L))

Check for
updates

Cieran: Designing Sequential Colormaps
via In-Situ Active Preference Learning

Matt-Heun Hong
Department of Computer Science
University of North Carolina
at Chapel Hill
Chapel Hill, NC, USA
mhh@cs.unc.edu

File Edit View Insert Cell Kernel

cie = Cieran(draw=draw_map)

cie.set_color("#186E8D")

cie.teach(); cie.search()

Zachary Nolan Sunberg
Smead Aerospace Engineering
Sciences Department
University of Colorado Boulder
Boulder, CO, USA
zachary.sunberg@colorado.edu

Widgets

Danielle Albers Szafir
Department of Computer Science
University of North Carolina
at Chapel Hill
Chapel Hill, NC, USA
danielle.szafir@cs.unc.edu

Help Python 3 (ipykernel)

rate
0
" 3
¢ | s
a &4
’ "V 0.2
N r
! :
[ | 4 By
~ l o 2 % &
. ST, A 0.1
N \

rate .ee
0.3

™
o

E
L T8
- -

0.2

Which is better for a paper figure? Enter a number (1 left, 2 right, 0 indifferent):

[

Figure 1: Cieran’s preference learning interface used with Altair [71]. Cieran supports efficient colormap selection within an analyst’s
workflow through integration with Jupyter Notebooks. Cieran first interpolates example colormaps through a chosen color (e.g., #186E8D, a
teal blue shown in the progress bar). People iteratively input preferences to Cieran by making value judgements across pairs of examples,
and Cieran uses the preference data to induce a context-specific model of aesthetic utility. This model used to rank and create colormaps.

ABSTRACT

Quality colormaps can help communicate important data patterns.

However, finding an aesthetically pleasing colormap that looks
“just right” for a given scenario requires significant design and
technical expertise. We introduce Cieran, a tool that allows any data
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analyst to rapidly find quality colormaps while designing charts
within Jupyter Notebooks. Our system employs an active preference
learning paradigm to rank expert-designed colormaps and create
new ones from pairwise comparisons, allowing analysts who are
novices in color design to tailor colormaps to their data context.
We accomplish this by treating colormap design as a path planning
problem through the CIELAB colorspace with a context-specific
reward model. In an evaluation with twelve scientists, we found
that Cieran effectively modeled user preferences to rank colormaps
and leveraged this model to create new quality designs. Our work
shows the potential of active preference learning for supporting
efficient visualization design optimization.
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Visualization systems and tools; « Computing methodolo-
gies — Q-learning; Learning from demonstrations; Learning from
implicit feedback; Active learning settings.
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1 INTRODUCTION

When visualizing data, analysts frequently need to decide what
colors to use in a chart. We focus on the design of sequential col-
ormaps, which must be orderable, appear smooth, include discrim-
inable colors, and adhere to perceptual uniformity [8]. Beyond these
perceptual guidelines, colormaps should also have aesthetic appeal
[48], which can depend on color-data semantics (e.g., cool-warm,
positive-negative affects) [4], branding, domain conventions, or
personal preferences [54]. Furthermore, how we see colors applied
on a chart will vary with the sizes and shapes of the colored marks
[67], their spatial distribution [79], and the chart’s background color
[54]. These factors and their interactions make colormap design
challenging for a typical data analyst.

Most often, people choose a colormap from a small gallery of op-
tions designed by experts like ColorBrewer [22] or defaults provided
in visualization authoring tools, which greatly limits expressivity.
Even though many other quality example colormaps are available,
for example, across communities like ColourLovers,! the process
of rendering one’s visualization for each colormap across galleries
and tracking best options can be time-consuming.

Furthermore, pre-existing colormaps that satisfy user needs may
not exist. People can build new colormaps manually using tools like
Photoshop; tools like CCC-Tool [53] aim to streamline the workflow
for visualization. However, most people lack the technical or design
expertise for working with color to prototype and refine colormaps
effectively. This means that without tools that enable data analysts
to efficiently rank existing colormaps or create new ones tailored
to their data, people will continue to inadequately present data by
relying on a system default [49].

We address this issue with Cieran (pronounced KEE-ruhn), an
Al assistant that helps analysts rapidly rank and create sequential
colormaps when designing communicative visualizations. In its
training phase, Cieran adaptively and iteratively asks an analyst to
choose between two different versions of their visualization each
employing a different expert-designed colormap. This approach
leverages prior work in color science which finds that presenting
alternative choices is known to elicit the most reliable human re-
sponses for studying color preferences [54] while also being an easy
task to respond to [9]. Cieran uses this choice data to update a model
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of aesthetic utility, which can be used to rank expert-designed se-
quential colormaps. It also creates new colormaps by treating their
design as a path planning problem across the CIELAB space using
the learned model as a reward signal [59]. All outputs monotoni-
cally decrease in L*, are perceptually uniform (Appendix A), and
are interpolated using cubic B-splines [14] to meet best colormap
design practices.

Contributions. Our main technical contributions (§5) include
1. an active learning strategy to induce a personalized model of
aesthetic utility for colormaps from few inputs, and 2. a fast algo-
rithm to create new colormaps given the utility model. We validate
our technical approaches by conducting a user study (§6) where
domain experts (N = 12) across physical and social sciences took
part in an open-ended design task. Our findings show that Cieran
can efficiently suggest and create aesthetically pleasing colormaps
tailored to individual users in around two minutes of use.

The system implementation of the above approach is a publicly
accessible Python package? for use within Jupyter Notebooks to
rank and create chromatic colormaps according to a user’s indicated
aesthetic preferences. Cieran’s workflow is as follows:

o ask the user for a required (seed) component color,

o fit expert-designed colormaps to this color and process them
to be ordered, smooth, and perceptually uniform,

o iteratively display a few (< 15) pairs of expert-designed
colormaps to compare on the user’s target visualization,

e rank all expert-designed colormaps from the comparisons,

e create a new processed colormap that matches the user’s
aesthetic preferences,

e display a selection tool for the user to choose their colormap
from the ranked choices.

2 BACKGROUND

Automation can support the design of effective visualizations. For
example, tools like ShowMe [42] and Draco [50] provide visualiza-
tion recommender systems grounded in known best practices or
experimental results. Alternatively, visualization linters [11, 26, 44]
assist in reviewing and identifying potentially ineffective or mislead-
ing design practices. These tools emphasize generalizable concepts
of perceptual effectiveness (e.g., the ability of a population to accu-
rately conduct visualization tasks within a controlled study [56]),
while paying limited attention to residual aspects of design like
personal preferences.

In contrast, the human-in-the-loop approach of ViA [24] incorpo-
rates personal preferences into visualization recommendations by
asking the user to input their objectives and respond to suggestions.
However, using ViA requires the user to provide significant scaf-
folding for the system to work by manually inputting parameters
such as importance weights, tasks, spatial frequency, and domain
type. By focusing on the complex space of colormap design, our
work considers how visualization optimization [55] could be auto-
mated with an analyst-in-the-loop by querying them with simple
questions, such as: “Which chart do you like better?” We ground
our work in the science and engineering of colormap design as well
as active preference learning.

Zhttps://github.com/matthhong/cieran/
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Figure 2: Cieran allows analysts to quickly design a colormap for a visualization. Cieran creates a new colormap (left) and ranks
existing expert-designed colormaps (the three sorted options to the right). After training Cieran, the user makes a selection using a slider
widget, with the new and the most useful example colormaps sorted to the top. This gives users the final agency over the colormap design.

2.1 Quantifying Colormap Utility
Designing useful colormaps remains a fundamental challenge in
data visualization. Bujack et al. [8] provided mathematical defini-
tions for three properties of perceptually-effective sequential col-
ormaps: order, discriminative power, and uniformity. Discriminative
power, a quality which aids performance on value comparison tasks
[38], can be improved by varying a colormap’s component colors
across hue and/or chroma to increase total color variance.
Experts acknowledge that chromatic colormaps should also be
aesthetically pleasing [48]. But the aesthetic utility of a colormap
will vary with the characteristics of the audience (e.g., personal
preference or past experience [2]), the specific dataset (e.g., seman-
tics [61] and distributions [79]), and the problem space (e.g., the
target visualization [67] or the data domain [13]). For example, how
we see colors on a chart varies depending on the sizes, the shapes,
and the spatial distribution of the colored marks [67, 79].
Consequences of these factors and their interactions are so preva-
lent that tools like Tableau® automatically modify colormaps for
different visualization techniques; for example, by decreasing the
color lightness values for area charts and choropleth maps [7]. How-
ever, such modifications do not take into account dimensions of
aesthetics other than the chart technique used, and quantifying
the aesthetic value of a colormap with more specificity remains an
open problem in visualization [23, 36].

2.2 Tools for Designing Sequential Colormaps

To help domain experts customize colormaps for their target con-
text, ColorBrewer [22], matplotlib [27] and online communities
provide galleries of expert-designed colormaps. However, search-
ing across hundreds of colormaps for the right look-and-feel can be
time-consuming, and default options may not satisfy user needs.

With tools like Photoshop,* people can create new color gradi-
ents. Tools like ColorCAT [46] and CCC-Tool [53] seek to simplify
both colormap creation and validation by allowing users to manu-
ally input and adjust control points and providing metrics for as-
sessing the output colormap’s perceptual utility. Using such tools re-
quires substantial manual effort and design expertise. Therefore, Al-
assisted tools have leveraged existing examples to guide colormap
construction. For example, deep learning can enable colormap style
transfer from existing images to new charts [37, 64, 76, 77]. How-
ever, users may not have quality example images.

3https://www.tableau.com/
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Instead, systems can directly leverage the hundreds of expert-
designed colormaps as examples. ColorCrafter [62] first mines a
corpus of 222 colormaps for their structural features and outputs
nine model curves that are characteristic of common design prac-
tices. People can apply a seed color to one of the model curves
and customize it using affine transforms. ColorMoves [60] allows
users to mix-and-match segments of example colormaps. While
such a paradigm may be expressive, the tool entrusts users with the
combinatorial task of mixing and matching colormap segments.

In our work, we aim to build a tool that automatically suggests
and creates colormaps from examples, in a manner that is driven by
users’ aesthetic preferences. We hypothesize that active preference
learning can be used to rank colormaps according to aesthetic utility
and automate the assembly of new colormap structures.

2.3 Preference-Based Design Optimization

Prior work in computational design have applied active preference
learning to enhance the quality of images and renderings. Their
technical contributions often involve algorithmic improvements to
Bayesian Optimization from discrete choice data [6], including one-
to-many comparisons or learning directly from slider interactions
[34] or brush strokes [33]. Preference learning leverages the power
of alternative choice tasks to collect reliable information about the
utility [30] of a design artifact using a simple input modality.

Pairwise comparison also elicits the most reliable human re-
sponses for studying color preferences [54]. Following prior work,
BayesOpt could also be used to optimize certain types of colormaps
including Cubehelix [18], which parameterizes colormap structures
based on a start color, saturation levels, and emphasis on different
regions of interest. However, Cubehelix colormaps have a distinct
spiral structure that constrains the space of designs.

We instead model the aesthetic utility of non-parametric sequen-
tial colormaps using a preference-based reward learning (PbRL)
algorithm [12]. PbRL algorithms are typically used to steer the
behavior of virtual and physical robots to complement inverse rein-
forcement learning [1, 32] or reinforcement learning from human
feedback [3, 69]. We hypothesize they can also guide the design of
colormaps, which are continuous and smooth trajectories in a 3D
space that a steerable robot might traverse.

Cieran uses this intuition to model the aesthetic utility of col-
ormap curves from a few pairwise comparisons to potentially cap-
ture a wide range of aesthetic considerations, and in turn, optimize
the design of sequential colormaps.
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3 SYSTEM OBJECTIVES

Quantifying the aesthetic value of colormaps remains an open
problem in visualization [23, 36]. Factors that are difficult to gen-
eralize such as personal preferences, data semantics, and data pat-
terns can influence the aesthetic appeal of colormaps. Although
galleries like ColorBrewer, matplotlib’s colormap library, and on-
line communities like ColourLovers allow users to explore a range
of expert-designed options, manually sifting through colormaps
takes significant trial and error. Furthermore, default options limit
expressivity. Tools like Photoshop or CCC-Tool can support custom
colormap creation, but they require considerable manual tuning,
along with the time and expertise to effectively navigate this pro-
cess. Our goal is to simplify the process of customizing sequential
colormaps by reducing the need for user expertise and manual cost.

Our approach builds on the work by Smart et al. [62], which
mined structural patterns across existing expert-designed colormap
curves. By incorporating their colormap corpus within a data anal-
ysis software, we aim to enable people to efficiently rank many
example colormaps in the context of the data visualization
being designed, and in the process learn a model of aesthetic util-
ity for colormaps within the user-specific context. We then aim
to use both the learned utility model and the expert examples to
create new aesthetically pleasing colormaps to suggest as ad-
ditional options. Recent enhancements to CCC-Tool [52] include
post-processing steps to ensure colormaps meet mathematical for-
mulations of perceptual guidelines outlined by Bujack et al. [8].
Their work suggests that tools to create sequential colormaps can
and should automatically enforce perceptual guidelines with
either constraints or post-processing algorithms.

In summary, we developed a colormap design tool that accom-
plishes the following objectives:

e O1. Allow people to efficiently and effectively sort expert-
designed colormaps according to their look-and-feel on the
target visualization and given their specific data context.

e 02. Create novel colormaps, also driven by expert exam-
ples, that provide scenario-specific alternatives to existing
options.

e 03.Ensure that each colormap satisfies perceptual guidelines
for colormap design, such as linear order, smoothness, and
perceptual uniformity.

4 CIERAN: USER INTERFACE

Cieran is an open-source Python package that interfaces with a
user through a Jupyter Widget. This paradigm allows data analysts
to both stay within their typical workflow and to design colormaps
directly on their target visualization. Therefore, Cieran can be used
to rapidly enhance the quality of any colormapped visualization
that can be rendered inside a Jupyter Notebook in situ (O1).

Using Cieran involves three steps. First, the user a. initializes
a Cieran object with a target visualization and color. The system
then displays a widget interface where the user b. teaches a model
their aesthetic preferences for colormaps through pairwise choices
(Figure 1). Based on these inputs, Cieran allows the user to c. select
a colormap from a list of options sorted (Figure 2) according to their
aesthetic utility.

Hong, et al.

a. Initialization. Users initialize Cieran with a callback func-
tion that accepts a matplotlib.colors.ListedColormap object
and displays the target colormapped visualization, in other words,
Cieran(draw: Callable[[ListedColormap], Nonel).Then,the
user specifies a seed color that they wish to include across all op-
tions with the set_color(color: str) instance method. The seed
color provides an initial entry for the user to indicate their prefer-
ences. It also both reduces the number of example colormaps and
constrains the search space of new colormaps.

b. Training. Cieran is trained by the user iteratively indicat-
ing their preference across pairs of example colormaps (Figure 1).
This training interface is displayed by invoking the teach(N: int)
instance method. By default, Cieran queries for N = 15 text re-
sponses, with 1 indicating preference for the left colormap option,
2 indicating right, and 0 indicating indifference. Pairwise compari-
son is known to elicit the most efficient and reliable responses for
modeling color preferences, compared to rank ordering or absolute
value judgments (e.g., a Likert scale response) [54].

c. Outputs. The trained utility model is used to automatically
accomplish two design objectives: ranking all example colormap
structures (0O1) and creating a new colormap (02) by piecewise
combining example colormaps. Afterwards, the user invokes a slider
widget with the select() instance method, where the new and
the most useful example colormaps are sorted to the top of a ver-
tical slider (Figure 2). The colormap selected with the slider can
be accessed through the cmap instance property. People can use
the ListedColormap object interface to further refine the selected
colormap (e.g., to resample a smaller number of discrete colors or
to represent it as an array of hex values for later re-use).

All colormaps displayed to the user vary monotonically in light-
ness, and consist of 256 colors sampled at AEg09-equidistant recti-
fied arc lengths along an approximate cubic B-spline curve [14] to
maintain perceptual uniformity and smoothness (03, Appendix A).

5 CIERAN: TECHNICAL DETAILS

Since colormaps are three-dimensional curves across a colorspace,
the problem of finding an aesthetically pleasing colormap is akin to
finding a high-utility path within an environment. Cieran executes
on this idea by formulating a search space of colormap trajectories,
learning a utility model for trajectories from user preferences, and
using this model to both rank example colormaps and search for
new paths through a colorspace (Figure 3).

5.1 Technical Overview

Colorspace Quantization. Prior to the interpolation of a colormap
curve, we define a colormap trajectory Y = (so, ap, . . . ) as a sequence
of control point colors in the CIELAB colorspace [41] traversed
by a virtual agent based on actions taken across a graph-based
environment (S, A) where:

e S, the state space, is a set of 512 unique CIELAB colors, and
o A, the action space of a color s € S, contains possible move-
ments towards neighboring colors.

This environment is inherently acyclic (i.e., a DAG), since the
agent cannot move backwards in lightness values in order to pre-
serve lightness monotonicity (O3). Section 5.2 provides details
about the construction of this environment. Our methodology of



Cieran: Designing Sequential Colormaps via In-Situ Active Preference Learning

Aesthetic Utility

512 quantized colors colormaps Collecting

b*

CHI ’24, May 11-16, 2024, Honolulu, HI, USA
Utility Model

Ranking expert colormaps  Creating a new colormap

Initial state

]
\

)

End state

Figure 3: Cieran is a path planning agent that helps rank and create sequential colormaps with a human in the loop. Cieran first
constructs a graphical environment of possible colormap trajectories through a user-specified seed color based on expert demonstrations
of colormaps (second subfigure). It then induces a model of aesthetic utility given a small number of pairwise comparison data (the third
subfigure highlights the user’s selection) collected through a Jupyter Widget, which adaptively and iteratively presents pairs of best candidate
colormap examples applied to the user’s target dataset. Using the learned utility model, Cieran will score all expert-designed colormaps
(fourth subfigure), and create a new quality colormap via path planning (fifth subfigure).

selecting these 512 approximately equidistant colors in the CIELAB
color gamut leads to the mean Euclidean distance between possible
control point colors to around AE = 5, which is the just-noticeable
color difference threshold for untrained observers [47].

Learning to Rank. Cieran’s training phase learns to score each
trajectory Y with a measure of its aesthetic utility—a user- and
context-specific reward function R(Y)—by leveraging a user’s pair-
wise comparison responses. Assuming perfectly accurate compar-
isons, precisely ranking n example colormaps would require the
user to make O(nlogn) comparisons in the worst case. Our ac-
tive learning paradigm adaptively elicits responses to the most
informative query pairs to approximate R efficiently from noisy
human comparison data. Section 5.3 provides details about this
active learning strategy that can learn R from 15 human labels.

Searching for a Novel Colormap. Once R(Y) is learned, we
could, in principle, use it to score every trajectory in the DAG
to find the best novel trajectory (i.e., a combination of piecewise
segments from existing colormaps). However, an algorithm that
enumerates and scores all possible combinations of S and A would
have exponential time complexity [68]. Given a graph, dynamic
programming algorithms can achieve path planning to find only the
optimal path. However, we define the aesthetic utility of a colormap
as a holistic quality (i.e., the harmony of each color to all other col-
ors), not as the sum of utilities across locally adjacent color pairs;
such non-additive cost functions preclude the use of combinatorial
optimization. Section 5.4 details an approximate dynamic program-
ming algorithm that can still efficiently search for novel colormaps
with high cumulative rewards in our graph-based environment.

Cieran forces all colormap trajectories to start from white and
end at black to (a) address the potential need for using white to
represent zero values and (b) provide matching terminal states
across trajectories to simplify the search algorithm. In practice,
Cieran’s colormap curves (interpolated from the trajectories) are
truncated at L* = 10 by default to exclude the black colors, in
accordance with best practices [78].

5.2 Colormap Quantization

We first define (S, A), the graph-based environment from which
Cieran will sample candidate trajectories through the CIELAB col-
orspace (Figure 3, first subfigure). This DAG comprises quantized
structures from a corpus of 222 expert-designed colormaps from
commercial platforms (e.g., Tableau and R) and communities of
practice (e.g., ColourLovers) collated in prior work ColorCrafter
[62]. Using this corpus constrains the state and action spaces to
those reflecting expert designer practices, and quantizing each col-
ormap allows Cieran to create novel colormaps by joining piecewise
segments of existing colormaps.

As in ColorCrafter, we first sample nine equidistant points from
each expert-designed colormap. We then align each colormap to
a user’s seed color by first finding its closest corresponding color
with respect to L*. Then, we generate two alternative options for
each of the nine-color ramps. For the first alternative, we rotate
the colormap in the hue plane (i.e., the a*-b* plane) by the angular
difference between the seed and corresponding color. We then trans-
late the colormap in the L*—C* plane to complete the alignment.
For the second alternative, only the displacement across the L*-C*
plane between the two colors is used to translate the colormap.

For the state space S, Cieran first quantizes CIELAB by gener-
ating an approximately equidistant set of 512 colors within the
gamut using Halton sampling [20], a quasi-random process com-
monly used in robotics to generate evenly-spaced samples from
configuration spaces [16]. To ensure even dispersion, these posi-
tional samples are then passed through the Lloyd-Max algorithm
[39, 43] until convergence. For the action space A, the nine col-
ors in each new colormap are matched to their nearest colors in
the quantized color space. If a pair of colors (s,s’) are adjacent in
any quantized colormap, we add an action s’ to As. Finally, every
lightest color in each colormap becomes the action space of the
white state (100, 0,0), and every darkest color has an action that
corresponds to the black state (0,0, 0).
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Table 1: Reward Features and Values

Feature Description Value

{ki,...,ks} perimeter distance k- 61.3 when s’ = black

{ landing reward 10 when s” = black
m chroma inclination m * 0, when s’ = black
n moving penalty —0.01 per action

5.3 Ranking Expert-Designed Colormaps

For each trajectory Y through the DAG, we can define a feature
vector @ that describes its characteristics. Then R, the utility of a
trajectory, can be defined as a linear combination these features,
such that:

R(Y) =0 d(Y) 1)

Algorithm 1 and Figure 5 describe the strategy to actively learn 0
from pairwise colormap preferences, which requires the specifica-
tion of reward features, a belief model, and an acquisition model.

5.3.1 Reward Model. Our reward model considers that (1) curves
should go through preferred colors (e.g., red) or color families (e.g.,
warm colors) that a user finds aesthetically pleasing, (2) colormaps
should be long enough to be discriminable, but not too long to
introduce artifacts like hue banding [5] and (3) that lightness and
chroma characteristics are key factors for effective sequential col-
ormaps [8]. The reward model has nine path features {k1,..., kg}
and m (Table 1) with corresponding unknown weights 6; € [-1,1],
the preference model learned from user choices.

Perimeter distances k are the normalized shortest distances
between the curve and eight corner points on the boundaries
of CIELAB (Figure 4). These distances both reflect preferences
for certain color categories and are also indicators of a curve’s
global length. Increased curve length may improve the resulting
colormap’s discriminability [8]; however, highly saturate but less
preferred hues (i.e., closer proximity to the corresponding perimeter
points) are likely to lead to lower aesthetic utility [17]. A negative
weight 0y indicates that the user prefers a colormap that is close to
the color family corresponding to the perimeter k.

We model preferences for color chroma (akin to saturation) char-
acteristics as the slope m of each colormap trajectory across the
L* — C* plane computed using linear regression. We normalize the
slope such that the colormap with the largest absolute slope has a
value of |m| = 1. A negative weight 0,, leads to the lighter colors
being relatively more saturated.

5.3.2 Belief Model. We initialize the preference model with a non-
informative prior by uniformly sampling points from a unit hyper-
sphere. Given the conditional independence assumption, we can
iteratively update the model as:

Prs1(0) oc P(yr | xt, 0)P(0) (2)

where x; = (Y}, Ytz ) is the pairwise preference query and y; = k
is the user’s response to the query with k € {1,2, @}, where 1
indicates a preference for the option on the left, 2 on the right, and
@ indicating indifference.

Hong, et al.

Figure 4: A visual explanation of the features and weights 6
(Table 1). {kq, ..., kg} describes the shortest distance from each of
the perimeters in the a*—b* plane to the colromap. m is the slope
of the colormap in the L*~C* plane. These two colormaps repre-
sent two trajectories going through the same seed color #186E8D.
The colormap on the left is recommended by Cieran when setting
01, 02, 03 to —0.5, indicating a preference for a colormap that goes
through greenish yellow tones. The colormap on the right is rec-
ommended when setting 02 = 0.5, indicating a preference for a
colormap that only miminizes distance to the green perimeter of
the gamut, while also setting 6,, = —0.5, indicating a preference
for a colormap that is highly saturated at lower Lx values.

To model a noisy yet rational human expert selecting k, we utilize
the softmax likelihood function:

exp(R(YF))
Zrex, exp(R(Y))
Some colormap pairs may be equally preferable. We therefore in-

clude an “indifference” response [9] by introducing the minimum
perceivable difference threshold § > 0 [35] such that:

P(yr =2 |x,60) = (exp(28) = D[ [P =k x.0) (&)
k

P(yr =k |x:,0) = (3

where:
P(yr =k | x:0) = (1+exp(6+R(*) —ROXF))NT (5

in which Y¥ and Y¥’ are the two colormaps being compared and
k # k’. Equation 5 reduces to Equation 3 when § = 0. Prior work
shows that the choice of § introduces minimal variability, so our
algorithm relies on a standard value of § = 0.01 [10]. Given the
above definitions, the Metropolis-Hastings algorithm [45] can adap-
tively generate samples from the posterior distribution over 6 after
obtaining each participant response k.

5.3.3  Acquisition Model. To sample a pair of colormaps, we use the
query-by-disagreement method from Katz et al. [31]. This technique
can sample a pair of colormap trajectories that maximize both their
potential for aesthetic utility as well as disagreement (i.e., likely
differences between colormap utilities).
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Figure 5: Overview of the active learning-to-rank process (Algorithm 1). [Left] At each iteration, samples W are first drawn from
current P;(6) using Metropolis-Hastings. Next, these samples and the feature function ® are used to acquire an informative query pair from
the example colormap corpus (Eq. 6). [Middle] The user observes this query and makes a pairwise value judgment. [Right] User responses
are used to update P;(0) using with the feature function ® once again (Egs. 1 through 5), and the iterative process continues.

Let W be samples from the posterior distribution over 6, and
let W; and W; be the ith and jth samples of W. The optimization
problem for generating the next query becomes:

argmax; ; P(6 = W;)P(6 = Wj) + 1 [[w; - WJ”Z ©)

where i # j. We can estimate P(6 = W;) using Gaussian KDE.
The sampled query pair x will be colormaps whose trajectories
(YL, Y?) maximize W; - &(Y) and Wj - ®(Y) respectively. A > Ois a
temperature parameter to incentivize divergent queries; we set it
to 500 based on piloting and recommendations from Katz et al [31].

Algorithm 1 Learning 6 From Colormap Preferences

Input: Y, d,L > Trajectory set, feature vector, iteration limit
Output: w > Parameter estimates 6

1t 0,x — @,y « @, W « METROPOLISHASTINGS(x, y, 0)

2: repeat

3 (Y1, Y?) < QUERYBYDISAGREEMENT(Y, W, ®)

4 x —x U (YL 1?)

5 y < y U OBTAINUSERPREFERENCE(Y!, Y?2)
6: W « METROPOLISHASTINGS(x, ¥, W)
7
8:

te—t+1
until t = L

5.4 Searching for Novel Colormaps

5.4.1 General Q-Learning Approach. Cieran utilizes an approxi-
mate dynamic programming algorithm known as Q-learning [74],
as outlined in Algorithm 2. The algorithm observes a reward r after
taking each action and estimates Q—the value of the action (i.e.,
appending a color to the current colormap trajectory)—as:

Q(s,0) «— (1-a)Q(s,@) +a (r+ymaxQ (s.d')|.  (7)

Q-learning is typically used to solve a Markov decision process
(MDP) where r is defined only in terms of the states and actions,
and the utility of a trajectory is the sum of the rewards at each
step. However, Cieran evaluates colormaps based on their holistic
aesthetic utility, and not as a sum of utilities for adjacent pairs of
colors. Therefore, its agent will only receive positive rewards at the
last step based on the entire trajectory taken.

Beginning its search from the color white, at each iteration ¢,
the algorithm selects an action using an epsilon-greedy strategy
and observes a reward. As described in Table 1, there is a default

cost of n = —0.01 to every action to prevent unnecessary move-
ments which do not add to the cumulative reward. This action cost
discourages control colors that cause unnecessary chroma or hue
variance without contributing to the colormap’s aesthetics.

Based on chosen actions and observed rewards, Cieran iteratively
updates the state-action value function Q(s, a) using the incremen-
tal update rule (Equation 7) until it reaches the black (end) state.
If the next state is the black state, a landing reward of £ = 10.0 is
added to the cumulative reward along with R(Y) = 6T ®(Y) based
on the features of the final colormap trajectory.

When Cieran reaches the black (end) state, if the completed
trajectory Y meets the following criteria, it is saved as the new Y*:

(1) it is novel, as in not already in the corpus (since we have
already scored all existing colormaps);

(2) it passes through at least two points between white and
black, one of which is the seed color;

(3) every point along its interpolated path is within the gamut;

(4) and it has the highest cumulative reward (i.e., the highest
aesthetic utility).

5.4.2  Hyperparameters. Our Q-learning environment uses a non-
deterministic transition model where T(s,a,s’) = 0.95 when a =
s’ but transitioning to a randomly different adjacent state with
probability 0.05. Since our environment is not an MDP typically
suited to Q-learning, incorporating additional noise to the reward
signal makes the algorithm more robust. Q-learning requires a
discount parameter y, but because every trajectory has the same
absorbing state (black), y = 1.0 [75]. Both the exploration parameter
and learning rate are set to € = 0.1 and a = 0.1 based on piloting.

We primarily follow standard Q-learning practices except for the
initialization of Q. Specifically, the initial action-value estimates Qg
are set to 100 for all actions, which is significantly higher than what
can be observed from the reward model. This Optimistic Q-learning
[15, 66] approach encourages early exploration by the model by
making all unexplored options appear better than they actually are.
We evaluate the efficacy of this approach in Section 6.3.

5.5 Implementation

We implement Algorithm 1 with modifications to the APReL pack-
age [10], which uses numpy [21] and scipy [72]. We implement
Algorithm 2 with numpy and networkx [19]. B-spline interpolation
of curves and sampling AE2000-equidistant colors utilize coloraide
[51]. Each colormap is a matplotlib.ListedColormap [27] class
instance. We implement the interface using ipywidgets [29].
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Algorithm 2 Searching for a Novel Colormap From 6
Input: 6,d,L, €, 2, Qo

> Preference model, iteration limit, and

hyperparameters
Output: 1* > Found high-utility trajectory
1: for Vs,a do
2 Q(s,a) < Qo > Initial optimistic estimate
3: end for
4t — 0, — @, r* « —o0
5: repeat
6: s « white,Y « {s},r <0
7: repeat
8: a,s” « EpSILONGREEDY(€, O, 5)
9 Y—7YU{as'}
10: r < CompPUTEREWARD(Y, 0, ®)
11: Q(s,a) « Q(s,a) + a [r+ maxy Q (s',a’) — Q(s,a)]
12: s
13: until s = black
14: if r > r* then
15: Y*,r* « UppaTERESULT(Y, 1)
16: end if
17: te—t+1

18: until t = L

6 SYSTEM EVALUATION

We evaluated whether Cieran can effectively rank and create col-
ormaps that satisfy analysts’ design needs given a small set of pref-
erence inputs. The study first involved a holistic mixed-methods
evaluation of the system with fourteen participants who each de-
signed a set of colormaps using Cieran. We then evaluated our Q-
learning implementation (Algorithm 2) using participants’ learned
preference models.

6.1 Study Protocol

6.1.1  Participants. Fourteen researchers participated in the study.
The first two participants (E1 and E2) were experts in using col-
ormaps in visualization and served as pilot participants. Although
we do not include their results in our quantitative analysis, our dis-
cussions with them informed our study design, and their feedback
is included in the qualitative analysis.

We recruited 12 additional social or physical scientists (P1-P12)
from the United States who have all had experience building visu-
alizations in a scripting language such as Python, R, JavaScript, or
SPSS. All participants were native or fluent English speakers over
21 years old. No participant self-reported color vision deficiency,
although this was not part of our exclusion criteria.

6.1.2  Stimuli. Participants designed colormaps for a discretely-
binned 2D kernel density plot rendered in Seaborn [73]. This plot
was accompanied by black discrete histograms of the correspond-
ing marginal distributions to the right (y distribution) and top (x
distribution) of the heatmap (Figure 6). We chose 2D kernel den-
sity plots so that the colormaps would be mapped onto smooth
distributions and display multiple distinct layers of color values
across the length of the colormap, while also minimizing potentially
distracting structural artifacts. The histograms allowed participants
to verify that every colormap represented the same dataset.

Hong, et al.

Each participant saw one of three pre-generated datasets. The
datasets were isotropic Gaussian blobs in 2D space generated using
sklearn designed to ensure that the spatial distribution of data cov-
ered most of the display area. These stimuli also avoided symbolic
shapes and hotspots that would pop-out and distract the partici-
pant from the global color characteristics. We randomly assigned
one-third of participants to each dataset condition.

6.1.3  Procedure. We conducted a mixed-methods study using a
web interface in a hybrid remote/in-person setting. All verbal and
physical interactions were recorded through Zoom screenshare.

We first collected informed consent and basic demographic infor-
mation. We then asked participants a series of questions about their
experiences with visualization and color, including their favorite
color. We then introduced the heatmap, describing it as a visual-
ization that allows us “to aggregate [scatterplot] points, making
the distributions easier to see. As it turns out, heatmaps can come
in a variety of different colors.” They were instructed to make a
sequence of preferential choices between variants of colormaps
mapped onto the heatmap to design a journal paper figure.

Before the formal trials, the participant and the interviewer dis-
cussed how the participant would usually go about designing a
colormap in the given scenario to elicit baseline strategies for col-
ormap design. Participants then moved on to the study, where we
collected both quantitative and qualitative user data.

6.1.4 Quantitative data collection: Participants made 15 compar-
isons over three phases (one phase per user-specified seed color),
totaling 45 comparisons per participant. We observed during pilot
studies that people tended to lose engagement after 15 comparisons.
The last task in each phase was manually ranking colormaps, and
the whole phase was designed to last at most two minutes.

To reduce potential confounds from color pickers, participants
specified a seed color from the Tableaul0 color palette [65], an
expert-designed palette of ten discrete colors designed for cate-
gorical visualization. The first phase used the color in Tableau10
that was closest to the participant’s favorite color, but participants
were free to choose any color, including a previously used color, in
other phases. For each pairwise comparison, the participant could
indicate their preference for left (1), right (2), or indifferent (0) input
using a textbox. They were instructed to choose 1 or 2 if there was
even the slightest preference for one of the colormaps or if they
simply disliked one more than the other.

| .

Figure 6: The three dataset stimuli used in our study. Partici-
pants designed colormaps for a discretely-binned 2D kernel density
plot rendered in Seaborn [73]. This plot was accompanied by black
discrete histograms of the corresponding marginal distributions to
the right (y distribution) and top (x distribution) of the heatmap.
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Following each set of 15 comparisons, in place of using the slider
selection tool (Figure 2), the participant rank-voted four different
colormaps: (1) the novel colormap found through search, (2) the top-
ranked expert-designed colormap according to its learned aesthetic
utility, (3) the median-ranked expert-designed colormap, and (4) the
lowest-ranked expert-designed colormap. The four choices were
laid out in a 2x2 grid in a random order. Participants input their
votes (1-4, with 1 indicating the highest aesthetic utility, and 4
indicating the lowest) using an integer widget.

6.1.5 Qualitative data collection: Participants were encouraged
to think aloud and verbally reflect upon their choices at any point
during the study. The experimenter also asked questions during
the study, including why the participant made a given preference
choice in the first trial of the first block and when participants made
an unexpected choice based on their past behavior and available
information. After the study ended, the participants were asked
whether they had any other thoughts during the study before being
briefed on the study objective, which was to evaluate the efficacy
of a colormap recommendation tool.

6.1.6  Analysis. We coded the audio transcripts of the interview for
insights into the participants’ design objectives, prior experiences
with colormap customization, and their experience using Cieran.
The ranked-choice data from the quantitative data collection was
analyzed using the Plackett-Luce model [40] to compare the perfor-
mance of the four colormap options (new, top-rank, median-rank,
and last-rank).

6.2 Results

6.2.1 Quantitative Results. We report inferential statistics, means,
and standard errors (means + standard errors) for the differences in
ranked-choice votes (or, worth®) across Cieran’s new and example
colormaps (Figure 7).

We did not find a statistically significant difference between
new colormaps and the top-ranked expert-designed colormap (¢ =
0.31 £ 0.30,z = 1.05,p = 0.30). However, new colormaps were
preferred to the median-ranked (z = —0.67 + 0.33,z = —2.02,p <
0.05) and the lowest-ranked (u = —2.75 £ 0.50,z = —5.42,p <
0.001) expert-designed colormaps. Similarly, the top-ranked expert-
designed colormaps were preferred over the median-ranked (u =
—0.98 + 0.33,z = —2.96,p < 0.01) and the lowest-ranked (y =
—3.06 £ 0.51,z = —5.98, p < 0.001) expert-designed colormaps.

These results suggest that:

(1) Cieran effectively ranks colormaps according to aesthetic
utility from a small set of personal preference data, and

(2) In aggregate, people found both new and higher-ranked
colormaps to be useful, but in some instances (12/36) people
may find the new colormap preferable to all expert-designed
options, including the top-ranked.

6.2.2 Qualitative Results. Our qualitative results reinforced the
idea that the aesthetic value of colors is a concept that is difficult to
generalize across a population. Many people indicated an aversion
to specific colors, such as yellow (P1, P3, P4), green (P1, P3), pink
(P1), and brown (P9). Some disliked high-chroma colors, such as

Shttps://cran.rstudio.com/web/packages/PlackettLuce/vignettes/Overview.html
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“electric” blues, purples, and greens (E2, P1, P8), indicating that
they “hurt [their] eyes” (P8). However, some specifically preferred
yellow (P5), green (P5), “electric” blue (P6), purple (P7), and pink
(P8).

Cieran enabled participants to explore a wide variety of col-
ormaps. Many participants (n = 7) favored “vibrant” (P3) or multi-
hue colormaps (E2, P5) and indicated that high hue variance made
data more legible (E2, P2, P3, P5). However, such preferences were
not universal: many other participants (n = 7) avoided high vari-
ance in hue, worrying that this could distract from communicating
data clearly (E1, P1, P10, P2, P4, P12) and might “overwhelm” people
(P12). Many participants avoided color sequences with highly satu-
rated colors, regardless of whether the colormaps were single-hue
(P1, E1, P10) or multi-hue (P7, P8).

Participants who preferred multi-hue colormaps talked about
color harmony (E2, P8, P9), color combinations (P5), or how colors
“work together” (P7) to describe their design objectives. These par-
ticipants talked about colormap utility in terms of whether they
were “distinguishable” (P1, P9), “functional” (P1), or “crisp” (P3); or,
in contrast, whether they were “blurry” or “mushy” (P3). They de-
scribed perceived high-utility colormaps as possessing qualities of
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Figure 7: Ranked choice votes from the user study. The final
task in each phase was to manually rank a shuffled set of four col-
ormaps: Cieran’s new colormap and the top-, median-, and last-rank
expert colormaps (according to the learned preference model). The
new colormap and the top-ranked expert colormap were manually
placed higher than others, and in both cases, the differences were
significant (* < .05, ** < .01, *** < .001). Of the 36 1st place votes
across the top row, filled circles are votes from participants opti-
mizing for colormaps with low hue variance; unfilled circles are
votes from participants optimizing for multi-hue colormaps.
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Figure 8: Optimistic Q-learning as an adaptive path search algorithm across a DAG. These cumulative reward plots compare the
behaviors of three algorithms by depicting the total episode reward (minus landing reward [) across 10,000 learning episodes. Each plot
depicts a simulation performed with a set of hyperparameters € and Qp and with all preference model weights 0 set to 0 except 6, = 1
or 0, = —1 (see Figure 4 for explanation). Traditional Q-learning (left) with € = 0.1 fails to find a high-utility colormap across the DAG,
performing significantly worse than random path draws (¢ = 1, center). However, Optimistic Q-learning (right) with € = 0.1 and Q¢ = 100
performs well as a search algorithm by adaptively learning to avoid actions that lead to low-utility colormaps.

“legibility” (E1, P7) or “visibility” (P9). Those who preferred single-
hue colormaps seemed to operate with a different objective, often
articulating this goal as “simplicity” (E1, P10, P2, P4, P12).

The only thing people seemed to agree on was that colors repre-
senting lower values should be visible against the white background
(E1-E2, P1-P12), so all participants avoided colormaps with minimal
variance in chroma. However, Cieran’s ranking and creation capa-
bilities were apparently robust to the variety across participants’
design objectives (Figure 7). One participant noted that their pref-
erences may vary with their mood (P5), while another noted that
they were “warming up” to certain colors during the study (E2).

6.3 Post-Study Analysis of Algorithm 2

Algorithm 2 incorporates a well-known reinforcement learning
algorithm to search for a high utility path across the colorspace
structured as a directed acyclic graph. Since the utility of a colormap
depends on its entire trajectory, the RL agent receives rewards based
on actions taken multiple steps prior; such an environment is not
an MDP, and the convergence guarantees typically available for
Q-learning [28] do not apply. However, this RL agent’s goal is not to
learn a generalizable model; we incorporated the algorithm within
an adaptive search procedure to simply find a useful and novel
colormap (Algorithm 2, line 15) within a reasonable time limit L
(which was set to 10,000 trajectory samples for the user study). In
this section, we analyze our agent’s behavior to validate that it still
improves with experience to better guide its search.

To study the search algorithm and effects of its hyperparameters,
we re-ran the Optimistic Q-learning algorithm (with Qg = 100.0, € =
0.1) for each participant 10 times using their chosen seed color and

the corresponding learned preference model 6“5¢7, storing the total
reward of the best colormap found after each search. From this total
reward we subtracted the landing reward [, which is a constant value
set at 10 regardless of the user preference model or the algorithm.
We then repeated this for two additional sets of hyperparameters:
Qo = 0.0,e = 1.0, resulting in a random sampling strategy, and
Qo = 0.0, € = 0.1, the traditional Q-learning paradigm. Finally, we
employed a linear mixed effects model to quantify the effects of
using the three algorithms for colormap search, accounting for the
repeated measures on individual models 645¢":

maxTotalReward ~ algorithm + (1 | *%¢")

Our findings are summarized in Table 2. On average, the 10,000
iterations of the sampling algorithms took 4.02 seconds on a 2019
MacBook Pro and Python v3.10.12. Relative to the baseline, tra-
ditional Q-learning significantly underperformed (p < 0.001) in
terms of its output colormap’s utility. However, Cieran’s optimistic
approach significantly outperformed (p < 0.001) other approaches.

Figure 8 illustrates typical learning behaviors of the path plan-
ning agent under the three algorithm conditions. In the traditional
Q-learning paradigm, the agent has a difficult time exploring effi-
ciently within the time limit; the random sampling agent is more
likely to have a serendipitous run-in with a high-utility colormap,
even though the random sampling agent does not learn and adapt.
On the other hand, Optimistic Q-learning quickly learns to rule out
actions that lead to low-utility colormaps by exploring actions more
evenly during its early learning stages. Once the agent’s Q-values
are updated to more realistic values, it is able to focus on color pairs
with higher potential in its search for useful colormaps.
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Table 2: Summary of a linear mixed effects model comparing the performance of Q-learning agents to a random sampling
baseline. Estimates represent the relative difference from baseline in the cumulative rewards of output colormaps.

Description  Estimate  Std. Err. z P> |z| [0.025, 0.975]
baseline[Qp = 0.0, e = 1.0] Random Sampling 0.550 0.115 4789 < 0.001***  [0.325, 0.774]
condition[Qgy = 0.0,€ = 0.1] Q-learning -0.079  0.003 -30.700 < 0.001***  [-0.084, -0.074]
condition[Qp = 100.0,¢ = 0.1] Optimistic Q-learning 0.015 0.003 5.920 < 0.001***  [0.010, 0.020]

7 DISCUSSION

We demonstrated Cieran’s capability to effectively rank and create
colormaps from user preferences when designing visualizations.
Our system addresses colormap optimization for both aesthetic
and perceptual utility by leveraging a corpus of expert-designed
curves and processing all output colormaps. While the prior section
summarized these findings given our problem space and the system
contribution, we discovered additional observations that might
offer insights into the broader scope of research at the intersection
of visualization and design optimization.

7.1 'The Diversity of User Preferences

The diversity of color preferences among participants highlights
the individualized nature of aesthetic value. While we can quantify
many aspects of perceptually effective colormap design, taking such
a theory-driven approach toward visualization aesthetics may have
its limits. Instead, Cieran takes an approach that can learn individu-
alized models of aesthetic utility given the analyst’s understanding
of the intended audience and data context.

Some aspects of preference may be quantifiable a priori with
some probability. For example, people’s backgrounds may impact
their preferences. Our participants were researchers across the
physical and social sciences. One expert participant noted that
multi-hue colormaps may be preferred by those working in scien-
tific visualization, while single-hue colormaps may be preferred
by domain experts working with abstractions of data. Cultural
backgrounds or gender identities may also influence preferences
[54]. We may be able to leverage these factors to create foundation
preference models that bootstrap optimization processes. However,
they should be applied carefully to avoid perpetuating potential
biases, limiting creativity, or transferring designs that call attention
to context-specific data semantics to a different setting.

7.2 Exploring Then Exploiting Preferences

Some study participants specified their prior preferences for col-
ormaps before using Cieran. While a few indicated a preference for
“simple” colormaps that did not vary much in hue, others noted a
prior preference for multi-hue colormaps. Still, others confessed
that they lacked the experience to even have an inclination towards
one colormap over the other.

Yet even those without preferences rapidly identified their own
style for colormaps during our study. P1 and P7 who lacked expe-
rience with colormaps at all acknowledged that it was “very clear
how color can work and how it can’t” (P1) by the end of the study.
P7 described Cieran as being “insightful and educational for [them],
and understanding my taste and preferences for general communi-
cation,” especially when making their pairwise choices. While P6

did not indicate known prior preferences and had some experience
with conventional multi-hue colormaps to visualize astronomical
data, they would go on to only select colormaps with low contrast
values that they described as “monochromatic” or “subdued” and
indicated that “simplicity” was visually appealing to them.

These observations indicate that in addition to reducing the work
required to find effective designs, active preference learning tools
like Cieran can help people develop a ‘taste’ for what they are seek-
ing in the first place. This design exploration phase may also be
interpreted through the lens of traditional visual data exploration.
Different colormaps highlight different features in data [13, 57, 70].
Using active preference learning tools like Cieran, people can intel-
ligently explore many visualization alternatives, each optimized for
highlighting different data patterns. Although analysts may even-
tually end up finding a version that looks ‘just right, we speculate
that much as datasets are often represented using multiple chart
techniques, analysts may benefit from using multiple colormaps.

7.3 Diverse Inclinations Toward Agency

Effective human-AI collaboration must balance automation with
agency to effectively leverage the strengths of both people and
algorithms [25]. However, this balance may vary across users.

Participants wanted different levels of control over the output
colormaps. Some participants indicated a lack of confidence in judg-
ing the quality of colormapped visualizations. They also questioned
their ability to make internally consistent choices (P3, P6, P9) and
worried about their own biases (E2). These participants expressed a
desire for greater automation such as the system making choices
for them based on patterns in the data. However, they still saw
Cieran as an improvement on tools that only provided a fixed set of
predefined palettes, and noted its efficacy in automating the process
of selecting colormaps instead of manually sifting through online
galleries of options (P4, P5, P6)

On the other hand, some participants wanted more creative con-
trol. For example, P7 asked to see all ranked options to make a
final selection, an available feature in the tool that was not part of
the user study (Figure 2). Some participants desired an interface
to tweak the component colors (P1, E1, P8) or choose the inter-
polation technique (E1, P8). The conflict between the desire for
more automation (e.g., to overcome perceived time or expertise
limitations) and the desire for more control (e.g., to enhance and
refine Cieran’s outputs) across participants offers insight into how
different paradigms for automating visualization design can serve
the needs of divergent target user populations.
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8 FUTURE WORK

Our system is limited by the number of expert-designed colormaps
in the corpus. Furthermore, displays have a limited color gamut.
When colormaps are rotated and/or translated to fit a seed color,
Cieran discards some colormap trajectories because they run out-
side of the gamut and produce colors that many monitors cannot
display. This gamut constraint motivated us to use the Tableau10
color palette when limiting the selection of seed colors in the user
study since colormaps aligned to these colors were well within the
gamut boundaries. Although Tableau10 was designed by a visualiza-
tion expert, we plan to extend the colormap corpus to accommodate
as many seed colors as possible. We also plan to compile a recom-
mended list of ‘good’ seed colors.

Future iterations of Cieran could consider alternative dimensions
of design. At its extreme, the algorithm could leverage techniques
that learn feature functions [31] rather than relying on a prespeci-
fied feature set. However, deep learning approaches will be much
slower and require an order of magnitude more comparison data
to successfully model user preferences. P2, P4, and P5 also raised
concerns about possible tensions between user preferences and
accessibility. While our approach offers a paradigm that can ac-
count for an individual’s color vision dynamically, incorporating
colorblindness simulations and/or measures to Cieran would allow
a more direct path toward addressing accessibility.

Lastly, while Cieran can rank and create variants of both single-
hue and multi-hue colormaps effectively, users should be aware
of performance trade-offs between these colormap categories for
specific data domain tasks, such as spatial data analysis [13] and
model checking [58]. Like many visualization construction tools,
Cieran assumes that its users have an understanding of their target
context, and its algorithms are not guardrails to prevent the con-
struction of potentially inadequate visualizations: it simply acts on
user inputs to help users quickly create visualizations that meet
universal perceptual guidelines. Future iterations of Cieran could
provide additional scenario-driven support, such as automatically
adjusting hue variance based on a set of target tasks or privileging
hues that align with domain conventions in addition to seed colors.

Figure 9: A set of novel colormaps created by Cieran. Each
colormap above was found by Cieran using Algorithm 2 according
to a study participant’s preferences, and voted by the participant to
be the best across the four options shown to them (Section 6.1.4).

Hong, et al.

9 CONCLUSION

To help domain experts customize colormaps optimized to their tar-
get context, our system Cieran leverages active preference learning
to model the aesthetic utility of expert-designed colormap curves
to rank hundreds of design options available to users (§5.3). Cieran
is also able to rapidly find novel colormaps (§5.4) that are highly
useful (§6.2.1). While grounded in expert examples, our system also
processes colormaps to meet known best practices in colormap de-
sign. Specifically, our system leverages a preference-based reward
learning algorithm, reinforcement learning, and a Jupyter Widgets
interface for Python users to optimize their charts in situ, regardless
of which plotting library was used. Our evaluation demonstrated
the efficacy of this paradigm, which entailed asking only a simple
question like “Which chart do you like better?” for optimizing the
look-and-feel of a chart across the complex space of colormap de-
sign. We hope that this work can inspire the development of future
design automation tools for data visualization.
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Cieran: Designing Sequential Colormaps via In-Situ Active Preference Learning

A UNIFORM PARAMETRIZATION OF CURVES
BY ARC LENGTH

A curve can be defined as a parametric function C(t), where ¢ is pa-
rameter point in the continuous interval [0, 1]. Our goal is to find a
discrete and increasing parameter set {ta‘ [ t;]} such that the dis-
tance between any two consecutive coordinates D(C(t]), C(t},,))
is the same.

The following algorithm was also used to design perceptually uni-
form matplotlib colormaps (magma, inferno, plasma, and viridis)
[63]. However, these colormaps utilize simple Euclidean distances
between sampled colors in the CIELAB colorspace. In contrast,
Cieran uses the AEyggo perceptual distance metric [41] for D.

Given an initial parameter set {#, - - - , {5} evenly sampled across
[0, 1], we first compute the cumulative rectified arc lengths at each
t; as follows:

i
s(t) = ) D(C().C(tir)), fori=12.....N
k=1
with the initial condition that:
s(t) =0

Dividing each s (¢;) by the total arc length s(¢y) gives us the
relative cumulative arc length at each parameter point:

and allows §(¢;) and t; to share the same domain [0, 1]. We then
approximate §~1 that satisfies §71(5(t;)) = t; by inversely map-
ping each relative cumulative arc length to a parameter point and
performing interpolation.

Finally, we obtain new parameter points by applying the inter-
polated §7! to evenly spaced values within [0, 1]. Although the re-
sulting outputs {;, - - - , t3,} will no longer be evenly spaced within
[0, 1], their corresponding coordinates {C(ty), ..., C(ty,)} will be
evenly spaced in terms of rectified arc lengths D(C(#;), C(tis1)) =
AE3000(C(t;), C(ti+1)) (Figure 10).
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Figure 10: Profile of a colormap created by Cieran. Each col-
ormap output by Cieran will be smooth, monotonically varying
in lightness and perceptually uniform. The bottom right subplot
represents the perceptual distance between each adjacent pair of
colors in the 256-point continuous colormap. The “flatness” metric
is 1.0 minus the std. dev. of distances divided by total arc length.
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B ADDITIONAL QUALITATIVE FINDINGS

We further explored the robustness of Cieran toward different user-
specified seed colors in our Evaluation. Figure 11 represents the
distribution of 1st and 2nd place votes in the final ranking task
in the study. Each bar corresponds to a colormap category (new,
top-ranked, median-ranked, last-ranked). We can verify that the
majority of 1st and 2nd place votes went to the new and top-ranked
colormaps for every seed color.

However, our study comprised 36 total design sessions, and not
all colors were selected with equal frequency. Bar groups have
been sorted based on the frequency with which that seed color
was selected. Although participants that initialized Cieran with the
bottom two colors (gray and yellow) never gave 1st and 2nd place
votes to median- and last-ranked colormaps, the sample sizes for
these two colors are each one. Beginning from the top color (blue),
each seed color was selected with the following frequency:
blue: 7
teal: 6
green: 6
purple: 5
orange: 4
red: 3
e brown: 3
e gray: 1
o yellow: 1

% of st + 2nd Place Votes for Each Colormap Option by Seed Color

“a

T
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User-Selected Seed Color

Figure 11: Summary of participant rank responses from the
user study as a function of their initial seed color choice.
Cieran performs well across a variety of seed colors.
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