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Abstract—Advancements in flexible and printable sensor tech-
nologies to overcome the limitations of conventional rigid counter-
parts offer an excellent opportunity to design various healthcare
applications for humans, and their potential flexibility can be
used in real-time health monitoring and personalized physical
conditions with minimal or no inconvenience. However, manag-
ing a large volume of obtained sensor datasets and ensuring
accurate predictions can take time and effort. While statistical
analysis and the Pearson correlation coefficient can reduce data
volume, whether this would lead to losing important information
and affect downstream application performance is still being
determined. In this paper, we use posture classification as an
exemplar of timely services in digital healthcare, especially for
bedsores or decubitus ulcers. Our sensors, placed under hospital
beds, have a thickness of just 0.4mm and collect pressure data
from 28 sensors (7 by 4) at an 8 Hz cycle, categorizing postures
into 4 types from 5 patients. We then collected sensor data to
explore the possibility of using a small number of pressure sensors
for patient posture classification. Next, we apply a statistical
analysis to the datasets obtained to select the featured sensor
data cells and evaluate the performance of posture classification
models on various groups of sensors. Our evaluation involves the
analysis of reduced datasets through statistical methods and the
Pearson correlation coefficient. The classification performance
using datasets comprising 5 featured and 28 sensors are 0.93 and
0.99, respectively. These results suggest comparable performance
and the viability of useful classifiers for both cases. Consequently,
comparable posture classification performance can be achieved
using only 17.9% of the entire dataset.

Index Terms—Flexible and Printable Sensor, Posture Monitor-
ing, IoT Monitoring, Pressure Sensor, Classification

I. INTRODUCTION

Sensors translate the physical world into data and serve
a foundational role in the era of digital transformation [2].
With the advancements of sensors, which are highly integrated
and miniaturized, modern sensors serve adequately as the
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components of smart electronics/machines. Still, their small
and rigid form factors restrict their usage in many applications,
such as healthcare domains. In digital healthcare, effectively
exploiting actionable knowledge obtained from a steady input
stream of sensor data can offer helpful information for timely
services. For example, in the case of patients with dementia or
critically ill patients who have difficulty moving on their own,
there is a high possibility of severe health disease, bedsores,
or decubitus ulcers caused by remaining in a long time in the
same posture. Pressure ulcers or bedsores due to a lack of
caregivers or less changing posture could result in a partial
or complete blood flow obstruction in soft tissue, leading to
damage in the skin or underlying tissue [3]. Preventing these
health diseases requires a periodic change in the patient’s
posture by the nursing staff or others. The predictive alarm
using adequately captured patient posture data can enable
more efficient proactive steps. However, the growing demand
for recording pressure signals to improve the effectiveness of
preventing serious health diseases such as bedsores or safe
driving is contributing large amounts of sensor datasets, which
is cost prohibitive.

This study demonstrates the feasibility of using a few
flexible pressure sensors or even small extracted features for
patient posture monitoring, suggesting research directions for
designing a better, cost-effective application. Flexible sensors
have received extensive research interest due to their potential
applications in personalized healthcare and human motion
detection [4]. Thus, flexible sensors are gradually becoming
integral to wearable devices or equipment for understanding
various aspects of daily human life. Unlike rigid sensors,
flexible sensors are attached to flexible substrates [5] to bend
and stretch easily, which have the advantages of softness,
miniaturization, being lightweight, and biocompatibility [5].
These meaningful characteristics lead to a significant combi-
nation of human activity and treatment strategies by attaching
medical devices. Therefore, with data analytics in place, flex-
ible pressure sensors are ideal choices for measuring postural
information, as they cause minimal or no inconvenience to the
patient.

In this paper, we first collected experimental data to explore
the possibility of using a small number of pressure sensors
for patient posture classification. Experimental data contains
measurement errors and class imbalance issues. Consequently,
preprocessing and resampling procedures are conducted to
mitigate these errors and improve the overall data quality.
The insight of this paper is to evaluate the impact of using a
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significantly reduced amount of data on a posture classification
model. In our experiment, we reduce from 28 sensor data to
the selected five sensors by statistical analysis and Pearson
correlation coefficient to obtain an 82.1% data reduction.
We then apply four different supervised machine-learning
techniques to detect the postures of each patient and evaluate
their prediction performance. Our experimental results show
that the optimized RF (random forest) classifier outperforms
the other classifiers with an average classification accuracy
of 0.93 and 0.91 in the case of data reduction by statistical
and Pearson correlation and the statistically selected sensors,
respectively.

II. RELATED WORK

Since flexible sensors have good deformability, enabling
the elimination of expensive and bulky detection instruments,
the potential flexibility ability can be used in real-time health
monitoring. From a data analytics view, the massive volumes
of datasets generated by flexible sensors and applications
of significant importance can extract actionable knowledge
discoveries to reach better and faster decisions for timely
services.

Matar et al. [3] estimated the posture using body pres-
sure distribution images of 4 postures (supine, left, right,
and prone). In [6], they used two pressure mats made by
XSENSOR technology corporation with a resolution of 42 by
44. They showed that the random forest (RF) outperformed
others like support vector machine (SVM) and multilayer
perceptron (MLP) [7]. The automatic classification of position
and the duration of the position for the lying patient on the
bed is essential. Thus, several studies proposed a monitoring
system for recognizing and correcting the importance of sitting
posture using these pressure sensors [8], [9]. Lee et al. [10]
presented a method for identifying sleep postures using an
intelligent fabric pad with 14 pressure sensors placed on top of
a mattress that can detect the pressure distribution of a person’s
body during sleep. However, the accuracy of the proposed
fabric pad depends on the pressure distribution patterns and
the person’s body shape and height. While the robustness of
the algorithm proposed in this paper could also be affected
by similar factors, the approach proposed in [10] could suffer
more due to a relatively simpler algorithm based on the total
ratio of the pressure measurements in each row.

Davoodnia et al. [11] conducted posture estimation and clas-
sification during sleep using the Vista Medical FSA SoftFlex
2048 sensors. This sensor comprises 2,048 sensors spread
over a 32 by 64 grid, utilizing pressure map data. They
employed a convolutional neural network (CNN) architecture
to distinguish between users and their sleeping postures. They
successfully classified a total of 17 sleeping postures. Rivera
et al. [12] used a 32 by 64 pressure sensor grid to collect
measurements of the main postures of patients on a bed. For
posture estimation, they extracted features using the gray level
co-occurrence matrix (GLCM) for texture analysis and classi-
fied four postures in bed using the SVM algorithm. Another
related work [11], [12] used 32x64 pressure sensors for posture
estimation and classification. However, using a vast number
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Fig. 1. (a) Specification of an individual cell comprising two pressure sensors.
(b) The layout of pressure sensors deployed on the test bed.

of sensors (2,048) can lead to high computational complexity,
potentially slowing the processing speed and causing latency.

In the application research utilizing flexible pressure sen-
sors, Bourahmoune et al. [13] proposed an IoT cushion called
LifeChair. It utilizes nine e-textile pressure sensors covering
users’ shoulder and lumbar regions. For posture estimation,
machine learning classifiers such as RF, Decision Trees-
Classification and Regression Trees (DT-CART), and Naive
Bayes (NB) were applied and compared, detecting 15 sitting
postures and six seated stretching activities.

III. MATERIALS AND METHODS

A. Data Acquisition

Fig. 1a shows the specification of sensory cells (from A
to N) containing two flexible pressure sensors in each cell:
33.5 cm in length, 5.5 cm in width, 0.4 mm in thickness, and
10 µs of response time. This thin thickness causes minimal
inconvenience and discomfort to patients or users. We use a
prototype stretchable pressure sensor manufactured by MiDAS
H&T [14], a simple structure file type sensor using stretchable
electrode wire. The details of the sensor specifications other
than thickness are as follows. The resistance and sensing
weight ranges are ∞− 500 Ω and 5 gf−2 Kgf, respectively.
The durability metric for stroke is over 40 times for 8 hours
with 4 kg and 16 hours idle. The durability metric for heavy-
weight is over 500,000 strokes (force of 100 gf). We attach 14
cells (7 rows and 4 columns as depicted in Fig. 1b) to a mat
and collect data in 00-FF hexadecimal (or 0-255 in decimal)
format at 8 Hz (or 8 cycles/second). Fig. 2 shows the data
format for the collected data for a 1-second duration from
Cell A, which contains 40 data points. Columns marked as
Sen 1 and Sen 2 in Fig. 2 are the average values collected at
8 Hz, and we use them as representative values of Cell A. We
follow the same method to extract data for the remaining cells
(from Cells B to N).

B. Data Preprocessing

We collect patient posture data and categorize it into one
of four predefined postures (supine, left lateral, right lateral,
and head elevation) at 2-hour intervals to develop a real-time
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Fig. 2. The data format collected at each pressure sensor data for a 1 second measuring period with 8 Hz sampling frequency.
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Fig. 3. Overview of the proposed posture classification system.

posture classifier. The patient’s demographic information is as
follows. The age ranges between 41 and 69, with two females
and three males. Their weights and BMI ranges are 40.1–
78.6 kilograms and 17.3–33.2, respectively. The patients were
diagnosed with various symptoms, including Staphylococcus
aureus bacteremia Abscess, psoas, etc., and the patient’s data
were collected while they were hospitalized during Novem-
ber/December 2020. The human observers, caregivers in our
case, labeled the postures. For instance, the caregivers record
patients’ postures every 2 hours, and then the final posture in-
formation labeled uses this information. We also impute sensor
data since measurement error is inevitable due to potential
malfunctioning in communication/network, hardware/sensor,
or power/battery [15]. Imputation is, in general, filling missing
values with estimated values. Our imputation method is per-
formed every three seconds and uses sensor data values around
the missing value. We use the average value if the middle cell
is missing; otherwise, we use the closest sensor value during
the imputation process.

Even though we collect pressure sensor data 8 times per
second from our in-bed sensors, the observed patient’s pos-
ture information is rare and not synchronized due to the 2-
hour intervals of posture. Therefore, to construct classification
models using the observed data collected at two-hour intervals,
we assume that there is no change in posture within 10 minutes
from the time of posture recording. Through this process, we
construct 64,800 posture data and use them as input sensor
streams to our posture learning and classification system, as
shown in Fig. 3. Fig. 4 shows the distribution of pressure
sensor values for different postures. The data presents the
cumulative pressure values recorded by each sensor, depicting
the pressure applied to each sensor throughout the experimen-
tal periods. It is evident that the data exhibits concentration
on specific sensors corresponding to their locations.

Fig. 4. Distribution of pressure sensor values by posture.

C. Data Resampling Processing

Since our patient’s posture classification has four catego-
rized classes, we can use supervised machine learning-based
predictive models. One critical precondition for effectively
training a supervised machine learning model is obtaining
large-scale datasets with proper labels [16]. In other words, the
learning datasets need a balanced ratio between classification
classes. Therefore, we synthetically resample to alleviate the
class imbalance issue as demonstrated in Table I. The number
of data points for Supine (majority class) is approximately
33,200, about 8 times more than that of Head Elevation
(minority class). As depicted in Fig. 5a, the scatterplot using
the original data (i.e., before handling class imbalance issues)
shows a much smaller number of red dots (Head Elevation), as
compared with the green dots (Supine). This data imbalance
can affect classification and potentially lead to overfitting
the model to Supine, decreasing the accuracy for the Head
Elevation class. This imbalanced condition leads to biased
outcomes by the majority class. In other words, most machine
learning-based algorithms can be overwhelmed by the majority
of data unless they adequately address the imbalance problem.

TABLE I
NUMBER OF DATA POINTS PER CATEGORIZED POSTURE CLASS.

Class Supine Left Lateral Rignt Lateral Head Elevation
Count 33,200 14,000 13,200 4,400

Data resampling techniques, including undersampling and
oversampling, offer solutions to mitigate data imbalances.
Undersampling can reduce the dataset size and shorten the
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training time. However, it risks losing important information
by removing important samples from the majority class. On
the other hand, oversampling techniques can solve the data
imbalance problem without information loss by increasing the
number of samples in the minority class while maintaining the
samples of the majority class. However, this method has the
disadvantage of increasing the computational cost [17]. This
study endeavors to employ oversampling and undersampling
techniques to improve the data balance, compare and analyze
the classification performance with the original data, and select
the most suitable algorithm for the given data.

Undersampling is a technique that balances imbalanced
datasets by randomly eliminating samples from the majority
class using the Random Under-Sampling (RUS) algorithm. It
achieves this by randomly removing samples from the majority
class until the number of samples matches that of the minority
class. The dataset is first divided into majority and minority
classes, and then the number or proportion of samples to be
removed from the majority class is determined based on the
number of samples in the minority class [18]. Finally, samples
are randomly selected from the majority class and removed
until the two classes have equal samples.

Furthermore, we utilize the Synthetic Minority Oversam-
pling Technique (SMOTE) method [19], which enhances the
advantages and mitigates the drawbacks of traditional over-
sampling techniques, to address the class imbalance issue in
our posture classification training data. The following equation
describes SMOTE:

xnew = xi + r · (xzi − xi), (1)

where xnew is a generated sample, xi is an arbitrary sample
point, and xzi is a randomly selected sample based on xi using
the nearest neighbor method. SMOTE works by randomly se-
lecting a data point from the minority class and then using the
k-nearest neighbors algorithm to find the k-nearest neighbors
of that data point. All of the k nearest neighbors will be from
the minority class. SMOTE then generates a new data point
along the line connecting the selected data point and its nearest
neighbor. This process is repeated to generate new data points
and increase the number of data points in the minority class.

Fig 5 illustrates the outcomes of the initial dataset following
resampling using SMOTE. In particular, as depicted in Fig 5b,
the outcome demonstrates the generation of new data points
by connecting neighboring data points, aligning with the
previously described SMOTE methodology.

D. Statistical-based Feature Selection

As shown in Table II, datasets through oversampling (using
SMOTE) achieved the highest accuracy. The data sampled
using SMOTE was increased by about 2 times compared to the
original dataset (64,800), oversampling it to 132,800. Since 28
feature sensors are used for classification, the computational
cost also increases. Therefore, to mitigate this overhead, the
top five features were selected from the SMOTE-based over-
sampled data, as shown in Fig. 6, to classify each posture class
and compare it to the case where all features were used.

(a) (b)
Fig. 5. Comparison of data distribution (a) before and (b) after applying
SMOTE oversampling, the latter of which visually increased the red dots
(Head Elevation, which is only 1/8 of the green dots, which represent Supine)
while preserving the patterns of the original data distribution.

Five sensors were selected based on the ascending order
of their statistical analysis results presented in Fig. 7. These
results show the characteristics of pressure sensor data, such as
mean, standard deviation, variance and 75% value. The 75%
value refers to the third quartile when the data is divided into
quartiles, representing the upper 25% of the data distribution.
Some pressure sensors exhibit temporarily high values when
pressure is applied. This characteristic can be utilized to
classify various postures. Therefore, comparing and analyzing
the third quartiles for each posture can help identify how
the sensors corresponding to the upper values differ for each
posture. These characteristics delineate the specific values
collected based on the positioning of pressure sensors.

However, due to the proximity and shared characteristics
among sensors with the same alphabet in Fig. 1, only one
sensor per alphabet group was selected for the top five. The
selection process utilizes the Pearson correlation coefficient,
calculated as:

r =

∑
(xi − x̄)(yi − ȳ)√∑
(xi − x̄)2

∑
(yi − ȳ)2

, (2)

where r is the Pearson correlation coefficient, xi, yi are the
individual observations of the two variables, respectively. x̄, ȳ
are the mean values of the two variables, respectively. This
coefficient, ranging from -1 to +1, quantifies the linear correla-
tion between two continuous variables (x and y). Values closer
to +1 indicate a positive linear relationship, meaning when
one variable increases, the other also increases proportionally.
Conversely, values closer to -1 suggest a negative linear
relationship, where an increase in one variable leads to a
proportional decrease in the other [20].

Therefore, in this study, a Pearson correlation coefficient
closer to +1 indicated similar characteristics between the two
sensors. Consequently, the sensor with a higher statistical
analysis value was selected, while the one with a lower
value was excluded. Finally, the next highest sensor from the
remaining sorted sensor was selected, resulting in a final set
of five sensors used for classification.

While a reasonable observer could identify the optimal sen-
sor location without statistical methods like the one proposed
in this paper, stretchable sensors’ characteristics might alter or
decay over time, necessitating continuous human involvement,
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Fig. 6. Our proposed statistic-based feature selection architecture.

such as changing sensor positions, for an optimal posture
classification. Given the characteristics of stretchable sensors
and the potential expansion of diverse patient groups, the
classification algorithm can be more adaptable and robust with
the extracted statistical information in conjunction with the
deployed sensors. Therefore, the selected five sensors would
work best with the current patient’s data (such as weight).
However, the proposed approach can be seamlessly applied to
future patients by combining uniformly placed sensor arrays
with statistical analysis for adaptability.

E. Design of the Classification Model

After the preprocessing and selecting featured sensor cells
through statistical analysis and Pearson correlation, which
also involves balancing the class distribution of given data
by resampling processing, normalization, and missing value
analysis, selecting an appropriate classification model is es-
sential since determining a general yet superior algorithm is
not feasible. Therefore, we evaluate four representative classi-
fication methods, DT (decision tree), RF (random forest), AB
(adaptive boosting), and MLP (multi-layer perceptron), which
have demonstrated their superior performances in various real-
world applications [21].

DT is a popular non-parametric supervised learning method
that operates by repeatedly dividing a feature space of a given
dataset by using the Gini index and Entropy (E) until the
specific terminal condition is satisfied.

Gini = 1−
k∑

i=1

p2i , E = −
k∑

i=1

pi log2(pi), (3)

E = −
k∑

i=1

pi log2(pi), (4)

where pi indicates the proportion of the number of elements
in i-th class to the number of elements in the given data.

RF is an ensemble model correlated with DTs, whose
subtree is learned using different bootstrap samples from the
training data. Then, by aggregating the results of the subtrees
using averaging, plurality voting, or weighted voting, RF
solves classification or regression problems using:

H(x) = argmax
i

T∑
t=1

I(ht(x) = i), (5)

where ht(x) indicates the t-th output of base classifier.
AdaBoost is another improved version of a DT-based algo-

rithm with relatively weak classifiers. Its underlying assump-
tion is that grouping multiple classifiers can be robust even
if each classifier performs poorly. However, unlike RF, which
trains its subtrees in parallel, AdaBoost progressively trains its
base classifiers using copies of the original dataset for training,
which have different weights for incorrectly classified samples.
After that, the classification results are aggregated.

Lastly, MLP has a connected set of ANN consisting of an
input layer, one or more hidden layers, and an output layer. The
learning process involves adjusting the weights to improve the
performance of the result by minimizing the observed errors
using backpropagation and gradient descent methods [22]. It
works well even with insufficient knowledge of the target
system, which has nonlinear and complicated relationships,
does not impose any restrictions on the input variables, and is
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Fig. 7. Statistical characteristics of the collected pressure sensor data measured in (a) mean, (b) standard deviation, (c) variance, and (d) 75% value.

robust to noise. On the other hand, it tends to overfit, and the
derived model is not easily understandable.

IV. EVALUATIONS

A. Datasets

In our evaluation, we define three data groups derived from
the pressure sensor datasets obtained from patients.

• Group 1: The datasets using all 28 sensors (Fig. 1).
• Group 2: The five sensors (F1, H1, H2, I1, L1) were

selected through statistical analysis illustrated in Fig. 7.
• Group 3: The five sensors (F1, H1, I1, N1, L1) were

selected based on statistical analysis and Pearson corre-
lation coefficient.

B. Performance Metrics

The following metrics are measured, which are primary
indicators of how well the proposed scheme performs in
classification performance.

• We measure the prediction performance using Accuracy,
Precision, Recall, and F1 score.

– Accuracy = TP+TN
TP+FP+FN+TN .

– Precision = TP
TP+FP .

– Recall = TP
TP+FN .

– F1-Score = 2×Precision×Recall
Precision+Recall .

TP, TN, FP, and FN indicate true positive, true negative,
false positive, and false negative, respectively.
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TABLE II
COMPARISON OF CLASSIFICATION PERFORMANCE FOR GROUP 1.

Data Original Datasets Undersampling Datasets Oversampling Datasets
Model DT RF MLP AB DT RF MLP AB DT RF MLP AB

accuracy 0.59 0.99 0.93 0.56 0.56 0.98 0.91 0.54 0.56 0.99 0.94 0.55
recall 0.59 0.99 0.93 0.55 0.56 0.98 0.91 0.54 0.56 0.99 0.94 0.55

precision 0.59 0.99 0.93 0.53 0.56 0.98 0.91 0.79 0.60 0.99 0.95 0.55
F1-score 0.53 0.99 0.93 0.51 0.53 0.98 0.91 0.54 0.55 0.99 0.95 0.55

TABLE III
COMPARISON OF CLASSIFICATION PERFORMANCE FOR GROUP 2.

Data Original Datasets Undersampling Datasets Oversampling Datasets
Model DT RF MLP AB DT RF MLP AB DT RF MLP AB

accuracy 0.56 0.91 0.63 0.50 0.49 0.83 0.54 0.41 0.48 0.91 0.61 0.39
recall 0.56 0.91 0.63 0.50 0.49 0.83 0.54 0.41 0.48 0.91 0.61 0.39

precision 0.58 0.91 0.63 0.46 0.49 0.84 0.53 0.41 0.48 0.92 0.62 0.38
F1-score 0.50 0.91 0.61 0.46 0.49 0.83 0.53 0.41 0.46 0.91 0.60 0.38

TABLE IV
COMPARISON OF CLASSIFICATION PERFORMANCE FOR GROUP 3.

Data Original Datasets Undersampling Datasets Oversampling Datasets
Model DT RF MLP AB DT RF MLP AB DT RF MLP AB

accuracy 0.58 0.91 0.62 0.50 0.49 0.86 0.57 0.43 0.50 0.93 0.62 0.43
recall 0.58 0.91 0.62 0.50 0.49 0.86 0.57 0.43 0.50 0.93 0.62 0.43

precision 0.62 0.91 0.62 0.45 0.49 0.86 0.57 0.42 0.50 0.93 0.62 0.43
F1-score 0.50 0.91 0.59 0.45 0.48 0.86 0.57 0.42 0.48 0.93 0.61 0.42

C. Results

As shown in Table I (Supine is 33,200 compared to Head
Elevation of around 4,400), we observed a class imbalance
problem in the dataset. To address this issue, we applied the
undersampling technique using RUS and the oversampling
technique using the SMOTE. We evaluated the classification
performance using various machine learning libraries to com-
pare and analyze the performance of the original data and the
resampled data. Table II, III, and IV show the experimental
results for four classification algorithms on the entire dataset
(Group 1), the dataset based on statistical analysis (Group
2), and the dataset based on statistical analysis and Pearson
correlation coefficient (Group 3). Experiments were conducted
on three datasets within each group: original, undersampled,
and oversampled.

The classification performance of pressure sensor datasets
was assessed using the machine learning library available
in scikit-learn [21]. Specifically, we train and evaluate four
machine learning algorithms: DT, RF, AB, and MLP. The
primary hyperparameters for these classification methods are
as follows: DT uses the Gini index to tree split, AB uses
n estimators=50, MLP uses RELU and Adam for activation
and weight optimization. We adopted an MLP model with
a single hidden layer of a range of 8−30 neurons, and RF
employs parameters of max features=3 and n estimators=70.
We allocate 70% of the data for training and the remaining
30% for testing.

The results presented in Table II, III, and IV demonstrate
that the RF model outperforms other models in classification.
While different application domains suit different algorithms,
and there could be sensitivity even with the same application
domain for different populations of patients, the RF model,
in general, is superior in classification as it is less prone
to overfitting (than such as a decision tree) and robust (and
more with hyper-parameter tuning). The undersampled dataset
shows the lowest performance among the three datasets, losing
important information. On the other hand, the oversampled

dataset not only solves the data imbalance problem without
losing important information but also achieves better perfor-
mance. However, as mentioned in Section III-B, this method
has the disadvantage of increased computational cost. We
selected the top 5 (out of 28 sensors) to improve this and
evaluated the classification performance. Table III, and IV
show that the top 5 sensors were selected differently, as in
Section III-D, and the data selection method of Group 3 shows
better performance than Group 2. When comparing Table II
and IV, the performance is about 0.6 lower than when using
all 28 sensors. However, it can still maintain a high prediction
performance of about 0.93 using 5 featured sensors, which
means classifying human posture using only 17.9% datasets.

V. CONCLUSION AND FUTURE WORK

This paper proposed a posture monitoring system for bedrid-
den patients, especially critically ill, to prevent bedsores using
a flexible printing pressure sensor. We used a pressure sensor
manufactured using a flexible printing process technique to
measure the pressure loaded on the body. We collected pres-
sure data at an 8 Hz cycle from a pressure mat composed of
28 (7 rows and 4 columns) pressure sensors and categorized
postures into four types: supine, left/right lateral postures, and
upper body raised posture (or head elevation). To understand
the influence of posture classification when the number and
posture of the sensors deployed in the test bed get reduced,
we evaluated three data groups: entire sensors (Group 1), the
statistically selected sensor groups (Group 2), and the five
featured sensors by statistical analysis and Pearson correlation
coefficient (Group 3). We validated their effectiveness with
four classification algorithms. Our results showed that Group
3 achieved a prediction performance of approximately 0.93
using RF. The oversampled dataset, which applied the SMOTE
algorithm to address the class imbalance issue in the original
data, showed the best prediction performance. This was similar
to the performance of the original data, suggesting that the
SMOTE algorithm can resolve the class imbalance issue
without losing information. Furthermore, although Group 3
demonstrated lower performance compared to Group 1 (which
utilizes all sensors), it illustrated that high prediction accuracy
is achievable even with only 5 sensors. Hence, successful clas-
sification can be achieved with condensed sensor information.

In our future work, we plan to reduce the number of
sensors to enable a model to operate in edge nodes with
limited computation and storage capabilities. We also intend
to provide the alarm message for proactive healthcare steps
to prevent bedsores. The alarm function will activate when
a patient maintains the same posture for a predetermined
duration, customized based on the patient’s symptoms as
identified by our posture classifier.
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