fε one 
can find λε

g,h ∈ Λ such that ‖EB(αg−1(yεg)bλαgλ(zεh))‖2 � ε
2(|Eε|+|Fε|) , for all λ � λε

g,h; 
here “�” denotes the preorder on Λ. As (Λ, �) is directed and Eε, Fε are finite one can 
find λε ∈ Λ such that λε � λε

g,h for all g ∈ Eε, h ∈ Fε. Altogether, these combined with 
(3.0.7) yield that ‖EB�αG(yxλz)‖2 � ε for all λ � λε, thereby proving (3.0.5).

To see the converse, assume B�αG ⊆ N �αG ⊆ M �αG satisfy the relative WAHP. 
Since G = {bug : b ∈ U(B), g ∈ G} ⊆ U(B �α G) is a subgroup with G ′′ = B �α G, 
using Theorem 3.3, one can find a net xλ := bλugλ ∈ G so that for all x, y ∈ M �α G,

‖EB�αG(xxλy) − EB�αG(EN�αG(x)xλEN�αG(y))‖2 → 0. (3.0.8)

Fix x, y ∈ M�N and notice EN�αG(x) = EN�αG(y) = 0. Basic computations combined 
with these relations and also (3.0.8) show that

‖EB(xbλαgλ(y))‖2 = ‖EB�αG(xbλαgλ(y))‖2 = ‖EB�αG(xxλyug−1
λ

)‖2

= ‖EB�αG(xxλy)ug−1
λ

‖2 = ‖EB�αG(xxλy)‖2

= ‖EB�αG(xxλy) −EB�αG(EN�αG(x)xλEN�αG(y))‖2 → 0,

which yields that M is weak mixing relative to B. �
Over the next three subsections we present several constructions of inclusions of II1

factors with infinite Jones index that are singular, and fail the WAHP; see Theorem 3.6, 
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Corollary 3.10, Theorem 3.17. The last two depict even more extreme situations, namely, 
infinite Jones index inclusions N ⊆ M of II1 factors which are simultaneously singular 
and quasiregular, i.e., QN (N ⊆ M)′′ = M .

3.1. An action on the hyperfinite II1 factor

We now construct our first example. Denote by M2 the 2 × 2 matrices with complex 
entries. Define unitary matrices by

v1 =
(

1 0
0 −1

)
, v2 =

(
0 1
1 0

)
,

v3 =
(

0 1
−1 0

)
, v4 =

(
1/2

√
3/2

−i
√

3/2 i/2

)
. (3.1.1)

Note that {v1, v2, v3} form a basis for the subspace of matrices of zero trace. These three 
unitaries satisfy the following easily verified relations:

v1v2 = v3, v1v3 = v2, v2v1 = −v3, v2v3 = −v1,

v3v1 = −v2, v3v2 = v1, v2
1 = v2

2 = 1, v2
3 = −1. (3.1.2)

Let G be the free group F4 with generators {gi : 1 � i � 4}. In defining an action β of 
G on M2, we need only specify the values of {βgi : 1 � i � 4}, so we set

βgi = Ad (vi), 1 � i � 4. (3.1.3)

We regard the hyperfinite II1 factor R as the infinite tensor product of copies of M2
indexed by the elements of F4, and we let γ denote the Bernoulli action of F4 on R. We 
define M to be M2 ⊗ R with an action of F4 given by α = β ⊗ γ. We note that α is an 
outer action of G on M since γ is an outer action of G on R [29, Corollary 1.12].

Theorem 3.6. With the above notation, L(G) is singular in M �α G, while the quasinor-
malizers of L(G) generate a von Neumann algebra which is strictly larger than L(G).

Proof. Any x ∈ M2 has Orb(x) ⊆ M2. In particular, for such an x and any h ∈ G we have 
hx = αh(x)h ∈

∑
i viL(G), where vi, 1 � i � 4, are the unitaries from equation (3.1.1). 

In order to conclude from this that L(G)x ⊆
∑

i viL(G), it suffices to show that the 
module 

∑
i viL(G) is w∗-closed. This follows from a general result proved subsequently 

and independently in Lemma 4.2. Thus, L(G)x ⊆
∑

i viL(G) and a similar argument 
shows xL(G) ⊆

∑
i L(G)vi. It follows that L(G) admits nontrivial quasinormalizers, 

and moreover, that the algebra of quasinormalizers in the crossed product contains the 
subalgebra M2 �β G of M �α G. Thus, it remains to show that L(G) is singular in 
M �α G, which we break into several steps.
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Step 1. The only fixed points in M of α(G) are in C1.

The fact that the Bernoulli shift is mixing implies that the only candidates for fixed 
points of α(G) must have the form x ⊗1 for x ∈ M2. If x ∈ M2 is a fixed point for β(G), 
then

vnxv
∗
n = x, 1 � n � 4, (3.1.4)

so x commutes with {1, v1, v2, v3}, showing that it is central in M2. In particular, this 
shows that the action of G on M is ergodic.

Step 2. L(G)′ ∩ (M �α G) = C1.

Let x ∈ L(G)′ ∩ (M �α G) have Fourier series x =
∑

g∈G xgug. Then, for h ∈ G,

∑
g∈G

uhxgug =
∑
g∈G

αh(xg)uhg =
∑
k∈G

αh(xh−1k)uk, (3.1.5)

while ∑
g∈G

xguguh =
∑
k∈G

xkh−1uk. (3.1.6)

Thus

αh(xh−1k) = xkh−1 , h, k ∈ G, (3.1.7)

and so, after making the substitution r = kh−1,

αh(xh−1rh) = xr, h, r ∈ G. (3.1.8)

If xr �= 0 for some r �= e, then r has infinitely many distinct conjugates for which 
‖xh−1rh‖2 = ‖xr‖2 �= 0, an impossibility. Thus xr = 0 for r �= e, so x reduces to being 
xe ∈ M , and commutation with ug for g ∈ G shows that xe is a fixed point for α(G). 
Step 2 now follows from Step 1.

As a consequence of Step 2, we note that M �α G is a factor.

Step 3. For 1 � i � 3, W ∗(ugi , u
2
gi+1

)′ ∩ (R �γ G) = C1. (Subscripts are mod 3.)

The proofs of these equalities are all identical, so we consider only the initial case i = 1. 
First consider an element x ∈ R�γG that commutes with W ∗(ug1), and write its Fourier 
series as 

∑
g∈G ygug with yg ∈ R. Commuting with un

g1
for n ∈ Z entails

∑
g∈G

γgn
1 (yg)ugn

1 g =
∑
g∈G

yguggn
1 , n ∈ Z, (3.1.9)

so changing variables (k = gn1 g for the first sum, k = ggn1 for the second) leads to
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∑
k∈G

γgn
1 (yg−n

1 k)uk =
∑
k∈G

ykg−n
1

uk, n ∈ Z. (3.1.10)

From (3.1.10) we obtain

γgn
1 (yg−n

1 k) = ykg−n
1

, n ∈ Z, k ∈ G, (3.1.11)

and the further change of variables s = kg−n
1 allows us to rewrite (3.1.11) as

γgn
1 (yg−n

1 sgn
1
) = ys, n ∈ Z, s ∈ G. (3.1.12)

Any s /∈ 〈g1〉 has infinitely many distinct conjugates by powers of g1. If ys �= 0 for such an 
s, then (3.1.12) gives infinitely many coefficients in the Fourier series with equal nonzero 
2-norms, an impossibility. We conclude that yg = 0 for g /∈ 〈g1〉. If we further assume 
that x commutes with W ∗(u2

g2
), then we see that yg = 0 for g �= e and that ye is a fixed 

point for γg1 . Since γ is the Bernoulli action, this ensures that ye is a scalar, and so also 
is x.

Step 4. For 1 � i � 3, W ∗(ugi , u
2
gi+1

)′ ∩ (M �α G) = W ∗(vi). (Subscripts are mod 3.)

If x ∈ M �α G commutes with W ∗(ug1 , u
2
g2

) and has Fourier series 
∑

g∈G ygug with 
yg ∈ M , then we can repeat the argument of Step 3 to conclude that yg = 0 for g �= e

and ye is a fixed point for βg1 and β2
g2

. These fixed points are precisely the matrices 
in W ∗(v1). This proves the first equality, and the argument for the other two cases is 
identical.

Step 5. For 1 � i � 3, W ∗(v4)′ ∩W ∗(vi) = C1.

General matrices xi ∈ W ∗(vi), 1 � i � 3, respectively have the form

x1 =
(
λ 0
0 μ

)
, x2 =

(
λ μ

μ λ

)
, and x3 =

(
λ μ

−μ λ

)
. (3.1.13)

The requirement for xi to commute with v4 results in(
λ 0
0 μ

)(
1/2

√
3/2

−i
√

3/2 i/2

)
=

(
1/2

√
3/2

−i
√

3/2 i/2

)(
λ 0
0 μ

)
, (i = 1), (3.1.14)

(
λ μ

μ λ

)(
1/2

√
3/2

−i
√

3/2 i/2

)
=

(
1/2

√
3/2

−i
√

3/2 i/2

)(
λ μ

μ λ

)
, (i = 2), (3.1.15)

and(
λ μ

−μ λ

)(
1/2

√
3/2

−i
√

3/2 i/2

)
=

(
1/2

√
3/2

−i
√

3/2 i/2

)(
λ μ

−μ λ

)
, (i = 3). (3.1.16)
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Comparison of the (1, 2) matrix entries leads easily to the conclusion that λ = μ in 
(3.1.14) and to μ = 0 in (3.1.15) and (3.1.16). Thus xi ∈ C1 in all cases.

Step 6. L(G) is singular in M �α G.

Let E : M �α G → L(G) be the trace-preserving conditional expectation, and let u ∈
M �α G be a unitary that normalizes L(G).

Case 1: E(u) �= 0.

Let y = E(u) �= 0, and write φ for the automorphism Ad (u) of L(G). Then

ux = φ(x)u, x ∈ L(G). (3.1.17)

Apply E to (3.1.17) to obtain

yx = φ(x)y, x ∈ L(G). (3.1.18)

A standard argument then shows that y∗y is central in L(G) so is λ1 for some λ > 0. 
Thus v := y/

√
λ ∈ L(G) is a unitary that implements φ. It follows that u∗v ∈ L(G)′ ∩

(M �α G) = C1 by Step 2. Thus u ∈ L(G).

Case 2: E(u) = 0. (We will show that this case cannot occur.)

Let v0 = 1 ∈ M2, so that {vi : 0 � i � 3} is a basis for M2. Then u∗ ∈ M �α G can be 
expressed as 

∑3
i=0 vifi where f0, . . . , f3 ∈ R �γ G. Since

E(u∗) =
3∑

i=0
tr(vi)E(fi) = E(f0), (3.1.19)

we see that E(f0) = 0. As above, we write φ = Ad (u) ∈ Aut(L(G)), so that

ugu
∗ = u∗φ(ug), g ∈ G, (3.1.20)

which is equivalent to

ug(v0f0 + v1f1 + v2f2 + v3f3) = (v0f0 + v1f1 + v2f2 + v3f3)φ(ug), g ∈ G. (3.1.21)

There are two possibilities:

Case 2a: f0 �= 0.

The trace-preserving conditional expectation ER�γG : M �α G → R �γ G is given on 
generators by (x ⊗ r)ug �→ tr(x)rug for x ∈ M2, r ∈ R, and g ∈ G. Note that, for 
g ∈ G and i ∈ {1, 2, 3}, ER�γG(ugvifi) = ER�γG(βg(vi)ugfi) = 0 since tr(βg(vi)) = 0. 
Applying this expectation to (3.1.21), we see that

ugf0 = f0φ(ug), g ∈ G, (3.1.22)
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from which it follows that f0f
∗
0 commutes with L(G). From Step 2, f0f

∗
0 is a nonzero 

scalar so, after scaling, f0 ∈ R �γ G is a unitary that normalizes L(G). The Bernoulli 
action γ on R is mixing, and so f0 ∈ L(G) since L(G) is singular in this crossed product 
by Lemma 3.5. This contradicts E(f0) = 0, so this case cannot occur.

Case 2b: f0 = 0.

In this case, (3.1.21) reduces to

ug(v1f1 + v2f2 + v3f3) = (v1f1 + v2f2 + v3f3)φ(ug), g ∈ G. (3.1.23)

Now

ugjvi = βgj (vi)ugj = vjviv
∗
jugj , 1 � i, j � 3. (3.1.24)

Using (3.1.2), we see that

ug1v1 = v1ug1 , ug1v2 = −v2ug1 , ug1v3 = −v3ug1 . (3.1.25)

Thus, from (3.1.23),

v1ug1f1 − v2ug1f2 − v3ug1f3 = v1f1φ(ug1) + v2f2φ(ug1) + v3f3φ(ug1). (3.1.26)

If we successively multiply this equation on the left by v1, v2, and v3, and apply ER�γG

each time, the results are

ug1f1 = f1φ(ug1), ug1f2 = −f2φ(ug1), ug1f3 = −f3φ(ug1). (3.1.27)

Repeating this argument for the group elements g2 and g3 leads to similar sets of 
equations:

ug2f1 = −f1φ(ug2), ug2f2 = f2φ(ug2), ug2f3 = −f3φ(ug2) (3.1.28)

and

ug3f1 = −f1φ(ug3), ug3f2 = −f2φ(ug3), ug3f3 = f3φ(ug3). (3.1.29)

Then there exists i ∈ {1, 2, 3} so that fi �= 0. From the equalities of (3.1.27)–(3.1.29), we 
see that

ugifi = fiφ(ugi), u2
gi+1

fi = fiφ(u2
gi+1

), (3.1.30)

and these equations can be rearranged to give

u∗
g fi = fiφ(u∗

g ), u∗2
g fi = fiφ(u∗2

g ). (3.1.31)

i i i+1 i+1
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It follows from (3.1.30) and (3.1.31) that fif∗
i commutes with all elements of the self-

adjoint subspaces span{ugi , u
∗
gi} and span{u2

gi+1
, u∗2

gi+1
} and thus lies in the relative 

commutants of W ∗(ugi) and W ∗(u2
gi+1

) in R�γ G. By Step 3, fif∗
i is a nonzero positive 

scalar so, after scaling, there is a unitary wi ∈ R �γ G with fi a multiple of wi and

u±1
gi wi = wiφ(u±1

gi ) = wiuu
±1
gi u

∗. (3.1.32)

Thus wiu ∈ W ∗(ugi)′ ∩ (M �α G), and similarly wiu commutes with W ∗(u2
gi+1

). From 
Step 4, there exists a unitary xi ∈ W ∗(vi) such that wiu = xi, so u = w∗

i xi. For each 
g ∈ G, w∗

i xiugx
∗
iwi = uugu

∗ ∈ L(G), so xiugx
∗
i ∈ R �γ G. Multiply on the right by 

u∗
g to obtain xiβg(x∗

i ) ∈ R �γ G, for all g ∈ G, and this implies that xiβg(x∗
i ) ∈ C1. 

In particular, there is a scalar η so that xiβg4(x∗
i ) = η1, which becomes xiv4 = ηv4xi. 

Taking the determinant shows that η = 1, and it now follows from Step 5 that xi ∈ C1. 
Thus u ∈ R�γ G so, as above, u ∈ L(G) by the singularity of this subalgebra of R�γ G. 
This contradicts E(u) = 0, so this case cannot occur. We have now verified the singularity 
of L(G) in M �α G. �

We note further that the existence of “nontrivial” quasinormalizers of L(G) in M�αG

precludes the WAHP. Therefore, we have established the existence of an inclusion of II1
factors which is singular, fails the WAHP, and has infinite Jones index.

3.2. Profinite actions of i.c.c. groups

In this subsection we exhibit a fairly large and natural class of crossed product von 
Neumann algebras, L∞(X) �αG associated with p.m.p. actions of countable i.c.c. groups 
on standard probability spaces G �α (X, μ) for which we are able to describe in detail 
all normalizing unitaries in N (L(G) ⊆ L∞(X) �α G); see Corollaries 3.9 and 3.7. These 
results can be regarded as non-commutative counterparts of Packer’s prior results, [32, 
Theorem 2.3].

Using our description of normalizers we then highlight additional examples of von 
Neumann algebra inclusions P ⊆ M of infinite Jones index for which the normalizer 
and the quasi-normalizer algebras of P differ very sharply. For instance, Corollary 3.10
and the remarks succeeding it provide natural examples when P is a subfactor that is 
simultaneously singular and quasiregular.

If N has separable predual and G �α N is an ergodic, compact trace-preserving 
action, using [5, Theorem 4.7] (see also Lemmas 5.4 and 5.5 below) we can always find a 
sequence (Nk) of finite-dimensional G-invariant subspaces of N such that ∪kNk is ‖ · ‖2-
dense in N . We next leverage such a sequence to obtain a general structural result from 
which subsequent examples will be obtained. In the sequel, for a positive integer k and 
an element x of a von Neumann algebra M , denote by diag(x) the k×k diagonal matrix 
x ⊗ I ∈ Mk(M).
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Theorem 3.7. Let G be an i.c.c. group and α an ergodic, compact, trace-preserving action 
of G on a tracial von Neumann algebra (N, τ) with separable predual. Denote by M =
N �αG the associated crossed product von Neumann algebra. Fix an increasing sequence 
(Nk) of finite-dimensional G-invariant subspaces of N such that ∪kNk is ‖ · ‖2-dense in 
N .

(i) For any w ∈ N (L(G) ⊆ M) one can find k ∈ N, an orthonormal basis 
{ξ1, . . . , ξnk

} ⊆ Nk and elements w1, . . . , wnk
∈ L(G) such that w =

∑
i ξiwi.

(ii) Let αk : G → U(Nk) be the unitary representation induced by α and for every g ∈ G

consider the matrix M(g) = (〈αk
g(ξj), ξi〉)1�i,j�nk

∈ Mnk
(C). If we let X ∈ Mnk

(M)
be the matrix whose entries satisfy xi,j = wi if j = 1 and xi,j = 0 if j > 1 then the 
following holds:

diag(ug)M(g)X = Xdiag(Ad(w∗)(ug)) for all g ∈ G.

Proof. Fix an orthonormal basis {ξ1, . . . , ξnk
} ⊆ Nk and notice that for all g ∈ G we 

have

αk
g(ξi) =

nk∑
j=1

〈αk
g(ξi), ξj〉ξj . (3.2.1)

Using relation (3.2.1) and the same argument as in the beginning of the proof of The-
orem 3.6 one can show that L(G)ξiL(G) ⊆

∑
j ξjL(G), 

∑
j L(G)ξj , for all 1 � i � nk. 

Thus ξi ∈ QN (L(G) ⊆ M) for all 1 � i � nk.
Now denote by Pk the orthogonal projection onto 

∑nk

j=1 L(G)ξjL(G)
‖·‖2 . Since G is 

i.c.c. and the action α is ergodic we have that L(G)′ ∩M = C1. Thus, since the range 
of Pk is an L(G)-L(G) bimodule, for every x, y ∈ L(G) and η ∈ M we have

Pk(xηy) = xPk(η)y. (3.2.2)

Moreover, as ∪kNk is ‖ · ‖2-dense in N , for every x ∈ M we have

lim
k

‖Pk(x) − x‖2 = 0. (3.2.3)

Let w ∈ N (L(G) ⊆ M). Then, the ∗-automorphism θw = Ad(w) : L(G) → L(G) satisfies

θw(x)w = wx, for all x ∈ L(G). (3.2.4)

Thus there exists a smallest k ∈ N such that Pk(w) �= 0. Applying the orthogonal 
projection Pk to relation (3.2.4) and using the bimodularity condition (3.2.2) we get 
θw(x)Pk(w) = Pk(w)x for all x ∈ L(G). Using this in combination with (3.2.4) for all 
x ∈ L(G) we have
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w∗Pk(w)x = w∗θw(x)Pk(w) = xw∗Pk(w),

so w∗Pk(w) ∈ L(G)′ ∩ M . However as observed before, L(G)′ ∩ M = C1. Thus there 
is λ ∈ C \ {0} such that w∗Pk(w) = λ1 and hence Pk(w) = λw. In particular, w ∈∑nk

i=1 ξiL(G) and one can find w1, . . . , wnk
∈ L(G) such that w =

∑
i ξiwi. Using this, 

the fact that ug implements αk
g on Nk, and the relations (3.2.4) and (3.2.1) we get that 

for every g ∈ G we have∑
i

ξiug(
∑
j

〈αk
g(ξj), ξi〉wj) =

∑
i,j

〈αk
g(ξj), ξi〉ξiugwj

=
∑
j

αk
g(ξj)ugwj =

∑
j

ugξju
∗
gugwj

= ugw = wθw∗(ug) =
∑
i

ξiwiθw∗(ug).

Hence, using the L(G)-orthonormal basis property of the ξi’s, for every i we have that

wiθw∗(ug) = ug

∑
j

〈αk
g(ξj), ξi〉wj . (3.2.5)

Now consider the unitary matrix M(g) = (〈αk
g(ξj), ξi〉)1�i,j�nk

∈ Mnk
(C), and let X ∈

Mnk
(M) be the matrix whose entries satisfy xi,j = wi if j = 1 and xi,j = 0 if j > 1. 

Then, relations (3.2.5) are equivalent to

diag(ug)M(g)X = Xdiag(Ad(w∗)(ug)) for all g ∈ G. (3.2.6)

We note in passing that the prior relation is in fact equivalent to (3.2.4). �
Specializing Theorem 3.7 to the cases of group measure space constructions associated 

with profinite actions yields an even more concrete description of these normalizers. 
Before introducing the result, we briefly recall the construction of profinite actions.

Recall that a discrete group G is said to be residually finite if there is a sequence G1 ⊇
G2 ⊇ G3 ⊇ · · · of finite-index subgroups of G with intersection {e}. In this situation, 
for each k, G acts by left translation on the (finite) set G/Gk of left cosets. When G/Gk

is equipped with counting measure μk, we obtain an ergodic, p.m.p. action αk of G on 
(G/Gk, μk). Moreover, for each k there is a quotient map qk : G/Gk+1 → G/Gk, given 
by

qk(sGk+1) = tGk iff sGk+1 ⊆ tGk.

Then the inverse limit X = lim←−−(G/Gk, μk) is a probability space, and the inverse limit 
action α of G on X can be shown to be ergodic and measure-preserving. An action of this 
form is profinite, i.e., it has the form α = limαk for a sequence of measure-preserving 
←−−



J.P. Bannon et al. / Advances in Mathematics 443 (2024) 109535 23
actions of G on finite probability spaces (Xk, μk). Notably, any ergodic, profinite action 
of a discrete group arises in this manner (see [24, Example 1.2 and Theorem 1.6]).

For further use we also state the following result, which is an immediate consequence 
of [24, Lemma 1.4].

Lemma 3.8. Let G be an i.c.c. residually finite group, and let G �α (X, μ) = lim←−−(Xk, μk)
be an ergodic, profinite, p.m.p. action. Write M = L∞(X) �α G. Then for any finite-
index subgroup H of G there is some n ∈ N such that

L(H)′ ∩M ⊆ L∞(Xn).

Corollary 3.9. Let G be an i.c.c., residually finite group. Let α be a ergodic, profinite 
action of G on X = lim←−−(Xk, μk) and denote by M = L∞(X, μ) �α G the associated 
crossed product von Neumann algebra.

Then for every w ∈ N (L(G) ⊆ M) there exist k ∈ N and unitaries a ∈ L∞(Xk)
and v ∈ L(G) such that w = av. Hence a ∈ N (L(G) ⊆ M), and moreover one can find 
η ∈ Char(G) such that the following hold:

(1) Ad(a)(ug) = η(g)ug, for all g ∈ G, and
(2) there is an atom e ∈ L∞(Xk) such that a =

∑
g η(g)αg(e) where the sum is over a 

set of representatives of G/Gk, with Gk = {g ∈ G : (αk)g(x) = x for all x ∈ Xk}. 
In addition, we have Gk ⊆ ker(η).

Proof. To simplify the notations let Ak := L∞(Xk) for all k and let A := L∞(X). From 
assumptions we also have that Mk = Ak �α G where Ak = span{ξ1, . . . , ξnk

} =: I with 
ξi ∈ Ak orthogonal projections of equal traces such that the action αg(ξi) = ξg·i for some 
transitive action G � I.

Furthermore, (Ak)k forms an increasing tower of finite-dimensional G-invariant von 

Neumann subalgebras such that A = ∪kAk
SOT. Let w ∈ N (L(G) ⊆ M) be arbitrary. 

Applying Theorem 3.7 there is k ∈ N such that w ∈ Mk and hence one can find elements 
wi ∈ L(G) satisfying

w =
nk∑
i=1

ξiwi. (3.2.7)

For g ∈ G consider M(g) = (〈αg(ξj), ξi〉)1�i,j�nk
. If we let X ∈ Mnk

(M) be the matrix 
whose entries satisfy xi,j = wi if j = 1 and xi,j = 0 if j > 1 then the following holds:

diag(ug)M(g)X = Xdiag(Ad(w∗)(ug)) for all g ∈ G. (3.2.8)

Since ξi’s are orthogonal projections we have that 〈αg(ξi), ξj〉 = 〈ξg·i, ξj〉 = δg·i, j . Thus 
there is a finite-index normal subgroup Gk ⊆ G such that M(g) = Ink

for all g ∈ Gk. 
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This shows that XX∗ commutes with diag(ug) for all g ∈ Gk. A basic calculation further 
implies that XX∗ ∈ Mnk

(L(Gk)′ ∩L(G)). As G is i.c.c. and Gk ⊆ G has finite index we 
have that L(Gk)′ ∩ L(G) = C1 and hence XX∗ ∈ Mnk

(C1). Thus one can find scalars 
λi,j such that

wiw
∗
j = λi,j1 for all 1 � i, j � nk. (3.2.9)

Observe that λi,i � 0 for all i ∈ I. Using relation (3.2.9) for i = j we get wi =
√

λi,ivi
for some unitary vi ∈ L(G). Since w �= 0 at least one of the scalars λi,i �= 0 and using 
(3.2.9) again we see that one can find scalars μi ∈ C and a unitary v ∈ L(G) such that 
wi = μiv for all i ∈ I. In conclusion, we have shown that w =

∑
i ξiwi = (

∑
i μiξi)v = av

for some unitary a ∈ Ak. To this end we observe that since a is a unitary in the previous 
relations we have that |μi| = 1 for all i ∈ I. This yields the first part of the statement 
modulo a phase factor.

Next observe that the first part shows that a ∈ N (L(G) ⊆ M) and Ad(a) = θa :
L(G) → L(G) is a ∗-automorphism satisfying θa(x)a = ax for all x ∈ L(G). Specializing 
to x = ug, multiplying θa(ug)a = aug on the right by ξj and using the prior relations 
and basic computations we can see that for all g ∈ G we have

θa(ug)μjξj = augξj = (
∑
i

μiξi)αg(ξj)ug = μg·jξg·jug.

Applying the expectation EL(G) on the prior relation we get θa(ug) = μg·j
μj

ug for all g ∈ G. 
Notice that this shows η(g) = μg·j

μj
is independent of j and it is also a multiplicative 

character. Thus θa(ug) = η(g)ug for all g ∈ G. Moreover, since μg·j = η(g)μj for all g we 
get that a =

∑
g μjη(g)ξg·j = μj

∑
g η(g)αg(ξj) for some j. Now replace a by μja. This 

finishes the proof. �
Exploiting the prior result, we obtain effective computations of the normalizing alge-

bras in the case of profinite actions.

Corollary 3.10. Let G be an i.c.c. residually finite group with finite abelianization. Let α
be a ergodic, profinite action of G on X = lim←−−(Xk, μk) and denote by M = L∞(X, μ) �αG

the associated crossed product von Neumann algebra. Then the following hold:

(1) There exist a positive integer k0 and a finite-dimensional, G-invariant subalgebra 
A ⊆ L∞(Xk0) such that

N (L(G) ⊆ M)′′ = A �α G.

(2) Moreover, if the abelianization of G is trivial, then

N (L(G) ⊆ M)′′ = L(G).
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Proof. Fix w ∈ N (L(G) ⊆ M). Using Corollary 3.9 one can find k ∈ N and unitaries 
a ∈ L∞(Xk) and v ∈ L(G) such that w = av. Moreover, from relation (1) in the 
conclusion of Corollary 3.9 there is a character η ∈ Char(G) such that Ad(a)ug = η(g)ug

for all g ∈ G. This is equivalent to a being an eigenvector, i.e., αg(a) = η(g)a, g ∈ G. 
Since G/[G, G] is finite, G has a finite-index normal subgroup G0 such that G0 ⊆ kerω
for all ω ∈ Char(G). In particular, this holds for η, and we have αh(a) = a for all 
h ∈ G0. Using the finite index condition and Lemma 3.8, since a is fixed by α, we have 
that a ∈ L∞(Xk0) for some k0 ∈ N which depends only on G0. Altogether, these show 
that N (L(G) ⊆ M)′′ ⊆ L∞(Xk0) �αG. Then part (1) of the conclusion follows from [10, 
Theorem 3.10] or [27, Corollary 3.11].

To see part (2) just notice trivial abelianization implies that η = 1 and hence σg(a) = a

for all g ∈ G. By ergodicity, this further implies that a = ω1 with |ω| = 1 and hence 
N (L(G) ⊆ M) ⊆ L(G). �
Remark 3.11. This corollary provides new situations in which the normalizing and the 
quasinormalizing algebras of L(G) in N �α G differ sharply. For example, if in Corol-
lary 3.10 we let G be any i.c.c., residually finite, property (T) group (e.g. G = PSLn(Z)
with n � 3 or G any uniform lattice in Sp(n, 1), with n � 2) and we take the action α, 
then using part (1) we can find k ∈ N such that N (L(G) ⊆ M)′′ ⊆ L∞(Xk) �α G �
M = QN (L(G) ⊆ M)′′ (see Theorem 5.9), which in the case when |Xk| ↗ ∞, implies 
that N (L(G) ⊆ M)′′ ⊆ QN (L(G) ⊆ M)′′ has infinite Jones index.

We continue by briefly presenting an example of a residually finite i.c.c. group with 
trivial abelianization, that is based on several deep results of Wise [45], Haglund-Wise [22]
and Agol [1] concerning groups acting on cubical complexes; see also [14, Theorem 5.2]
and [13]. We are grateful to Denis Osin for suggesting this example to us. As mentioned 
to us by one of the referees, examples of groups with trivial abelianization are easy to 
find; SL3(Z) is one such example. In the following theorem we want the group to have 
the additional property of being hyperbolic.

Theorem 3.12. There exists an i.c.c. hyperbolic group that is residually finite and has 
trivial abelianization.

Proof. Let F = F (a, b) be the free group with two generators a and b. Also let [F, F ]
be its derived group. One can find two words u(a, b), v(a, b) ∈ [F, F ] such that the group 
with the following presentation

G = 〈a, b | a = u(a, b), b = v(a, b)〉

is a C ′(1/6)-group.
Recall in [45] it was shown that every finitely presented C ′(1/6) group acts geomet-

rically (i.e., properly cocompactly) on a CAT(0) cube complex. Using the work [22], it 
was proved in [1] that every hyperbolic group acting geometrically on a CAT(0) cubical 
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complex satisfies certain additional conditions, is residually finite. In conclusion, since 
finitely presented C ′(1/6) groups are hyperbolic, it follows that our group G is residually 
finite.

From its presentation we can see that G is torsion free. Therefore, since it is hyperbolic, 
using [17, Theorem 2.35], it follows that G is i.c.c.

Finally, using the two relations of G one can see immediately that G = [G, G]; thus 
G has trivial abelianization. �

Notice that if M = L∞(X) �α G (G as in Theorem 3.12) is the crossed product of 
any profinite action G �α X = lim←−−(Xk, μk) then part (2) of the prior result implies that 
L(G) is simultaneously singular and quasiregular in M .

Finally, we observe that combining the prior results in this subsection with the main 
Theorem 4.1 in the next section we obtain a general upgrade of Theorem 3.7 to the case 
of von Neumann algebras of all ergodic actions on probability spaces.

Corollary 3.13. Let G be an i.c.c. group, let G �α (X, μ) be a ergodic action, and denote 
by M = L∞(X, μ) �α G the associated crossed product von Neumann algebra.

Let w ∈ N (L(G) ⊆ M). Then one can find a finite-dimensional G-invariant subspace 
D ⊆ L∞(X) with an orthonormal basis {ξ1, . . . , ξn} ⊆ D and w1, . . . , wn ∈ L(G) such 
that w =

∑
i ξiwi. We still denote by α : G → U(D) the unitary representation induced 

by the action α and for every g ∈ G consider the matrix M(g) = (〈αg(ξj), ξi〉)1�i,j�n. If 
we let X ∈ Mn(M) be the matrix whose entries satisfy xi,j = wi if j = 1 and xi,j = 0 if 
j > 1 then the following holds:

diag(ug)M(g)X = Xdiag(Ad(w∗)(ug)) for all g ∈ G.

Proof. Notice that from Theorem 4.1 there exists a maximal compact ergodic quotient 
G �αc Xc of G �α X such that QN (1)(L(G) ⊆ M)′′ = L∞(Xc) �αc

G. Also note 
that compactness of G �αc Xc implies the existence of a sequence Dk ⊆ L∞(Xc) of 
finite-dimensional G-invariant subspaces satisfying ∪kDk is ‖ · ‖2-dense in L∞(Xc) (use 
Theorem 6.10 [4]). Now since w ∈ L∞(Xc) �αc

G the conclusion follows from Theorem 3.7
applied to the action G �αc Xc. �
3.3. Automorphism-rigid actions of discrete groups

In this section we concentrate on actions of countable discrete groups on von Neumann 
algebras with separable predual and focus on controlling normalizers. The examples in 
the remainder of this section arise from a rigidity property of W ∗-dynamical systems 
satisfied by a variety of groups acting on tracial von Neumann algebras. The definition 
is as follows.

Definition 3.14. Let G be a discrete group. A trace-preserving action α of G on a finite 
von Neumann algebra (N, τ) is said to be automorphism-rigid if for any automorphism 
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Θ of N �αG, there exist an automorphism θ of N , an automorphism δ of G, a character 
η : G → T and a unitary w ∈ N �α G such that

Θ(nug) = η(g)wθ(n)uδ(g)w
∗, for all n ∈ N, g ∈ G.

We also recall the following standard definition, for the reader’s convenience.

Definition 3.15. A trace-preserving action α of a discrete group G on a finite von Neu-
mann algebra (N, τ) is called weak mixing if there is a sequence (gn)n of group elements 
such that τ(αgn(x)y) → τ(x)τ(y), for any x, y ∈ N . (Sequences are replaced by nets 
when G is uncountable.)

There are many examples known of weak mixing automorphism-rigid actions. Below 
we include some natural classes which emerged from Popa’s deformation/rigidity theory 
[37].

(1) Bernoulli action G � (⊗GA, τ) where A is abelian and G is an i.c.c., property (T) 
group or G = G1 ×G2 where Gi are i.c.c. non-amenable [34–36,38];

(2) The fibered versions of Rips construction Q � L(N1 ×N2) from [11,12].

We now have the following results.

Theorem 3.16. Let G be an i.c.c. group and let G �σ A and G �α B be trace-preserving 
actions on finite von Neumann algebras. Assume that the action σ is automorphism-
rigid. Denote by M = (A⊗B) �σ⊗α G the corresponding crossed product von Neumann 
algebra.

Then for every w ∈ N (A �σG ⊆ M) one can find unitaries b ∈ A⊗B and v ∈ A �σG

such that w = vb. Thus b ∈ N (A �σ G ⊆ M) and moreover, one can find ζ ∈ Char(G)
such that the ∗-automorphism θb = Ad(b) : A �σ G → A �σ G satisfies

(1) (θb)|A ∈ Aut(A) and
(2) θb(ug) = ζ(g)ug, for all g ∈ G.

Proof. To simplify the notation let Q := A �σ G. As w ∈ N (Q ⊆ M) then the ∗-
automorphism Ad(w) = θw : Q → Q satisfies

θw(x)w = wx for all x ∈ Q. (3.3.1)

Since σ is automorphism-rigid, one can find w0 ∈ U(Q), θ ∈ Aut(A), δ ∈ Aut(G) and 
η ∈ Char(G) such that for all a ∈ A and g ∈ G we have

θw(aug) = η(g)w0θ(a)uδ(g)w
∗
0 . (3.3.2)
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Letting y = w∗
0w and using relations (3.3.1) and (3.3.2) we obtain that

θ(x)uδ(g)y = η(g)yxug, for all x ∈ A and g ∈ G. (3.3.3)

Now consider the Fourier expansion y =
∑

h∈G yhuh, with yh ∈ A⊗B for all h ∈ G. Using 
this in relation (3.3.3) we get that 

∑
h θ(x)(σ ⊗ α)δ(g)(yh)uδ(g)h =

∑
h η(g)yhσh(x)uhg

for all g ∈ G. Identifying the Fourier coefficients we further get

θ(x)(σ ⊗ α)δ(g)(yδ(g−1)s) = η(g)ysg−1σsg−1(x) for all s, g ∈ G and x ∈ A. (3.3.4)

In particular, (σ ⊗ α)δ(g)(ys) = η(g)yδ(g)sg−1 for all s, g ∈ G and hence ‖ys‖2 =
‖yδ(g)sg−1‖2, for all s, g ∈ G. Thus y is supported on s ∈ G such that the orbit {δ(g)sg−1 :
g ∈ G} is finite. Next we claim that there is only one such orbit and that it consists of 
a singleton.

To this end, suppose there exist s1 �= s2 such that both ys1 and ys2 are nonzero. Then 
there exist finite-index subgroups Gs1 , Gs2 of G such that δ(g) = s1gs

−1
1 for all g ∈ Gs1

and δ(g) = s2gs
−1
2 for all g ∈ Gs2 . In particular, s1gs

−1
1 = s2gs

−1
2 , for all g ∈ Gs1 ∩Gs2 . 

Then s = s−1
2 s1 is central in Gs1 ∩ Gs2 . But Gs1 ∩ Gs2 has finite index in G, which is 

i.c.c., a contradiction. Therefore, yg = 0 for all but one g ∈ G.
In conclusion, we have that y = aus for some unitary a ∈ A⊗B. Moreover, as a 

consequence we also have that δ = Ad(s). Therefore if we let b = (σ ⊗ α)−1
s (a) then we 

get w = vb, where v = w0us ∈ A �σ G.
Combining these with relation (3.3.3) we get that θ(x)usgb = θ(x)usgs−1aus =

η(g)usbxug and hence

σs−1 ◦ θ(x)ugb = η(g)bxug for all x ∈ A, g ∈ G. (3.3.5)

In particular, this implies

σs−1 ◦ θ(x) = bxb∗, for all x ∈ A.

Moreover, this combined with (3.3.5) implies that

bugb
∗ = η(g)ug, for all g ∈ G.

The last two relations give the desired conclusion for ζ = η. �
Theorem 3.17. Let G be an i.c.c. group with finite abelianization. Let G �σ A be a 
weak mixing automorphism-rigid action and let G �α B = ∪nBn

SOT be an ergodic, 
profinite action. Denote by M = (A⊗B) �σ⊗α G the crossed product von Neumann 
algebra corresponding to the canonical diagonal action G �σ⊗α A⊗B.

Then one can find k ∈ N and a G-invariant von Neumann subalgebra B0 ⊆ Bk such 
that N (A �σ G ⊆ M)′′ = (A⊗B0) �σ⊗α G.
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Proof. Since G �σ A is weak mixing, the inclusion B �α G ⊆ (A⊗B) �σ⊗α G satisfies 
the following form of the WAHP: there exists an infinite sequence (gi)i ⊆ G such that 
for every z, t ∈ M � (B �α G) we have

lim
i

‖EB�αG(zugit)‖2 = 0. (3.3.6)

Now fix w ∈ N (A �σ G ⊆ M). By Theorem 3.16 one can find unitaries b ∈ A⊗B and 
v ∈ A �σ G such that w = vb. Moreover, we have θb(ug) = ζ(g)ug for all g ∈ G which is 
equivalent to

bug = ζ(g)ugb, for all g ∈ G. (3.3.7)

Now consider z := b −EB�αG(b) = b −EB(b) ∈ M�B�αG. Thus relation (3.3.7) implies 
that EB�αG(b)ug = ζ(g)ugEB�αG(b) and hence, subtracting we get zug = ζ(g)ugz, for 
all g ∈ G. Using this relation we see that for all g ∈ G we have

‖EB�αG(zz∗)‖2 = ‖ugEB�αG(zz∗)‖2 = ‖EB�αG(ugzz
∗)‖2

= ‖EB�αG(ζ(g)zugz
∗)‖2 = ‖EB�αG(zugz

∗)‖2.
(3.3.8)

Applying this for the sequence (gi)i ⊆ G as in relation (3.3.6) we get that

‖EB�αG(zz∗)‖2 = lim
i

‖EB�αG(zugiz
∗)‖2 = 0.

Therefore z = 0 and hence b ∈ B.
Relation (3.3.7) implies that αg(b) = ζ(g)b for all g ∈ G. Moreover, G/[G, G] is 

finite, and hence G has a finite-index normal subgroup G0 such that G0 ⊆ kerω for all 
ω ∈ Char(G). In particular, this holds for ζ̄, and we have αh(b) = b for all h ∈ G0. Using 
the finite index condition and Lemma 3.8, since b is fixed by α, we have that b ∈ Bk

for some k ∈ N (depending only on G0). As b was an arbitrary normalizer, we conclude 
that N (L(G) ⊆ M)′′ is contained in Bk �α G. It now follows from [10, Theorem 3.10]
that N (L(G) ⊆ M)′′ = B0 �α G for some finite-dimensional von Neumann subalgebra 
B0 of Bk. �
4. Quasinormalizers in crossed products and compactness

This section contains our main results on quasinormalizers for crossed product in-
clusions. The first subsection considers the situation of a general W ∗-dynamical system 
(M, G, α, ρ), where ρ is a faithful normal state. In this setting, we characterize quasinor-
malizers of the associated inclusion L(G) ⊆ M�αG in terms of the Kronecker subalgebra, 
which arises from the maximal compact subsystem of the dynamical system. Stronger 
results are obtained in §4.2, in which we study inclusions of the form N�αG ⊆ M�αG as-
sociated to certain trace-preserving W ∗-dynamical extension systems (N ⊆ M, G, α, τ). 
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In this case, the quasinormalizer is described in terms of the relatively almost periodic 
elements of M which, under suitable regularity conditions on the inclusion N ⊆ M , 
form a von Neumann algebra which generalizes the Kronecker subalgebra. Subsection 
4.3 presents an application of these structural results to noncommutative dynamics. In 
particular, a version of the Furstenberg-Zimmer distal tower for general W ∗-extension 
systems, [19,46], is presented in terms of iterated quasinormalizers.

4.1. Quasinormalizers and maximal compactness

The main result of this subsection relates the compact subsystems of a W ∗-dynamical 
system M = (M, G, α, ρ) to the quasinormalizers of L(G) in the associated crossed prod-
uct where G is a discrete group (could be uncountable). The recent paper [5] analyzed 
a compact, ergodic system in terms of finite-dimensional invariant subspaces for the as-
sociated Koopman representation. Crucially, it was shown in [4] that any such subspace 
comes from the von Neumann algebra itself, in fact, from the centralizer Mρ ⊆ M of the 
state.

In [5], the Kronecker subalgebra MK ⊆ M was defined to be the von Neumann algebra 
generated by the finite-dimensional subspaces of M that are invariant under α. It was 
observed that MK is injective and tracial (under ergodicity and seperability of M), and 
has the following properties:

(i) MK is globally invariant under α.
(ii) The restriction of α to MK defines a compact subsystem of M.
(iii) MK is maximal with respect to properties (i) and (ii), in the sense that MK contains 

every x ∈ M whose orbit under α is ‖·‖2-precompact.

For a proof of the above when M is σ-finite with a prescribed faithful normal state ρ, 
use Lemmas 5.5, 5.7 and Remark 5.6.

The crossed product MK �α G associated to this system is a finite von Neumann 
algebra, and we consider the inclusion L(G) ⊆ MK �α G ⊆ M �α G, which provides 
the key connection between quasinormalizers and dynamics in our main result, in which 
we compute the von Neumann algebra generated by the one-sided quasinormalizers of 
L(G).

Theorem 4.1. Let (M, G, α, ρ) be an ergodic W ∗-dynamical system. Then

vN(QN (1)(L(G) ⊆ M �α G)) = MK �α G. (4.1.1)

The remainder of this section will comprise the proof of Theorem 4.1 and its imme-
diate corollaries. Accordingly, we let M = (M, G, α, ρ) be a fixed ergodic W ∗-dynamical 
system, and consider the inclusion L(G) ⊆ MK �α G ⊆ M �α G. We first prove that 
MK �α G ⊆ vN(QN (1)(L(G) ⊆ M �α G)). To do this, we will need the following 
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lemma, which shows that certain finite-dimensional L(G) modules arising in M �αG are 
automatically w∗-closed.

Lemma 4.2. For any finite subset {x1, . . . , xn} of M , the module 
∑

j xjL(G) is w∗-closed 
in M �α G.

Proof. Applying the Gram-Schmidt procedure from Section 2.2 in L2(M, ρ) to the xj , 
1 � j � n, we may assume they are mutually orthogonal and have ‖xj‖2 = 1. By the 
Krein-Smulian theorem, we need only show that the intersection of 

∑
j xjL(G) with any 

closed ball of finite radius is w∗-closed.
Let (yλ) be a uniformly bounded net in 

∑
j xjL(G) such that yλ converges in the 

w∗-topology to y ∈ M �α G. We may then write each yλ as a sum

yλ =
∑
j

xjEL(G)(x∗
jyλ).

If K > 0 is such that ‖yλ‖ � K, then for any λ and 1 � j � n, we have

∥∥EL(G)(x∗
jyλ)

∥∥ � K max
∥∥x∗

j

∥∥ .
By w∗-compactness, we may then drop to a subnet of (yλ) so that for each 1 � j � n

there is some zj ∈ L(G) such that EL(G)(x∗
jyλ) converges to zj in the w∗-topology. 

Then yλ converges to 
∑

j xjzj , an element of 
∑

xjL(G). Thus, the module 
∑

xjL(G) is 
w∗-closed. �

Now fix s ∈ G and suppose x ∈ M has finite-dimensional orbit under α, i.e., there 
exist x1, . . . , xn ∈ M such that Orb(x) = {αg(x) : g ∈ G} ⊆ span {x1, . . . xn}. Then, for 
any h ∈ G,

uhxus = αh(x)uhus ∈
∑
i

xiL(G).

It follows by Lemma 4.2 that L(G)xus ⊆
∑

j xjL(G). A symmetric argument shows that 
xusL(G) ⊆

∑
j L(G)xj , that is, xus is a quasinormalizer of L(G). The von Neumann 

algebra generated by elements of this form is precisely MK �α G, so we conclude that

MK �α G ⊆ QN (L(G) ⊆ M �α G)′′.

This completes the proof of one inclusion in the statement of Theorem 4.1. The main 
observation for the opposite inclusion is the following lemma, which implies that the 
Fourier coefficients of a one-sided quasinormalizer x =

∑
g xgug ∈ M �α G must have 

compact orbits under the group action.
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Lemma 4.3. Let 0 �= x =
∑

s∈G xsus ∈ M �α G be a one-sided quasinormalizer of L(G). 
Then for each s ∈ G with xs �= 0 and ε > 0 there is a finite-dimensional subspace Kε,s

of L2(M, ρ) such that for all z ∈ Orb(xs) we have

dist(z,Kε,s) = inf
m∈Kε,s

‖z −m‖2 < ε. (4.1.2)

Proof. Let 0 �= x =
∑

s∈G xsus ∈ M �αG be a one-sided quasinormalizer of L(G). Then 

the L(G)-module H = L(G)xL(G)
‖·‖2 ⊆ L2(M �α G) is finitely generated. Denote by 

〈·, ·〉 the L(G)-valued inner product. Then H admits a finite orthonormal basis of left-
bounded vectors {η1, . . . , ηn}, so that any left-bounded vector η ∈ H may be expressed 
as a combination

η =
n∑

j=1
ηj 〈ηj , η〉 , η ∈ H.

Let h ∈ G. Then the vector ξh = uhxΩ ∈ H is left-bounded, so by the above formula,

ξh =
n∑

j=1
ηj 〈ηj , ξh〉 .

For j = 1, . . . , n we may express ηj and 〈ηj , ξh〉 as functions on G, valued (respectively) 
in L2(M) and C, and write

ηj = (ηj(g))g∈G and 〈ηj , ξh〉 = (λ(h)
j,t )t∈G,

where 
∑

g ‖ηj(g)‖
2
2 < ∞ and 

∑
t

∣∣∣λ(h)
j,t

∣∣∣2 < ∞. Note that, for 1 � j � n and any h ∈ G, 
we have

(
∑
t

∣∣∣λ(h)
j,t

∣∣∣2)1/2 = ‖〈ηj , ξh〉‖2 �
∥∥Lηj

∥∥ ‖x‖2 � C ‖x‖ ,

where C = maxj

∥∥Lηj

∥∥.
Each product ηj 〈ηj , ξh〉, 1 � j � n, then defines an element of H by the convolution 

formula (see (2.2.4))

(ηj 〈ηj , ξh〉)(k) =
∑
g∈G

λ
(h)
j, g−1kηj(g), k ∈ G.

It follows that for each s ∈ G, the sum 
∑n

j=1(ηj 〈ηj , ξh〉)(hs) picks out the hs-coefficient 
in the Fourier series of uhx =

∑
g∈G uhxgug =

∑
g∈G αh(xg)uhg. That is, for each s ∈ G

we have

αh(xs)Ω =
n∑∑

λ
(h)
j, g−1hsηj(g).
j=1 g∈G
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Given ε > 0, choose a finite subset F ⊆ G so large that

n∑
j=1

∑
g∈G\F

‖ηj(g)‖2
2 <

ε

nC ‖x‖ . (4.1.3)

Then, using the Cauchy-Schwarz inequality,∥∥∥∥∥∥αh(xs)Ω −
n∑

j=1

∑
g∈F

λ
(h)
j, g−1hsηj(g)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
n∑

j=1

∑
g∈G\F

λ
(h)
j, g−1hsηj(g)

∥∥∥∥∥∥
2

�
n∑

j=1

⎛⎝ ∑
g∈G\F

‖ηj(g)‖2
2

⎞⎠1/2 ⎛⎝ ∑
g∈G\F

∣∣∣λ(h)
j, g−1hs

∣∣∣2
⎞⎠1/2

<
n∑

j=1

(
ε

nC ‖x‖

)⎛⎝ ∑
g∈G\F

∣∣∣λ(h)
j, g−1hs

∣∣∣2
⎞⎠1/2

�
n∑

j=1

(
ε

nC ‖x‖

)(∑
t∈G

∣∣∣λ(h)
j,t

∣∣∣2)1/2

�
n∑

j=1

(
ε

nC ‖x‖

)
C ‖x‖ = ε.

Each vector 
∑n

j=1
∑

g∈F λ
(h)
j,g−1hsηj(g) lies in the finite-dimensional subspace

Kε,s = span {ηj(g) : 1 � j � n, g ∈ F} ⊆ L2(M,ρ),

and the above estimate is independent of h ∈ G. Thus, the space Kε,s is such that 
dist(z, Kε,s) < ε for any z ∈ Orb(xs). �

As noted above, Lemma 4.3 implies that the Fourier coefficients of a one-sided quasi-
normalizer have precompact orbit under the group action.

Corollary 4.4. If x =
∑

s∈G xsus ∈ QN (1)(L(G) ⊆ M �α G), then for each s ∈ G, 
Orb(xs) is ‖·‖2-precompact.

Proof. Let x =
∑

s∈G xsus ∈ QN (1)(L(G) ⊆ M �α G) and fix s ∈ G. There is nothing 
to prove if xs = 0, thus assume that xs �= 0. Given ε > 0, let Kε,s be the subspace of 
L2(M, ρ) satisfying the requirements of Lemma 4.3. Write F for the closed ball of radius 
‖xs‖2 + ε in Kε,s. Then by compactness of F and density of M in L2(M) there exist 
m1, . . . , mk ∈ M such that Orb(xs) ⊆

⋃k
i=1 Bε(mi). It follows that Orb(xs) is totally 

bounded in ‖·‖2, and this completes the proof. �
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It now follows from Corollary 4.4 that if x =
∑

s∈G xsus ∈ QN (1)(L(G) ⊆ M �α G)
then each Fourier coefficient xs lies in the subalgebra MK ⊆ M , and therefore, x ∈
MK �α G. This shows vN(QN (1)(L(G) ⊆ M �α G)) ⊆ MK �α G, thus completing the 
proof of Theorem 4.1.

Theorem 4.1 also addresses the natural question of whether the von Neumann algebras 
generated by one-sided and two-sided quasinormalizers may coincide for inclusions of 
the form L(G) ⊆ M �α G. It was shown in [18] that these may differ for inclusions of 
group von Neumann algebras L(H) ⊆ L(G). An immediate corollary of the proof of 
Theorem 4.1 is that this cannot happen in the crossed product setting.

Corollary 4.5. If (M, G, α, ρ) is a W ∗-dynamical system, then

QN (L(G) ⊆ M �α G)′′ = QN (1)(L(G) ⊆ M �α G)′′.

We now observe that Theorem 4.1 significantly generalizes (allowing uncountable dis-
crete groups and σ-finite M) the result of Packer [32], mentioned in the introduction. 
That result computed the normalizer for an inclusion L(G) ⊆ M �α G in terms of the 
von Neumann subalgebra M0 ⊆ M generated by the eigenvectors of α for actions of 
countable groups. Note that the subalgebra M0 is clearly invariant under α, and can be 
seen to be equal to MK , as follows. If x ∈ M is such that Orb(x) has finite-dimensional 
span, then the vector xΩ lies in a finite-dimensional subspace F of MΩ which is invariant 
under the group {Vh : h ∈ G} of Koopman unitaries associated to α. Since G is abelian, 
the Vh�F are simultaneously unitarily diagonalizable, and hence, F has an orthonormal 
basis of eigenvectors of α. Therefore, x ∈ M0. This proves that MK ⊆ M0, and the 
reverse containment is obvious, so they are equal, and moreover MK �α G = M0 �α G. 
On the other hand, if x ∈ M0 is an eigenvector of the action α there exists a character 
χ of G such that αg(x) = χ(g)x for all g ∈ G. Scaling x so that ‖x‖ = 1 and using 
ergodicity of the action we deduce that x∗x and xx∗ are both 1, thus x is a unitary in 
M0. Then uugu

∗ = uαg(u∗)ug = χ(g)ug for all g ∈ G. Consequently, u normalizes L(G). 
The following is then immediate:

QN (1)(L(G) ⊆ M �α G)′′ = QN (L(G) ⊆ M �α G)′′

= MK �α G = M0 �α G

⊆ N (L(G) ⊆ M �α G)′′ ⊆ QN (1)(L(G) ⊆ M �α G)′′.

These remarks prove the following corollary.

Corollary 4.6. If G is a discrete abelian group, and α is an ergodic, trace-preserving 
action of G on a finite von Neumann algebra (M, τ), then

N (L(G) ⊆ M �α G)′′ = MK �α G.
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Remark 4.7. Note that many results about normalizers of masas or subalgebras in the 
literature require the assumption of a separable predual of M or the hypothesis that the 
acting group is countable and discrete or separable (see for instance [30, Proposition 2.1]). 
This is because, for example in the context of masas the ambient masa is identified 
with a suitable L∞ space and separability assumption of the GNS space allows the 
use of spectral theorem in its strongest form through direct integrals; the latter being 
invoked either implicitly or explicitly. The proofs in this section do not need any such 
requirements and work even when the predual of M is not separable, ρ is a faithful 
normal state and the acting discrete group is uncountable.

The following corollary generalizes [4, Corollary 7.6].

Corollary 4.8. Let (M, G, α, ρ) be an ergodic W ∗-dynamical system. Then

QN (1)(L(G) ⊆ M �α G)′′ ⊆ (M �α G)ρ̂.

In particular, if M �α G is properly infinite then L(G) cannot be one-sided quasiregular 
in M �α G and α must have a non-trivial weakly mixing component.

Proof. The proof follows directly from Theorem 4.1 and the fact that ρ̂�MK�αG is a 
trace. �
4.2. Relatively almost periodic elements and compact extensions

Throughout this section we let N ⊆ (M, τ) be an inclusion of tracial von Neumann 
algebras and we let (M, G, σ, τ) be a τ -preserving W ∗-dynamical system such that N
is a G-invariant von Neumann subalgebra. Such a system is called a τ -preserving W ∗-
dynamical extension system and will be denoted by (N ⊆ M, G, σ, τ).

Definition 4.9. Let (N ⊆ M, G, σ, τ) be a τ -preserving W ∗-dynamical extension system. 
An element f ∈ L2(M) is called almost periodic relative to N if and only if for every 
ε > 0 one can find elements η1, . . . , ηn ∈ L2(M) such that for every g ∈ G there exist 
κ(g, j) ∈ N with 1 � j � n satisfying

(1) suph∈G ‖κ(h, j)‖∞ < ∞, and
(2) ‖σg(f) −

∑n
j=1 ηjκ(g, j)‖2 < ε.

Basic approximations show that in part (2) of the previous definition one can actually 
pick ηj ∈ M as opposed to its L2-space. Throughout the remaining sections we denote 
by KN,M ⊆ L2(M) the set of all elements that are almost periodic relative to N . We 
will also denote by PN,M := M ∩ KN,M .

Proposition 4.10. The following properties hold:
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(1) KN,M ⊆ L2(M) is a G-invariant Hilbert subspace.
(2) PN,M ⊆ M is a SOT-closed, G-invariant, linear subspace.

Proof. It is immediate from the definitions that KN,M is ‖ · ‖2-closed and G-invariant, 
and that PN,M is a G-invariant linear subspace. It remains to show that P := PN,M is 
SOT-closed. Let f ∈ PSOT and let (fi)i ⊂ P be a net such that fi → f in SOT. Fix ε > 0
and let i be such that ‖fi − f‖2 < ε

2 . From Definition 4.9, there exist η1, . . . , ηn ∈ M

and κ(g, j) ∈ N with 1 � j � n such that suph∈G ‖κ(h, j)‖∞ < ∞ and ‖σg(fi) −∑
j ηjκ(g, j)‖2 < ε

2 . These, combined with the triangle inequality, show that

‖σg(f) −
∑
j

ηjκ(g, j)‖2 � ‖σg(f) − σg(fi)‖2 + ‖σg(fi) −
∑
j

ηjκ(g, j)‖2

� ‖f − fi‖2 + ε

2 < ε,

proving that f ∈ P and giving the desired claim. �
Definition 4.11. A τ -preserving W ∗-dynamical extension system (N ⊆ M, G, σ, τ) is 
called compact if and only if KN,M = L2(M).

Note that when the subalgebra N = C1, this condition coincides with compactness of 
the system (M, G, α, τ). Next, we show that Definition 4.11 extends the classical notion of 
compactness for extensions of actions on abelian von Neumann algebras. For convenience 
we recall one of the equivalent definitions from the classical situation.

Definition 4.12. Let M be an abelian von Neumann algebra. Then a W ∗-dynamical 
extension system (N ⊆ M, G, σ, τ) is compact if and only if L2(M) decomposes as a 
direct sum of finitely generated G-invariant N -modules.

Proposition 4.13. If M is an abelian von Neumann algebra and (N ⊆ M, G, σ, τ) is a 
τ -preserving, ergodic W ∗-dynamical extension system, then the notions of compactness 
from Definitions 4.12 and 4.11 coincide.

Proof. Assume (N ⊆ M, G, σ, τ) is compact as in Definition 4.12. Then, L2(M) = ⊕iHi

where Hi are finitely generated G-invariant N -modules. Moreover, since the action of G
on M is ergodic, using a standard argument (e.g. [23, Proposition 3.4]) we can assume 
each Hi admits a finite N -basis, (ηj)j ⊆ M – i.e., ηj ’s are N -orthogonal and for every 
ξ ∈ Hi we have ξ =

∑
j ηjEN (η∗j ξ). Thus for every g ∈ G and ξ ∈ Hi we have σg(ξ) =∑

j ηjEN (η∗jσg(ξ)). Let ξ ∈ Hi and ε > 0. Let m ∈
∑

j ηjN ⊆ M be such that ‖ξ−m‖2 <

ε. Since (ηj)j is a N -basis we have ‖σg(ξ) −
∑

j ηjEN (η∗jσg(m))‖2
2 = ‖ 

∑
j ηjEN (η∗j (σg(ξ−

m))‖2
2 � ‖σg(ξ − m)‖2

2 = ‖ξ − m‖2
2 < ε2. Letting κ(g, j) = EN (η∗jσg(m)) we see that 

‖κ(g, j)‖∞ � (maxj ‖ηj‖∞)‖m‖∞. Altogether, the prior relations show that ξ ∈ KN,M . 
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Thus, Hi ⊆ KN,M . Now use (1) of Proposition 4.10 to establish L2(M) ⊆ KN,M . Hence 
Definition 4.11 is satisfied.

Now we show the reverse implication. Let N ⊆ P ⊆ M be the maximal von Neumann 
subalgebra such that (N ⊆ P, G, σ, τ) is compact in the sense of Definition 4.12; see for 
instance [23, Corollary 3.6]. Thus (P ⊆ M, G, σ, τ) is weak mixing relative to N , i.e., 
there is a net (gλ)λ ⊆ G (in this case bλ’s in Definition 3.4 can be chosen to be 1) such 
that for all η, ζ ∈ M � P we have

lim
λ

‖EN (ησgλ(ζ))‖2 = 0. (4.2.1)

To get our conclusion it suffices to show that P = M . Pick ξ ∈ M �P and fix ε > 0. By 
Definition 4.9 there exist ηi ∈ M for 1 � i � n and κ(g, i) ∈ N with supg ‖κ(g, i)‖∞ =:
C < ∞ such that

‖σg(ξ) −
n∑

i=1
ηiκ(g, i)‖2 <

ε

3 for all g ∈ G. (4.2.2)

Since M is abelian then H = η1N + · · · + ηnN is a finitely generated N -bimodule and 
by Theorem 2.3 one can find N -orthogonal elements yj ∈ M with 1 � j � m so that

‖x−
m∑
j=1

yjEN (y∗jx)‖2 <
ε

3Cn
, (4.2.3)

for all x = η1x1 + · · · + ηnxn with xi ∈ (N)C .
Using triangle inequality and basic estimates together with (4.2.2), inequality (4.2.3)

for x = ηi with 1 � i � n and also the estimate (2.2.2) we see for every g ∈ G we have

‖σg(ξ) −
m∑
j=1

yjEN (y∗jσg(ξ))‖2 (4.2.4)

�‖σg(ξ) −
n∑

i=1
ηiκ(g, i)‖2 + ‖

n∑
i=1

ηiκ(g, i) −
m∑
j=1

yjEN (y∗j
n∑

i=1
ηiκ(g, i))‖2

+ ‖
m∑
j=1

yjEN

(
y∗j (σg(ξ) −

n∑
i=1

ηiκ(g, i))
)
‖2

�‖σg(ξ) −
n∑

i=1
ηiκ(g, i)‖2 +

n∑
i=1

‖ηi −
m∑
j=1

yjEN (y∗j ηi)‖2‖κ(g, i)‖∞

+ ‖
m∑
j=1

yjEN

(
y∗j (σg(ξ) −

n∑
i=1

ηiκ(g, i))
)
‖2

<
ε

3 + (Cn) ε

3Cn
+ ‖σg(ξ) −

n∑
i=1

ηiκ(g, i)‖2 < ε.
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Finally, using (4.2.4) and Cauchy-Schwarz inequality we see for all λ we have

‖ξ‖2
2 = ‖σgλ(ξ)‖2

2 = 〈σgλ(ξ), σgλ(ξ)〉

< ε‖ξ‖2 + |〈
m∑
j=1

yjEN (y∗jσgλ(ξ)), σgλ(ξ)〉|

= ε‖ξ‖2 +
m∑
j=1

‖EN (y∗jσgλ(ξ))‖2
2

= ε‖ξ‖2 +
m∑
j=1

‖EN (zjσgλ(ξ)) + EN (y∗j )EN (σgλ(ξ))‖2
2

= ε‖ξ‖2 +
m∑
j=1

‖EN (zjσgλ(ξ))‖2
2.

Here we denoted zj = y∗j − EN (y∗j ) for all j, and in the last equality we used that 
EN (σgλ(ξ)) = σgλ(EN (ξ)) = 0. As EN (zj) = 0 for all j, then using (4.2.1) and taking 
limit over λ above we get ‖ξ‖2

2 < ε‖ξ‖2. As ε > 0 was arbitrary, we conclude ‖ξ‖2 = 0
and hence ξ = 0. Since ξ ∈ M � P was arbitrary we get M = P , as desired. �

It has been known for some time that the subspace of relative almost periodic elements 
PN,M is not generally a von Neumann subalgebra of M . An example in this direction 
was exhibited by Austin-Eisner-Tao in [3, Example 4.4]. Thus, it is natural to investigate 
what conditions on the inclusion N ⊆ M would ensure that PN,M is a von Neumann 
subalgebra. In this direction, J. Peterson and the third author observed that a sufficient 
condition is quasi-regularity of N ⊆ M . A proof based on arguments in [15] was included, 
with permission, in the recent preprint [26], and this proof works for σ-finite M and 
uncountable discrete G.

Theorem 4.14 ([15]). Let (N ⊆ M, G, σ, τ) be a W ∗-dynamical extension system. If 
QN (N ⊆ M)′′ = M then PN,M ⊆ M is a G-invariant von Neumann subalgebra.

In the remaining part of the subsection we explore the connections between (one-
sided) quasinormalizers in crossed product von Neumann algebras and the subspace of 
relative almost periodic elements of W ∗-dynamical extension systems.

Theorem 4.15. Let (N ⊆ M, G, σ, τ) be a W ∗-dynamical extension system. Then, 
QN (1)(N �σ G ⊆ M �σ G) ⊆ spanPN,MG

‖·‖2 . In particular, we have

vN(QN (1)(N �σ G ⊆ M �σ G)) ⊆ P ′′
N,M �σ G.
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Proof. To simplify the writing, let A = M �σ G, B = N �σ G and C = P ′′
N,M �σ G

and notice B ⊆ C ⊆ A. Fix y ∈ QN (1)(B ⊆ A) and let y =
∑

h yhuh be its Fourier 
expansion in M �σ G.

We will show that yh ∈ PN,M for all h ∈ G. Towards this, fix ε > 0. As ugy ∈
QN (1)(B ⊆ A), using Theorem 2.3, one can find xi ∈ A with 1 � i � n so that for every 
g ∈ G,

‖ugy −
∑
i

xiEB(x∗
i ugy)‖2 � ε.

Approximating the xi’s in ‖ ·‖2 via the Kaplansky density theorem, in the prior inequality, 
we can assume that xi ∈ MK for a finite subset K ⊆ G.

Letting xi =
∑

h∈K xi
huh, the previous inequality implies that for all g ∈ G we have

ε2 � ‖ugy −
∑
i

xiEB(x∗
i ugy)‖2

2

= ‖
∑
h∈G

ugyhuh −
∑

s,t∈K,l∈G

∑
i

xi
susEB(ut−1(xi

t)∗ugylul)‖2
2

= ‖
∑
h∈G

σg(yh)ugh −
∑

s,t∈K,l∈G

∑
i

xi
sEN (σst−1(xi

t)∗σst−1g(yl))ust−1gl‖2
2

=
∑
h∈G

‖σg(yh) −
∑

s,t∈K,i

xi
sEN (σst−1(xi

t)∗σst−1g(yg−1ts−1gh))‖2
2

=
∑
h∈G

‖σg(yh) −
∑
i,s

xi
s

(∑
t

EN (σst−1(xi
t)∗σst−1g(yg−1ts−1gh))

)
‖2
2.

Since K is a finite set this inequality clearly implies that each yh satisfies the compactness 
definition with ηj = xi

s and κ(g, j) =
∑

t EN (σst−1(xi
t)∗σst−1g(yg−1ts−1gh)). Thus yh ∈

PN,M for all h ∈ G as desired. The rest of the conclusion follows. �
With these preparations at hand we are now ready prove the following generalization 

of Theorem 4.1 in the context of trace-preserving W ∗-dynamical extension systems.

Theorem 4.16. Let (N ⊆ M, G, σ, τ) be a W ∗-dynamical extension system and assume 
that QN (N ⊆ M)′′ = M . Then N ⊆ PN,M ⊆ M is G-invariant von Neumann subalgebra 
and vN(QN (1)(N �σ G ⊆ M �σ G)) = PN,M �σ G.

Proof. As the first part of the conclusion is immediate from Theorem 4.14, we will only 
prove the second part. Denote by B := N �σ G, D := vN(QN (1)(N �σ G ⊆ M �σ G))
and A := M �σ G. By Theorem 3.2, the triple B ⊆ D ⊆ A satisfies the relative WAHP. 
Moreover, by Theorem 3.3 one can pick the net of unitaries witnessing the relative WAHP 
in any subgroup of unitaries generating B; in particular, we can pick them in U(N)G. 
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Thus one can find (vλ)λ ⊆ U(N) and (ugλ)λ ⊆ G such that for every ξ, η ∈ A �D we 
have

lim
λ

‖EB(ξvλugλη)‖2 = 0. (4.2.5)

Letting P := PN,M , Theorem 4.15 implies our conclusion, once we show that P ⊆ D. 
Toward this, fix ζ ∈ P be such that ‖ζ‖ � 1 and let ξ := ζ − ED(ζ) ∈ M �D. Next we 
will argue that ξ = 0, which will give the conclusion.

First, we need to establish the following.

Claim 4.17. For every ε > 0 one can find η1, . . . , ηn ∈ L2(M) and h1, . . . , hn ∈ G (non-
necessarily distinct), so that for every g ∈ G there are κ(g, j) ∈ N with 1 � j � n

satisfying

sup
g∈G

‖κ(g, j)‖∞ = C < ∞ and ‖σg(ξ) −
∑
j

ηjκ(g, j)ughjg−1‖2 < ε. (4.2.6)

Proof of Claim 4.17. Fix ε > 0. As ζ ∈ P one can find η′1, . . . , η
′
m ∈ L2(M) such that 

for every g ∈ G there exist κ′(g, i) ∈ N with 1 � i � m satisfying

sup
h∈G

‖κ′(h, i)‖∞ =: C ′ < ∞ and ‖σg(ζ) −
∑
i

η′iκ
′(g, i)‖2 <

ε

2 . (4.2.7)

Using Theorem 4.15, we have ED(ζ) ∈ D ⊆ P �σ G. Thus one can find a finite subset 
F ⊆ G and as ∈ (P )1 for all s ∈ F such that ‖ED(ζ) −

∑
s∈F asus‖2 � ε

4 . Hence for all 
g ∈ G we have

‖σg(ED(ζ)) −
∑
s∈F

σg(as)ugsg−1‖2 � ε

4 . (4.2.8)

As as ∈ P there are ηs1, . . . , η
s
ns

∈ L2(M) so that for every g ∈ G there are κs(g, j) ∈ N

with 1 � j � ns satisfying

sup
h∈G,j,s

‖κs(h, j)‖∞ =: C ′′ < ∞ and ‖σg(as) −
∑
j

ηsjκ
s(g, j)‖2 <

ε

4|F | . (4.2.9)

Combining inequalities (4.2.8) and (4.2.9), for all g ∈ G we get

‖σg(ED(ζ)) −
∑
s∈F

∑
j

ηsjκ
s(g, j)ugsg−1‖2

�‖σg(ED(ζ)) −
∑
s∈F

σg(as)ugsg−1‖2 +
∑
s∈F

‖σg(as) −
∑
j

ηsjκ
s(g, j)‖2

<
ε + |F | ε = ε

.
4 4|F | 2
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Combining this with relation (4.2.7), for all g ∈ G, we have

‖σg(ξ) −

⎛⎝∑
i

η′iκ
′(g, i) −

∑
s∈F

∑
j

ηsjκ
s(g, j)ugsg−1

⎞⎠ ‖2 � ε.

This together with the uniform boundedness conditions from (4.2.7)–(4.2.9) yield our 
claim. �

Now fix an arbitrary ε > 0. Then by Claim 4.17 one can find η1, . . . , ηn ∈ L2(M) and 
h1, . . . , hn ∈ G, so that for every g ∈ G there are κ(g, j) ∈ N with 1 � j � n satisfying

sup
g∈G

‖κ(g, j)‖∞ = C < ∞ and ‖σg(ξ) −
∑
j

ηjκ(g, j)ughjg−1‖2 <
ε

4 . (4.2.10)

As QN (N ⊆ M)′′ = M , using basic approximations we can assume ηi ∈ QN (N ⊆ M). 
Using Theorem 2.3 one can find xj,i ∈ M such that ‖xηjy −

∑
i xj,iEN (x∗

j,ixηjy)‖2 �
ε‖x‖∞‖y‖∞

4Cn for all x, y ∈ N . This inequality together with the second part of (4.2.10)
implies that for every x ∈ (N)1 and g ∈ G we have

‖xσg(ξ) −
∑
j,i

xj,iEN (x∗
j,ixηjk(g, j))ughjg−1‖2 <

ε

2 . (4.2.11)

Since ED(ξ) = 0 we have that ED(xσg(ξ)) = 0, for all x ∈ N . This further implies that 
‖ 
∑

j,i ED(xj,i)EN (x∗
j,ixηjk(g, j))ughjg−1‖2 < ε

2 . Combining it with (4.2.11) and letting 
yj,i := xj,i −ED(xj,i), for every x ∈ N and g ∈ G we get

‖xσg(ξ) −
∑
j,i

yj,iEN (x∗
j,ixηjk(g, j))ughjg−1‖2 < ε. (4.2.12)

Using this inequality we see that for x = vλ and g = gλ we have

‖ξ‖2
2 = ‖vλσgλ(ξ)‖2 = 〈vλσgλ(ξ), vλσgλ(ξ)〉

� ε + |〈
∑
j,i

yj,iEN (x∗
j,ivληjκ(gλ, j))ugλhjg

−1
λ

, vλσgλ(ξ)〉|

� ε +
∑
j,i

|〈EN (x∗
j,ivληjκ(gλ, j))ugλhjg

−1
λ

, y∗j,ivλσgλ(ξ)〉|

= ε +
∑
j,i

|〈EN (x∗
j,ivληjκ(gλ, j))ugλhj

, EB(y∗j,ivλugλξ)〉|

� ε +
∑

C‖xj,i‖∞‖ηj‖2‖EB(y∗j,ivλugλξ)‖2.

j,i
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Since by (4.2.5) we have limλ ‖EB(y∗j,ivλugλξ)‖2 = 0 and the set xj,i’s are finite (arguing 
with nets as in the proof of Lemma 3.5) the previous inequality gives that ‖ξ‖2

2 � ε. 
Since ε > 0 was arbitrary we get ξ = 0, as desired. �

We remark that the previous theorem and its proof yield the following corollary.

Corollary 4.18. Let (N ⊆ M, G, σ, τ) be a W ∗-dynamical extension system. Then the 
W ∗-dynamical extension system (P ′′

N,M ⊆ M, G, σ, τ) is weak mixing relative to N in the 
sense of Definition 3.4.

A further consequence of Theorem 4.16 is that, for crossed product inclusions associ-
ated to abelian W ∗-dynamical extension systems, the von Neumann algebras generated 
by quasinormalizers and one-sided quasinormalizers coincide.

Corollary 4.19. If M is abelian and (N ⊆ M, G, σ, τ) is an ergodic W ∗-dynamical exten-
sion system then

vN(QN (1)(N �σ G ⊆ M �σ G)) = QN (N �σ G ⊆ M �σ G)′′ = PN,M �σ G.

Proof. First we note that since M is abelian then QN (N ⊆ M)′′ = M and hence 
by Theorem 4.14, PN,M is a von Neumann algebra. Thus, by Theorem 4.16, to get 
our conclusion we only need to show that PN,M �σ G ⊆ QN (N �σ G ⊆ M �σ G)′′. 
Since M is abelian then by Proposition 4.13 we have KN,M = ⊕iHi, where Hi

are finitely generated, G-invariant N -modules. Moreover, since the action of G on 
M is ergodic, using a standard argument (e.g. [23, Proposition 3.4]) we can as-
sume each Hi admits a finite N -basis, (ηj)j ⊆ PN,M . In other words, for every 
ξ ∈ Hi we have ξ =

∑
j ηjEN (η∗j ξ) =

∑
j EN (η∗j ξ)ηj . Thus for every g ∈ G we 

have σg(ηk) =
∑

j ηjEN (η∗jσg(ηk)) and hence ugηk =
∑

j ηjEN (η∗jσg(ηk))ug. Since 
M is abelian this further gives augηk =

∑
j ηjEN (η∗jσg(ηk))aug for all g ∈ G and 

a ∈ N . Thus for every finite combination x =
∑

g agug ∈ N �σ,alg G we have that 
xηk =

∑
j ηjφj,k(x) where we denoted φj,k : N �σ,alg G → N �σ,alg G the linear map 

given by φj,k(
∑

g agug) =
∑

g EN (η∗jσg(ηk))agug. As N is abelian basic calculations 
show that for every x =

∑
g agug ∈ N �σ,alg G we have

eN�σGη
∗
jxηkeN�σG =

∑
g

eN�σGη
∗
j agugηkeN�σG

=
∑
g

eN�σGη
∗
j agσg(ηk)ugeN�σG =

∑
g

eN�σGη
∗
jσg(ηk)agugeN�σG

=
∑
g

eN�σGη
∗
jσg(ηk)eN�σGagug =

∑
g

EN�σG(η∗jσg(ηk))eN�σGagug

=
(∑

EN (η∗jσg(ηk))agug

)
eN�σG = φj,k(x)eN�σG.
g
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In particular, this relation implies that φj,k extends to a WOT-continuous linear map 
φj,k : N �σ G → N �σ G which still satisfies xηk =

∑
j ηjφj,k(x) for all x ∈ N �σ G. 

Therefore we have (N �σ G)ηk ⊆
∑

j ηj(N �σ G). Similarly one can show that ηk(N �σ

G) ⊆
∑

j(N �σ G)ηj and hence ηk ∈ QN (N �σ G ⊆ M �σ G) for all k. Since the ηj ’s 
are N -basis for each Hi we conclude that PN,M ⊆ QN (N ⊆ M)′′, as desired. �
Theorem 4.20. Let (N ⊆ M, G, σ, τ) be a W ∗-dynamical extension system, where G is 
an i.c.c. group. Then, there exist G-invariant von Neumann subalgebras Q ⊆ P ⊆ PN,M

satisfying

(1) QN (N �σ G ⊆ M �σ G)′′ = P �σ G, and
(2) N (N �σ G ⊆ M �σ G)′′ = Q �σ G.

Proof. By Theorem 4.15 we have that QN (N �σ G ⊆ M �σ G) ⊆ QN (1)(N �σ G ⊆
M �σ G) ⊆ spanPN,MG

‖·‖2 and hence QN (N �σ G ⊆ M �σ G)′′ ⊆ spanPN,MG
‖·‖2 . 

For simplicity denote by S := QN (N �σ G ⊆ M �σ G)′′ and note that N �σ G ⊆ S ⊆
M �σ G. Using the same argument from the proof of [10, Theorem 3.10] we see for every 
ξ ∈ PN,M we have that ES(ξ) = EM ◦ ES(ξ). By induction, this further implies that 
ES(ξ) = (ES◦EM ◦ES)k(ξ) for every positive integer k. Notice that the Jones projections 
satisfy (eSeMeS)k → eS ∧ eM in the SOT topology as k → ∞. Since eS ∧ eM = eM∩S

([41, Theorem 4.3]), altogether, the prior relations show that

ES(ξ) = ES∩M (ξ) for all ξ ∈ PN,M . (4.2.13)

Fix y ∈ S. As y ∈ spanPN,MG
‖·‖2 one can find ηg ∈ PN,M for all g ∈ G satisfying 

y =
∑

g∈G ηgug. Applying the expectation ES and using (4.2.13) we further have that 
y = ES(y) =

∑
g∈G ES(ηg)ug =

∑
g∈G EM∩S(ηg)ug. In particular, this shows S ⊆

span(M ∩ S)G
‖·‖2 .

Since N ⊆ M ∩ S ⊆ M is a G-invariant intermediate von Neumann algebra we have 

that span(M ∩S)G ⊆ (M ∩S) �σ G; hence S ⊆ (M ∩ S) �σ G
‖·‖2 . Since we canonically 

have (M ∩ S) �σ G ⊆ S, then we conclude that S = (M ∩ S) �σ G. Letting P = M ∩ S, 
the previous relations also show that P ⊆ PN,M , finishing part (1) of the conclusion. 
The second part follows similarly and the details are left to the reader. �

The prior results yield the following generalization of [10, Corollary 3.14].

Corollary 4.21. Let (N ⊆ M, G, σ, τ) be a W ∗-dynamical extension system, where G is 
an i.c.c. group. Then, for every intermediate von Neumann subalgebra N �σ G ⊆ Q ⊆
M �σ G which admit a finite left and right Pimsner-Popa bases over N �σ G, there is 
a G-invariant intermediate von Neumann algebra N ⊆ P ⊆ M which admits finite left 
and right Pimsner-Popa bases over N such that Q = P �σ G. Moreover, if N = C1 then 
P is finite-dimensional.
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Proof. Since Q admits a finite left Pimsner-Popa basis and also a finite right Pimsner-
Popa basis over N �σ G, then Q ⊆ QN (N �σ G, M �σ G)′′. Thus, using Theorem 4.20, 
one can find a G-invariant von Neumann subalgebra N ⊆ R ⊆ PN,M so that N �σ G ⊆
Q ⊆ R �σ G. Further, by [10, Theorem 3.10], one can find a G-invariant von Neumann 
subalgebra N ⊆ P ⊆ R ⊆ M such that Q = P �σG. Next notice the following inclusions 
diagram

N �σ G ⊆ P �σ G

∪ ∪
N ⊆ P

is a non-degenerate commuting square in the sense of Popa, [39]. Since N �σG ⊆ P �σG

admits a finite left (right) Pimsner-Popa basis then using [39, Proposition 1.1.5 (iii)] we 
conclude that N ⊆ P also has a finite left (right) Pimsner-Popa basis. Thus, if N = C1, 
then P is finite-dimensional. �
Remarks 4.22. In connection with Theorem 4.20 it would be interesting to know if there 
are examples of W ∗-dynamical extension systems (N ⊆ M, G, σ, τ) with G i.c.c. for 
which vN(QN (1)(N �σ G, M �σ G)) is not of the form Q �σ G for an intermediate von 
Neumann subalgebra N ⊆ Q ⊆ M .

4.3. Von Neumann algebraic descriptions of the Furstenberg-Zimmer tower

Using the prior results (e.g. Theorems 4.15–4.16) we show that the Furstenberg and 
Zimmer structural theorems for action of groups on probability spaces, [19,46] can be 
described solely in von Neumann algebraic terms, using the language of one-sided quasi-
normalizing algebras and von Neumann subalgebras generated by the relatively almost 
periodic elements (see Corollary 4.25). In particular, we recover an unpublished result 
of J. Peterson and the third author [15]; see also [10, Theorem 2.5].

More generally, using the von Neumann algebraic framework we are able to introduce 
various types of Furstenberg-Zimmer structural towers even in the non-commutative 
case. We start with the following result for general W ∗-dynamical extension systems.

Theorem 4.23. Let (N ⊆ M, G, σ, τ) be a W ∗-dynamical extension system. Then one can 
find an ordinal α and a G-invariant von Neumann subalgebra N ⊆ Qβ ⊆ M for every 
β � α satisfying the following properties:

1. For all β � β′ � α we have N = Qo ⊆ Qβ ⊆ Qβ′ ⊆ M .
2. For every successor ordinal β + 1 � α we have Qβ+1 = P ′′

Qβ ,M
and

vN(QN (1)(Qβ �σ G ⊆ M �σ G)) ⊆ Qβ+1 �σ G.
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3. For every limit ordinal β � α we have ∪γ<βQγ
SOT = Qβ and ∪γ<βQγ �σ G

SOT =
Qβ �σ G.

4. There are nets (gλ)λ ⊆ G and (uλ)λ ⊆ U(Qα) such that for every x, y ∈ M �Qα we 
have

lim
λ

‖EQα
(xuλσgλ(y))‖2 = 0.

Proof. We will define inductively the tower of von Neumann algebras Qβ, for all ordinals 
β, as follows. First let Q0 = N . Now, if β is a successor ordinal then let Qβ := P ′′

Qβ−1,M
⊆

M , the von Neumann algebra generated by PQβ−1,M . Notice that by Proposition 4.10
this is G-invariant and satisfies Qβ−1 ⊆ Qβ . Moreover by Theorem 4.15, in this case we 
also have that vN(QN (1)(Qβ �σ G ⊆ M �σ G)) ⊆ Qβ+1 �σ G. Altogether, these give 

part 2 above. If β is a limit ordinal then let Qβ := ∪γ<βQγ
SOT. In this case, since all 

Qγ are G-invariant one can easily see that so is Qβ. In particular, we also have that 
∪γ<βQγ �σ G

SOT = Qβ �σ G. Now let α be the first ordinal where the chain (Qβ)β
stabilizes, i.e., Qα = Qα+1. Altogether, the previous relations show the tower (Qβ)β�α

satisfies conditions 1.–3. in the statement. Moreover, since α stabilizes the tower we have 
that Qα = P ′′

Qα,M and by Theorem 4.15 we get that vN(QN (1)(Qα �σ G ⊆ M �σ G)) =
Qα �σ G. However, using the relative WAHP in the same way as in the beginning of the 
proof of Theorem 4.16, this further gives 4. �
Theorem 4.24. Let (N ⊆ M, G, σ, τ) be an ergodic W ∗-dynamical extension system where 
M is abelian. Then one can find an ordinal α and a G-invariant von Neumann subalgebra 
N ⊆ Qβ ⊆ M for every β � α satisfying the following properties:

1’. For all β � β′ � α we have the following inclusions of von Neumann algebras N =
Qo ⊆ Qβ ⊆ Qβ′ ⊆ M .

2’. For every successor ordinal β + 1 � α we have vN(QN (1)(Qβ �σ G ⊆ M �σ G)) =
QN (Qβ �σ G ⊆ M �σ G)′′ = Qβ+1 �σ G. Moreover, there is a net (gβλ)λ ⊆ G such 
that for every x, y ∈ M �Qβ+1 we have

lim
λ

‖EQβ
(xσgβ

λ
(y))‖2 = 0.

3’. For every limit ordinal β � α we have ∪γ<βQγ
SOT = Qβ and also

∪γ<βQγ �σ G
SOT = Qβ �σ G.

4’. There is a net (gλ)λ ⊆ G such that for every x, y ∈ M �Qα we have

lim ‖EQα
(xσgλ(y))‖2 = 0.
λ
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Proof. From Theorem 4.23 one can find a tower (Qβ)β�α of von Neumann subalgebras 
N ⊆ Qβ ⊆ M satisfying the properties 1.–4. listed in the conclusion. We will show these 
imply our statement.

Fix β+1 � α any successor ordinal. Since M is abelian we have QN (Qβ ⊆ M)′′ = M

and using Theorem 4.14 we get that PQβ ,M ⊆ M is a von Neumann subalgebra. 
Thus Qβ+1 = PQβ ,M and by Theorem 4.16 and Corollary 4.19 we conclude that 
vN(QN (1)(Qβ �σ G ⊆ M �σ G)) = QN (Qβ �σ G ⊆ M �σ G)′′ = Qβ+1 �σ G. 
This gives the first part of 2’. The moreover part of 2’ follows from Lemma 3.5 and 
Theorem 3.2. Finally, since M is abelian and uλ is a unitary, in 4. we have that 
‖EQα

(xuλσgλ(y))‖2 = ‖uλEQα
(xσgλ(y))‖2 = ‖EQα

(xσgλ(y))‖2 which gives 4’. �
In particular, the previous result yields the following picture of the classical 

Furstenberg-Zimmer tower as a sequence of iterated quasinormalizing algebras in the 
context of p.m.p. actions of countable groups and separable σ-algebras. This result was 
originally obtained by J. Peterson and the third author in the unpublished work [15].

Corollary 4.25 ([15]). Let G � X be an pmp ergodic action on a standard probability 
space X and let (G � Xβ)β�α be the corresponding Furstenberg-Zimmer tower. Let 
M = L∞(X) �σ G and Mβ = L∞(Xβ) �σ G be the corresponding crossed product von 
Neumann algebras. Then the following hold:

1. For all β � β′ � α we have the following inclusions L(G) = Mo ⊆ Mβ ⊆ Mβ′ ⊆
Mα ⊆ M .

2. For every successor ordinal β + 1 � α we have that vN(QN (1)(Mβ ⊆ M)) =
QN (Mβ ⊆ M)′′ = Mβ+1. Moreover, there is a sequence (gβn)n ⊆ G such that for 
every x, y ∈ L∞(X) � L∞(Xβ+1) we have

lim
n→∞

‖EL∞(Xβ)(xσgβ
n
(y))‖2 = 0.

3. For every limit ordinal β � α we have ∪γ<βL∞(Yγ)
SOT

= L∞(Yβ) and also 

∪γ<βMγ
SOT = Mβ.

4. There is an infinite sequence (gn)n ⊆ G such that for every x, y ∈ L∞(X) � L∞(Yα)
we have

lim
n→∞

‖EL∞(Yα)(xσgn(y))‖2 = 0.

Remark 4.26. An uncountable version of Furstenberg-Zimmer structure theorem has 
been recently obtained in [25, Theorem 6.5]. Theorem 4.24 recovers this tower through 
the description of iterated quasinormalizing algebras. Thus, Corollary 4.25 extends to 
the general case.
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We end with the following result, whose proof is very similar with the first result in 
this section.

Theorem 4.27. Let (N ⊆ M, G, σ, τ) be a W ∗-dynamical extension system. Then one can 
find an ordinal α and a G-invariant von Neumann subalgebra N ⊆ Qβ ⊆ M for every 
β � α satisfying the following properties:

1. For all β � β′ � α we have the following inclusions of von Neumann algebras N =
Qo ⊆ Qβ ⊆ Qβ′ ⊆ M .

2. For every successor ordinal β + 1 � α we have Qβ ⊆ Qβ+1 ⊆ QN (Qβ ⊆ M)′′ and 
vN(QN (1)(Qβ �σ G ⊆ M �σ G)) = Qβ+1 �σ G. Moreover, there are nets (gβλ)λ ⊆ G

and (uλ)λ ⊆ U(Qβ) so that for every x, y ∈ M �Qβ+1,

lim
λ

‖EQβ
(xuλσgβ

λ
(y))‖2 = 0.

3. For every limit ordinal β � α we have ∪γ<βQγ
SOT = Qβ and ∪γ<βQγ �σ G

SOT =
Qβ �σ G.

4. Either Qα = QN (Qα ⊆ M)′′ or, there are nets (gλ)λ ⊆ G and (uλ)λ ⊆ U(Qα) such 
that for every x, y ∈ M �Qα we have

lim
λ

‖EQα
(xuλσgλ(y))‖2 = 0.

Proof. We will define inductively the tower of von Neumann algebras Qβ, for all ordinals 
β, as follows. First let Q0 = N . Now, if β is a successor ordinal then using Theorem 4.16
we define Qβ−1 ⊆ Qβ ⊆ QN (Qβ−1 ⊆ M)′′ as the unique G-invariant von Neumann 
algebra such that vN(QN (1)(Qβ−1 �σ G ⊆ M �σ G)) = Qβ �σ G. If β is a limit or-
dinal then let Qβ := ∪γ<βQγ

SOT. In this case, since all Qγ are G-invariant one can 

easily see that so is Qβ . In particular, we also have that ∪γ<βQγ �σ G
SOT = Qβ �σ G. 

Now let α be the first ordinal where the chain (Qβ)β stabilizes, i.e., Qα = Qα+1. Al-
together, the previous relations show that the tower (Qβ)β�α satisfies conditions 1.–3. 
in the statement. As before, the moreover part of 2 follows from Lemma 3.5 and The-
orem 3.2. Finally, since α stabilizes the tower we have either Qα = QN (Qα ⊆ M)′′ or 
vN(QN (1)(Qα �σ G ⊆ M �σ G)) = Qα �σ G. However, using the relative WAHP from 
Theorem 3.2 in the same way as in the beginning of the proof of Theorem 4.16, we have 
4. in the statement. �

Finally using Theorem 4.20 we have the following.

Theorem 4.28. Let (N ⊆ M, G, σ, τ) be a W ∗-dynamical extension system, where G
is i.c.c. Then one can find an ordinal α and a G-invariant von Neumann subalgebra 
N ⊆ Qβ ⊆ M for every β � α satisfying the following properties:
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1. For all β � β′ � α we have the following inclusions of von Neumann algebras N =
Qo ⊆ Qβ ⊆ Qβ′ ⊆ M .

2. For every successor ordinal β+1 � α we have QN (Qβ�σG ⊆ M�σG)′′ = Qβ+1�σG.
3. For every limit ordinal β � α we have ∪γ<βQγ

SOT = Qβ and ∪γ<βQγ �σ G
SOT =

Qβ �σ G.
4. Qα �σ G = QNM�σG(Qα �σ G)′′.

In connection to the results presented in this section we also want to mention in closing 
the following bold open problem on intermediate von Neumann subalgebras inside group 
measure space von Neumann algebras.

Open Problem. Let G be a countable i.c.c. group and let G �α (X, μ) be a free, ergodic, 
p.m.p. action. Is it true that for every intermediate subalgebra L(G) ⊆ N ⊆ L∞(X, μ) �α

G one can find a factor G �β (Y, ν) of G �α (X, μ) such that N = L∞(Y, ν) �β G.

As already mentioned in the prior sections, this problem has been answered positively 
when α is a compact ergodic action (see [10,27]). Unfortunately, very little is known 
beyond this case. For example, is this still true when the action α is a distal tower of 
length at least two?

5. Approximation properties of the inclusion L(G) ⊆ M �α G

In this section we consider W ∗-dynamical systems in which the underlying von 
Neumann algebra is tracial. The setting will consist of a discrete group G, acting by 
trace-preserving automorphisms on a finite von Neumann algebra with a fixed normal, 
faithful trace τ . Using Theorem 4.1, we will relate the analytical structure of the inclu-
sion L(G) ⊆ M �α G to the dynamical properties of the action α. Recall the following 
definition, due to Popa [33].

Definition 5.1. The finite von Neumann algebra (N, τ) is said to have property H (or 
the Haagerup approximation property) relative to the von Neumann subalgebra B ⊆ N

if there is a net of normal, B-bimodular, completely positive maps {Φλ : N → N}λ∈Λ
with the following properties:

(i) τ ◦ Φλ � τ , λ ∈ Λ.
(ii) For each z ∈ N , limλ ‖Φλ(z) − z‖2 = 0.
(iii) Each induced operator TΦλ

on L2(N, τ) has the property that for any ε > 0, there 
is a projection p ∈ 〈N, eB〉 with finite trace such that ‖TΦλ

(1 − p)‖ < ε.

The third condition above may be interpreted as “compactness relative to B” and, in 
fact, implies that the TΦλ

are compact operators when the subalgebra B is C1. Standard 
examples of inclusions with relative property H include those of the form B ⊆ B⊗P , 
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where P is a finite von Neumann algebra with the Haagerup approximation property, and 
crossed product inclusions B ⊆ B �α Γ, where Γ is a discrete group with the Haagerup 
approximation property [33]. Ioana [24] proved that if Γ is a discrete group acting by 
measure-preserving transformations σγ , γ ∈ Γ, on a probability space (X, μ), then the 
crossed product L∞(X, μ) �σ Γ has property H relative to the subalgebra L(Γ) if and 
only if the action σ is compact. We extend Ioana’s result to the case of a trace-preserving 
action of a discrete group on a general finite von Neumann algebra. Our main result in 
this section – which we combine with the results of the previous section for the reader’s 
convenience – is stated below as Theorem 5.9. In order to prove this result we will need 
several lemmas.

Lemma 5.2. Let α be a trace-preserving action of a discrete group G on a finite von 
Neumann algebra M . Suppose that φ is a normal, completely positive (resp., completely 
bounded) map on M such that φ ◦ αg = αg ◦ φ for all g ∈ G. Then there is a unique 
normal, completely positive (resp., completely bounded) extension Φ : M�αG → M�αG

of φ satisfying

Φ(ugxuh) = ugφ(x)uh

for x ∈ M , g, h ∈ G. In particular, Φ is an L(G)-bimodule map.

Proof. The operators π(x), x ∈ M , and ug, g ∈ G, that generate the crossed product are 
easily checked to commute with M ′ ⊗ I and so M �α G is a von Neumann subalgebra 
of M⊗B(�2(G)). In both cases φ : M → M is completely bounded and so extends to 
a normal map Φ = φ ⊗ I : M⊗B(�2(G)) → M⊗B(�2(G)). This is completely positive 
(resp. completely bounded) when φ is completely positive (resp. completely bounded).

In B(�2(G)), let eh,k denote the rank-one matrix unit that takes δk to δh for h, k ∈ G. 
A simple calculation then gives λgeh,k = egh,k and eh,kλg = eh,g−1k for g, h, k ∈ G, 
where λ is the left regular representation of G on �2(G). Now

π(x) =
∑
h∈G

αh−1(x) ⊗ eh,h, x ∈ M,

so

π(x)ug =
∑
h∈G

αh−1(x) ⊗ eh,g−1h, x ∈ M, g ∈ G.

Thus

Φ(π(x)ug) =
∑
h∈G

φ(αh−1(x)) ⊗ eh,g−1h

=
∑
h∈G

αh−1(φ(x)) ⊗ eh,g−1h = π(φ(x))ug, x ∈ M, g ∈ G.
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A similar calculation shows that

Φ(ugπ(x)) = ugπ(φ(x)), x ∈ M, g ∈ G,

so the normality of Φ shows that this map is an L(G)-bimodular extension of φ to 
M �α G. Normality and bimodularity clearly imply uniqueness of this extension. �

The following lemma will be necessary to establish w∗-continuity of certain maps φλ

that will appear below. We will then prove a lemma that will allow us to pass from the 
case of a separable predual to the general situation in Theorem 5.9. Below, the strong∗
topology will be denoted by SOT∗.

Lemma 5.3. Let (M, τ) be a finite von Neumann algebra and let N be a finite-dimensional 
von Neumann algebra. Let Γ ⊆ B(L2(M)) be an SOT∗-compact group of unitaries such 
that Ad(γ)(M) ⊆ M for γ ∈ Γ. Let {xδ}δ∈Δ be a uniformly bounded net converging to 0 
in the w∗-topology, and let T : M → N be a w∗-continuous bounded map. Given ε > 0, 
there exists δ0 so that

‖T (γ∗xδγ)‖ < ε, for δ � δ0, γ ∈ Γ.

Proof. Since N is finite-dimensional, it is a subalgebra of a matrix factor so we may 
assume that N = Mk for some integer k. By scaling, we may assume that ‖xδ‖ � 1 for 
all δ, and that ‖T‖ � 1. Now fix β > 0 so small that 3k2β < ε.

For 1 � i, j � k, let θi,j(x) be the (i, j) entry of T (x) for x ∈ M . Each θi,j is a w∗-
continuous contractive linear functional on M , so there exist vectors ξi,j, ηi,j ∈ L2(M)
so that ‖ξi,j‖2, ‖ηi,j‖2 � 1 and

θi,j(x) = 〈xξi,j , ηi,j〉, x ∈ M, 1 � i, j � k.

For γ ∈ Γ and x ∈ M ,

θi,j(γ∗xγ) = 〈xγξi,j , γηi,j〉. (5.0.1)

By SOT∗-compactness of Γ, the closure of

{γξi,j , γηi,j : γ ∈ Γ, 1 � i, j � k}

is norm-compact in the unit ball of L2(M), so we may choose a finite β-net {ω1, . . . , ωr}
of vectors for this set. Now choose δ0 so that

|〈xδωs, ωt〉| < β, 1 � s, t � r, δ � δ0, (5.0.2)

which is possible since w∗ − limδ xδ = 0.
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Now fix γ ∈ Γ and a pair of integers (i, j). Then choose ωs, ωt so that

‖γξi,j − ωs‖ < β, ‖γηi,j − ωt‖ < β. (5.0.3)

Applying (5.0.2) and (5.0.3) to the equation (5.0.1),

θi,j(γ∗xδγ) = 〈xδγξi,j , γηi,j〉
= 〈xδ(γξi,j − ωs), γηi,j〉 + 〈xδωs, γηi,j − ωt〉 + 〈xδωs, ωt〉

leads to the estimate |θi,j(γ∗xδγ)| < 3β for δ � δ0 and independent of the choices of 
γ ∈ Γ and the pair (i, j). By summing the k2 matrix entries, we obtain

‖T (γ∗xδγ)‖ < 3k2β < ε, δ � δ0, γ ∈ Γ,

as required. �
Lemma 5.4. Let M be a finite von Neumann algebra with a faithful normal trace τ and let 
a discrete group G have a compact action α on M . For each finite subset F ⊆ M , there 
exists a unital norm-separable C∗-subalgebra BF ⊆ M with weak closure MF satisfying 
the following properties:

(1) F ⊆ BF .
(2) If F1 ⊆ F2, then BF1 ⊆ BF2 and MF1 ⊆ MF2 .
(3) Each MF has a norm-separable predual.
(4) Each MF is α-invariant.

Proof. These algebras will be constructed by induction on the cardinality of the finite 
subsets, so we begin by constructing BF and MF for a fixed but arbitrary one-point set 
F . We will define inductively an increasing sequence A1 ⊆ A2 ⊆ . . . of separable unital 
C∗-algebras and an increasing sequence H1 ⊆ H2 ⊆ . . . of separable closed subspaces of 
L2(M) with the following properties:

(i) F ⊆ A1 and Ω ∈ H1.
(ii) Hn is an invariant subspace for An, n � 1.
(iii) For a ∈ An and g ∈ G, αg(a) ∈ An+1

SOT.

To begin the induction, let A1 be any separable unital C∗-algebra containing F and 

let H1 = {aΩ : a ∈ A1}
‖·‖2 . Now suppose that An and Hn have been constructed. Fix a 

countable norm dense set {a1, a2, . . .} ⊆ An.
Since the action is compact, we may choose a sequence {ai1, ai2, . . .} ⊆ Orb(ai) which 

is ‖ · ‖2-dense in Orb(ai) for i � 1. We now define

An+1 = C∗(An, {aij}∞i,j=1)
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and

Hn+1 = span‖·‖2{aξ : a ∈ An+1, ξ ∈ Hn}.

Then (i) and (ii) are clearly satisfied and it remains to verify (iii).
Fix a ∈ An with ‖a‖ < 1. Choose δ to satisfy 0 < δ < 1 − ‖a‖ and choose ai so that 

‖a − ai‖ < δ. Then ‖ai‖ < 1. Fix g ∈ G. Then ‖αg(a) − αg(ai)‖ < δ and there exists 
aij ∈ Orb(ai) so that ‖αg(ai) −aij‖2 < δ. Thus ‖αg(a) −aij‖2 < 2δ. Replacing δ by δ2−m

for m = 1, 2, 3, . . . successively, we obtain a sequence {bm}∞m=1 from {Orb(ai) : i � 1}
so that limm→∞ ‖αg(a) − bm‖2 = 0, and each bm is an aij ∈ An+1. Since {bm}∞m=1 is 
uniformly bounded, showing that this sequence converges strongly to αg(a) only requires 
us to consider vectors in MΩ. Accordingly let x ∈ M be arbitrary. Then

‖(αg(a) − bm)xΩ‖2 = ‖(αg(a) − bm)Jx∗JΩ‖2 = ‖Jx∗J(αg(a) − bm)Ω‖2

� ‖x∗‖ ‖αg(a) − bm‖2 → 0 as m → ∞.

Thus αg(a) ∈ An+1
SOT, establishing (iii).

Now let BF be the C∗-algebra generated by 
⋃∞

n=1 An, and let MF denote its weak 
closure. From (iii), MF is α-invariant. The Hilbert space HF spanned by the Hn’s is a 
separable MF -invariant subspace of L2(M), and the restriction of MF to HF is faithful 
since HF contains the separating vector Ω. Thus MF has a separable predual as required.

Now suppose that BF and MF have been constructed to satisfy conditions (1)–(4) 
for all subsets F of cardinality at most n. Consider a fixed but arbitrary subset F
of cardinality n + 1, and list the subsets of F of cardinality n as S1, . . . , Sn+1. The 
construction of BF and MF is accomplished exactly as above, starting the induction 
by choosing A1 to be the separable C∗-algebra generated by 

⋃n+1
i=1 BSi

. This guarantees 
that the nesting properties of condition (2) are satisfied. �

We will also need the following two lemmas. These were first established under the 
assumption of a separable predual, so the proofs that we give will reduce the general 
situations to the separable predual cases.

Lemma 5.5 ([4, Theorem 6.10]). Let G be a discrete group, and α an ergodic, trace-
preserving action of G on a finite von Neumann algebra (M, τ). Then any finite-
dimensional subspace K ⊆ L2(M, τ) which is invariant under the associated representa-
tion V of G on L2(M, τ) is contained in MΩ.

Proof. Replacing K by K+K∗, we may assume without loss of generality that K is self-
adjoint. Let {ξi, i � 1} be a norm dense set of vectors in Ks.a.. Associated to each ξi is a 
possibly unbounded self-adjoint operator Lξi affiliated to M , (see [42, Theorem B.4.1]), 
and so the spectral projections of Lξi lie in M . Let A be the unital separable C∗-algebra 
generated by the spectral projections of each ξi corresponding to the intervals (−∞, r)
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for all rationals r. Let N be the strong closure of A, represented faithfully on L2(N, τ). 
Then ξi ∈ L2(N, τ) for i � 1, so L2(N, τ) contains Ks.a. and thus also K. Since every 
Lξ for ξ ∈ Ks.a. is affiliated to N , this algebra contains all spectral projections of the 
Lξ’s. For a fixed g ∈ G, uniqueness of the spectral resolution shows that the spectral 
projections of LVg(ξi) are all of the form αg(p) where p ranges over the set of spectral 
projections for Lξi . Thus αg maps A into N and so also maps N into N . This applies 
equally to αg−1 , and it follows that each αg restricts to an automorphism of N . By 
Kaplansky density, L2(A, τ) is equal to L2(N, τ), and the latter space is thus separable. 
We conclude that N is an α-invariant von Neumann algebra containing K and having 
separable predual, so the result now follows from the separable predual case. �
Remark 5.6. Note that arguing initially as in the proof of [4, Theorem 6.10] it is easy to 
see that Lemma 5.5 holds for the pair (M, ρ), where ρ is a faithful normal state on M
which is not assumed to be finite. In this case, K will be contained inside MρΩρ.

Lemma 5.7 ([5, Theorem 4.7]). Let G be a discrete group, and α an ergodic, trace-
preserving action of G on a finite von Neumann algebra (M, τ). If α is also compact, then 
M is injective. Furthermore, there is an upwardly directed family of finite-dimensional 
α-invariant subspaces of M whose union is dense in L2(M, τ).

Proof. By Lemma 5.4, M is the union of an upwardly directed net {MF} indexed by 
the finite subsets F of M , and each MF is α-invariant and has a separable predual. 
Applying the known separable predual case, each MF is injective and L2(MF , τ) has 
a dense subspace that is the upwardly directed union of finite-dimensional α-invariant 
subspaces. Then M is injective, and finite sums of these finite-dimensional subspaces of 
the L2(MF , τ)’s give the required α-invariant finite-dimensional subspaces whose union 
is dense in L2(M, τ). �

Let α be a trace-preserving action of a discrete group G on a finite von Neumann 
algebra M , and define a group of unitaries {Vg : g ∈ G} ⊆ B(L2(M)) by

Vg(xΩ) = αg(x)Ω, x ∈ M. (5.0.4)

Let Γ be the SOT∗-closure of this group. Then Γ is a group of unitaries in B(L2(M)).

Lemma 5.8. Let M , G and Γ be as defined above. Further assume that M has a separable 
predual and that the action of G is compact. Then Γ is SOT∗-compact.

Proof. By hypothesis, L2(M) is norm separable so fix a dense sequence {ξi = miΩ}∞i=1 in 
the unit ball of L2(M) with mi ∈ M . The strong∗ topology on the unit ball of B(L2(M))
is metrizable by the metric

d(s, t) =
∞∑

(‖(s− t)ξn‖ + ‖(s∗ − t∗)ξn‖)2−n, s, t ∈ B(L2(M)).

n=1
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Then Γ is a SOT∗-closed subset of a separable metric space, so it suffices to show that 
it is sequentially compact. We will extract an SOT∗-convergent subsequence from an 
arbitrary sequence {Vgi : i � 1}.

Relabel this sequence as {u01, u02, u03, . . .}, and note that u0j(m1Ω), u∗
0j(m1Ω) ∈

Orb(m1)Ω for j � 1. This orbit has ‖ · ‖2-compact closure, so there is a subsequence 
{u11, u12, u13, . . .} so that the sequences {u1j(m1Ω)}∞j=1 and {u∗

1j(m1Ω)}∞j=1 are conver-
gent in ‖ ·‖2-norm. Repeating this argument, we obtain successive subsequences {uij}∞j=1
for i � 1 so that the sequences {uij(miΩ)}∞j=1 and {u∗

ij(miΩ)}∞j=1 are ‖ · ‖2-convergent 
for each i � 1. It is then easy to see that the diagonal subsequence {uii}∞i=1 converges in 
the strong∗ topology. Thus Γ is SOT∗ sequentially compact, and so is compact. �

We now come to the main result of this section.

Theorem 5.9. Let G be a discrete group and α a trace-preserving, ergodic action of G on 
a finite von Neumann algebra (M, τ). Then the following conditions are equivalent:

(i) The action α is compact (see Definition 2.1).
(ii) QN (L(G) ⊆ M �α G)′′ = M �α G.
(iii) The von Neumann algebra generated by QN (1)(L(G) ⊆ M �α G) is M �α G.
(iv) M �α G has property H relative to the subalgebra L(G).

Proof. Note that the first three conditions are equivalent by Theorem 4.1 and the dis-
cussion following it, and that condition (iv) implies condition (ii), by Proposition 3.4 in 
[33]. Thus, the proof will be complete when we show that conditions (i)–(iii) imply (iv). 
Our strategy will be to construct a net of normal, completely positive maps φλ on M
which

• approximate the identity map on M pointwise in ‖ · ‖2,
• extend to compact operators on L2(M), and
• commute with the automorphisms αg, g ∈ G.

We assume that conditions (i)–(iii) hold, and we then establish (iv).
By Lemma 5.7, M is hyperfinite, so can be written as M = (

⋃
λ∈Λ Mλ)

w∗

, where the 
Mλ’s form an upwardly directed net of finite-dimensional ∗-subalgebras of M . Denote by 
Eλ the trace-preserving conditional expectation of M onto Mλ. For each g ∈ G, we have 
a completely positive map φλ,g = αg ◦ Eλ ◦ α−1

g on M which, by uniqueness, is equal 
to the trace-preserving conditional expectation of M onto αg(Mλ). We note that these 
maps can be viewed as contractions on L2(M); this follows easily from the inequality 
T (x)∗T (x) � T (x∗x) for any completely positive contraction T on M .

In order to make use of the earlier lemmas, we impose a temporary requirement that 
M should have a separable predual. The general case will then be deduced from this 
special situation.
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Let Γ be the SOT∗-compact group of Lemma 5.8, which is the SOT∗-closure of the 
set of operators {Vg : g ∈ G} defined in (5.0.4). For γ ∈ Γ, we define

φλ,γ(x) = γEλ(γ∗xγ)γ∗, x ∈ M,

noting that this map coincides with φλ,g when γ = Vg. Since Eλ is normal and completely 
positive, these two properties pass to φλ,γ . For each x ∈ M and vectors ξ, η ∈ L2(M), 
the scalar valued map γ �→ 〈φλ,γ(x)ξ, η〉 is easily seen to be SOT∗-continuous on Γ, using 
the normality of Eλ. This enables us to define a map φλ on M by

〈φλ(x)ξ, η〉 =
∫
Γ

〈φλ,γ(x)ξ, η〉 dμ(γ), x ∈ M, ξ, η ∈ L2(M), (5.0.5)

where μ is left Haar measure on the compact group Γ. Then φλ maps M into itself since, 
for t ∈ M ′, we have

〈φλ(x)tξ, η〉 =
∫
Γ

〈tφλ,γ(x)ξ, η〉 dμ(γ) =
∫
Γ

〈φλ,γ(x)ξ, t∗η〉 dμ(γ)

= 〈φλ(x)ξ, t∗η〉 = 〈tφλ(x)ξ, η〉 ,

for any such x ∈ M , ξ, η ∈ L2(M), showing that φλ(x) ∈ M ′′ = M . Complete positivity 
of φλ follows from complete positivity of the maps φλ,γ . Each φλ is trace-preserving 
and, further, φλ is a ‖·‖2-norm contraction, so has a bounded extension Tφλ

: L2(M) →
L2(M). To see that φλ is w∗-continuous, it suffices to consider a uniformly bounded 
net {xδ}δ∈Δ converging to 0 in the w∗-topology, by the Krein-Smulian theorem. We 
apply Lemma 5.3 to the finite-rank map Eλ to obtain an arbitrarily small bound on 
the integrand in (5.0.5), showing that limδ〈φλ(xδ)ξ, η〉 = 0 for all ξ, η ∈ L2(M). Since 
the net {φλ(xδ)}δ∈Δ is uniformly bounded, we conclude that φλ is a normal, completely 
positive map on M . Moreover, translation invariance of μ implies that φλ ◦αg = αg ◦φλ, 
for any g ∈ G.

We now show that limλ ‖φλ(x) − x‖2 = 0 for any x ∈ M . By the density result 
of Lemma 5.7, it suffices to consider an element x that lies in a finite-dimensional α-
invariant subspace X of M . By scaling, we may assume that ‖x‖2 = 1, and we now fix 
ε > 0. Choose λ0 so that X ⊆ε/2 Mλ whenever λ � λ0, meaning that

sup
y∈X, ‖y‖2�1

dist‖·‖2(y,Mλ) < ε/2, λ � λ0.

Since X is α-invariant, it follows that

sup
g∈G

∥∥α−1
g (x) − Eλ(α−1

g (x))
∥∥

2 � ε

whenever λ � λ0. Then, for all such λ and any g ∈ G, we have
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‖x− φλ,g(x)‖2 =
∥∥x− αg ◦ Eλ ◦ α−1

g (x)
∥∥

2 � ε,

and the SOT∗-density of {Vg : g ∈ G} in Γ implies that ‖x − φλ,γ(x)‖2 � ε for λ � λ0
and γ ∈ Γ. Averaging over Γ gives ‖x− φλ(x)‖2 � ε for λ � λ0, and this establishes that 
limλ ‖φλ(x) − x‖2 = 0, as required.

Next, we show that the associated operator Tφλ
on L2(M) is compact. Let {zj}∞j=1

be a sequence in L2(M) converging weakly to zero. By ‖ · ‖2-density of M in L2(M), we 
may assume that zj ∈ M for j � 1. Then, for any λ, limj→∞ ‖Eλ(zj)‖2 = 0. Similarly, 
limj→∞ ‖Eαg(Mλ)(zj)‖2 = 0 for any g ∈ G. By the dominated convergence theorem,

‖Tφλ
(zj)‖2 = ‖φλ(zj)‖2 =

∥∥∥∥∥∥
∫
Γ

φλ,γ(zj)dμ(γ)

∥∥∥∥∥∥
2

�
∫
Γ

‖φλ,γ(zj)‖2 dμ(γ) −→ 0

as j → ∞, and so each Tφλ
is compact. Thus, we have produced a net {φλ} of completely 

positive maps on M which commute with αg, g ∈ G, approximate the identity map on 
M in the ‖ · ‖2, and extend to compact operators on L2(M).

By Lemma 5.2, these extend to a net {Φλ} of completely positive L(G)-bimodule 
maps on M �α G, given by Φλ(x) =

∑
g∈G φλ(xg)ug, for x =

∑
g∈G xgug ∈ M �α G.

To complete the proof of the separable predual case, we show that this net satisfies 
the properties of Definition 5.1. The first of these is clear because the maps that we have 
constructed are all trace-preserving. Since φλ(x) → x in ‖·‖2 for each x ∈ M , we also 
have that Φλ(mug) = φλ(m)ug → mug in ‖·‖2 for any m ∈ M and g ∈ G. A standard 
approximation argument then shows that ‖Φλ(x) − x‖2 → 0 for any x =

∑
g xgug ∈

M �α G. This proves that the Φλ’s satisfy (ii).
We now show that (iii) is satisfied. Note first that any finite-dimensional G-invariant 

subspace of MΩ ⊆ L2(M) may be associated to a finitely generated L(G)-module in 
L2(M �α G), as follows. Let X be such a subspace, and use Gram-Schmidt to find 
an orthonormal basis (m1, . . . , mn) of X, with mi ∈ M , 1 � i � n. Then the opera-
tors pi = mieL(G)m

∗
i ∈

〈
M �α G, eL(G)

〉
are mutually orthogonal projections, so that ∑n

i=1 mieL(G)m
∗
i ∈

〈
M �α G, eL(G)

〉
is a projection, and its range is the right L(G)-

module HX in L2(M �α G) generated by the vectors miΩ, 1 � i � n. Denote this 
projection by pHX

, and denote the orthogonal projection of L2(M) onto X by pX . Let 
U : L2(M �α G) → L2(M) ⊗ �2(G) be the unitary given by U(yugΩ) = yΩ ⊗ δg, for 
y ∈ M and g ∈ G. Then, for any such y and g, we have

(pX ⊗ 1)(yΩ ⊗ δg) =
n∑

i=1
τ(m∗

i y)miΩ ⊗ δg =
n∑

i=1
miEL(G)(m∗

i y)Ω ⊗ δg

= U
n∑

i=1
miEL(G)(m∗

i y)ugΩ = U
n∑

i=1
mieL(G)m

∗
i (yugΩ).

Thus, pX ⊗ 1 = UpHX
U∗. Note also that Tφλ

⊗ 1 = UTΦλ
U∗ for each λ.
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To show that the TΦλ
’s satisfy condition (iii) of Definition 5.1, fix λ, set ε > 0

and choose a finite-dimensional G-invariant subspace X of MΩ with the property 
that ‖Tφλ

(1 − pX)‖ < ε, possible by compactness of Tφλ
and Lemma 5.7. As above, 

associate to X an L(G)-module HX =
∑n

i=1 miL(G), and a finite-trace projection 
pHX

=
∑n

i=1 mieL(G)m
∗
i ∈

〈
M �α G, eL(G)

〉
. From our characterization of TΦλ

, we then 
have

‖TΦλ
(1 − pHX

)‖ = ‖UTΦλ
U∗U(1 − pHX

)U∗‖ = ‖(Tφλ
⊗ 1)(1 ⊗ 1 − pX ⊗ 1)‖

= ‖Tφλ
(1 − pX)‖ < ε.

This proves that the net (TΦλ
) satisfies condition (iii) of Definition 5.1, completing the 

proof of the separable predual case.
We now consider the general case where there is no assumption of a separable predual. 

We form a net Λ = {(F, ε) : F ⊆ M is finite and ε > 0}, and we order this by

(F1, ε1) � (F2, ε2) if and only if F1 ⊆ F2 and ε2 � ε1.

For λ = (F, ε) ∈ Λ, define φλ : M → M as follows. By Lemma 5.4, there exists 
an α-invariant von Neumann subalgebra MF satisfying F ⊆ MF ⊆ M and MF has a 
separable predual. Here we use eL(G),F for the Jones projection arising from the inclusion 
L(G) ⊆ MF �α G, to distinguish it from eL(G) for the inclusion L(G) ⊆ M �α G. From 
our initial case, L(G) ⊆ MF �α G has the Haagerup approximation property, so there 
exists a normal completely positive L(G)-bimodule map ψλ : MF �αG → MF �αG with 
the following properties:

1. τ ◦ ψλ = τ .
2. ‖ψλ(z) − z‖2 < ε for z ∈ F .
3. For δ > 0, there exists a projection p ∈ 〈MF �α G, eL(G),F 〉 such that TrF (p) < ∞

and ‖Tψλ
(1 − p)‖ < δ.

Then set φλ = ψλ ◦EF where EF : M �α G → MF �α G is the conditional expectation. 
Then 1. and 2. hold for φλ. Moreover, Tφλ

= Tψλ◦EF
= Tψλ

◦ eMF �αG, where eMF �αG

is the Jones projection.
Given δ > 0, choose p ∈ 〈MF �α G, eL(G),F 〉 for Tψλ

as above, and consider the 
inclusion

L(G) ⊆ MF �α G ⊆ M := span(MF �α G)eL(G)MF �α G
w∗ ⊆ 〈M �α G, eL(G)〉.

The canonical semifinite trace Tr on 〈M �α G, eL(G)〉 restricts to a semifinite trace 
on M such that the hypotheses of [42, Theorem 4.3.15] are satisfied. It follows that 
the association xeL(G),F y �→ xeL(G)y, x, y ∈ MF �α G extends to a trace-preserving 
isomorphism π from 〈MF �α G, eL(G),F 〉 to its image inside 〈M �α G, eL(G)〉.
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Then π(p) ∈ 〈M �α G, eL(G)〉 is a projection such that Tr(π(p)) < ∞ and commutes 
with eMF �αG, so eMF �αGπ(p) = eMF �αGπ(p)eMF �αG = p. Consequently,

‖Tφλ
(1 − π(p))‖ = ‖Tψλ

eMF �αG(1 − π(p))‖ = ‖Tψλ
(1 − p)‖ < δ.

Thus condition 3. also holds, completing the proof. �
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