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ture theorem for general, tracial W*-dynamical systems. We
present a number of examples contrasting the noncommuta-
tive and classical settings which also build on previous work
concerning singular inclusions of finite von Neumann algebras.

© 2024 Elsevier Inc. All rights reserved.

1. Introduction

An ongoing thread of research in von Neumann algebras concerns the relationship
between the structure of discrete groups and dynamical systems, and the structure of
the von Neumann algebras they generate. A natural site for such questions is the crossed
product construction, which arises from the action « of a discrete group G on a von
Neumann algebra M C B(#). The crossed product M x, G is a von Neumann algebra
on H ® £2(G) which contains an isomorphic copy of M, as well as a copy of the von
Neumann algebra L(G) generated by the left regular representation of G' on £2(G). The
inclusions M C M %, G and L(G) C M %, G are key to understanding the relationship
between the structure of M %, G, the group G, and the group action.

The main results of this paper relate the dynamics of the action « to structural
properties of the inclusion L(G) C M x, G and, more generally, inclusions of the form
NxoG C Mx,G with N C M. Interest in this area originated in the case where M is an
abelian von Neumann algebra — in particular, the dynamics of an action on a probability
space, in relation to the structure of the associated group-measure space construction.
A principal object of interest at the von Neumann algebra level is the group of unitary
normalizers of the inclusion, which has been shown to relate closely to the spectrum of
the action. For an inclusion B C M of von Neumann algebras, the (unitary) normalizers
comprise the set N(B C M) = {u e U(M) : uBu* = B}, a subgroup of the unitary
group of M which generates a von Neumann algebra between B and M. The inclusion
B C M is said to be singular if the generated von Neumann algebra N (B C M)" is
equal to B, and regular if it is all of M.

An ergodic, measure-preserving action o of a discrete, abelian group G on a probability
space X produces a masa (maximal abelian subalgebra) L(G) in the crossed product
L>(X) %, G. Nielsen [31] showed that this masa is singular if and only if the action is
weak mixing. Packer [32] showed, more generally, that the von Neumann algebra of the
normalizer of L(G) in L*™(X) %, G is the intermediate subalgebra Ay x, G, where Ay is
the invariant subalgebra of L>°(X) generated by the eigenfunctions of ¢. In particular,
we have that Ag = L°°(X) (in which case the action is compact) if and only if the masa
L(G) is regular (in this case it is called a Cartan subalgebra of L>=°(X) x, G).

Similar characterizations are known beyond the case of an abelian acting group,
though the situation is more complicated. As part of a larger work on profinite actions,
Toana [24] showed that, for an ergodic action G ~7 (X, i), the von Neumann subalgebra
L>*(Y) Xy G C L*(X) x, G corresponding to the maximal compact quotient of the
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action is generated by the set of quasinormalizers of L(G) in L>°(X) %, G. These results
were proved for countable groups and standard measure spaces. For an inclusion B C M
of von Neumann algebras, the set of quasinormalizers [33] is the collection QN (B C M)
of elements x € M with the property that there exist x1,...,z, € M such that

zB C ZBwi, and Bz C ZmZB.

A more general object is the set Q./\/(l)(B C M) of one-sided quasinormalizers. An
element x € M is a one-sided quasinormalizer of B if it satisfies the weaker condition
that there exist y1,...,y, € M such that

Bx C ZyiB.

For a general inclusion B C M, the following relationship holds for the von Neumann
algebras generated by normalizers and (one-sided) quasinormalizers:

N(BC M)" CON(BC M)" CuN(QNY (B C M)).

In what follows, we will refer to these objects (respectively) as the normalizing algebra,
the quasinormalizing algebra, and the one-sided quasinormalizing algebra for the inclu-
sion. They are generally not equal: an example of Grossman and the sixth named author
[20] shows that the first inclusion may be proper; examples of Fang, Gao, and Smith [18]
show that the second may also be proper (we discuss these further in Section 3). How-
ever, when B is a masa, they coincide. Thus, Ioana’s result [24] coincides with Packer’s
[32] when the acting group G is abelian. An alternative proof of the same result was
obtained in [10] in the context of progress on an extended Neshveyev-Stgrmer rigidity
conjecture.

This paper concerns analogous questions in the setting of a W*-dynamical system
(M, G, a, p), consisting of an ergodic action « of a (possibly uncountable) discrete group
G on a von Neumann algebra M preserving a fixed, faithful, normal state p on M. As a
starting point, in light of the results for abelian groups and von Neumann algebras, we
consider two questions: first, whether the quasinormalizer (rather than the normalizer)
for the inclusion L(G) C M X, G is necessary to capture the dynamics of the compact
part of the action; second, whether results analogous to those of [24] mentioned above
hold in this more general context. We answer both questions affirmatively, and explore
numerous generalizations and applications. An outline of the paper and summary of the
results follows.

Any quasinormalizer for a subalgebra B of a von Neumann algebra (N, ) gives rise
to a finitely generated B-module in L?(N, ). Section 2 includes background and pre-
liminaries on W*-dynamical systems, and modules over finite von Neumann algebras.

Section 3 concerns the relationship between normalizers and quasinormalizers of the
inclusion L(G) € M X, G. Theorem 3.6 describes an example which shows that the strict
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analogue of Packer’s result for normalizers does not hold in this setting, by exhibiting an
ergodic action o of a group G on the hyperfinite II; factor R which is not weak mixing,
but for which the inclusion L(G) C R %, G is singular. As a consequence, we build on
results of Grossman and the sixth author on the relationship between singularity and
the analytical properties of subfactor inclusions. Theorem 3.7 presents a basic structural
result for normalizers of the inclusion L(G) C N X, G associated to a compact, ergodic
action of an i.c.c. group on a tracial von Neumann algebra. We deduce from this a
number of further examples in which we are able to compute the von Neumann algebras
generated by normalizers and quasinormalizers, such as the situation of a profinite action
of a discrete group on a probability space.

The main results of Section 4 extend Proposition 6.9 of [24] to ergodic W*-dynamical
systems, and characterize quasinormalizers of subalgebras of L(G) in M %, G in terms
of the dynamics of the underlying system (M, G, a, p). Although our approach to The-
orem A (stated below) is similar in outline to the one appearing in [24], our methods
are different, since measure-theoretic tools are not available. Key tools from [4] and [5]
isolate the finite-dimensional invariant subspaces of the induced Koopman representa-
tion on L?(M, p) associated to the system, and the “compact quotient” in this setting is
modeled by the Kronecker subalgebra My, generated by elements of M with compact
orbit under the group action.

Theorem A. Let M be a von Neumann algebra and p a normal, faithful state on M.
Suppose that a discrete group G acts ergodically by p-preserving automorphisms on M.
Then

ON(L(G) T M x,G)" = Mg x4 G.

The second part of Section 4 specializes to the case of a discrete group acting on a
tracial von Neumann algebra (M, 7), in such a way that a von Neumann subalgebra N C
M is left invariant. The associated system (N C M, G, «,7) is called a W*-dynamical
extension system, and we consider the dynamics of the action relative to the subalgebra
N. In this case, the subspace Py s of relatively almost periodic elements of M (see
Definition 4.9) captures the quasinormalizer of the inclusion N x, G C M x,, G in terms
of the dynamics of the action.

Theorem B. Let (N C M,G,0,7) be a W*-dynamical extension system and assume that
ON(N C M)" =M. Then N C Py.y € M is a G-invariant von Neumann subalgebra
and vN(QN Y (N %1, G C M x4 G)) = Py %o G.

In the final part of Section 4, we apply these methods to present several von Neumann
algebraic versions of the Furstenberg-Zimmer structure theorem for actions of groups on
probability spaces [19,46], including the following result.
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Theorem C. Let (N C M,G,0,7) be a W*-dynamical extension system. Then one can
find an ordinal o and a G-invariant von Neumann subalgebra N C Qg C M for every
B < « satisfying the following properties:

1. Forall < ' < a we have N=0Q, C Qs C Qs C M.
2. For every successor ordinal f+ 1 < o we have Qg1 = PémM and

vN(OND(Qp %, G C M %, G)) C Qa1 %o G.

8. For every limit ordinal f < « we have WSOT = Qg and WSOT =
ng N G.

4. There are nets (ga)x € G and (uy)x C U(Q.) such that for every nonzero x,y €
M S Q. we have

lim || Eq., (zuxag, (y))]|2 = 0.

As a consequence, we obtain the following purely von Neumann algebraic description
of the classical Furstenberg-Zimmer tower, using quasinormalizers and relatively almost
periodic elements, recapturing a previously unpublished result [15] of the third-named
author and Peterson.

Theorem D ([15]). Let G A X bea probability measure-preserving (p.m.p. in the sequel)
ergodic action of a countable discrete group G on a standard probability space X and let
(G A X3)p<a be the corresponding Furstenberg-Zimmer tower. Let M = L (X) x, G
and Mg = L>(Xg) X, G be the corresponding crossed product von Neumann algebras.
Then the following hold:

1. For all B < B’ < a we have the following inclusions L(G) = M, C Mg C Mg C
M, C M.

2. For every successor ordinal f + 1 < «a we have that vN(Q]\/(l)(Mg C M) =
ON(Mg C M)" = Mgy1. Moreover, there is a sequence (95), C G such that for
every x,y € L>(X) & L>*(Xz41) we have

i |[Epe(x,)(206(y))ll2 = 0.

n—oo

———-S0T
3. For every limit ordinal f < a we have Uy<gL>(X,) = L*(X3) and also
soT

Uy M, = Mg.
4. There is an infinite sequence (gn)n C G such that for every nonzero x,y € L (X) &
L>(X,) we have

lim | Ep< (v, (zog, (4))[l2 = 0.

n—roo
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In Section 5 we turn to analytical properties of the inclusion L(G) C M x, G. Here,
we assume the group G acts compactly and ergodically on a finite von Neumann alge-
bra (M, ), preserving the trace. The Haagerup approximation property for finite von
Neumann algebras was developed in [16] as a counterpart to the Haagerup property
for groups [21]. The two properties weaken the notion of amenability for von Neumann
algebras and discrete groups, respectively, and encompass many more useful examples,
including free groups and their associated von Neumann algebras. It was shown in [16]
that a (countable) discrete group G has the Haagerup property if and only if L(G) satis-
fies the von Neumann algebraic version. A relative version of the Haagerup property for
inclusions B C N of finite von Neumann algebras first appeared in [6] and has been em-
ployed extensively, for instance, in Popa’s celebrated results on the class of H7 algebras
[33]. Notably, the relative Haagerup property for an inclusion B C N is not a weakening
of relative amenability; there are examples of inclusions for which the latter condition
holds, but not the former [8]. Our main result in Section 5 builds on the methods and
results of Section 4 to show that in the above setting, the relative Haagerup property
for the inclusion L(G) C M %, G encodes the dynamics of the group action.

Theorem E. If G is a discrete group and (M,G,«,T) an ergodic, trace-preserving W*-
dynamical system, then L(G) C M %, G has the relative Haagerup property if and only
if the action « is compact.

Theorem E combines with Theorem A to establish a fully general noncommutative
analogue of Proposition 6.9 of [24]. The same main tools from [4] and [5] are employed
in the proof; versions of those results suitable for our purposes are stated in Lemmas 5.5
and 5.7.

Remark 1.1. During the preparation of this paper, the authors became aware of the
preprint [26] which has some overlap in subject matter. Although there is some overlap
in techniques between that note and this one (e.g., the authors develop some variations
on the methods in [4] and [5]), there is little overlap in the results.

2. Background and preliminaries

We recall in this section basic facts about von Neumann algebras, W*-dynamical
systems and extension systems, and modules over finite von Neumann algebras to be
used in the sequel (the reader may consult the books [2], [42], [44] for further details).
Let N be a von Neumann algebra and ¢ a normal, faithful state on N. The centralizer
of ¢ is the von Neumann subalgebra N¥ = {z € N : p(zn) = p(nx), n € N} of N. Note
that the restriction of ¢ to N¥ is a trace, so N¥ is a finite von Neumann algebra. We
denote the GNS space associated to ¢ by L?(N, ) (or, simply, L?(N) when the context
is clear), and the canonical cyclic and separating vector in L?(N,¢) by Q, (or leave
off the subscript when context allows). When N is in standard form on L?*(N,¢), the
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embedding = — x€, induces a norm on N which we denote by ||-||,. There also exists a
conjugate linear isometry J on L?(N, ), which is the polar part of the preclosed map
xQ, — ¥, and satisfies N = JNJ.

2.1. W*-dynamical systems

A W*-dynamical system (or, simply, a system) is a quadruple (M, G, a, p) consisting
of a von Neumann algebra M with a normal, faithful state p : M — C (i.e. M is o-
finite), together with a strongly continuous action « of a locally compact group G on M
by p-preserving automorphisms. In this paper, the group G will always be assumed to
be discrete (possibly uncountable). Since we will often make reference to the following
well-known concepts, we remind the reader of their definitions.

Definition 2.1.

(i) A system is said to be ergodic if the scalar multiples of the identity are the only
elements of M fixed by oy, g € G.

(ii) A system is compact if for any « € M, the orbit Orb(z) = {a4(x) : g € G} has
compact closure in the |[|-||,-norm.

(iii) A system in which the action « of a discrete group G on a von Neumann algebra
M leaves a von Neumann subalgebra N C M (globally) invariant will be called a
W*-dynamical extension system (or, simply, an extension system) and denoted by
a quadruple (N C M, G, «, p).

If (M,G,a,p) is a system with M in standard form on L2(M, p), there is a faithful,
normal representation 7 of M on L?(M, p) ® £*(G), given by

m(@)(E®0n) = oy (2)E @ n, &€ L*(M,p), heG,
and a unitary representation u of G on L?(M, p) @ £?(G), given by

ug(§®5h) =ER0gn, € L2<M,,0), hedq.

Note that for g € G and z € M we have the relation

ugm(w)uy = 7(ag()).

The von Neumann algebra on L2(M, p) ® £?(G) generated by 7 and u is known as the
crossed product, and is denoted by M x,, G. The crossed product is the w*-closure of the
x-algebra of finite linear combinations of operators of the form 7(z)up, v € M, h € G,
which we will denote by zuy, for brevity. The functional p defined on finitely nonzero
sums by
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ﬁ(ngug) = plxe) (2.1.1)

geqG

extends to a normal, faithful state on M x, G. It follows from this construction that the
GNS space L?(M x,, G, p) is isomorphic to L?(M, p) ® £?(G), and that both M and L(G)
are (unital) von Neumann subalgebras of M %, G. Note in particular that G-invariance
of p implies that the centralizer of p in M %, G contains L(G).

An essential tool for investigating the inclusion L(G) C M X, G is Jones’s ba-
sic construction. In this setting, it is the von Neumann subalgebra <M X G,eL(G)>
of B(L*(M x4 G,p)) generated by M xo G and the orthogonal projection er(q) :
L?*(M x4 G,p) = L*(L(G)). It can be shown that (M x, G,er ) = (JL(G)J), ie.,
<M X G,eL(G)> consists of operators T' € B(L?(M x, G,p)) that commute with the
right action of L(G) on L?(M %G, p). It follows that the projections in <M Xq G, eL(G)>

P

are in bijective correspondence with the right L(G)-submodules of L?(M x, G, p)
2.2. Modules over finite von Neumann algebras

We recall here some basic facts about modules over finite von Neumann algebras, to
be used in the sequel. Let N be a finite von Neumann algebra, with a fixed faithful
normal trace 7. A left (respectively, right) N-module is a Hilbert space H, paired with
a normal, unital homomorphism (respectively, anti-homomorphism) 7 of N into B(H).
This note will focus primarily on right modules. If (H, 7) is a right N-module, then there
exist a set S, a projection p € B(¢?(S))®N, and a unitary U : H — p(£3(S) ® L*(N))
which intertwines m with the representation I ® JNJ of JNJ on p(¢?(S) ® L*(N)), so
the two spaces are isomorphic as N-modules. This is proved in [2, Proposition 8.2.2] for
separable left N-modules where S can be taken to be N, and has an easy extension to
the general case, as noted in the footnote on [2, p. 124].

If (H, ) is a right N-module, for 2 € N and n € H, we simply denote 7(z)n by nz.
Any element £ € H gives rise to an (possibly unbounded) operator L¢ : L*(N) — H,
defined on the dense subspace NQ by L¢ () = {x. If L¢ extends to a bounded operator,
that is, there is some C' > 0 such that ||¢n]| < C'||n||, for all n € N, then the vector &
is said to be left-bounded. The set H of left-bounded vectors of  is a dense subspace
of H. Moreover, for any &, € H°, the operator L¢L, € B(L?*(N)) commutes with the
right action of N on L?(N), so defines an element of N itself. In this way, H" is endowed
with an N-valued inner product, given by (£,n) = L{L,, with the additional property
that Lg(n) = (§,n) Q for any &, n € HO.

A right N-module H is said to be finitely generated if there exist &1, ...,&, € H such
that H is the closure of ), £ N. A Gram-Schmidt argument shows that, in this case, the
& may be taken to be left-bounded vectors which are orthonormal with respect to the N-
valued inner product. That is, if H is finitely generated, then there exist 1, ..., 7, € H°
such that H =}, n:IN, and for each 4,5 we have (n;,n;) = 0;;p; for some projection
pj € N. It follows that any ¢ € H° may be expressed uniquely as a Fourier series over
N by
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C=> 1i{niC).
7

The above identification of right N-modules with subspaces of ¢2(S) ® L?(IN) maps
the finitely generated right N-modules to those of the form p(¢?(S) @ L?(N)), where
p € B({?(9))®N has the form &7_, gy, for projections ¢i,...,q, € N. An immediate
consequence of this, which we will use implicitly in what follows, is that submodules of
finitely generated modules are also finitely generated.

For further use, we continue by recalling a result on finitely generated bimodules from
[18, Lemma 3.4] which, in turn, was inspired by [33, Theorem 1.4.2].

Theorem 2.2 ([18]). Let N C (M, T) be an inclusion of tracial von Neumann algebras.
Suppose that H C L?(M) is an N-bimodule, and that H is a finitely generated right
N-module with an orthonormal basis of length k. Let Py be the orthogonal projection
of L>(M) onto H. Then there exists a sequence of projections z, € N' N M such that
limy, o0 2n, = 1 in SOT and for each n there exist finitely many elements xp1,...,Tn i €
M that are N-orthogonal and satisfy

k
2n Py zn (2Q)) = anzEN(x;Zm)Q, for all x € M.
i=1

Next we highlight a consequence of Theorem 2.2 which is needed in the sequel. For
the reader’s convenience we include a complete proof.

Theorem 2.3. Let N C (M, 1) be an inclusion of tracial von Neumann algebras. Suppose
that H C L?(M) is an N-bimodule that is finitely generated as a right N-module. Let
§1,..,&6n € H. Then for every e > 0 there are n1,...,n, € M with [|§ — nill2 < 35
for all 1 < i < n together with N-orthogonal elements x1,...,xix € M such that for all
a;,b; € (N)1 with 1 <1i < n we have

H Zaifibi - ijEN(x;amibi)Hg < e (221)

4,3

Moreover, for every ¢ € M we have
1D zEn (@Ol < ¢ (22.2)

If & € M NH then we can take n; = & above. In particular, this holds for every
e QNW(N C M).

Proof. Let n; € M be such that [|§ — nill2 < 15, so that [[n; — Py(ni)ll2 < &;. By

Theorem 2.2 one can find a sequence of projections z; € N'N M such that z; —+ 1 in SOT
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and for every [ there exist N-orthogonal elements zj € M for 1 < s < j (j depending
on the length of orthonormal basis of H) such that for all n € M we have

aPuz(n) = aiEx((x})"n). (2.2.3)

Since z; — 1 in SOT we have that Py — z;Py2z; — 0 in SOT as [ — oo. Thus there is [
large enough such that we have || Py (1) — 2Py 21(n:)||2 < g for all 4. For every a,b € N
and & € L?(M) we have Py(a&ob) = aPy(&)b and since z; € N’ N M we also have
21 Py z1(a&ob) = azi Py 21(&)b. Thus we conclude that for all a;,b; € (N); with 1 <i<n
we have

1D aigibs — 2Pz (Z aifibz) l2 <Y llasibs — 2 Przi(ailibs) |2

€
< Z (2”&' —nill2 + [ Pr(ainibi) — z1 Py zi(ainibi)||2 + S_n)

7

g
<zt Z | Pr(n:) — 20 Prza(mi)|l2 < - +

K2

<

IS
| ®
N M

Combining this with (2.2.3) we get (2.2.1). Also notice that (2.2.3) gives (2.2.2).

When & € M we can obviously take 7; = &. When &€ € QN (N C M) one can find
Yi,.--,y; € M such that N¢ C 3 y; N. Letting H to be the linear closure of NEN we
see that H is an N-bimodule that is finitely generated as a right N-module. Then the
conclusion follows from the previous part. O

We conclude this section with some remarks on right modules arising in the setting
of crossed products. Let (M, G, p, o) be a W*-dynamical system, and denote by M x, G
the associated crossed product. Then the GNS space L?(M x,G, p) (where p is the state
defined in Equation (2.1.1)) is a right L(G)-module, which may be identified with the
right L(G)-module ¢(G) ® L*(M, p), via the isomorphism which extends

mg Qs — 0, @mf),, mecM,ged.

Then any n € L2(M %, G, p) may be expressed as a function g — 1(g) € L%(M, p), with
> _gea ||n(g)||§ < oo. Likewise, any x € L(G) may be expressed as a square-summable
sequence (81 )nec- Under this identification, the right action of L(G) on L?(M x, G, p)
is given by the convolution formula

(n)(h) =Y Be-rnn(k). (2.2.4)

keG

We will use this identification and convolution formula in our investigation of submodules
of L3(M %, G, p) in Section 4.
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3. Normalizers and quasinormalizers of L(G) C M x, G

In this section, we present several classes of examples of actions « of a discrete group G
on a von Neumann algebra M for which L(G) is singular in the crossed product M x, G,
while nontrivial quasinormalizers of L(G) exist (see Theorem 3.6 and Corollary 3.10).
These results accomplish two goals. First, they show that unitary normalizers in the
associated crossed product are not sufficient to capture the dynamics of such an action,
so the precise statements of the results of Nielsen, [31], and Packer, [32], which inspired
this work do not hold in this setting. Second, they expand a collection of examples
introduced in [20] of inclusions of von Neumann algebras which are singular, but do not
satisfy the weak asymptotic homomorphism property. Recall the following definition.

Definition 3.1. An inclusion B C M of finite von Neumann algebras, with conditional ex-
pectation Ep : M — B, satisfies the weak asymptotic homomorphism property (WAHP)
if there is a net (uy ) of unitaries in B such that for any x,y € M,

|EB(zury) — Ep(z)urEp(y)ll, — 0.

The WAHP was introduced in [40], where it was shown that any inclusion satisfying
the WAHP is singular. This property has been useful in constructing examples of singular
inclusions, as singularity is generally hard to verify using the definition. The WAHP is
known to be equivalent to singularity of B C M when B is a masa [43]. By contrast,
Grossman and Wiggins [20] produced inclusions N C M of II; factors which are singular,
but do not satisfy the WAHP. These inclusions had finite Jones index; they showed, more
generally, that no finite index inclusions satisfy the WAHP.

A more general version of the WAHP has been useful in the study of one-sided quasi-
normalizers. Specifically, a triple inclusion B C N C M of finite von Neumann algebras
satisfies the relative WAHP if there is a net (uy)x of unitaries in B such that for any
r,y €M,

|Es(zury) — Ep(En(z)urEN(y))lly — 0.

It is well-known that if B C N C M satisfies the relative WAHP then N absorbs all one-
sided quasinormalizers of B in M. In [18, Theorem 3.1] a converse result was established
which asserts, essentially, that this analytic property characterizes the von Neumann
algebra generated by the one-sided quasinormalizers of B.

Theorem 3.2 ([18]). Let B C (M, 1) be tracial von Neumann algebras and denote by
N = vN(Q/\/(l)(B C M)). Then BC N C M satisfies the relative WAHP.

Using this result one can establish that the relative WAHP actually “descends” to all
subgroups of U(B) that generate B as a von Neumann algebra. As we will see shortly,
this upgrade is very useful in applications. We include only a brief proof, largely based
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on prior techniques [34,9,18,28,7] and we encourage the reader to consult these results
beforehand.

Theorem 3.3. A triple inclusion B C N C M of finite von Neumann algebras has the
relative WAHP if and only if for every subgroup 8 C U(B) satisfying " = B one can
find a net (gx)x € B such that for any x,y € M we have

1EB(zgry) — E(En(2)grxEn(y))ll2 = 0. (3.0.1)

Proof. We only prove the forward implication as the converse is straightforward. Assume
by contradiction there is a subgroup & C U(B) satisfying 2" = B for which (3.0.1) does
not hold. Thus using the same argument from the proof of [34, Corollary 2.3] one can
find a scalar C' > 0 and a finite subset (} 2 F' C M © N such that for all b € 4,

> IEs@ by)ll3 > C. (3.0.2)

z,yeF

Consider the basic construction B € M C (M, B) = {M,ep}’ C B(L*(M)), where
ep : L?(M) — L?(B) is the canonical orthogonal projection. Let Tr be the canonical
semifinite trace on (M, B) given by Tr(xzepy) = 7(zy) for all z,y € M. Let £ :=
Y werpxepx® € (M, B) and notice 0 < T'r(§) < oo. Using epmep = Ep(m)ep for all
m € M together with other basic calculations and (3.0.2) we see for all b € £,

Tr(EbEL™) = Z Tr(xepx byepy™b*) = Z Tr(egz*byepy b zep) =

z,yeF z,yeF
(3.0.3)
= Z Tr(Eg(z*by)egEp(y*b*x) Z |Es(z*by)|5 = C.
z,yer z,yer

Let K = co{b&b* : b € %’}w and denote by € K the unique element of minimal ||- ||2,75-
norm. Fix b € 4. Since T'r is a trace then ||bnb* = |Inll2,7»- Also, since A is a group
then bnb* € K. Thus uniqueness implies that bnb* = 5 for all b € % and since 4"’ = B
we conclude that n € B’ N (M, B);. One can also check that Tr(n) < Tr(§) < oc.
Furthermore, (3.0.3) entails n # 0.

Now consider the orthogonal projection ey : L2(M) — L?(N) and notice that ey €
N’ C B’. Moreover, as Jey = eyJ we also have ey € JB'J = (M, B) and hence
eny € B'N (M, B). Next we can see that for every b € 2,

enbih” =benéb* = beywepab* = Y bEy(z)epz™b* = 0.

zEF zel

Taking convex combinations and weak limits, this further implies that eyn = 0. Thus
ney = 0 and hence n € (1 — en)(B' N (M, B))(1 — ey). Taking a suitable spectral
projection of 7 one can find a projection 0 # p € (1 — en)(B' N (M, B))(1 — en) such
that Tr(p) < oo.
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Denote by Q := vN(QNM (B C M)) and let eg : L*(M) — L?(Q) be the canoni-
cal orthogonal projection. On the one hand, using verbatim the same arguments from
the proof of the implication (i¢) = (i) in [18, Theorem 3.1] (see page 9/line -2 —
page 10/line 10) we get that p < eg. On the other hand, as B C N C M satisfy
the relative WAHP, implication (i) = (i4¢) in [18, Theorem 3.1] yields @ C N and hence
eq < en. Altogether, these imply p < en. Since p < 1 — en we get that p = 0, which is
a contradiction. 0O

The relative WAHP is closely connected to the following notion of relative weak mixing
for trace-preserving W*-dynamical extension systems.

Definition 3.4. Let M = (N C M,G,«,7) be a 7-preserving W*-dynamical extension
system and let B C N be a G-invariant von Neumann subalgebra. Then 91 is called
weak mizing relative to B if there exist nets (by)x C U(B) and (gx)x C G such that for
all z,y € M & N we have

[1EB(zbrag, (1))]l2 — 0.
When M is separable the nets can be replaced with sequences.

We note in passing that this generalizes Popa’s notion of relative weak mixing for
actions, described in [36, Definition 2.9]. Indeed, it is rather easy to check if one could
pick (by)x to have only finitely many values then Definition 3.4 is equivalent to Popa’s
notion. For instance, this is the case when B C Z(M) (one can pick by = 1). Thus, when
M is abelian, Definition 3.4 recovers the notion of weak mixing for extensions introduced
by Furstenberg and Zimmer in the 70’s, [19,46]. Finally, when B = N = C1, this recovers
the notion of weak mixing for trace-preserving actions of G on M.

For further use we record the following result connecting relative weak mixing with
relative WAHP. Its proof is a straightforward application of Theorem 3.3 and other
existing methods in the literature ([28], [7], [18]) and we include it here only for the sake
of completness.

Lemma 3.5. Let M = (N C M, G, «, 1) be a T-preserving W*-dynamical extension system
and let B C N be a G-invariant von Neumann subalgebra. Then 9 is weak mixing
relative to B if and only if the triple inclusion B xo, G C N X0 G C M X, G has the
relative WAHP.

Proof. First we show the forward implication. Let (by)xea C U(B) and (ga)rea C G be
such that for every £,( € M & N we have

I1EB(Ebxarg, (€))]l2 — 0 (3.0.4)
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Next we show the net z\ := byuy, € U(B x4 G) witnesses the relative WAHP for
B %y G C N xo G C M x, G. Notice this is equivalent to showing that for every
0#£y,z€ (M x,G)S (N %, G) we have

IEBx.c(yzrz)ll2 — 0. (3.0.5)

Fix € > 0. Using the Kaplansky density theorem one can find finite subsets E., F. C G
and y. = deEa YglUg, Ze = D pep. 2nUn With yg, z; € M © N such that

ly = wellz < d |z =22 < 7 (3.0.6)
Y= Yell2 and ||z — Zg|l2 < 5 - .0.
) 4H I A

Using (3.0.6) together with the triangle inequality for all A € A we have

€
1EBx.6(yeaz)llz < 5 + 1 Epxac (Yeraze)ll2
€
S+ > IEuac(yyugbrug, zhun)2
2 gEB. heF. (3.0.7)
€ ' 1>
=5+ D IBs(ag-1(y5)baag, (3)]2-
gEE. ,heF.

Since y; € M © N then ay-1(y;) € M © N. Using (3.0.4), for every g € E.,h € F; one
can find A; ;, € A such that [|[Ep(a,-1(y5)baag, (27))]2 < STETE for all A = g 4
here “>” denotes the preorder on A. As (A, =) is directed and F, F. are finite one can
find A. € A such that A, = A7 , for all g € E., h € F.. Altogether, these combined with
(3.0.7) yield that ||Epx,, G(y:z:,\z)||2 g for all A = )\, thereby proving (3.0.5).

To see the converse, assume B X, G C N X, G C M %, G satisfy the relative WAHP.
Since ¥ = {bug : b € U(B),g € G} C U(B X, G) is a subgroup with 4" = B x, G,
using Theorem 3.3, one can find a net z := byuy, € ¥ so that for all z,y € M x, G,

|EBx.c(zxry) — EBxoc(Enx.c(@)2raEnx,c(y))]l2 = 0. (3.0.8)

Fix z,y € Mo N and notice Exx, c(x) = Enx,c(y) = 0. Basic computations combined
with these relations and also (3.0.8) show that

1EB(xbrag, (Y2 = [ EBxac(@brag, (Y)l2 = [Epx.c(@zayu, )|
= [Epuac(zzay)u =1l = [[Epx,c(zzay)ll2

= |1Ex.c(x22Y) — Epxoc(ENx.c(2)2AENw,c(y))]2 — 0,

which yields that 97 is weak mixing relative to B. O

Over the next three subsections we present several constructions of inclusions of II;
factors with infinite Jones index that are singular, and fail the WAHP; see Theorem 3.6,
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Corollary 3.10, Theorem 3.17. The last two depict even more extreme situations, namely,
infinite Jones index inclusions N C M of II; factors which are simultaneously singular
and quasiregular, i.e., QN (N C M)" = M.

3.1. An action on the hyperfinite II; factor

We now construct our first example. Denote by My the 2 x 2 matrices with complex
entries. Define unitary matrices by

(1 0 (01
7 o -1 ) 2T o)
[ 01 _ /2 V3)2
V3 = <1 O), Vg4 = (Z\/§/2 Z/2 ) (311)

Note that {v1,v9,v3} form a basis for the subspace of matrices of zero trace. These three
unitaries satisfy the following easily verified relations:

V1V2 = V3, V1V3 = V2, V2V = —V3, VU3 = —Ui,

V3V = —Up, VzVa =v1, Vi =wvs=1, vi=—1. (3.1.2)

Let G be the free group Fy with generators {g; : 1 < ¢ < 4}. In defining an action g of

i
G on M3, we need only specify the values of {5y, : 1 < i < 4}, so we set

ﬂgi = Ad (Ui), 1 <1

N

4. (3.1.3)

We regard the hyperfinite II; factor R as the infinite tensor product of copies of My
indexed by the elements of 4, and we let v denote the Bernoulli action of 4 on R. We
define M to be My ® R with an action of Fy given by a = 8 ® 7. We note that « is an
outer action of G on M since v is an outer action of G on R [29, Corollary 1.12].

Theorem 3.6. With the above notation, L(G) is singular in M X, G, while the quasinor-
malizers of L(G) generate a von Neumann algebra which is strictly larger than L(G).

Proof. Any x € M has Orb(z) C M. In particular, for such an « and any h € G we have
hx = ap(x)h € Y, v;L(G), where v;, 1 < i < 4, are the unitaries from equation (3.1.1).
In order to conclude from this that L(G)z C >, v, L(G), it suffices to show that the
module ), v;L(G) is w*-closed. This follows from a general result proved subsequently
and independently in Lemma 4.2. Thus, L(G)xz C >, v;L(G) and a similar argument
shows zL(G) C >, L(G)v;. It follows that L(G) admits nontrivial quasinormalizers,
and moreover, that the algebra of quasinormalizers in the crossed product contains the
subalgebra My xg G of M X, G. Thus, it remains to show that L(G) is singular in
M %, G, which we break into several steps.
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Step 1. The only fized points in M of a(G) are in C1.

The fact that the Bernoulli shift is mixing implies that the only candidates for fixed
points of a(G) must have the form 2 ® 1 for x € My. If © € M5 is a fixed point for 3(G),
then

Up TV = T, 1< n<4, (3.1.4)
so x commutes with {1,v;,ve,v3}, showing that it is central in Ms. In particular, this
shows that the action of G on M is ergodic.

Step 2. L(G)' N (M %, G) =C1.

Let € L(G)" N (M x4 G) have Fourier series © = )" __, xquy. Then, for h € G,

geG

Z UpTgly = Z ap(zg)ung = Z ap(zp-15)ug, (3.1.5)

geG geG keG
while
Z TgUgUp = Z Tpp—1Uk- (3.1.6)
geG keG
Thus
Oéh(.Th—lk) = Tgrp-1, h,k €@, (317)

and so, after making the substitution r = kh ™1,
ap(Tp-10n) = 2, hyr €G. (3.1.8)

If z, # 0 for some r # e, then r has infinitely many distinct conjugates for which
lzp-1rnll2 = |lzr]l2 # 0, an impossibility. Thus x,, = 0 for r # e, so x reduces to being
z. € M, and commutation with u, for g € G shows that z. is a fixed point for a(G).
Step 2 now follows from Step 1.

As a consequence of Step 2, we note that M x, G is a factor.

Step 3. For 1 <14 < 3, W*(ug,,u?, ) N (R %, G) = C1. (Subscripts are mod 3.)

gi+1
The proofs of these equalities are all identical, so we consider only the initial case i = 1.
First consider an element € R x., G that commutes with W*(ug, ), and write its Fourier
series as deG Ygug with y, € R. Commuting with uy, for n € Z entails

Z Yor (Yg)ugng = Z Yglggr, N E L, (3.1.9)
geG geG

so changing variables (k = g7'g for the first sum, k = gg}* for the second) leads to
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Z Vo (Ygonp )k = Z Ypgrntik, TN E L. (3.1.10)
keG kea

From (3.1.10) we obtain

Vor Wgrnp) = Ypgrns nEL, kEG, (3.1.11)
and the further change of variables s = kg; ™ allows us to rewrite (3.1.11) as

Vo Yyrrnogp) =¥ss NEL, sEG. (3.1.12)

Any s ¢ (g1) has infinitely many distinct conjugates by powers of g1. If ys # 0 for such an
s, then (3.1.12) gives infinitely many coefficients in the Fourier series with equal nonzero
2-norms, an impossibility. We conclude that y, = 0 for g ¢ (g1). If we further assume
that 2 commutes with W*(uZ,), then we see that y, = 0 for g # e and that y, is a fixed
point for 7,4, . Since «y is the Bernoulli action, this ensures that ¥, is a scalar, and so also
is z.

Step 4. For 1 <i <3, W*(uy,,ug,, ) N (M x4 G) = W*(v;). (Subscripts are mod 3.)
If 2 € M xo G commutes with W*(ug,,u2,) and has Fourier series > gec Yglg With
Yg € M, then we can repeat the argument of Step 3 to conclude that y, = 0 for g # e
and g, is a fixed point for §, and ﬁi. These fixed points are precisely the matrices

in W*(v1). This proves the first equality, and the argument for the other two cases is
identical.

Step 5. For 1 < ¢ < 3, W*(vq) N W*(v;) = C1.

General matrices x; € W*(v;), 1 <4 < 3, respectively have the form

A0 A p A u
= = d = . 1.1
1 (O u), T (ﬂ )\), and x3 (‘ﬂ >\> (3.1.13)

The requirement for z; to commute with v4 results in

A0 /2 V3/2)\ 12 32\ (A o -
<0 M) (-iﬁ/Z i/2 >_<—i\/§/2 i/2 )(0 u)’ (i=1), (3.1.14)

Ak 12 V3/2\ _ 12 V32\ (A u N
(“ A) <—i\/§/2 i/2><—i\/§/2 i/2><“ A>7 (i=2), (3.1.15)

Ao /2 V3/2\ 172 V3/2 N -
(“ /\> (i\/g/2 if2 >_<i\/§/2 i/2><u /\>’ (i=3). (3.1.16)
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Comparison of the (1,2) matrix entries leads easily to the conclusion that A = u in
(3.1.14) and to ¢ =0 in (3.1.15) and (3.1.16). Thus x; € C1 in all cases.

Step 6. L(G) is singular in M x, G.

Let E : M x4 G — L(G) be the trace-preserving conditional expectation, and let u €
M x4 G be a unitary that normalizes L(G).

Case 1: E(u) # 0.
Let y = E(u) # 0, and write ¢ for the automorphism Ad (u) of L(G). Then

uxr = ¢(x)u, x € L(G). (3.1.17)
Apply E to (3.1.17) to obtain
yr = ¢(x)y, x € L(G). (3.1.18)

A standard argument then shows that y*y is central in L(G) so is Al for some A > 0.
Thus v := y/vVA € L(G) is a unitary that implements ¢. It follows that u*v € L(G)" N
(M x4, G) =C1 by Step 2. Thus u € L(G).

Case 2: E(u) = 0. (We will show that this case cannot occur.)

Let vg = 1 € My, so that {v; : 0 < i < 3} is a basis for My. Then u* € M x, G can be
expressed as Zf:o v; fi where fo,..., fs € R %, G. Since
3
E(w") = tr(v) E(f;) = E(fo), (3.1.19)

=0

we see that F(fy) = 0. As above, we write ¢ = Ad (u) € Aut(L(QG)), so that
ugu* =u*d(uy), ge€G, (3.1.20)
which is equivalent to

ug(vofo +v1fi +vafa+v3f3) = (vofo +vifi +vafa+vsfs)o(uy), geG. (3.1.21)

There are two possibilities:
Case 2a: fy # 0.

The trace-preserving conditional expectation Erx. ¢ : M Xo G — R %, G is given on
generators by (z ® r)u, — tr(z)rug for x € My, r € R, and g € G. Note that, for

g € Gand i€ {1,2,3}, Erx, c(ugvifi) = Erx,a(By(vi)uy fi) = 0 since tr(By(v;)) = 0.
Applying this expectation to (3.1.21), we see that

ugfo = fod(ug), g€G, (3.1.22)
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from which it follows that fof; commutes with L(G). From Step 2, fof; is a nonzero
scalar so, after scaling, fo € R %, G is a unitary that normalizes L(G). The Bernoulli
action v on R is mixing, and so fy € L(G) since L(G) is singular in this crossed product
by Lemma 3.5. This contradicts E(fy) = 0, so this case cannot occur.

Case 2b: fy = 0.

In this case, (3.1.21) reduces to

ug(vifi +vafo +usfs) = (vifi +vafo+v3f3)p(uy), ge€G. (3.1.23)
Now
Ug, Vi = Bg; (Vi)ug, = vjviviug, 1<i,j<3. (3.1.24)
Using (3.1.2), we see that
Ug V1 = V1Ug,, Ug V2 = —VaUg,, Ug U3 = —V3lUg,. (3.1.25)

Thus, from (3.1.23),

vitg, f1 — Vatg, fo — v3ug, f3 = v1f1o(ug, ) + vafad(ug,) + v fad(ug, ). (3.1.26)

If we successively multiply this equation on the left by v1, v2, and v3, and apply Erx. c
each time, the results are

ug, fr = fip(ug,), ug, fo=—fad(ug,), ug f3=—Ff3d(ug,). (3.1.27)
Repeating this argument for the group elements g and g3 leads to similar sets of
equations:
ug, f = —fid(ug,), ug, fo = fad(ug,), ug, fz=—Ffs0(ug,) (3.1.28)
and
Ugs f1 = —fio(ugy),  Ugsfo = —fad(ug,), gy fs = fap(ug,). (3.1.29)

Then there exists ¢ € {1,2,3} so that f; # 0. From the equalities of (3.1.27)—(3.1.29), we
see that

ug, fi = fid(ug,), ul  fi= fio(ul,, ), (3.1.30)

and these equations can be rearranged to give

uy, fi = fip(uy,), UZ?Hfi = fi¢(u2?+1)' (3.1.31)
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It follows from (3.1.30) and (3.1.31) that f;f commutes with all elements of the self-

2 *2 e 3 .
2010 Uy, + and thus lies in the relative

commutants of W*(ug,) and W*(ugiH) in R x, G. By Step 3, f;f; is a nonzero positive

adjoint subspaces span{u,,,u; } and span{u
scalar so, after scaling, there is a unitary w; € R %, G with f; a multiple of w; and

ugiilwi = w;P(u

+1
i

+1
i

) = wuulu”. (3.1.32)

Thus wiu € W*(uy,) N (M x4 G), and similarly w;u commutes with W*(u,, ). From
Step 4, there exists a unitary z; € W*(v;) such that w,u = x;, so u = w;x;. For each
g € G, wizjugr;w; = uugu* € L(G), so z;ugx; € R X, G. Multiply on the right by
uy to obtain z;8y(z}) € R x, G, for all g € G, and this implies that z;5,(x}) € C1.
In particular, there is a scalar 1 so that z; 3y, (z}) = 11, which becomes z;vs = nvaz;.
Taking the determinant shows that n = 1, and it now follows from Step 5 that x; € C1.
Thus u € R %, G so, as above, u € L(G) by the singularity of this subalgebra of R x., G.
This contradicts E(u) = 0, so this case cannot occur. We have now verified the singularity

of L(G) in M x,G. O

We note further that the existence of “nontrivial” quasinormalizers of L(G) in M x,G
precludes the WAHP. Therefore, we have established the existence of an inclusion of II;
factors which is singular, fails the WAHP, and has infinite Jones index.

3.2. Profinite actions of i.c.c. groups

In this subsection we exhibit a fairly large and natural class of crossed product von
Neumann algebras, L>°(X) X, G associated with p.m.p. actions of countable i.c.c. groups
on standard probability spaces G ~* (X, u) for which we are able to describe in detail
all normalizing unitaries in N (L(G) C L>°(X) x4 G); see Corollaries 3.9 and 3.7. These
results can be regarded as non-commutative counterparts of Packer’s prior results, [32,
Theorem 2.3].

Using our description of normalizers we then highlight additional examples of von
Neumann algebra inclusions P C M of infinite Jones index for which the normalizer
and the quasi-normalizer algebras of P differ very sharply. For instance, Corollary 3.10
and the remarks succeeding it provide natural examples when P is a subfactor that is
simultaneously singular and quasiregular.

If N has separable predual and G ~* N is an ergodic, compact trace-preserving
action, using [5, Theorem 4.7] (see also Lemmas 5.4 and 5.5 below) we can always find a
sequence (Ny) of finite-dimensional G-invariant subspaces of N such that Ug Ny is || - ||o-
dense in V. We next leverage such a sequence to obtain a general structural result from
which subsequent examples will be obtained. In the sequel, for a positive integer k and
an element z of a von Neumann algebra M, denote by diag(x) the k x k diagonal matrix
z® 1€ Mk(M)
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Theorem 3.7. Let G be an i.c.c. group and a an ergodic, compact, trace-preserving action
of G on a tracial von Neumann algebra (N, T) with separable predual. Denote by M =
N x4 G the associated crossed product von Neumann algebra. Fix an increasing sequence
(Nk) of finite-dimensional G-invariant subspaces of N such that Uy Ny, is || - ||2-dense in
N.

(i) For any w € N(L(G) C M) one can find k € N, an orthonormal basis
{&,. .., &} © Ni and elements wy, ..., wy, € L(G) such that w =", {w;.

(ii) Let o : G — U(Ny,) be the unitary representation induced by o and for every g € G
consider the matriz M (g) = ((af (&), &))1<ij<ne € Mn, (C). If we let X € M, (M)
be the matriz whose entries satisfy x; ; = w; if j =1 and x; ; =0 if 7 > 1 then the
following holds:

diag(ug) M (9)X = Xdiag(Ad(w*)(ug)) for all g € G.

Proof. Fix an orthonormal basis {{1,...,&,,} € Ny and notice that for all g € G we
have

ng

k(&) = (ak(&), )¢ (3.2.1)

Jj=1

Using relation (3.2.1) and the same argument as in the beginning of the proof of The-
orem 3.6 one can show that L(G)§L(G) C 32, §L(G), >0, L(G)E;, for all 1 < i < ny.
Thus & € QN (L(G) € M) for all 1 < ¢ < ng.

Now denote by Pj, the orthogonal projection onto Z;ﬁl L(G)@L(G)HAHZ. Since G is
i.c.c. and the action « is ergodic we have that L(G)' N M = C1. Thus, since the range
of Py is an L(G)-L(G) bimodule, for every z,y € L(G) and n € M we have

Pi(zny) = 2Pr(n)y. (3.2.2)
Moreover, as U Ny, is || - ||2-dense in N, for every x € M we have
lilgn | Pr(z) — z|]2 = 0. (3.2.3)

Let w € N(L(G) C M). Then, the *-automorphism 6,, = Ad(w) : L(G) — L(G) satisfies
O (x)w = wz, for all z € L(G). (3.2.4)

Thus there exists a smallest k& € N such that Py(w) # 0. Applying the orthogonal
projection Py to relation (3.2.4) and using the bimodularity condition (3.2.2) we get
0 (x)Pr(w) = Pr(w)zx for all z € L(G). Using this in combination with (3.2.4) for all
x € L(G) we have
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WPk (w)r = w0y (2)Pr(w) = zw* Pi(w),

so w*Pr(w) € L(G) N M. However as observed before, L(G)’ N M = C1. Thus there
is A € C\ {0} such that w*P(w) = Al and hence Py(w) = Aw. In particular, w €
>oi* &L(G) and one can find wy, ..., w,, € L(G) such that w = ), &w;. Using this,
the fact that u, implements a’; on Ny, and the relations (3.2.4) and (3.2.1) we get that
for every g € G we have

Z Eiug (D (b (&), &i)wy) = ZWS (&) Si)&iugw;

J

i

=D ab(&ugw; =Y ugbuugw;
j J

= Ugw = Why~ (ug) = Zfiwiow* (ug).

Hence, using the L(G)-orthonormal basis property of the &;’s, for every ¢ we have that

w%wm:%Zwmmmw- (3.2.5)

Now consider the unitary matrix M(g) = ({(af(&;), &) 1<ij<ne € Mp, (C), and let X €
M, (M) be the matrix whose entries satisfy «; ; = w; if j = 1 and z;; = 0 if j > 1.
Then, relations (3.2.5) are equivalent to

diag(uy)M(g9)X = Xdiag(Ad(w™)(uy)) for all g € G. (3.2.6)
We note in passing that the prior relation is in fact equivalent to (3.2.4). O

Specializing Theorem 3.7 to the cases of group measure space constructions associated
with profinite actions yields an even more concrete description of these normalizers.
Before introducing the result, we briefly recall the construction of profinite actions.

Recall that a discrete group G is said to be residually finite if there is a sequence G1 2
G2 2 G5 D -+ of finite-index subgroups of G with intersection {e}. In this situation,
for each k, G acts by left translation on the (finite) set G/G}, of left cosets. When G /Gy,
is equipped with counting measure puj, we obtain an ergodic, p.m.p. action ay of G on
(G/Gg, 1) Moreover, for each k there is a quotient map g : G/Gry1 — G/Gy, given
by

qrx(sGr41) =tGr it sGry1 C tGy.
Then the inverse limit X = im(G/Gy, pu) is a probability space, and the inverse limit

action « of G on X can be shown to be ergodic and measure-preserving. An action of this
form is profinite, i.e., it has the form a = lim oy for a sequence of measure-preserving
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actions of G on finite probability spaces (Xy, ui). Notably, any ergodic, profinite action
of a discrete group arises in this manner (see [24, Example 1.2 and Theorem 1.6]).

For further use we also state the following result, which is an immediate consequence
of [24, Lemma 1.4].

Lemma 3.8. Let G be an i.c.c. residually finite group, and let G ~* (X, p) = lm (X, i)
be an ergodic, profinite, p.m.p. action. Write M = L>®°(X) %, G. Then for any finite-
index subgroup H of G there is some n € N such that

L(H) N M C L®(X,).

Corollary 3.9. Let G be an i.c.c., residually finite group. Let o be a ergodic, profinite
action of G on X = lm(Xg, puy) and denote by M = L*(X,u) xq G the associated
crossed product von Neumann algebra.

Then for every w € N(L(G) C M) there exist k € N and unitaries a € L™ (X})
and v € L(G) such that w = av. Hence a € N(L(G) C M), and moreover one can find
n € Char(G) such that the following hold:

(1) Ad(a)(ug) = n(9)ug, for all g € G, and

(2) there is an atom e € L*(Xy) such that a = 3_ n(g)ag(e) where the sum is over a
set of representatives of G /Gy, with Gy, = {g € G : (au)g(x) = x for all x € X} }.
In addition, we have Gj, C ker(n).

Proof. To simplify the notations let Ay := L>°(X}) for all k and let A := L*°(X). From
assumptions we also have that My = Ay X, G where Ay = span{{y,...,&,, } =: I with
& € Ay, orthogonal projections of equal traces such that the action oy (&;) = &;.; for some
transitive action G ~ I.

Furthermore, (Ag)r forms an increasing tower of finite-dimensional G-invariant von
Neumann subalgebras such that A = MSOT. Let w € N(L(G) C M) be arbitrary.
Applying Theorem 3.7 there is k € N such that w € M}, and hence one can find elements
w; € L(G) satisfying

i=1

For g € G consider M(g) = ({(ag(&;),&i))1<ij<ns- If we let X € M,,, (M) be the matrix
whose entries satisfy x; ;j = w; if j =1 and x; ; = 0 if j > 1 then the following holds:

diag(ug)M(g9)X = Xdiag(Ad(w™)(ug)) for all g € G. (3.2.8)

Since ¢;’s are orthogonal projections we have that (ag(&),&;) = (€4.i,&;) = 4., ;. Thus
there is a finite-index normal subgroup Gy C G such that M(g) = I, for all g € Gj.



24 J.P. Bannon et al. / Advances in Mathematics 443 (2024) 109535

This shows that X X* commutes with diag(ug) for all g € Gj,.. A basic calculation further
implies that X X* € M,,, (L(Gg)' N L(G)). As G is i.c.c. and G, C G has finite index we
have that L(Gy)' N L(G) = C1 and hence X X* € M,,, (C1). Thus one can find scalars
As; such that

wiw; =N 1 forall 1 <4,5 < ny. (3.2.9)

Observe that A; ; > 0 for all ¢ € I. Using relation (3.2.9) for i = j we get w; = \/mvi
for some unitary v; € L(G). Since w # 0 at least one of the scalars A, ; # 0 and using
(3.2.9) again we see that one can find scalars p; € C and a unitary v € L(G) such that
w; = p;v for all 4 € I. In conclusion, we have shown that w =", §w; = (3, wi&)v = av
for some unitary a € Ag. To this end we observe that since a is a unitary in the previous
relations we have that |u;| = 1 for all 4 € I. This yields the first part of the statement
modulo a phase factor.

Next observe that the first part shows that a € N(L(G) € M) and Ad(a) = 6, :
L(G) — L(G) is a *-automorphism satisfying 6,(x)a = ax for all z € L(G). Specializing
to © = ugy, multiplying 6,(ug)a = au, on the right by ¢; and using the prior relations
and basic computations we can see that for all g € G we have

Oaug)pi&; = auyéy = (Z piki)ag(&5)ug = pig.j€g.juy-

Applying the expectation Ep, ) on the prior relation we get 0, (uy) = “i'j ug forallg € G.

J

Notice that this shows n(g) = ‘%7 is independent of j and it is also a multiplicative
character. Thus 6,(u,) = 1(g)u, for all g € G. Moreover, since p4.; = n(g)p; for all g we

get that a = °_ un(9)&e.; = nj -, m(g)ay(E;) for some j. Now replace a by fja. This
finishes the proof. O

Exploiting the prior result, we obtain effective computations of the normalizing alge-
bras in the case of profinite actions.

Corollary 3.10. Let G be an i.c.c. residually finite group with finite abelianization. Let o
be a ergodic, profinite action of G on X = lim(Xg, py) and denote by M = L>(X, u)xaG

the associated crossed product von Neumann algebra. Then the following hold:

(1) There exist a positive integer ko and a finite-dimensional, G-invariant subalgebra
A C L>*(Xy,) such that

N(L(G) S M)" = Ax,G.
(2) Moreover, if the abelianization of G is trivial, then

N(L(G) C M) = L(G).
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Proof. Fix w € N(L(G) C M). Using Corollary 3.9 one can find & € N and unitaries
a € L®(Xg) and v € L(G) such that w = av. Moreover, from relation (1) in the
conclusion of Corollary 3.9 there is a character n € Char(G) such that Ad(a)ug = 1(g)u,
for all g € G. This is equivalent to a being an eigenvector, i.e., ay(a) = n(g)a, g € G.
Since G/[G, G| is finite, G has a finite-index normal subgroup Gq such that Go C kerw
for all w € Char(G). In particular, this holds for n, and we have ap(a) = a for all
h € Gg. Using the finite index condition and Lemma 3.8, since a is fixed by «, we have
that a € L (X},) for some kg € N which depends only on Gy. Altogether, these show
that N (L(G) C M)" C L*®(X},) X G. Then part (1) of the conclusion follows from [10,
Theorem 3.10] or [27, Corollary 3.11].

To see part (2) just notice trivial abelianization implies that n = 1 and hence o4(a) = a
for all g € G. By ergodicity, this further implies that ¢ = wl with |w| = 1 and hence
N(L(G) S M) C L(G). O

Remark 3.11. This corollary provides new situations in which the normalizing and the
quasinormalizing algebras of L(G) in N x, G differ sharply. For example, if in Corol-
lary 3.10 we let G be any i.c.c., residually finite, property (T) group (e.g. G = PSL,(Z)
with n > 3 or G any uniform lattice in Sp(n,1), with n > 2) and we take the action «,
then using part (1) we can find k& € N such that N(L(G) C M)" C L>®°(Xk) Xo G C
M = ON(L(G) € M)" (see Theorem 5.9), which in the case when |X%| * oo, implies
that N (L(G) € M)"” C QN(L(G) € M)" has infinite Jones index.

We continue by briefly presenting an example of a residually finite i.c.c. group with
trivial abelianization, that is based on several deep results of Wise [45], Haglund-Wise [22]
and Agol [1] concerning groups acting on cubical complexes; see also [14, Theorem 5.2]
and [13]. We are grateful to Denis Osin for suggesting this example to us. As mentioned
to us by one of the referees, examples of groups with trivial abelianization are easy to
find; SL3(Z) is one such example. In the following theorem we want the group to have
the additional property of being hyperbolic.

Theorem 3.12. There exists an i.c.c. hyperbolic group that is residually finite and has
trivial abelianization.

Proof. Let F = F(a,b) be the free group with two generators a and b. Also let [F, F]
be its derived group. One can find two words u(a, b),v(a,b) € [F, F| such that the group
with the following presentation

G = (a,b|a = u(a,b),b=wv(a,b))

is a C'(1/6)-group.

Recall in [45] it was shown that every finitely presented C’(1/6) group acts geomet-
rically (i.e., properly cocompactly) on a CAT(0) cube complex. Using the work [22], it
was proved in [1] that every hyperbolic group acting geometrically on a CAT(0) cubical
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complex satisfies certain additional conditions, is residually finite. In conclusion, since
finitely presented C’(1/6) groups are hyperbolic, it follows that our group G is residually
finite.

From its presentation we can see that G is torsion free. Therefore, since it is hyperbolic,
using [17, Theorem 2.35], it follows that G is i.c.c.

Finally, using the two relations of G one can see immediately that G = [G, G]; thus
G has trivial abelianization. 0O

Notice that if M = L*°(X) X, G (G as in Theorem 3.12) is the crossed product of
any profinite action G ¢ X = liLﬂ(Xk, wx) then part (2) of the prior result implies that
L(G) is simultaneously singular and quasiregular in M.

Finally, we observe that combining the prior results in this subsection with the main
Theorem 4.1 in the next section we obtain a general upgrade of Theorem 3.7 to the case
of von Neumann algebras of all ergodic actions on probability spaces.

Corollary 3.13. Let G be an i.c.c. group, let G . (X, u) be a ergodic action, and denote
by M = L (X, 1) Xo G the associated crossed product von Neumann algebra.

Let w € N(L(G) C M). Then one can find a finite-dimensional G-invariant subspace
D C L*™(X) with an orthonormal basis {&1,...,&,} C D and wy,...,w, € L(G) such
that w =), &w;. We still denote by o : G — U(D) the unitary representation induced
by the action o and for every g € G consider the matriz M(g) = ((ag(&5),&))1<i,j<n- If
we let X € M, (M) be the matriz whose entries satisfy x; j = w; if j =1 and x; j = 0 if
j > 1 then the following holds:

diag(ug)M(9)X = Xdiag(Ad(w*)(ug)) for all g € G.

Proof. Notice that from Theorem 4.1 there exists a maximal compact ergodic quotient
G n* X, of G ~* X such that QN (L(G) € M)" = L>(X.) X4, G. Also note
that compactness of G ~%* X, implies the existence of a sequence Dy C L*°(X,) of
finite-dimensional G-invariant subspaces satisfying Uy Dy, is || - ||2-dense in L*°(X,.) (use
Theorem 6.10 [4]). Now since w € L (X.) X4, G the conclusion follows from Theorem 3.7
applied to the action G ~% X.. O

3.8. Automorphism-rigid actions of discrete groups

In this section we concentrate on actions of countable discrete groups on von Neumann
algebras with separable predual and focus on controlling normalizers. The examples in
the remainder of this section arise from a rigidity property of W*-dynamical systems
satisfied by a variety of groups acting on tracial von Neumann algebras. The definition
is as follows.

Definition 3.14. Let G be a discrete group. A trace-preserving action « of G on a finite
von Neumann algebra (N, 7) is said to be automorphism-rigid if for any automorphism
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O of N x, G, there exist an automorphism 6 of N, an automorphism § of G, a character
n:G — T and a unitary w € N x, G such that

O(nuy) = n(g)wd(n)usyw*, forallne N,geG.
We also recall the following standard definition, for the reader’s convenience.

Definition 3.15. A trace-preserving action « of a discrete group G on a finite von Neu-
mann algebra (N, 7) is called weak mizing if there is a sequence (g, ), of group elements
such that 7(ag, (z)y) — 7(z)7(y), for any =,y € N. (Sequences are replaced by nets
when G is uncountable.)

There are many examples known of weak mixing automorphism-rigid actions. Below
we include some natural classes which emerged from Popa’s deformation/rigidity theory
[37].

(1) Bernoulli action G ~ (®gA, T) where A is abelian and G is an i.c.c., property (T)
group or G = G1 X Gy where G; are i.c.c. non-amenable [34-36,38];
(2) The fibered versions of Rips construction @ ~ L(Ny x Na) from [11,12].

We now have the following results.

Theorem 3.16. Let G be an i.c.c. group and let G N7 A and G ~“ B be trace-preserving
actions on finite von Neumann algebras. Assume that the action o is automorphism-
rigid. Denote by M = (A®B) Xyga G the corresponding crossed product von Neumann
algebra.

Then for every w € N(Ax,G C M) one can find unitaries b € AQB andv € Ax,G
such that w = vb. Thus b € N(A x, G C M) and moreover, one can find ¢ € Char(G)
such that the x-automorphism 6, = Ad(b) : A X, G — A X, G satisfies

(1) (0y))a € Aut(A) and
(2) Op(ug) = C((9)ug, for all g € G.

Proof. To simplify the notation let @ := A x, G. As w € N(Q C M) then the x-
automorphism Ad(w) = 6, : Q — @ satisfies

O (x)w = wz for all x € Q. (3.3.1)

Since o is automorphism-rigid, one can find wy € U(Q), 6 € Aut(A), 6 € Aut(G) and
n € Char(G) such that for all « € A and g € G we have

0w (aug) = n(g)wob(a)usg)wp. (3.3.2)
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Letting y = ww and using relations (3.3.1) and (3.3.2) we obtain that

0(x)usg)y = n(g)yzruy, for allz € Aand g € G. (3.3.3)

Now consider the Fourier expansion y = 3, . Yntn, with y, € A®B for all h € G. Using

this in relation (3.3.3) we get that ), 0(2)(0 ® a)s(g)(yn)usgyn = D_p 1(9)Ynon(x)tng
for all g € G. Identifying the Fourier coefficients we further get

0(2)(0 @ ) s(9)(Us(g-1)s) = 1(9)Ysg—10sg-1(x) for all s,g € G and = € A. (3.3.4)

In particular, (0 ® a)sg)(ys) = 1(9)¥s(g)sg—1 for all s,g € G and hence |ysll2 =
Ys(g)sg—1 112, for all s, g € G. Thus y is supported on s € G such that the orbit {d(g)sg™" :
g € G} is finite. Next we claim that there is only one such orbit and that it consists of
a singleton.

To this end, suppose there exist s; # s2 such that both y,, and ys, are nonzero. Then
there exist finite-index subgroups Gy, , Gy, of G such that 6(g) = s1gs; " for all g € G,
and 0(g) = sagsy ' for all g € Gy, . In particular, 51957 = sags, ', for all g € Gy, NG, .
Then s = 52_151 is central in G5, N Gg,. But G, N G, has finite index in G, which is
i.c.c., a contradiction. Therefore, y, = 0 for all but one g € G.

In conclusion, we have that y = au, for some unitary a € A®B. Moreover, as a
consequence we also have that § = Ad(s). Therefore if we let b = (0 ® a);*(a) then we
get w = vb, where v = wous € A X, G.

Combining these with relation (3.3.3) we get that 0(x)usgb = 0(z)uggs-1aus =

n(g)usbrugy and hence

os-1 0 0(x)ugh = n(g)bzuy forallz € A, g € G. (3.3.5)

In particular, this implies
0s-1 00(x) = bab*, for all z € A.
Moreover, this combined with (3.3.5) implies that
bugh® = n(g)uy, for all g € G.
The last two relations give the desired conclusion for ( =7. O
Theorem 3.17. Let G be an i.c.c. group with finite abelianization. Loet G 7 Abea
——S0T

weak mizing automorphism-rigid action and let G ~* B = U,B, be an ergodic,
profinite action. Denote by M = (A®B) X,ga G the crossed product von Neumann
algebra corresponding to the canonical diagonal action G ~°®* ARB.

Then one can find k € N and a G-invariant von Neumann subalgebra By C By such
that N(A x, G C M)" = (A®By) Xoga G-
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Proof. Since G ~7 A is weak mixing, the inclusion B x, G C (A®B) Xsga G satisfies
the following form of the WAHP: there exists an infinite sequence (g;); € G such that
for every z,t € M & (B X4 G) we have

lizm |EBx,c(zugt)|l2 =0. (3.3.6)

Now fix w € N(A x, G C M). By Theorem 3.16 one can find unitaries b € A®B and
v € A X, G such that w = vb. Moreover, we have 8;(uy) = ((g)u, for all g € G which is
equivalent to

bug = ((g)ugb, for all g € G. (3.3.7)

Now consider z := b—Epyx_q(b) = b—Ep(b) € MEBx,G. Thus relation (3.3.7) implies
that Epy,c(b)ug = ((9)ugEBx,c(b) and hence, subtracting we get zuy = ((g)ugyz, for
all g € G. Using this relation we see that for all ¢ € G we have

Epw, c(zz")|l2 = |lugEBx.c(22%)|2 = | Ex,c(ugzz™)]2
|EBx.c(227)||2 = [ugEpx.c(227)|l2 = | Epx.c(ugzz")| (338)

= |EBx,c(C(9)zugz")|l2 = [|[Epx,c(2ugz")]2-

z
Applying this for the sequence (g;); € G as in relation (3.3.6) we get that
1EBx0c(22)ll2 = im | Eps,c (2ug,2) |2 = 0.

Therefore z = 0 and hence b € B.

Relation (3.3.7) implies that a,(b) = ((g)b for all g € G. Moreover, G/[G,G] is
finite, and hence G has a finite-index normal subgroup Gg such that Gy C kerw for all
w € Char(G). In particular, this holds for ¢, and we have ay,(b) = b for all h € Gy. Using
the finite index condition and Lemma 3.8, since b is fixed by «, we have that b € By
for some k € N (depending only on Gp). As b was an arbitrary normalizer, we conclude
that N(L(G) € M)" is contained in By X, G. It now follows from [10, Theorem 3.10]
that N(L(G) € M)” = By X4 G for some finite-dimensional von Neumann subalgebra
By of Bi,. O

4. Quasinormalizers in crossed products and compactness

This section contains our main results on quasinormalizers for crossed product in-
clusions. The first subsection considers the situation of a general W*-dynamical system
(M, G, a, p), where p is a faithful normal state. In this setting, we characterize quasinor-
malizers of the associated inclusion L(G) € M x,G in terms of the Kronecker subalgebra,
which arises from the maximal compact subsystem of the dynamical system. Stronger
results are obtained in §4.2, in which we study inclusions of the form N x,G C M x,G as-
sociated to certain trace-preserving W*-dynamical extension systems (N C M, G, a, 7).
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In this case, the quasinormalizer is described in terms of the relatively almost periodic
elements of M which, under suitable regularity conditions on the inclusion N C M,
form a von Neumann algebra which generalizes the Kronecker subalgebra. Subsection
4.3 presents an application of these structural results to noncommutative dynamics. In
particular, a version of the Furstenberg-Zimmer distal tower for general W *-extension
systems, [19,46], is presented in terms of iterated quasinormalizers.

4.1. Quasinormalizers and mazimal compactness

The main result of this subsection relates the compact subsystems of a W*-dynamical
system MM = (M, G, «, p) to the quasinormalizers of L(G) in the associated crossed prod-
uct where G is a discrete group (could be uncountable). The recent paper [5] analyzed
a compact, ergodic system in terms of finite-dimensional invariant subspaces for the as-
sociated Koopman representation. Crucially, it was shown in [4] that any such subspace
comes from the von Neumann algebra itself, in fact, from the centralizer M* C M of the
state.

In [5], the Kronecker subalgebra Mg C M was defined to be the von Neumann algebra
generated by the finite-dimensional subspaces of M that are invariant under «. It was
observed that M is injective and tracial (under ergodicity and seperability of M), and
has the following properties:

(i) Mk is globally invariant under «.
(ii) The restriction of & to Mk defines a compact subsystem of 9.
(ili) Mk is maximal with respect to properties (i) and (ii), in the sense that My contains
every € M whose orbit under « is [|-||,-precompact.

For a proof of the above when M is o-finite with a prescribed faithful normal state p,
use Lemmas 5.5, 5.7 and Remark 5.6.

The crossed product My X, G associated to this system is a finite von Neumann
algebra, and we consider the inclusion L(G) C Mg xo G € M %, G, which provides
the key connection between quasinormalizers and dynamics in our main result, in which
we compute the von Neumann algebra generated by the one-sided quasinormalizers of

L(G).
Theorem 4.1. Let (M, G, «, p) be an ergodic W*-dynamical system. Then
vN(ONW(L(G) € M x4 Q) = Mg x4 G. (4.1.1)

The remainder of this section will comprise the proof of Theorem 4.1 and its imme-
diate corollaries. Accordingly, we let 0t = (M, G, «, p) be a fixed ergodic W*-dynamical
system, and consider the inclusion L(G) C Mg xo G C M x, G. We first prove that
Mg xq G C oN(QNYD(L(G) € M x, G)). To do this, we will need the following
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lemma, which shows that certain finite-dimensional L(G) modules arising in M x, G are
automatically w*-closed.

Lemma 4.2. For any finite subset {x1,...,x,} of M, the module Zj z;L(G) is w*-closed
mn M X, G.

Proof. Applying the Gram-Schmidt procedure from Section 2.2 in L?(M, p) to the z;,
1 < j < n, we may assume they are mutually orthogonal and have [|z;||, = 1. By the
Krein-Smulian theorem, we need only show that the intersection of 3, ;L(G) with any
closed ball of finite radius is w*-closed.

Let (yx) be a uniformly bounded net in }_; z;L(G) such that y, converges in the
w*-topology to y € M x, G. We may then write each y, as a sum

Yx = Z ziErq)(Tjyr).
J

If K > 0 is such that [|yx|| < K, then for any A and 1 < j < n, we have

1B @y || < K max [|F]]
By w*-compactness, we may then drop to a subnet of (y,) so that for each 1 < j < n
there is some z; € L(G) such that Ep(q)(w}ys) converges to z; in the w*-topology.
Then yy converges to ; z;z;, an element of ) x;L(G). Thus, the module  z; L(G) is
w*-closed. O

Now fix s € G and suppose © € M has finite-dimensional orbit under «, i.e., there
exist x1,...,x, € M such that Orb(z) = {a4(z) : g € G} C span{x1,...z,}. Then, for
any h € G,

uprus = ap(T)upus € ZmiL(G).

It follows by Lemma 4.2 that L(G)zus C 3~ x;L(G). A symmetric argument shows that
zusL(G) C 3 L(G)z;, that is, zu, is a quasinormalizer of L(G). The von Neumann
algebra generated by elements of this form is precisely Mg X, G, so we conclude that

Mg 3, G C ON(L(G) C M x, G)".

This completes the proof of one inclusion in the statement of Theorem 4.1. The main
observation for the opposite inclusion is the following lemma, which implies that the
Fourier coefficients of a one-sided quasinormalizer z = > g Tgllg € M X G must have
compact orbits under the group action.
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Lemma 4.3. Let 0 # 2 = Y o wsus € M x4 G be a one-sided quasinormalizer of L(G).
Then for each s € G with x5 # 0 and € > 0 there is a finite-dimensional subspace K. s
of L3(M, p) such that for all z € Orb(zs) we have

dist(z, K¢ 5) = ir}(f Iz —m|l2 < e. (4.1.2)
me

€,s

Proof. Let 0 #x =) . 2sus € M xq G be a one-sided quasinormalizer of L(G). Then

the L(G)-module H = L(G).%L(G)”'Hz C L?(M %, G) is finitely generated. Denote by
(-, the L(G)-valued inner product. Then H admits a finite orthonormal basis of left-
bounded vectors {n1,...,m,}, so that any left-bounded vector n € H may be expressed
as a combination

n=>_njmim, neH
=1

Let h € G. Then the vector &, = upx€) € H is left-bounded, so by the above formula,
En =31 (n5,6n) -
j=1
For j =1,...,n we may express n; and (n;,&,) as functions on G, valued (respectively)
in L?(M) and C, and write

n; = ((9))gec and  (n;,&n) = (Agﬁ))tec‘,

h
where Zg ||77](g)\|§ <ooand ), /\;t)

we have

< 0. Note that, for 1 < j < n and any h € G,

2
S = i €l < 1l llelly < €zl

where C' = max; HL,,].’ .
Each product n; (n;,&n), 1 < j < n, then defines an element of H by the convolution
formula (see (2.2.4))

(0 (mjy &) (k) = DA ni(g), keG.

geG

It follows that for each s € G, the sum Z;L:l(nj (nj,&n))(hs) picks out the hs-coefficient
in the Fourier series of upz = 3 g untgug = > o an(xg)ung. That is, for each s € G
we have

n(@s)Q = Z Z Agh; 1413 (9

j=1g9€G
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Given € > 0, choose a finite subset F' C G so large that

£
> Y Inlf < YA (4.1.3)

j=1geG\F

Then, using the Cauchy-Schwarz inequality,

n(@s) = ZZ“ (9| = Z Z Aﬁ-,h;flhsnj(g)

j=1ger 9 Jj=1geG\F 9
1/2 1/2
- w P
<D 2 @l D et
j=1 \geG\F geG\F

1/2

Each vector > im1 2 geF ]hq)_l 7 (g) lies in the finite-dimensional subspace
K. s =span{n;(g) : 1< j <n,g € F} € L*(M,p),

and the above estimate is independent of h € G. Thus, the space K., is such that
dist(z, K. s) < € for any z € Orb(z,). O

As noted above, Lemma 4.3 implies that the Fourier coefficients of a one-sided quasi-
normalizer have precompact orbit under the group action.

Corollary 4.4. If x = ) _,xsus € ONY(L(G) € M x4 G), then for each s € G,
Orb(zs) is ||-||,-precompact.

Proof. Let v = Y . wsus € ONM(L(G) € M x4 G) and fix s € G. There is nothing
to prove if x5 = 0, thus assume that z; # 0. Given € > 0, let K. ; be the subspace of
L?(M, p) satisfying the requirements of Lemma 4.3. Write F for the closed ball of radius
|zs|ly + € in K. . Then by compactness of F and density of M in L*(M) there exist
my,...,m, € M such that Orb(z,) € Jl_, B-(m;). It follows that Orb(z,) is totally
bounded in [-||,, and this completes the proof. O
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It now follows from Corollary 4.4 that if x = Y . zsus € OND(L(G) € M %, G)
then each Fourier coefficient x, lies in the subalgebra Mg C M, and therefore, z €
Mg x4 G. This shows UN(Q./\/(l)(L(G) C M %, Q) C Mg x4 G, thus completing the
proof of Theorem 4.1.

Theorem 4.1 also addresses the natural question of whether the von Neumann algebras
generated by one-sided and two-sided quasinormalizers may coincide for inclusions of
the form L(G) € M X, G. It was shown in [18] that these may differ for inclusions of
group von Neumann algebras L(H) C L(G). An immediate corollary of the proof of
Theorem 4.1 is that this cannot happen in the crossed product setting.

Corollary 4.5. If (M, G, «, p) is a W*-dynamical system, then
ON(L(G) C M x4 Q)" = ONW(L(G) € M x4 G)".

We now observe that Theorem 4.1 significantly generalizes (allowing uncountable dis-
crete groups and o-finite M) the result of Packer [32], mentioned in the introduction.
That result computed the normalizer for an inclusion L(G) C M X, G in terms of the
von Neumann subalgebra My C M generated by the eigenvectors of a for actions of
countable groups. Note that the subalgebra My is clearly invariant under «, and can be
seen to be equal to Mk, as follows. If x € M is such that Orb(x) has finite-dimensional
span, then the vector z{2 lies in a finite-dimensional subspace F of M) which is invariant
under the group {V}, : h € G} of Koopman unitaries associated to . Since G is abelian,
the Vj,1 7 are simultaneously unitarily diagonalizable, and hence, F has an orthonormal
basis of eigenvectors of a. Therefore, x € Mjy. This proves that Mg C My, and the
reverse containment is obvious, so they are equal, and moreover Mg X, G = My 1, G.
On the other hand, if € Mj is an eigenvector of the action « there exists a character
x of G such that ay4(xz) = x(g)z for all g € G. Scaling z so that ||z|| = 1 and using
ergodicity of the action we deduce that z*z and xz* are both 1, thus = is a unitary in
M. Then uugu* = uay(u*)u, = x(g)u, for all g € G. Consequently, u normalizes L(G).
The following is then immediate:

OND(L(G) T M x4 @) = ON(L(G) T M %, G)"
:MK NQG:MQ ><]aG
CN(L(G) S M x40 @) € ONY(L(G) € M %, G)".

These remarks prove the following corollary.

Corollary 4.6. If G is a discrete abelian group, and « is an ergodic, trace-preserving
action of G on a finite von Neumann algebra (M, T), then

N(L(G) C M x, Q)" = Mg x, G.
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Remark 4.7. Note that many results about normalizers of masas or subalgebras in the
literature require the assumption of a separable predual of M or the hypothesis that the
acting group is countable and discrete or separable (see for instance [30, Proposition 2.1]).
This is because, for example in the context of masas the ambient masa is identified
with a suitable L*° space and separability assumption of the GNS space allows the
use of spectral theorem in its strongest form through direct integrals; the latter being
invoked either implicitly or explicitly. The proofs in this section do not need any such
requirements and work even when the predual of M is not separable, p is a faithful
normal state and the acting discrete group is uncountable.

The following corollary generalizes [4, Corollary 7.6].
Corollary 4.8. Let (M, G, a, p) be an ergodic W*-dynamical system. Then
OND(L(G) € M x4 Q)" C (M x4 G).

In particular, if M X, G is properly infinite then L(G) cannot be one-sided quasiregular
in M x, G and o must have a non-trivial weakly mixing component.

Proof. The proof follows directly from Theorem 4.1 and the fact that piargx.c is a
trace. O

4.2. Relatively almost periodic elements and compact extensions

Throughout this section we let N C (M, 7) be an inclusion of tracial von Neumann
algebras and we let (M,G,o0,7) be a 7-preserving W*-dynamical system such that N
is a G-invariant von Neumann subalgebra. Such a system is called a 7-preserving W*-
dynamical extension system and will be denoted by (N C M, G, 0, 7).

Definition 4.9. Let (N C M, G,0,7) be a 7-preserving W*-dynamical extension system.
An element f € L?(M) is called almost periodic relative to N if and only if for every
€ > 0 one can find elements 71, ...,n, € L?(M) such that for every g € G there exist
k(g,7) € N with 1 < j < n satisfying

(1) suppeq [15(h, j)|loe < o0, and
(2) llog(f) = 25— mir(g,)ll2 <&

Basic approximations show that in part (2) of the previous definition one can actually
pick n; € M as opposed to its L?-space. Throughout the remaining sections we denote
by Ky C L*(M) the set of all elements that are almost periodic relative to N. We
will also denote by Py ar := M N Ky s

Proposition 4.10. The following properties hold:
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(1) Ky C L3(M) is a G-invariant Hilbert subspace.
(2) Pnu €M is a SOT-closed, G-invariant, linear subspace.

Proof. It is immediate from the definitions that Ky ar is || - ||2-closed and G-invariant,
and that Py ps is a G-invariant linear subspace. It remains to show that P := Py s is
SOT-closed. Let f € 72T and let (fi): C P be anet such that f; — f in SOT. Fixe > 0
and let ¢ be such that ||f; — f|l2 < §. From Definition 4.9, there exist n,...,1m, € M
and k(g,7) € N with 1 < j < n Such that supcq [|£(R, J)||e < o0 and |og(fi) —
>-;mjt(9,7)ll2 < §. These, combined with the triangle inequality, show that

log(f Zm w(9,5)ll2 < llog(f) = og(fi)ll2 + llog(f) Zm k(9 5)l2
€
<IF = flla+ 5 <,
proving that f € P and giving the desired claim. O

Definition 4.11. A 7-preserving W*-dynamical extension system (N C M,G,0,7) is
called compact if and only if Ky = L*(M).

Note that when the subalgebra N = C1, this condition coincides with compactness of
the system (M, G, «r, 7). Next, we show that Definition 4.11 extends the classical notion of
compactness for extensions of actions on abelian von Neumann algebras. For convenience
we recall one of the equivalent definitions from the classical situation.

Definition 4.12. Let M be an abelian von Neumann algebra. Then a W*-dynamical
extension system (N C M,G,o,7) is compact if and only if L?(M) decomposes as a
direct sum of finitely generated G-invariant N-modules.

Proposition 4.13. If M is an abelian von Neumann algebra and (N C M,G,0,7) is a
T-preserving, ergodic W*-dynamical extension system, then the notions of compactness
from Definitions /.12 and /.11 coincide.

Proof. Assume (N C M, G, 0,7) is compact as in Definition 4.12. Then, L?(M) = @®;H,;
where H; are finitely generated G-invariant N-modules. Moreover, since the action of G
on M is ergodic, using a standard argument (e.g. [23, Proposition 3.4]) we can assume
each #H; admits a finite N-basis, (n;); € M — i.e., n;’s are N-orthogonal and for every
& € H; we have £ = Zj n; En(n;€). Thus for every g € G and § € H; we have 04(§) =
> mENmog(€)) Let £ € Hyand e > 0. Let m € 37, ;N C M be such that [|{—m]|2 <
= Since (1;); is a N-basis we have 7, (€) =3, n; Ex (504 (m) |3 = || =, ny En (5 (g (¢~
M) < llog(é — m)I3 = i€ — ml3 < . Letting x(g,5) = Ex(17,(m)) we see that
16(g, 7)o < (max; [[n;]leo)|lm|lec- Altogether, the prior relations show that £ € Ky, -
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Thus, H; C Kn . Now use (1) of Proposition 4.10 to establish L?(M) C Ky . Hence
Definition 4.11 is satisfied.

Now we show the reverse implication. Let N C P C M be the maximal von Neumann
subalgebra such that (N C P,G, 0, 7) is compact in the sense of Definition 4.12; see for
instance [23, Corollary 3.6]. Thus (P C M,G,0,7) is weak mixing relative to N, i.e.,
there is a net (gx)x C G (in this case by’s in Definition 3.4 can be chosen to be 1) such
that for all n,{ € M & P we have

lim || B (7975, (0))]l2 = 0. (4.2.1)

To get our conclusion it suffices to show that P=M.Pick £ € MO P and fix e > 0. By
Definition 4.9 there exist 7; € M for 1 <i < n and (g,4) € N with sup,, [|r(g,7)|l =:
C < oo such that

log(&) Zm k(g,7)]|2 < § for all g € G. (4.2.2)
i=1

Since M is abelian then H = m N + - -- +n, N is a finitely generated N bimodule and

by Theorem 2.3 one can find N —orthogonal elements y; € M with 1 < j < m so that
m . c
|z — ;ijN(ij)nQ <3G (4.2.3)

for all x = maxy + -+ + Ppay, with z; € (N)e.
Using triangle inequality and basic estimates together with (4.2.2), inequality (4.2.3)

for x = n; with 1 < ¢ < n and also the estimate (2.2.2) we see for every g € G we have
log(€) Z%EN Y509(E))ll2 (4.2.4)
J=1
<Nog(€) =D mirlgilllz + 11D mirlg. i) = >y En(y; Y mir(g, )|z
i=1 i=1 j=1 i=1
F 1w En (U (0g(&) = > mir(g, 1)) 2
j=1 i=1

<oy (€) Zm k(g ||z+ZHm Zy]EN i) ll2l1K(g, 1)l

+HZyJEN y] Ug an ga ||2

Jj=1

+(Cn) = + g () Zm r(g,9)ll2 <e.

3 3Cn
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Finally, using (4.2.4) and Cauchy-Schwarz inequality we see for all A\ we have

€113 = llogs ()13 = (05 (), 74, (€))
<ellgll2 + K Zy En(y;j09,(£)), 045 (£))]

= ell¢ll2 + Z 1N (500, ()3

Jj=1

= ell¢ll2 + Z 1EN (2504, (€)) + En(y5) En (04, (€))II3

=ellélla + Y I1EN (206, (€))13-

j=1

Here we denoted z; = yj — EN(y;‘) for all j, and in the last equality we used that
En(04,(§)) = 04, (En(§)) = 0. As En(z;) = 0 for all j, then using (4.2.1) and taking
limit over A above we get [|£]|3 < ¢]|¢]|2. As € > 0 was arbitrary, we conclude [|£]|2 = 0
and hence £ = 0. Since £ € M © P was arbitrary we get M = P, as desired. O

It has been known for some time that the subspace of relative almost periodic elements
Pn ar is not generally a von Neumann subalgebra of M. An example in this direction
was exhibited by Austin-Eisner-Tao in [3, Example 4.4]. Thus, it is natural to investigate
what conditions on the inclusion N € M would ensure that Py s is a von Neumann
subalgebra. In this direction, J. Peterson and the third author observed that a sufficient
condition is quasi-regularity of N C M. A proof based on arguments in [15] was included,
with permission, in the recent preprint [26], and this proof works for o-finite M and
uncountable discrete G.

Theorem 4.14 ([15]). Let (N C M,G,0,7) be a W*-dynamical extension system. If
ON(N C M)" = M then Pn.ym € M is a G-invariant von Neumann subalgebra.

In the remaining part of the subsection we explore the connections between (one-
sided) quasinormalizers in crossed product von Neumann algebras and the subspace of
relative almost periodic elements of W*-dynamical extension systems.

Theorem 4.15. Let (N C M,G,0,7) be a W*-dynamical extension system. Then,
QJ\/'(l)(N Xoe GC M %, G)C spanPN,MGH.HQ. In particular, we have

oN(QNW(N 5, G C My G)) C PRy 40 G
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Proof. To simplify the writing, let A = M x, G, B = N x, G and C = Pf\’LM X, G
and notice B C C C A. Fix y € Q./\/(l)(B C A) and let y = >, ypuyp be its Fourier
expansion in M x, G.

We will show that y;, € Py, for all A € G. Towards this, fix ¢ > 0. As ugy €
Q./\f(l)(B C A), using Theorem 2.3, one can find z; € A with 1 < i < n so that for every
gea,

lugy = xiEn(aiugy)2 < e.

3

Approximating the z;’s in ||-||2 via the Kaplansky density theorem, in the prior inequality,
we can assume that x; € MK for a finite subset K C G.
Letting z; = ), cx % up, the previous inequality implies that for all g € G we have

& > llugy — Y z:Bp(zfugy)ll3

3
=D ugynun— Y, > abusEp(up- () ugyun)|f3

heq steK,eG i
= H Z Ug(yh)ugh - Z ZivéEN(o'st_l(xi)*ast_lg(yl))ust_lgl||§
heG s,teK,leG i
= Z ”Ug(yh) - Z xiEN(Ust*1('ri)*o-stflg(ygfltsflgh))”g
hed s,teK,i
= Z ||Jg(yh) - Z(L‘; (Z EN(Ust_l(iri)*ast_lg(yg_lts_lgh))> Hg
heG i,8 t

Since K is a finite set this inequality clearly implies that each y;, satisfies the compactness
definition with n; = 2% and k(g,7) = >, En(0si-1(2})*0s-14(Yg-145-1gn)). Thus yj, €
P, for all h € G as desired. The rest of the conclusion follows. O

With these preparations at hand we are now ready prove the following generalization
of Theorem 4.1 in the context of trace-preserving W*-dynamical extension systems.

Theorem 4.16. Let (N C M,G,0,7) be a W*-dynamical extension system and assume
that ON'(N C M)" = M. Then N C Py,m € M is G-invariant von Neumann subalgebra
and vN(QN W (N x, G € M %, G)) = Py %, G.

Proof. As the first part of the conclusion is immediate from Theorem 4.14, we will only
prove the second part. Denote by B := N x, G, D := oN(QNY (N %, G C M %, G))
and A := M x, G. By Theorem 3.2, the triple B C D C A satisfies the relative WAHP.
Moreover, by Theorem 3.3 one can pick the net of unitaries witnessing the relative WAHP
in any subgroup of unitaries generating Bj; in particular, we can pick them in U(N)G.
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Thus one can find (vy)x € U(N) and (ug, )» € G such that for every {,n € AS D we
have

h}r\n | E(&uaug,n)||2 = 0. (4.2.5)

Letting P := Py, ar, Theorem 4.15 implies our conclusion, once we show that P C D.
Toward this, fix ¢ € P be such that ||(|| <1 and let £ :=( — Ep({) € M & D. Next we
will argue that & = 0, which will give the conclusion.

First, we need to establish the following.

Claim 4.17. For every ¢ > 0 one can find n1,...,n, € L*>(M) and hy,...,h, € G (non-
necessarily distinct), so that for every g € G there are k(g,j) € N with 1 < j < n
satisfying

sup || 159, 5)lloc = C < 00 and |log(€) = Y nik(g. f)ugn,e |2 <& (4.2.6)
ge
J

Proof of Claim 4.17. Fix ¢ > 0. As ( € P one can find 7}, ...,n,, € L*(M) such that

for every g € G there exist £'(g,7) € N with 1 < ¢ < m satisfying
sup ||K'(h,1)||oe =: C" < 00 and [, (¢ Zm (9,92 < - (4.2.7)
heG

Using Theorem 4.15, we have Ep({) € D C P x, G. Thus one can find a finite subset
F C G and as € (P); for all s € F such that |Ep(¢) — ) cpasus|l2 < §. Hence for all
g € G we have

log(En(€) = 3 0g(as)ugeg: 2 < 7 (4.2.8)

SEF

Asas € P there are nf,...,n5 € L?(M) so that for every g € G there are £°(g,j) € N
with 1 < j < ny satisfying

g
h =" d :
WS K5 (R, )]0 < oo and [[oy(as) Z% (9,72 < a[F| (4.2.9)

Combining inequalities (4.2.8) and (4.2.9), for all g € G we get

Ho'g ED ZZU qsq—1||2

seF j
<llog(Ep(¢ ZUq as)ugsg—1l2 + Z llog(as) 2777 (9,52
sel’ seF
9 3 3
<=+ |F|l—7 = <.
1 TR =S



J.P. Bannon et al. / Advances in Mathematics 443 (2024) 109535 41

Combining this with relation (4.2.7), for all g € G, we have

”Ug(g) - Zn;’il(gvi) - Z ans'&s(gaj)ugsg—l ”2 <e.

seF g

This together with the uniform boundedness conditions from (4.2.7)—(4.2.9) yield our
claim. W

Now fix an arbitrary € > 0. Then by Claim 4.17 one can find 7y, ...,n, € L?(M) and
hi,...,hy € G, so that for every g € G there are £(g,j) € N with 1 < j < n satisfying

. . £
Sggl\ﬁ(gd)llm =C < oo and [og(€) = > njk(g, Mg, 2 < 1 (4.2.10)
g -

J

As QN(N C M)"” = M, using basic approximations we can assume 7; € QN (N C M).
Using Theorem 2.3 one can find z;, € M such that |lzn;y — >, 2 En (2} ;2m;y)[l2 <
% for all z,y € N. This inequality together with the second part of (4.2.10)
implies that for every € (N); and g € G we have

13

lzog(§) = > wjabn (af ianik(g. ))tgn;g-1ll2 < 5- (4.2.11)
gy

Since Ep(§) = 0 we have that Ep(ro4(€)) =0, for all x € N. This further implies that
122 Ep(j) En (2 ;2n;k(g, 7))ugn, -1 |l2 < 5. Combining it with (4.2.11) and letting
Yji =i — Ep(xj,), for every x € N and g € G we get

|zog(§) — ZijEN(x;,ixnjk(gaj))ughjg*I [2 <e. (4.2.12)

Jy
Using this inequality we see that for x = vy and g = g\ we have

€13 = lloacgs ()1 = (va0g, (€), a0y (€))

e+ v BN (@] 0ami5(gn 5))tg, p 15 0065 (6)]

g
e+ EN(@) om0 1))ty p oot Y5005 (€)]
i
=&+ Z (BN (x;,iv)\njﬁ(g)\aj))ugxhj B (y;-:i’UXUzg)\f)H
D
<e+ Y Cllzjilloolnll2l En (] ivaug,&)ll2-

Jst
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Since by (4.2.5) we have limy || Ep(y} ,vaug,&)[l2 = 0 and the set x;;’s are finite (arguing
with nets as in the proof of Lemma 3.5) the previous inequality gives that [|£]|3 < e.
Since € > 0 was arbitrary we get £ = 0, as desired. O

We remark that the previous theorem and its proof yield the following corollary.

Corollary 4.18. Let (N C M,G,o0,7) be a W*-dynamical extension system. Then the
W*-dynamical extension system (PJ’QVM C M,G,0,7) is weak mizing relative to N in the
sense of Definition 3./.

A further consequence of Theorem 4.16 is that, for crossed product inclusions associ-
ated to abelian W*-dynamical extension systems, the von Neumann algebras generated
by quasinormalizers and one-sided quasinormalizers coincide.

Corollary 4.19. If M is abelian and (N C M,G,0,7) is an ergodic W*-dynamical exten-
ston system then

VN(QNW (N %, G C M %, G)) = QN(N x4 G C M x5 Q) = Pyt %o G.

Proof. First we note that since M is abelian then QN(N C M)” = M and hence
by Theorem 4.14, Py, is a von Neumann algebra. Thus, by Theorem 4.16, to get
our conclusion we only need to show that Py %, G € ON(N x, G C M x, G)".
Since M is abelian then by Proposition 4.13 we have Ky y = @©;H;, where H;
are finitely generated, G-invariant IN-modules. Moreover, since the action of G on
M is ergodic, using a standard argument (e.g. [23, Proposition 3.4]) we can as-
sume each H; admits a finite N-basis, (n;); C Pn,m. In other words, for every
§ € Hi we have £ = > nEn(nj€§) = >2; En(nj€)n;. Thus for every g € G we
have og(ne) = ;M EN(njog(ne)) and hence ugne = >, n;En(njog(nk))ug. Since
M is abelian this further gives augne = >_;njEn(njog(nk))aug for all g € G and
a € N. Thus for every finite combination x = Zg agug € N X5, G we have that
T = Zj nj®;.x(x) where we denoted ¢j i : N Xgaig G = N X5 a1 G the linear map
given by ¢;, (3, agug) = >, EN(njog(nk))agug. As N is abelian basic calculations
show that for every z =3 aguy € N X, a1y G we have

* *
ENx,GNjLNEENX,G = E ENx,GNjAgUgNkEN %, G
g

= E eNxaGn;agUg(nk)ugeNxaG = E engGn;Ug(nk)agugeNxaG
g g

= enn, a5 ()ens, gy = > Enw,c(1j0q(mk))ens,cagug

g9 g9

- (Z EN(”;UQ(nk))agug> enx,G = Ojk(T)enx, -

g
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In particular, this relation implies that ¢, extends to a WOT-continuous linear map
¢jk : N Xo G = N x, G which still satisfies zn, = Zj nj¢;e(x) for all z € N x, G.
Therefore we have (N x5 G)ni € 325 1;(N %o G). Similarly one can show that 9y (N x4
G) € 32 (N x5 G)n; and hence n, € QN'(N x, G € M x, G) for all k. Since the 7;’s
are N-basis for each H; we conclude that Py € QN(N C M)", as desired. O

Theorem 4.20. Let (N C M,G,0,7) be a W*-dynamical extension system, where G is
an i.c.c. group. Then, there exist G-invariant von Neumann subalgebras Q C P C P
satisfying

(1) QN (N %, G C M %, Q)" = P x, G, and
(2) N(N xo GC M x,G) =Q %, G.

Proof. By Theorem 4.15 we have that QN(N Xy G C M x5, G) € ONW(N %, G C
M x, G) C spanPy.G' " and hence QN'(N %, G € M %, G)" C spanPy.aiG .
For simplicity denote by S := QN (N x, G C M x, G)” and note that N x, G C S C
M %, G. Using the same argument from the proof of [10, Theorem 3.10] we see for every
& € Pn,m we have that Eg(§) = Ey o Eg(§). By induction, this further implies that
Es(¢) = (EsoEyoEs)*(€) for every positive integer k. Notice that the Jones projections
satisfy (eseares)® — es A epr in the SOT topology as k — 0o. Since es A ey = enns
([41, Theorem 4.3]), altogether, the prior relations show that

Es(g) = ESQM(Q for all £ € PN, (4.2.13)

Fixy € S. Asy € WH'HQ one can find 7y € Py for all g € G satisfying
Yy = deg ngtg. Applying the expectation Eg and using (4.2.13) we further have that
Yy = Es(y) = X yeq Bsng)ug = 3 ,cc Emns(ng)ug. In particular, this shows S C
span(M N S)GH'H2.

Since N C M NS C M is a G-invariant intermediate von Neumann algebra we have
that span(M NS)G C (M NS) %, G; hence S C (M NS) x4 @ Since we canonically
have (M N S) x, G C S, then we conclude that S = (M NS) x, G. Letting P = M N S,
the previous relations also show that P C Py as, finishing part (1) of the conclusion.
The second part follows similarly and the details are left to the reader. O

The prior results yield the following generalization of [10, Corollary 3.14].

Corollary 4.21. Let (N C M,G,0,7) be a W*-dynamical extension system, where G is
an i.c.c. group. Then, for every intermediate von Neumann subalgebra N x, G C Q C
M X, G which admit a finite left and right Pimsner-Popa bases over N X, G, there is
a G-invariant intermediate von Neumann algebra N C P C M which admits finite left
and right Pimsner-Popa bases over N such that Q = P X, G. Moreover, if N = C1 then
P is finite-dimensional.
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Proof. Since () admits a finite left Pimsner-Popa basis and also a finite right Pimsner-
Popa basis over N x, G, then Q C QN(N x, G, M %, G)". Thus, using Theorem 4.20,
one can find a G-invariant von Neumann subalgebra N C R C Py s so that N x, G C
Q@ C R %, G. Further, by [10, Theorem 3.10], one can find a G-invariant von Neumann
subalgebra N C P C R C M such that @ = P x, G. Next notice the following inclusions
diagram

Nx,G C Px,G
U U
N - P
is a non-degenerate commuting square in the sense of Popa, [39]. Since N x,G C Px,G
admits a finite left (right) Pimsner-Popa basis then using [39, Proposition 1.1.5 (iii)] we
conclude that N C P also has a finite left (right) Pimsner-Popa basis. Thus, if N = C1,
then P is finite-dimensional. 0O

Remarks 4.22. In connection with Theorem 4.20 it would be interesting to know if there
are examples of W*-dynamical extension systems (N C M,G,o,7) with G i.c.c. for
which vN(QNW(N x5 G, M %, G)) is not of the form Q x, G for an intermediate von
Neumann subalgebra N C @ C M.

4.8. Von Neumann algebraic descriptions of the Furstenberg-Zimmer tower

Using the prior results (e.g. Theorems 4.15-4.16) we show that the Furstenberg and
Zimmer structural theorems for action of groups on probability spaces, [19,46] can be
described solely in von Neumann algebraic terms, using the language of one-sided quasi-
normalizing algebras and von Neumann subalgebras generated by the relatively almost
periodic elements (see Corollary 4.25). In particular, we recover an unpublished result
of J. Peterson and the third author [15]; see also [10, Theorem 2.5].

More generally, using the von Neumann algebraic framework we are able to introduce
various types of Furstenberg-Zimmer structural towers even in the non-commutative
case. We start with the following result for general W*-dynamical extension systems.

Theorem 4.23. Let (N C M,G,0,7) be a W*-dynamical extension system. Then one can
find an ordinal o and a G-invariant von Neumann subalgebra N C Qg C M for every

8 < « satisfying the following properties:

1. Forall < B < a we have N=Q, C Qs C Qg C M.
2. For every successor ordinal f+ 1 < o we have Qg1 = Péﬁ’M and

oN(QN W (Qp %, G C M %, G)) C Qpy1 %o G.



J.P. Bannon et al. / Advances in Mathematics 443 (2024) 109535 45

3. For every limit ordinal B < o« we have U7<5QWSOT = Qs and Uy<Q Xq GOt =
Qﬁ N G.

4. There are nets (ga)x € G and (ux)x CU(Qq) such that for every x,y € M © Q, we
have

lim || Eq., (zuxag, (y))]|2 = 0.

Proof. We will define inductively the tower of von Neumann algebras (g, for all ordinals
B, as follows. First let Q)9 = IN. Now, if 3 is a successor ordinal then let Qg := Pg s M S
M, the von Neumann algebra generated by Pg,_, a. Notice that by Proposition 4.10
this is G-invariant and satisfies Qg—1 € Q. Moreover by Theorem 4.15, in this case we
also have that vN(QN M (Qp o G € M %, G)) C Qpy1 Xo G. Altogether, these give
part 2 above. If 3 is a limit ordinal then let Qs := Uy<3Q- . In this case, since all
Q) are G-invariant one can easily see that so is Q5. In particular, we also have that
WSOT = @Qp X, G. Now let o be the first ordinal where the chain (Qg)gs
stabilizes, i.e., Qo = Qa41. Altogether, the previous relations show the tower (Qg)s<a
satisfies conditions 1.-3. in the statement. Moreover, since « stabilizes the tower we have
that Q, = P(_ 5y and by Theorem 4.15 we get that oN(ON D (Qq4 %5 G C M x,G)) =
Qo X G. However, using the relative WAHP in the same way as in the beginning of the
proof of Theorem 4.16, this further gives 4. O

Theorem 4.24. Let (N C M, G, 0, 7) be an ergodic W*-dynamical extension system where

M is abelian. Then one can find an ordinal a and a G-invariant von Neumann subalgebra

N C Qs C M for every B < a satisfying the following properties:

17 For all B < ' < a we have the following inclusions of von Neumann algebras N =
Qo CQpCQp CM.

2’ For every successor ordinal B+ 1 < a we have UN(Q,/\[(l)(Q,g Xe G C M x,Q)) =

ON(Qp %o G C M x5 G)" = Qpy1 Xo G. Moreover, there is a net (gf)x C G such
that for every x,y € M © Qg1 we have

lim || Eq, (20 45 (y)) |2 = 0-
. . — 80T
3’ For every limit ordinal 8 < a we have Uy<gQ~ = Qs and also

— —SOT
Uy<p@Qy X0 G =Qp X, G.

4’ There is a net (ga)x C G such that for every x,y € M © Q, we have

lim [[Eq, (x4, (y))ll2 = 0.
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Proof. From Theorem 4.23 one can find a tower (Qg)s<qo of von Neumann subalgebras
N C Qs C M satisfying the properties 1.—4. listed in the conclusion. We will show these
imply our statement.

Fix S+ 1 < « any successor ordinal. Since M is abelian we have Q/\/'(Q/g cCM)'=M
and using Theorem 4.14 we get that Pg, n € M is a von Neumann subalgebra.
Thus Qgr1 = Pg,m and by Theorem 4.16 and Corollary 4.19 we conclude that
vN(ON M (Qp %y G € M %, G)) = ON(Qp %o G € M %, G)" = Qpy1 %o G.
This gives the first part of 2. The moreover part of 2’ follows from Lemma 3.5 and
Theorem 3.2. Finally, since M is abelian and w) is a unitary, in 4. we have that
| Eq. (@uxgo, )2 = lluxEq, (200, (1) 12 = |1 B, (204, (4))]|2 which gives 41 O

In particular, the previous result yields the following picture of the classical
Furstenberg-Zimmer tower as a sequence of iterated quasinormalizing algebras in the
context of p.m.p. actions of countable groups and separable o-algebras. This result was
originally obtained by J. Peterson and the third author in the unpublished work [15].

Corollary 4.25 ([15]). Let G ~ X be an pmp ergodic action on a standard probability
space X and let (G ~ Xg)g<a be the corresponding Furstenberg-Zimmer tower. Let
M = L*(X) x, G and Mg = L>(X3) X, G be the corresponding crossed product von
Neumann algebras. Then the following hold:

1. For all B < B’ < a we have the following inclusions L(G) = M, C Mg C Mg C
M, C M.

2. For every successor ordinal B + 1 < o we have that UN(Q,/\[(l)(Mﬁ C M) =
ON(Mg C M)" = Mgy1. Moreover, there is a sequence (g5), C G such that for
every x,y € L>(X) © L>*(Xs41) we have

lim |[Ere(x,)(zos(y))|l2 = 0.

n—oo

———SOT
3. For every limit ordinal 8 < o we have U,<gL>(Y,) = L*™(Y3) and also
————SOT
U'Y<5M’Y = Mﬁ
4. There is an infinite sequence (gn)n C G such that for every x,y € L= (X) © L>®(Yy)

we have

T (| g v, (20, ()2 = 0.

Remark 4.26. An uncountable version of Furstenberg-Zimmer structure theorem has
been recently obtained in [25, Theorem 6.5]. Theorem 4.24 recovers this tower through
the description of iterated quasinormalizing algebras. Thus, Corollary 4.25 extends to
the general case.
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We end with the following result, whose proof is very similar with the first result in
this section.

Theorem 4.27. Let (N C M, G, 0,7) be a W*-dynamical extension system. Then one can
find an ordinal o and a G-invariant von Neumann subalgebra N C Qg C M for every
B < « satisfying the following properties:

1. For all B < B’ < a we have the following inclusions of von Neumann algebras N =
Qo C Qs CQp CM.

2. For every successor ordinal f+ 1 < o we have Qp C Qp+1 € ON(Qs C M) and
oN(QN M (Qp %15 G C M %, G)) = Q11 Xo G. Moreover, there are nets (gf)A oy e
and (ux)x CU(Qg) so that for every x,y € M & Qp+1,

lim || Eq, (zuxa s (y))]l2 = 0.

3. For every limit ordinal f < o we have mSOT = Qg and WSOT =
Qﬁ X G.

4. Either Qo = QN (Qa € M)" or, there are nets (ga)x € G and (ux)y C U(Qq) such
that for every xz,y € M © Q. we have

lim | Eq., (205, (1)]l2 = 0.

Proof. We will define inductively the tower of von Neumann algebras (), for all ordinals
3, as follows. First let Q9 = N. Now, if § is a successor ordinal then using Theorem 4.16
we define Qp—1 € Qs C ON(Qs—1 € M)"” as the unique G-invariant von Neumann
algebra such that vN(QNM(Qp_1 3o G € M x, G)) = Qp % G. If 3 is a limit or-

: ————SOT . . . .
dinal then let Qg = Uy<pQ . In this case, since all ), are G-invariant one can

————S80T
easily see that so is 5. In particular, we also have that Uy<3Q~ %o G = Qs Xy G.

Now let a be the first ordinal where the chain (Qg)s stabilizes, i.e., Qq = Qat1. Al-
together, the previous relations show that the tower (Qg)s<q satisfies conditions 1.-3.
in the statement. As before, the moreover part of 2 follows from Lemma 3.5 and The-
orem 3.2. Finally, since « stabilizes the tower we have either Q, = QN (Q, C M)" or
vN(Q./\f(l)(Qa Xe G C M X5 G)) = Qo Xy G. However, using the relative WAHP from
Theorem 3.2 in the same way as in the beginning of the proof of Theorem 4.16, we have
4. in the statement. 0O

Finally using Theorem 4.20 we have the following.
Theorem 4.28. Let (N C M,G,0,7) be a W*-dynamical extension system, where G

is i.c.c. Then one can find an ordinal o and a G-invariant von Neumann subalgebra
N C Qs C M for every B < a satisfying the following properties:
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1. For all B < B’ < a we have the following inclusions of von Neumann algebras N =

Qo C Qs CQp CM.
2. For every successor ordinal f+1 < a we have QN (QsxoG C M x,G)" = Qp41%,G.
3. For every limit ordinal 8 < a we have U7<5QWSOT = Qp and Uy<3Q Xq GSOT =
Qﬁ N G.

4. Qa e G = QJ\/MX,,G(QOL N o G)//.

In connection to the results presented in this section we also want to mention in closing
the following bold open problem on intermediate von Neumann subalgebras inside group
measure space von Neumann algebras.

Open Problem. Let G be a countable i.c.c. group and let G ~* (X, ) be a free, ergodic,
p.m.p. action. Is it true that for every intermediate subalgebra L(G) C N C L*(X, ) X4,
G one can find a factor G ~? (Y,v) of G A% (X, u) such that N = L= (Y,v) x3 G.

As already mentioned in the prior sections, this problem has been answered positively
when « is a compact ergodic action (see [10,27]). Unfortunately, very little is known
beyond this case. For example, is this still true when the action « is a distal tower of
length at least two?

5. Approximation properties of the inclusion L(G) C M x, G

In this section we consider W*-dynamical systems in which the underlying von
Neumann algebra is tracial. The setting will consist of a discrete group G, acting by
trace-preserving automorphisms on a finite von Neumann algebra with a fixed normal,
faithful trace 7. Using Theorem 4.1, we will relate the analytical structure of the inclu-
sion L(G) C M %, G to the dynamical properties of the action a. Recall the following
definition, due to Popa [33].

Definition 5.1. The finite von Neumann algebra (N, ) is said to have property H (or
the Haagerup approximation property) relative to the von Neumann subalgebra B C N
if there is a net of normal, B-bimodular, completely positive maps {®y : N — N}yea
with the following properties:

(i) To®y <7, A €A,
(i) For each z € N, limy ||®x(2) — 2|, = 0.
(iii) Each induced operator Tp, on L?(N,7) has the property that for any £ > 0, there
is a projection p € (N, ep) with finite trace such that ||Te, (1 —p)|| < e.

The third condition above may be interpreted as “compactness relative to B” and, in
fact, implies that the Ty, are compact operators when the subalgebra B is C1. Standard
examples of inclusions with relative property H include those of the form B C B®P,
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where P is a finite von Neumann algebra with the Haagerup approximation property, and
crossed product inclusions B C B %, I', where T is a discrete group with the Haagerup
approximation property [33]. Toana [24] proved that if T is a discrete group acting by
measure-preserving transformations o.,, v € I', on a probability space (X, x), then the
crossed product L™(X, u) X, I' has property H relative to the subalgebra L(T") if and
only if the action ¢ is compact. We extend loana’s result to the case of a trace-preserving
action of a discrete group on a general finite von Neumann algebra. Our main result in
this section — which we combine with the results of the previous section for the reader’s
convenience — is stated below as Theorem 5.9. In order to prove this result we will need
several lemmas.

Lemma 5.2. Let o be a trace-preserving action of a discrete group G on a finite von
Neumann algebra M. Suppose that ¢ is a normal, completely positive (resp., completely
bounded) map on M such that ¢ o ag = g o ¢ for all g € G. Then there is a unique
normal, completely positive (resp., completely bounded) extension ® : M xoG — M x,G

of ¢ satisfying
O (ugzun) = ugp(x)up
forx e M, g,h € G. In particular, ® is an L(G)-bimodule map.

Proof. The operators m(z), x € M, and ug, g € G, that generate the crossed product are
easily checked to commute with M’ ® I and so M x, G is a von Neumann subalgebra
of M@B(¢?(G)). In both cases ¢ : M — M is completely bounded and so extends to
a normal map ® = ¢ ® I : M@B(*(G)) — M®B(¢?(G)). This is completely positive
(resp. completely bounded) when ¢ is completely positive (resp. completely bounded).

In B(/*(G)), let ep, i, denote the rank-one matrix unit that takes & to &y, for h, k € G.
A simple calculation then gives Agepr = egnk and epxAg = e g-1 for g, h, k € G,
where ) is the left regular representation of G on £2(G). Now

m(x) = Z ap-1(T) ®enn, €M,
SO

(x)ug = Z ap-1(z) Qe g-1, zEM, geg.

Thus

=Y a1 (9@) ®ep g = T(d(@)ug, wEM, geG.
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A similar calculation shows that
P(ugm(z)) = ugm(¢(z)), €M, geGaG,

so the normality of ® shows that this map is an L(G)-bimodular extension of ¢ to
M x4 G. Normality and bimodularity clearly imply uniqueness of this extension. 0O

The following lemma will be necessary to establish w*-continuity of certain maps ¢,
that will appear below. We will then prove a lemma that will allow us to pass from the
case of a separable predual to the general situation in Theorem 5.9. Below, the strong*
topology will be denoted by SOT*.

Lemma 5.3. Let (M, 1) be a finite von Neumann algebra and let N be a finite-dimensional
von Neumann algebra. Let T C B(L?(M)) be an SOT*-compact group of unitaries such
that Ad(v)(M) C M fory € T. Let {zs}sen be a uniformly bounded net converging to 0
in the w*-topology, and let T : M — N be a w*-continuous bounded map. Given € > 0,
there exists 09 so that

IT(v*zsv)|| <e,  ford>=do, ~€T.

Proof. Since N is finite-dimensional, it is a subalgebra of a matrix factor so we may
assume that N = M, for some integer k. By scaling, we may assume that ||zs|| < 1 for
all 6, and that ||T|| < 1. Now fix 8 > 0 so small that 3k%3 < .

For 1 < i,j < k, let 6; ;(z) be the (¢,7) entry of T'(z) for x € M. Each 0, ; is a w*-
continuous contractive linear functional on M, so there exist vectors &; j,7;; € L?(M)
so that [[&i 12, [|17i]l2 < 1 and
ForyeT and x € M,

0i5 (v zy) = (€785, 4)- (5.0.1)
By SOT*-compactness of I', the closure of

V& vmi; v el, 1<4,j <k}

is norm-compact in the unit ball of L?(M), so we may choose a finite 8-net {w1,...,w,}
of vectors for this set. Now choose dp so that

[{zsws,we)| < B, 1< s,t<r, 0= do, (5.0.2)

which is possible since w* — limg z5 = 0.
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Now fix v € T and a pair of integers (7, j). Then choose ws,w; so that

17€is —wsll < B, lvmig —will < B (5.0.3)

Applying (5.0.2) and (5.0.3) to the equation (5.0.1),

9i,j<’7*$67) = <356’Y§i,j7’777¢,j>
= (556(7&',]' - ws)7777i,j> + (%wsﬁm,j - wt> + <$6ws,wt>

leads to the estimate |6; ;(v*zsy)| < 38 for § > dy and independent of the choices of
v € T and the pair (4, 7). By summing the k% matrix entries, we obtain

IT(vasy)ll <3k°B<e, 6=, veT,
as required. O

Lemma 5.4. Let M be a finite von Neumann algebra with a faithful normal trace T and let
a discrete group G have a compact action a on M. For each finite subset FF C M, there
exists a unital norm-separable C*-subalgebra Bp C M with weak closure Mg satisfying
the following properties:

(1) F C Bp.

(2) If Fy C F, then Bp, C Bp, and Mg, C Mp,.
(3) Each Mp has a norm-separable predual.

(4) Each Mg is a-invariant.

Proof. These algebras will be constructed by induction on the cardinality of the finite
subsets, so we begin by constructing Br and Mg for a fixed but arbitrary one-point set
F. We will define inductively an increasing sequence A; C As C ... of separable unital
C*-algebras and an increasing sequence Hy C Ho C ... of separable closed subspaces of
L?(M) with the following properties:

(i) FCA;and Qe H;.
(ii) H,, is an invariant subspace for A,, n > 1.

(iii) For a € A, and g € G, a4(a) € A,H_lSOT

To begin the induction, let A; be any separable unital C*-algebra containing F' and
let Hi ={aQ:a € Al}lH‘2
countable norm dense set {a1,az,...} C A,.

. Now suppose that A, and H,, have been constructed. Fix a

Since the action is compact, we may choose a sequence {a;1, a;2, ...} C Orb(a;) which
is || - ||2-dense in Orb(a;) for i > 1. We now define

Aps1 = C*(An, {aiz}i5-1)
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and
7‘[n+1 = Span“"|2{a§ ac An+1, ¢ e Hn}~

Then (i) and (ii) are clearly satisfied and it remains to verify (iii).

Fix a € A, with |la]| < 1. Choose § to satisfy 0 < § < 1 — ||a|| and choose a; so that
lla — a;|] < 6. Then |ja;|] < 1. Fix g € G. Then |lag(a) — ag(a;)|| < § and there exists
a;j € Orb(a;) so that ||ag(a;) —aijll2 < 0. Thus [Jay(a)—ai;|2 < 28. Replacing 6 by §2~™
for m = 1,2,3,... successively, we obtain a sequence {b,,}5°_; from {Orb(a;) : i > 1}
so that lim,, o ||ag(a) — by |l2 = 0, and each by, is an a;; € A,41. Since {b,, }o0_ is
uniformly bounded, showing that this sequence converges strongly to oy(a) only requires
us to consider vectors in M€2. Accordingly let € M be arbitrary. Then

[(ag(a) = bn)2Qle = [[(ag(a) = bm) Jz* Q|2 = [[J2" T (ag(a) = b )2

< lz*|| g (@) — by |l2 — 0 as m — oco.

Thus oy(a) € mSOT, establishing (iii).

Now let Bp be the C*-algebra generated by (J,-; A,,, and let Mg denote its weak
closure. From (iii), MF is a-invariant. The Hilbert space Hp spanned by the H,’s is a
separable Mp-invariant subspace of L?(M), and the restriction of Mz to Hr is faithful
since Hp contains the separating vector 2. Thus Mp has a separable predual as required.

Now suppose that Br and Mp have been constructed to satisfy conditions (1)—(4)
for all subsets F' of cardinality at most n. Consider a fixed but arbitrary subset F
of cardinality n + 1, and list the subsets of F' of cardinality n as Si,...,S,4+1. The
construction of Br and Mp is accomplished exactly as above, starting the induction
by choosing A; to be the separable C*-algebra generated by U”Jrl

i—1 Bs;. This guarantees
that the nesting properties of condition (2) are satisfied. O

We will also need the following two lemmas. These were first established under the
assumption of a separable predual, so the proofs that we give will reduce the general
situations to the separable predual cases.

Lemma 5.5 ([, Theorem 6.10]). Let G be a discrete group, and « an ergodic, trace-
preserving action of G on a finite von Neumann algebra (M,7). Then any finite-
dimensional subspace K C L?*(M,7) which is invariant under the associated representa-
tion V of G on L?(M,T) is contained in M.

Proof. Replacing KC by I+ K*, we may assume without loss of generality that I is self-
adjoint. Let {&;, ¢ > 1} be a norm dense set of vectors in K ».. Associated to each &; is a
possibly unbounded self-adjoint operator L, affiliated to M, (see [42, Theorem B.4.1]),
and so the spectral projections of Lg, lie in M. Let A be the unital separable C*-algebra
generated by the spectral projections of each ; corresponding to the intervals (—oo,r)
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for all rationals r. Let N be the strong closure of A, represented faithfully on L?(N, 7).
Then & € L?(N, 1) for i > 1, so L?(N,7) contains K, and thus also K. Since every
L¢ for £ € Ks.a. is affiliated to N, this algebra contains all spectral projections of the
L¢’s. For a fixed g € G, uniqueness of the spectral resolution shows that the spectral
projections of Ly, (¢,) are all of the form ag4(p) where p ranges over the set of spectral
projections for L¢,. Thus oy maps A into N and so also maps N into N. This applies
equally to ay-1, and it follows that each a, restricts to an automorphism of N. By
Kaplansky density, L?(A, 7) is equal to L?(N, 7), and the latter space is thus separable.
We conclude that N is an a-invariant von Neumann algebra containing K and having
separable predual, so the result now follows from the separable predual case. 0O

Remark 5.6. Note that arguing initially as in the proof of [4, Theorem 6.10] it is easy to
see that Lemma 5.5 holds for the pair (M, p), where p is a faithful normal state on M
which is not assumed to be finite. In this case, I will be contained inside M*(2,,.

Lemma 5.7 ([5, Theorem 4.7]). Let G be a discrete group, and « an ergodic, trace-
preserving action of G on a finite von Neumann algebra (M, 7). If o is also compact, then
M is injective. Furthermore, there is an upwardly directed family of finite-dimensional
a-invariant subspaces of M whose union is dense in L*(M,T).

Proof. By Lemma 5.4, M is the union of an upwardly directed net {Mp} indexed by
the finite subsets F' of M, and each My is a-invariant and has a separable predual.
Applying the known separable predual case, each Mp is injective and L?(Mp,T) has
a dense subspace that is the upwardly directed union of finite-dimensional a-invariant
subspaces. Then M is injective, and finite sums of these finite-dimensional subspaces of
the L2(Mp, 7)’s give the required a-invariant finite-dimensional subspaces whose union
is dense in L*(M, 7). O

Let a be a trace-preserving action of a discrete group G on a finite von Neumann
algebra M, and define a group of unitaries {V, : g € G} C B(L?*(M)) by

V() = ag(x)Q, =€ M. (5.0.4)
Let T’ be the SOT*-closure of this group. Then I is a group of unitaries in B(L?(M)).

Lemma 5.8. Let M, G and T" be as defined above. Further assume that M has a separable
predual and that the action of G is compact. Then T’ is SOT*-compact.

Proof. By hypothesis, L?(M) is norm separable so fix a dense sequence {£; = m;Q}°; in
the unit ball of L?(M) with m; € M. The strong* topology on the unit ball of B(L?(M))
is metrizable by the metric

=Y (s =D&l +lI(s" = )€al)2™", 5,8 € B(L*(M)).
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Then T is a SOT*-closed subset of a separable metric space, so it suffices to show that
it is sequentially compact We will extract an SOT*-convergent subsequence from an
arbitrary sequence {Vj, :i > 1}.

Relabel this sequence as {uo1,uo2, uos,-- -}, and note that ug;(mi€2),ug;(mi1Q) €
Orb(mq)Q for j > 1. This orbit has || - ||2-compact closure, so there is a subsequence
{u11, u12, w13, ...} so that the sequences {u1;(m1€2)}52; and {uj;(m1Q)}32; are conver-
gent in || ||2-norm. Repeating this argument, we obtain successive subsequences {u;;}72,
for i > 1 so that the sequences {u;;(m;Q)}52, and {uj;(m;Q)}32, are || - ||2-convergent
for each ¢ > 1. It is then easy to see that the diagonal subsequence {u;; }$2; converges in
the strong® topology. Thus I' is SOT* sequentially compact, and so is compact. O

We now come to the main result of this section.

Theorem 5.9. Let G be a discrete group and a a trace-preserving, ergodic action of G on
a finite von Neumann algebra (M, 7). Then the following conditions are equivalent:

(i) The action « is compact (see Definition 2.1).

(i) QN (L(G) C M x4, G)" =M x4 G.
(iii) The von Neumann algebra generated by QN (L(G) € M x4 G) is M x4 G.
(iv) M %o G has property H relative to the subalgebra L(G).

Proof. Note that the first three conditions are equivalent by Theorem 4.1 and the dis-
cussion following it, and that condition (iv) implies condition (ii), by Proposition 3.4 in
[33]. Thus, the proof will be complete when we show that conditions (i)—(iii) imply (iv).
Our strategy will be to construct a net of normal, completely positive maps ¢ on M
which

o approximate the identity map on M pointwise in | - |2,
o extend to compact operators on L?(M), and
e commute with the automorphisms ay, g € G.

We assume that conditions (i)—(iii) hold, and we then establish (iv).

By Lemma 5.7, M is hyperfinite, so can be written as M = ([, MA)w , where the
My’s form an upwardly directed net of finite-dimensional x-subalgebras of M. Denote by
E)\ the trace-preserving conditional expectation of M onto M. For each g € G, we have

a completely positive map ¢4 = ag0 Ey o o' on M which, by uniqueness, is equal

to the trace-preserving conditional expectationgof M onto ay(M)y). We note that these
maps can be viewed as contractions on L?(M); this follows easily from the inequality
T(x)*T(z) < T'(z*x) for any completely positive contraction T on M.

In order to make use of the earlier lemmas, we impose a temporary requirement that
M should have a separable predual. The general case will then be deduced from this

special situation.
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Let T' be the SOT*-compact group of Lemma 5.8, which is the SOT*-closure of the
set of operators {V; : g € G} defined in (5.0.4). For v € T', we define

Pry (@) =vEx(Y )y, v € M,

noting that this map coincides with ¢ 4 when v = V. Since E} is normal and completely
positive, these two properties pass to ¢, . For each x € M and vectors {,n € L?(M),
the scalar valued map v — (¢ ()&, 1) is easily seen to be SOT*-continuous on I', using
the normality of F. This enables us to define a map ¢, on M by

(oa(z)€,m) = / (drq(@)€m) dp(v), €M, &neL*(M), (5.0.5)

r

where p is left Haar measure on the compact group I'. Then ¢ maps M into itself since,
for t € M’, we have

(éx (@)t m) = / (63~ (2)E, / o ()6, ) dia()
N

T

= <¢>\(I)§7t*7]> = <t¢)\(£€)§,77>7

for any such € M, &,n € L?(M), showing that ¢,(z) € M"” = M. Complete positivity
of ¢, follows from complete positivity of the maps ¢, . Each ¢, is trace-preserving
and, further, ¢, is a ||-||,-norm contraction, so has a bounded extension Ty, : L?(M) —
L?(M). To see that ¢, is w*-continuous, it suffices to consider a uniformly bounded
net {zs}sca converging to 0 in the w*-topology, by the Krein-Smulian theorem. We
apply Lemma 5.3 to the finite-rank map F) to obtain an arbitrarily small bound on
the integrand in (5.0.5), showing that lims{¢y(zs)€,n) = 0 for all £,n € L*(M). Since
the net {¢x(xs)}sea is uniformly bounded, we conclude that ¢, is a normal, completely
positive map on M. Moreover, translation invariance of p implies that ¢y oy = ag0 @y,
for any g € G.

We now show that lim) ||¢x(x) — x|, = 0 for any € M. By the density result
of Lemma 5.7, it suffices to consider an element x that lies in a finite-dimensional a-
invariant subspace X of M. By scaling, we may assume that ||z]|2 = 1, and we now fix
g > 0. Choose \g so that X C_/5 My whenever A > )¢, meaning that

sup  disty, (y, Ma) <e/2, A= Xo.
yeX, |lyll,<1

Since X is a-invariant, it follows that

E\(
sup flay (@) = Ba(og @), <

whenever A\ > A\g. Then, for all such A and any g € G, we have
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|z = ¢rg(@)]l, = |z — ago Exoa, (z)||, < e

and the SOT*-density of {V; : ¢ € G} in I implies that ||z — ¢ ,(2)[|2 < € for A = Ao
and v € I'. Averaging over I gives ||z — ¢x(z)||, < € for A > Ao, and this establishes that
limy ||¢x(x) — ||, = 0, as required.

Next, we show that the associated operator Ty, on L?(M) is compact. Let {z; )
be a sequence in L?(M) converging weakly to zero. By || - ||z-density of M in L?(M), we
may assume that z; € M for j > 1. Then, for any A, lim; o ||Ex(2;)||2 = 0. Similarly,
lim; oo | Eo, (a1,)(25)]]2 = 0 for any g € G. By the dominated convergence theorem,

1Ts, (z5)ll2 = lloa(z))ll2 = /(bk,'y z;)dp(y /H@b)\'y Zj szu( )—0

2

as j — 00, and so each Ty, is compact. Thus, we have produced a net {¢,} of completely
positive maps on M which commute with oy, g € G, approximate the identity map on
M in the || - ||2, and extend to compact operators on L?(M).

By Lemma 5.2, these extend to a net {®,} of completely positive L(G)-bimodule
maps on M x4 G, given by ®x(z) = 3_ o dr(2g)ug, for z =3 ;xus € M 3, G.

To complete the proof of the separable predual case, we show that this net satisfies
the properties of Definition 5.1. The first of these is clear because the maps that we have
constructed are all trace-preserving. Since ¢y (x) — x in [-||, for each x € M, we also
have that ®y(muy) = ¢r(m)ug — mugy in ||-||, for any m € M and g € G. A standard
approximation argument then shows that [[®x(z) — |, — 0 for any z = >  w5u, €
M %, G. This proves that the ®y’s satisfy (ii).

We now show that (iii) is satisfied. Note first that any finite-dimensional G-invariant
subspace of MQ C L?(M) may be associated to a finitely generated L(G)-module in
L*(M %, G), as follows. Let X be such a subspace, and use Gram-Schmidt to find
an orthonormal basis (mq,...,my) of X, with m; € M, 1 < i < n. Then the opera-
tors p; = miergym; € <M Mg G, eL(G)> are mutually orthogonal projections, so that
S miereym; € (M x4 G, er ) is a projection, and its range is the right L(G)-
module Hx in L?(M x, G) generated by the vectors m;2, 1 < i < n. Denote this
projection by py ., and denote the orthogonal projection of L?(M) onto X by px. Let
U: L*(M x4 G) = L*(M) ® (?(G) be the unitary given by U(yu,Q) = yQ ® §,, for
y € M and g € G. Then, for any such y and g, we have

n
(px @ 1)(yQ ® dy) ZrmymZQQ@é _ZszL o) (my)Q® o,
i=1 i=1

UZ miEr ey (m;y)ugQ = UZmleL aym; (Yugf2).

=1

Thus, px ® 1 = Upy, U*. Note also that Ty, ® 1 = UTe, U* for each A.
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To show that the Tg,’s satisfy condition (iii) of Definition 5.1, fix A, set ¢ > 0
and choose a finite-dimensional G-invariant subspace X of M€ with the property
that ||T4, (1 —px)| < e, possible by compactness of Tj;, and Lemma 5.7. As above,
associate to X an L(G)-module Hx = Y., m;L(G), and a finite-trace projection
PHx = iy mierc)ym; € <M Xqo G, eL(G)>. From our characterization of T, , we then
have

[Te, (1 = pr)ll = 1UTe, ,UTU(1 = p3; U || = (T, © 1)1 @1 —px @ 1)
=T, (1 —px)| <e.

This proves that the net (T, ) satisfies condition (iii) of Definition 5.1, completing the
proof of the separable predual case.

We now consider the general case where there is no assumption of a separable predual.
We form a net A = {(F,e) : F C M is finite and ¢ > 0}, and we order this by

(Flael) g (FQ,{:‘Q) if and OIlly if F1 g FQ and 135 < €1.

For A = (F,e) € A, define ¢) : M — M as follows. By Lemma 5.4, there exists
an a-invariant von Neumann subalgebra Mp satisfying F¥ C Mp C M and Mg has a
separable predual. Here we use ey, (), for the Jones projection arising from the inclusion
L(G) € MF x4 G, to distinguish it from ey gy for the inclusion L(G) € M x, G. From
our initial case, L(G) C MFp %, G has the Haagerup approximation property, so there
exists a normal completely positive L(G)-bimodule map vy : Mg Xo G — Mp %, G with
the following properties:

1. Toyy =7.

2. |¥a(z) — z||]2 < € for z € F.

3. For § > 0, there exists a projection p € (Mp x4 G, er(q),r) such that Trp(p) < oo
and || Ty, (1 —p)|| < 0.

Then set ¢\ = ¥ o Erp where Ep : M x, G — Mg %, G is the conditional expectation.
Then 1. and 2. hold for ¢. Moreover, Ty, = Ty, 0r, = Ty, © €Mpx.G, Where e, x,.a
is the Jones projection.

Given § > 0, choose p € (Mp %o G,ep),r) for Ty, as above, and consider the
inclusion

L(G) C Mg %4 G C M :=span(Mp xq G)ep@yMr o G C (M x4 Gyefa))-

The canonical semifinite trace Tr on (M x, G,erq)) restricts to a semifinite trace
on M such that the hypotheses of [42, Theorem 4.3.15] are satisfied. It follows that
the association wep(q),ry — rer)y, v,y € Mp x4 G extends to a trace-preserving
isomorphism 7 from (Mr x4 G, ep () r) to its image inside (M x, G, er(@))-
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Then 7(p) € (M x4 G,erq)) is a projection such that Tr(7(p)) < co and commutes
with eprpx. 6y 80 erpx.aT(D) = erpx.aT(D)erpx. ¢ = p- Consequently,

[Ts5 (L= 7)) = Tprenrpnac(l = @) = [Ty, (1 = p)ll < 0.

Thus condition 3. also holds, completing the proof. O
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