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Abstract

There is untapped cosmological information in galaxy redshift surveys in the nonlinear regime. In this work, we
use the AEMULUS suite of cosmological N-body simulations to construct Gaussian process emulators of galaxy
clustering statistics at small scales (0.1–50 h−1 Mpc) in order to constrain cosmological and galaxy bias parameters.
In addition to standard statistics—the projected correlation function wp(rp), the redshift-space monopole of the
correlation function ξ0(s), and the quadrupole ξ2(s)—we emulate statistics that include information about the local
environment, namely the underdensity probability function PU(s) and the density-marked correlation function M
(s). This extends the model of AEMULUS III for redshift-space distortions by including new statistics sensitive to
galaxy assembly bias. In recovery tests, we find that the beyond-standard statistics significantly increase the
constraining power on cosmological parameters of interest: including PU(s) and M(s) improves the precision of our
constraints on Ωm by 27%, σ8 by 19%, and the growth of structure parameter, fσ8, by 12% compared to standard
statistics. We additionally find that scales below ∼6 h−1 Mpc contain as much information as larger scales. The
density-sensitive statistics also contribute to constraining halo occupation distribution parameters and a flexible
environment-dependent assembly bias model, which is important for extracting the small-scale cosmological
information as well as understanding the galaxy–halo connection. This analysis demonstrates the potential of
emulating beyond-standard clustering statistics at small scales to constrain the growth of structure as a test of
cosmic acceleration.

Unified Astronomy Thesaurus concepts: Large-scale structure of the universe (902); Cosmological parameters
(339); Computational methods (1965); Astrostatistics (1882)

1. Introduction

Galaxy redshift surveys contain a wealth of information about
the cosmological model. Galaxies trace the underlying matter
distribution, and their clustering gives us detailed insight into the
growth history of the universe. Recent spectroscopic surveys,
including SDSS (York et al. 2000) and its extensions BOSS
(Dawson et al. 2013) and eBOSS (Dawson et al. 2015), have
provided impressive constraints on cosmology using galaxy
clustering. Upcoming surveys such as DESI (Aghamousa et al.
2016), the Subaru Prime Focus Spectrograph (Takada et al.
2014), and eventually Euclid (Laureijs 2011) and the Nancy
Grace Roman Space Telescope (Green et al. 2012), will measure
tens of millions of spectroscopic redshifts, allowing for
unprecedented cosmological measurements.

Most of the current state-of-the-art constraints from these
data sets are based on galaxy clustering at large scales. One of
the main probes used to measure the growth of structure in
spectroscopic analyses is redshift-space distortions (RSDs),

anisotropies in clustering induced by galaxy peculiar velocities.
For the scales over which the RSD effect is typically analyzed,
around ∼40–150 h−1 Mpc, the evolution of matter is close to
linear and can be modeled with linear perturbation theory (e.g.,
Alam et al. 2017). While this approach has been very
successful, current and future surveys will be most precise at
much smaller scales, given their requirements on galaxy
number density. It is not currently known how much additional
information exists at these small scales, but recent work
suggests that it is significant and may even exceed the
information content at large scales (Zhai et al. 2019).
Extracting this information requires accurately modeling the
nonlinear dynamics of dark matter down to these scales.
Cosmological N-body simulation have been remarkably
successful at this (e.g., Klypin et al. 2011); however, they are
very expensive to run, and including hydrodynamics is
intractable for complete cosmological inference purposes.
In order to use N-body simulations for cosmological

analysis, we require a galaxy bias model to populate the dark
matter distribution with galaxies (Seljak 2000; Berlind &
Weinberg 2002; Cooray & Sheth 2002; Zheng et al. 2005),
which probabilistically describes the occupation number of
galaxies in dark matter halos as a function of halo mass. The
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simple HOD model reconstructs galaxy clustering to a
reasonable degree of accuracy; however, it has been shown
that occupation has a small but non-negligible dependence on
secondary halo properties, known as galaxy assembly bias (see,
e.g., Wechsler et al. 2006; Croton et al. 2007; Zentner et al.
2014; Wechsler & Tinker 2018). Modeling assembly bias is
critical for obtaining the most accurate cosmological con-
straints, as well as understanding the galaxy–halo connection.

Late-time galaxy clustering analyses have put increasingly
strong constraints on the growth of structure parameter fσ8.
While some of these agree with results from the cosmic
microwave background as measured by Planck (eBOSS
Collaboration et al. 2021; Zhang et al. 2022b), others are in
1σ–4σ tension (e.g., Macaulay et al. 2013; Sánchez et al. 2014;
De Mattia et al. 2021). A series of recent studies focusing on
small scales have also found a few-sigma tension (Chapman
et al. 2021; Lange et al. 2022; Yuan et al. 2022; Zhai et al.
2023), and these agree with the results of weak-lensing studies
(e.g., MacCrann et al. 2015; Leauthaud et al. 2017; Joudaki
et al. 2020). Improving the constraining power from clustering
analyses is important for determining if the tension still holds;
one avenue for doing this is expanding beyond RSD to include
other clustering statistics.

Current cosmological analyses focus on a small set of two-
point statistics of galaxy clustering that are well-understood
theoretically. While these statistics are highly informative, it
has been shown that there is significant additional information
in other nonstandard observables. For instance, Tinker et al.
(2006, 2008) demonstrated that the void probability function
and underdensity probability function contribute complemen-
tary information to two-point statistics, due to their sensitivity
to the environmental dependence of halo occupation. Other
work has demonstrated the constraining power in these and
other related counts-in-cells statistics (Walsh & Tinker 2019;
Wang et al. 2019; Beltz-Mohrmann et al. 2020).

The marked correlation function (Sheth & Tormen 2004) has
also been shown to contain information complementary to that
in standard statistics. White & Padmanabhan (2009) demon-
strated that when using a local density-based mark, the statistic
is useful in constraining the cosmological parameter σ8 by
breaking degeneracies in HOD modeling; White (2016) found
that it is sensitive to modifications to general relativity.
Recently, Szewciw et al. (2022) aimed to optimally constrain
the galaxy–halo connection, and confirmed that including the
marked correlation function, as well as counts-in-cells statistics
and others including the group multiplicity function and group
velocity dispersion, significantly improve constraints on halo
model parameters at fixed cosmology.

In this work, we combine the use of beyond-standard
clustering statistics with the emulation approach. Emulation has
recently been explored as a method for making highly accurate
predictions for cosmology at nonlinear scales while minimizing
requirements on cosmological simulations (Heitmann et al.
2009, 2010; Lawrence et al. 2010). The idea is to first construct
a sparse training set of high-resolution N-body simulations that
span the allowable parameter space. Then a model can be
trained to make fast predictions of the output of the
simulations, or summary statistics of the output, given the
input parameters. This can finally be used in inference to fully
explore the parameter space, essentially interpolating in high
dimensions over the regions between input simulations.
Machine-learning models are often used for this purpose, due

to the need to model such a high-dimensional space and
produce quick predictions.
Cosmological emulators typically aim to predict summary

statistics of the matter and galaxy distributions. Two-point
statistics, namely the power spectrum and its real-space
counterpart the correlation function, are the key observables
used to constrain cosmological models. There has been
significant work emulating the matter power spectrum
(Heitmann et al. 2009; Lawrence et al. 2017; Giblin et al.
2019; Ho et al. 2022). Recent work has extended and improved
upon this approach, such as the incorporation of dynamical
dark energy and massive neutrinos into emulators (Angulo
et al. 2021), and the development of fully differentiable power
spectrum emulators (Spurio Mancini et al. 2021; DeRose et al.
2022). Other emulators predict the galaxy power spectrum
(Kwan et al. 2015; Pellejero-Ibañez et al. 2020; Kokron et al.
2021), and Wibking et al. (2019) recently emulated the galaxy
correlation function along with galaxy–galaxy lensing.
Simulation-based emulators have been used to improve

precision on cosmological parameter constraints from recent
surveys: Miyatake et al. (2021) constrain S8 from the HSC-Y1
and SDSS data using the DARKEMULATOR (Nishimichi et al.
2019). Neveux et al. (2020) apply a Gaussian process emulator
to the BOSS galaxy and eBOSS quasar samples, obtaining
constraints similar to those of SDSS using half the amount of
data. Euclid Collaboration et al. (2019) constructed the EUCLI-
DEMULATOR to predict the nonlinear correction of the matter
power spectrum in preparation for the upcoming Euclid survey;
the improved version (Knabenhans et al. 2021) achieves 1%
accuracy or better for 0.01 hMpc−1� k� 10 hMpc−1.
This work is part of the AEMULUS Project, which uses a suite

of high-resolution N-body simulations expressly designed for
emulation at small scales to improve cosmological constraints.
The previous papers in the project introduce the simulation
suite (DeRose et al. 2019) and construct emulators of the halo
mass function (McClintock et al. 2019a), the galaxy correlation
function (Zhai et al. 2019), and halo bias (McClintock et al.
2019b). The AEMULUS emulator has been used to constrain the
growth rate of structure in the BOSS-LOWZ sample (Lange
et al. 2022) and the eBOSS LRG sample (Chapman et al.
2021), both obtaining nearly a factor-of-two increase in
precision on fσ8 compared to standard measurements at linear
scales. Most recently, the AEMULUS project constructed two-
point function emulators that include models of assembly bias
and deviations from general relativity (GR) to provide
improved precision on the growth rate of structure parameter
from the BOSS survey (Zhai et al. 2023).
In this paper, we extend the work of AEMULUS III (Zhai

et al. 2019) to include emulation of two beyond-standard
observables: The underdensity probability function PU(s),
defined as the probability that a randomly placed sphere has
a galaxy density less than some threshold (e.g., Hoyle &
Vogeley 2004), and the marked correlation function M(s), the
two-point correlation function with galaxy pairs weighted by
their properties (Sheth & Tormen 2004). We extend the HOD
model of AEMULUS III to include a model of assembly bias,
based on the local density. We also incorporate several more
HOD parameters for increased flexibility, as well as a
parameter that scales the velocity field to model deviations
from GR, following AEMULUS V.
This paper is organized as follows: in Section 2, we describe

the N-body simulations and halo occupation distribution model
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used, and in Section 3, we outline the five clustering statistics
we use for inference. We detail our emulation and inference
methods in Section 4, and show the results of recovery tests on
both AEMULUS mocks and an external mock catalog in
Section 5. In Section 6, we discuss the implications of these
results and our conclusions.

2. Simulations and Galaxy Bias Model

In this section, we detail the AEMULUS N-body simulations
that are used as the basis for our emulation (Section 2.1), and
the halo occupation distribution model used to model the
galaxy–halo connection and populate the simulations to
construct mock galaxy catalogs (Section 2.2).

2.1. The Aemulus Simulations

We use the AEMULUS simulations, a suite of 75 high-
resolution N-body simulations (DeRose et al. 2019). They have
a box size L= 1.05 h−1 Gpc with 14003 dark matter particles,
and a mass resolution of ∼3.5× 1010h−1Me (depending on the
cosmology). The training set consists of 40 different wCDM
cosmologies, selected using a Latin hypercube to span the
parameter space. The ranges of the cosmological parameters
are shown in Table 3 of AEMULUS V (Zhai et al. 2023). The
test set is comprised of seven different cosmologies, with five
realizations with different initial conditions for each cosmol-
ogy, totaling 35 test boxes (with a slightly reduced parameter
space compared to the training simulations). We use the
redshift z= 0.55 snapshot for this work. We use the training set
to train our emulator, and the test set to verify its performance
as well as to estimate the sample variance.

Our cosmological model consists of seven parameters: the
matter energy density Ωm, the baryon energy density Ωb, the
amplitude of matter fluctuations σ8, the dimensionless Hubble
constant h, the spectral index of the primordial power spectrum
ns, the dark energy equation of state parameter w, and the
number of relativistic species Neff. These simulations are based
on GR, so we include a scaling parameter γf to capture non-GR
effects; it is defined as the amplitude of the halo velocity field
relative to the wCDM+GR prediction. The parameters of
interest for this work are Ωm, σ8, and γf; we do not expect our
approach to be particularly sensitive to the other parameters
(Zhai et al. 2019), and these are marginalized over. Most
importantly, we are interested in the growth of structure
parameter fσ8, and we parameterize it to be independent of GR
by including the velocity field scaling parameter γf (Reid et al.
2014). We henceforth compute and refer to the growth of
structure parameter as γf fσ8.

2.2. Halo Occupation Distribution Model

To create mock galaxy catalogs from these simulations, we
use the halo occupation distribution to model the galaxy–halo
connection. The HOD framework starts from the assumption
that the number of galaxies N in a given dark matter halo
depends only on the mass of the host halo M, and gives a
probability distribution for N given M: P(N|M). We base our
HOD model on those of Zheng et al. (2005) and Reddick et al.
(2013), which separate the contribution of central and satellite
galaxies, 〈N(M)〉 = 〈Ncen(M)〉 + 〈Nsat(M)〉. The central galaxy
occupation function is modeled as a Bernoulli distribution with

a mean of
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The parameters are defined as follows:Mmin is the mass at which
half of the halos host a central galaxy, Mlogs controls the scatter
of halo mass at fixed galaxy luminosity, α is the power-law
index for the mass dependence of the number of satellites,Msat is
a typical mass for halos to host one satellite, Mcut varies the
cutoff mass in the satellite occupation function, and fmax is the
central occupation fraction of the highest-mass halos. When the
fmax parameter equals unity, in the high halo mass limit, all halos
host galaxies; setting f 1max < adjusts this fraction. This accounts
for bright galaxies missed in target selection—for example, due
to color and magnitude effects, as is the case in the BOSS-
LOWZ sample (Leauthaud et al. 2016). A similar parameteriza-
tion has been used in other analyses (Hoshino et al. 2015; Guo
et al. 2018; Chapman et al. 2021; Zhai et al. 2023).
We fix the number density to n h2 10 Mpc4 1 3= ´ - - -¯ ( ) by

computing Mmin to satisfy this number density after varying the
other HOD parameters. This value is somewhat lower than the
peak BOSS number density, but similar to that of a luminous
red galaxy (LRG) sample, and it is designed to produce a
sample closer to being volume limited; it is the number density
used in the AEMULUS V analysis of BOSS-LOWZ+CMASS
(Zhai et al. 2023). We note that the amplitude of density
fluctuations is degenerate with the galaxy bias to linear order,
so fixing the number density risks artificially breaking this
degeneracy and biasing the results. However, our inclusion of
the fmax parameter effectively allows for flexibility in the
galaxy bias, as it sets a ceiling for the central galaxy occupation
of the halo field. This has been shown by Chapman et al. (2021;
Section 4.2): with a fixed number density emulator, they
demonstrate that fixing f 1max= results in a bias in the recovered
halo velocity field rescaling parameter γf, while freeing fmax
eliminates this bias. Chapman et al. (2021) also perform a test
of the Alcock–Paczynski scaling effect (Alcock & Pac-
zyński 1979; Section 3.6), which impacts the number density,
and find that this change has a negligible effect on final
constraints. Additionally, in our target sample, BOSS CMASS
and LOWZ, the number density is well measured: we estimate
the variation in number density using the BOSS QPM mocks,
and find that the fractional uncertainty is 0.43%. To test that
this small uncertainty does not affect our results, we construct
mocks with 1% greater and lower number density than that at
which the emulator is constructed; we find that the recovered
parameters shift by only ∼0.25σ, and none more than 1σ. We
thus conclude that fixing the number density while having a
free fmax in our emulator should allow for unbiased inference of
cosmology.
We include three additional parameters in our HOD model

related to halo occupation, following Zhai et al. (2019). In
addition to the parameter γf described in Section 2.1 that
rescales all halo velocities, we include velocity bias parameters
for galaxies relative to the virial velocity of their DM halo σhalo.
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We define vbc as the velocity bias of central galaxies, which
rescales the velocity of centrals σcen relative to that of host
halos as σcen= vbc σhalo. The velocity bias of satellite galaxies
vbs is defined in the same way as vbc. We also include a
concentration parameter relating satellite and halo concentra-
tions, where the concentration c is defined as the ratio between
the halo outer radius and the scale radius (which depends on the
halo density profile). We define the concentration ratio cvir as
the ratio between the concentration of satellites and DM halos,
cvir= csat/chalo.

We extend this standard HOD model to take into account the
dependence on properties other than just the host halo mass;
this secondary dependence is known as assembly bias. Here,
we use the three-parameter assembly bias model of Walsh &
Tinker (2019), which includes a dependence on the local dark
matter density around a halo, because we might expect the
external environment of halos to play a role in galaxy
formation. Specifically, we define δ as the relative density in
a sphere of radius 10 h−1 Mpc around a halo center. The
assembly bias model adjusts the minimum halo mass needed to
host a central galaxy, Mmin, to a threshold Mmin¢ based on the
local density. It is defined as

M M f1 erf , 3min min env
env

env

d d
s

¢ = +
-

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

( )

where fenv controls the strength of the environmental depend-
ence, δenv is the density threshold at which to move around
satellites, and σenv controls the sharpness of the transition
between overdense and underdense regions. A value of fenv> 0
means that a halo in a higher-density environment requires a
higher mass to host a central galaxy, and a halo in a lower-
density environment needs a lower mass, effectively moving
galaxies from high- to low-density regions. Conversely,
fenv< 0 moves galaxies from low- to high-density regions.
Setting fenv= 0 turns off assembly bias.

After using the HOD to populate the simulation boxes with
galaxies, we input redshift-space distortions. We do this by
projecting the real-space positions along one of the axes xr into
redshift-space positions xs:

x x z
v

H z
1 , 4s r= + +( )

( )
( )

where z is the redshift of the simulation, v is the velocity of the
galaxy along axis xr, and H(z) is the Hubble parameter at that
redshift for the given cosmology.

The HOD parameter ranges we use are the same as in
AEMULUS V (Zhai et al. 2023), shown in Table 3 of that work.
We populate each of the 40 training boxes with 100 unique
HOD models, chosen using the Latin hypercube method
(Heitmann et al. 2009) with a total of 4000 samples. We
populate the test boxes with another independent set of 100
HOD models, from a separate 100 sample draw from a Latin
hypercube (it should be noted that, for the test set, we use the
same 100 models to populate each of the 35 boxes, while for the
training set every model is different). This results in a training set
of 4000 catalogs and a test set of 3500 catalogs for the emulator.
(We found that two of the 4000 training mocks resulted in
unphysical values of clustering statistics and discarded these
from our training set.) For the recovery tests, we use a subset of
this test set consisting of 70 catalogs, with 10 unique HOD
models per cosmology (complete recovery tests on all 3500

models would be both expensive and repetitive, but we do use
the additional models for select tests as well as for sample
variance estimation). Our complete model has seven cosmology
parameters plus γf, seven HOD parameters, and three assembly
bias parameters, for a total of 18 free parameters. These are the
parameters that will be the inputs to our emulators and that we
will later infer through Markov Chain Monte Carlo, based on the
measured observables.

3. Observables

The goal of this work is to investigate the information in
small-scale clustering using both standard statistics and other,
beyond-standard observables that may contain important
information. (It should be noted that we use the words
“observables” and “statistics” interchangeably in this work.)
The standard observables we use are:

1. The projected correlation function, wp(rp) (Section 3.1);
2. The monopole of the two-point correlation function, ξ0(s)

(Section 3.2); and
3. The quadrupole of the two-point correlation function,

ξ2(s) (Section 3.2).

The beyond-standard observables we include are:

1. The underdensity probability function, PU(s)
(Section 3.3); and

2. The marked correlation function, M(s) (Section 3.4).

We discuss the covariances between these statistics in
Section 4.2. The statistics measured in the given bins are shown
in Figure 2 (circles in top panel), for the 3500 test set models.

3.1. The Projected Correlation Function, wprp

The two-point correlation function is defined as the excess
probability above a Poisson random distribution that two
galaxies are separated by a given distance r. In practice, we
work in redshift space with vector distance s, defining
s= s2− s1 and l= (s1+ s2)/2. We measure the two-dimensional
correlation function ξZ(rp, π) on a grid, where the subscript Z
denotes redshift-space, π is the transverse separation, and rp is
the line-of-sight separation, defined as

s l
l

s sr, . 5p
2 2p p= = -

·
∣ ∣

· ( )

Then, the projected correlation function is

w r d r2 , . 6p p
0

Z pò p x p=
¥

( ) ( ) ( )

In practice, we cut off the integral at a scale of maxp =
h40 Mpc1- . This choice of a somewhat low maxp leaves wp(rp)

sensitive to RSDs in the two-halo term. However, this
preserves some cosmological information, and in any case, it
is consistent in the constructed emulator, so it will not lead to a
bias in parameter recovery.
We must use an estimator to measure the correlation function

in data. We use the natural estimator (Peebles & Hauser 1974),

r
DD

RR
, 1, 7px p = -( ) ( )

where DD is the number of data–data pairs in an (rp, π) bin, and
RR is the number of random–random pairs in a uniform
random catalog of the same size as the data, each normalized
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by the total number of galaxy pairs in the respective catalog
pair. Because we are working with periodic simulation boxes in
this analysis, we can analytically compute the random–random
(RR) term and only have to numerically compute the DD term.
We note that the DR term cannot be analytically computed, so
to avoid needing a random catalog, we do not use a lower–
variance estimator such as the standard Landy & Szalay (1993)
estimator. As there is no complex window function to introduce
biases or additional noise, and we are doing inference using
simulations rather than model comparison, the natural estimator
should be sufficient.

We measure wp(rp) in nine logarithmically spaced bins
between rp= 0.1 and 50 h−1 Mpc. We use the software package
corrfunc (Sinha & Garrison 2019, 2020) to compute this
observable.

3.2. The Two-point Correlation Function Multipoles, and ξ0(s)
and ξ2(s)

We also measure the multipoles of the redshift-space
correlation, now defining the coordinates s= |s| and
μ= rp/s:

s
ℓ

L s d
2 1

2
, , 8ℓ ℓ

1

1

Zòx m x m m=
+

-
( ) ( ) ( ) ( )

where Lℓ is the Legendre polynomial of order ℓ (and ℓ indexes
the multipole). Most of the information is contained in the few
lowest-order multipoles, so for this analysis, we use only the
monopole ξ0(s) and the quadrupole ξ2(s). We use the Peebles &
Hauser (1974) estimator as in the previous section to measure
the correlation functions in practice.

For ξ0(s) and ξ2(s), we use the same nine bins as we did for
wp(rp), between s= 0.1 and 50 h−1 Mpc, and we use 15 μ bins.
We use corrfunc (Sinha & Garrison 2019, 2020) and
halotools (Hearin et al. 2017) to compute these statistics.

3.3. The Underdensity Probability Function, P sU ( )
The first beyond-standard statistic we use in our analysis is

the underdensity probability function, PU(s) (e.g., Hoyle &
Vogeley 2004). PU(s) is defined as the fraction of randomly
placed spheres that are underdense compared to some threshold
density. This is a more robust metric to measure than the void
probability function, which uses a threshold of zero and is more
sensitive to issues such as the angular selection function, shot
noise, and fiber collisions. We can write PU(s) as

P s
N

n s n
1

, 9
i

N

iU threshå= <( ) ( ( ) ) ( )

where i indexes the N spheres, ni(s) is the number density of
galaxies in sphere i with radius s, 1() is an indicator function that
is 1 if its argument is true and 0 otherwise, and nthresh is the
threshold number density. We choose N= 106 and
n n0.2thresh = ¯, where n̄ is the mean number density of the
mock; this is the same value chosen by Hoyle & Vogeley (2004),
which is slightly denser than the mean underdensity of large
voids in the 2dF Galaxy Redshift Survey (Colless et al. 2003).

The PU(s) does not vary significantly at small scales
(s 5h−1 Mpc) across different cosmology and HOD models
(see the sample variance at small scales in Figure 2), so these
scales are not as useful for parameter inference. Thus, we use

nine linearly spaced radii between s= 5 and 45 h−1 Mpc. To
compute the statistic, we modify a standard k-d tree code11 to
work on a periodic box.12

3.4. The Marked Correlation Function, M s( )
The other beyond-standard statistic we investigate is the

marked correlation function, M(s) (Sheth & Tormen 2004). M
(s) is a generalization of the two-point correlation function with
each galaxy weighted by some mark m. It is defined as

M s
N s m

m m
1

, 10
ij

i j
p

2å=( )
( ) ¯

( )

where the sum is over all pairs with separation s= sij, Np is the
number of galaxy pairs at s, and m̄ is the mean of the marks.
Following White & Padmanabhan (2009), we choose the marks
to be a function of the galaxy number density ρi around galaxy
i, computed within a sphere of radius 10 h−1 Mpc. Specifically,
we use a mark of

* *
mi i

nr r r r= + +[ ¯ ( )] , where r̄ is the
mean density, following White (2016) and Satpathy et al.
(2019). This mark tends to unity for r r~ ¯ , is less than unity
for r r> ¯ , and is greater than unity for r r< ¯ , serving to
upweight underdense regions and downweight overdense
regions. The parameters ρ* and n control the sharpness of
the transition. We test a grid of ρ* and n values and choose the
values that balance two criteria. We first select three unique
cosmology+HOD models that have a minimal distance
between their measured wp(rp) values. We then measure M(s)
for these catalogs on a grid of varying ρ* and n values, and see
which values maximize the distance between their M(s) values,
compared to the variance of the entire test set. The idea is that
we want M(s) to discriminate between models that are
indistinguishable with just wp(rp). We also want to maximize
the variance of the M(s) values overall, so that the predictions
can be better distinguished. These criteria prefer different
directions along the ρ* and n axes, and we choose the values
that optimally balance both of them: n= 1 and

*
8r r= ¯ .

We measureM(s) with the same binning we did wp(rp), ξ0(s),
and ξ2(s), from s= 0.1 to 50 h−1 Mpc. We compute the marks
using our modified k-d tree code, and use corrfunc (Sinha &
Garrison 2019, 2020) to compute the M(s).

4. Methods

To perform our analysis, we first construct a Gaussian
process emulator for each observable, as explained in
Section 4.1. Our inference will require the covariances between
the observables and bins; we describe this computation in
Section 4.2. We finally perform the inference using our
emulator in combination with Markov Chain Monte Carlo,
discussed in Section 4.3.

4.1. Gaussian Process Emulation

We use a Gaussian process to emulate the function relating
the input cosmological, HOD, and assembly bias parameters to
the observables. A Gaussian process is a collection of random
variables for which any finite subsample is Gaussian

11 https://github.com/jtsiomb/kdtree
12 https://github.com/kstoreyf/clust
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distributed. It can be described as a multivariate normal
distribution generalized to infinite dimensions. Here, we follow
the notation of Rasmussen & Williams (2006); a full discussion
of GPs can be found in that text.

Given a training set with Ntrain inputs, each with Nparam

features x and a scalar output y, we can construct a design
matrix X of shape (Nparam, Ntrain) and a target vector y of length
Ntrain. We also have a test set with Ntest inputs x* from which
we can similarly construct a design matrix X* and a target
vector y*. We assume that these observations can be described
by a function f, such that y= f (x)+ ò, where ò is a noise model
given by 0, n

2s~ ( ).
The Gaussian process is a function f (x) relating the input

parameters to the output targets. We take it to have zero mean
without loss of generality, and a covariance of x xk , ¢( ), described
by a kernel function k. Extending this to our full design matrices
for the training set and including the noise model, the covariance
on the targets becomes y K X X Icov , n

2s= +( ) ( ) . We can
define the joint distribution of the training target values y and the
function evaluated at the test inputs f* as

*
*

* * *

y
f

K X X I K X X
K X X K X X

0,
, ,
, ,

, 11n
2s~ +

 ⎜ ⎟⎡
⎣

⎤
⎦

⎛

⎝
⎡
⎣⎢

⎤
⎦⎥

⎞

⎠

( ) ( )
( ) ( )

( )

where K(X, X*) is the covariance matrix of the training and test
set inputs, and the other covariances are defined similarly.

Then we can define the predictive function f* as

* * *
f y f fX X, , , cov , 12~ ∣ ( ¯ ( )) ( )

where the mean
*
f̄ is defined as

* *f yK X X K X X I, , 13n
2 1s= + -¯ ( )[ ( ) ] ( )

and the covariance cov(f*) as

* *

* *

f K X X

K X X K X X I K X X

cov ,

, , , . 14n
2 1s

=

- + -

( ) ( )
( )[ ( ) ] ( ) ( )

Next, we must choose our kernel function, which describes
the expected properties of the function we are trying to learn.
We assume the kernel to have only a dependence on the
distance between the inputs in parameter space, x xr = - ¢∣ ∣ (
i.e., a “stationary” kernel). We test common kernels and
combinations, and choose the one that performs the best on our
test set:

k r k r k r k r , 15exp const M3 2= +( ) ( ) ( ) ( ) ( )

where k rexp ( ) is the exponential squared kernel,

k r
r

l
exp

2
, 16exp

2

2
= -⎜ ⎟

⎛
⎝

⎞
⎠

( ) ( )

kconst is a constant kernel,

k r c, 17const =( ) ( )

and kM3/2 is a special case of the general Matérn kernel with
3

2
n = ,

k r
r

l

r

l
1

3
exp

3
, 18M3 2 = + -⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )

where l is a characteristic length scale, and c is a constant.
We train the GP on our set of training catalogs to determine

the 2 Nparam+ 1 kernel parameters (the length scale l for each
input parameter for each of the kexp and kM3/2(r) kernels, and

the constant c for the kconst kernel) that result in the
maximization of the log marginal likelihood:

y y yp X K I

K I
n

log
1

2
1

2
log

2
log 2 . 19

n

n

2
1

2

s

s p

= - +

- + -

-
⎛

⎝
⎞
⎠

∣ ) (

∣ ∣ ( )

We perform this optimization using the L-BFGS-B solver
(Fletcher 1987) through scipy. We can then use these
optimized parameters to evaluate the kernels in Equation (12),
and use it to predict the target value for our test set inputs.
We train a separate GP model for each bin of each

observable. To perform the Gaussian process computations,
we use the george code (Ambikasaran et al. 2016), which is
optimized for large data sets.

4.2. Covariance Matrix Construction

To perform inference using our emulator, we require a
covariance matrix describing the correlations between the
observables, as well as between the bins of a single observable.
This covariance includes both the uncertainties introduced by
the emulator, contained in Cemu, and the sample variance of the
data on which we are performing parameter recovery, Cdata. We
combine these into the total covariance C that we will use in
our likelihood function (see Section 4.3),

C C C . 20emu data= + ( )
We define the overall emulator performance covariance Cperf

as the combination of both the intrinsic emulator prediction
error (Cemu) and the covariance of the data on which the
emulator is tested, Ctest, so to obtain Cemu we must subtract off
Ctest:

C C C . 21emu perf test= - ( )

We obtain Cperf by computing the covariance of the fractional
error between the emulator predictions and the measurements
on the data (and then smoothing this matrix to handle noise
from our limited number of simulations, as described below).
The performance covariance on our test set with Ntest= 3500
observations indexed by n is then

f fC
N

1

1
, 22

n

N

n nperf
test

test

å=
-

· ( )

f
y y

y
, 23n

n n

n

,pred ,test

,test

=
-

( )

where y is a vector of the measured observables (which can be
a concatenation of multiple observable vectors). It is worth
noing that we know the expectation value of these fractional
errors should be zero, so we assume f 0n =¯ when computing
the covariance. The computedCperf is visualized in Figure 1(b),
for all five observables.
We compute Ctest using the AEMULUS test set, which has

Ncosmos= 7 different cosmologies c, and Nbox= 5 boxes
(realizations) b for each cosmology. These are each populated
with H= 100 HOD models h. We utilize the fact that we have
multiple boxes per cosmology to estimate the sample variance.
We choose a single HOD model in the middle of the parameter
space, and for each cosmology populated with this HOD, we
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compute the mean value of the observable yc̄ of the Nbox boxes:

y y
N

1
. 24c

b

N

b c
box

,

box

å=¯ ( )

We compute the fractional deviation from this mean db,c for
each of box of a given cosmology:

d
y y

y
. 25b c

b c c

c
,

,=
- ¯
¯

( )

We finally compute the covariance of these deviations from the
mean:

d dC
N N

1

1
. 26

b

N

c

C

b c b caemulus
box cosmos

, ,

box

åå=
-

· ( )

The computed Caemulus is shown in Figure 1(a).
When we compute Equation (22) used in Cperf , the

observable values yn,test we use are the mean value of the
observable over the Nbox test boxes for each cosmology. This
essentially increases the volume of the test set by a factor of
Nbox, and uncertainty scales in inverse proportion to volume
(Klypin & Prada 2018). Thus, in order to combine Cperf and
Ctest, we need to scale the latter to match the effective volume
of the former:

C
N

C
1

. 27test
box

aemulus= ( )

We can now use Ctest to construct Cemu, and combine it with
Cdata to obtain the total covariance. For our tests, we are
performing parameter recovery on the AEMULUS test simulations
themselves, so we have Cdata=Ctest, and we get simply
C Cperf= . In future applications to real data, we will need to
include both Cdata and Ctest in the covariance matrix construction.

We do use the AEMULUS covariance Ctest as input to the
Gaussian process emulator. The GP requires an estimation of
the uncertainty on the training set. As the training and test sets
are from the same simulation suite, but the test set contains
multiple realizations of the same cosmology, we use the test set
to estimate the training set uncertainty. We use the diagonal
elements of Ctest as the variances n

2s in Equation (12).
We perform a smoothing on the total covariance matrix, here

Cperf , to avoid inference issues due to the initially noisy matrix.
Our procedure follows that of Lange et al. (2022), and it has

been shown by Mandelbaum et al. (2013) to give essentially
the same results as applying the Hartlap correction to unbias the
inverse covariance matrix (Hartlap et al. 2007). We first
compute the correlation matrices, with elements given by
C C Cij ii jj , where Cij are the elements of the covariance
matrix. The diagonal elements of the correlation matrix must be
equal to 1, as each element is perfectly correlated with itself,
and the surrounding elements are typically much smaller, so we
start by replacing the diagonal elements with the mean of its
four neighbors. We then apply a basic Gaussian kernel with
width one, to smooth the matrix. Finally, we replace back the
diagonal elements. The smoothed total covariance matrix,
Cperf,smooth, is shown in Figure 1(c). A comparison between
using the smoothed and original covariance matrices for
parameter inference is shown in Appendix A.

4.3. Inference with Emulator+MCMC

We use Markov Chain Monte Carlo (MCMC) to infer the
parameters of the mock catalog given the measured statistics,
using the trained Gaussian process emulator to predict the
statistic at each set of parameters. For the MCMC process, we
use the package dynesty (Speagle 2020), which implements
dynamic nested sampling. Nested sampling is a method for
both obtaining posterior values from a likelihood function and
estimating the Bayesian evidence (Skilling 2006); dynamic
nested sampling improves upon this by varying the number of
live points used in the computation (Higson et al. 2019). While
we do not directly make use of the evidence in this work,
dynamic nested sampling is faster and more robust than other
standard MCMC approaches. We use an evidence threshold of
dlogz = 0.1, and check that our chains are converged with
respect to this threshold. We also perform extensive consis-
tency and convergence tests for other MCMC hyperparameters.
For the HOD and assembly bias parameters, as well as γf, we

use a uniform prior given by the training set parameter range,
with an additional constraint on Mcut to be above 1011.5Me.
For the cosmological parameters, we use a multidimensional
Gaussian prior defined by the mean and covariance of the
cosmology training set parameter space (see Figure 3 in
DeRose et al. 2019). We also try a flat prior and a high-
dimensional ellipsoid for the cosmological parameters, and find
no change in the results; we choose to use the multidimensional

Figure 1. Correlation matrices for visualizing the covariance matrices used in the analysis, for all five observables. The panels show correlation matrices constructed
from (a) the AEMULUS sample covariance Caemulus, (b) the emulator performance covariance Cperf , and (c) the performance covariance with a Gaussian smoothing
Cperf,smooth. The color bar shows the correlation quantity C C Cij ii jj , where Cij are elements of the correlation matrix.
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Gaussian to improve the stability and speed of the
MCMC runs.

We use a likelihood  of

y y

y

y y

y
Cln

1

2
, 28

pred test

test

1 pred test

test

= -
- --



⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

where C is the covariance matrix described in Section 4.2, and
y is a vector containing the concatenated observables. Here,
ytest are the statistics measured directly on the test set mock
catalog on which we are performing parameter recovery,
averaged over the Nbox= 5 boxes per cosmology and HOD
model, and ypred are the emulator predictions for the
observables at the given point in parameter space.

5. Results

In this section, we present the results of our emulation and
inference on the AEMULUS test suite. We show the emulator
performance (Section 5.1), the results of recovery tests on a
single test model (Section 5.2) and a larger test sample
(Section 5.3), and an analysis of the scale dependence of our
results (Section 5.4).

5.1. Emulator Performance

The performance of the emulators is shown in Figure 2, for
each of the observables for all 700 test models. For each test
cosmology, we compute the statistic for each of the Nbox= 5
realizations, and take the measured statistic to be the mean of
these. We compute the fractional error between the predicted and
measured statistic, and define the error as the symmetrized inner
68% error. We compare this error to the sample variance, the
square root of the diagonal of Caemulus for the given observable,
as well as this uncertainty scaled by Nbox . This scaled
uncertainty takes into account the increased precision provided
by comparing to the mean over multiple boxes; the covariance
matrix scales as the inverse volume, as explained in Section 4.2,
and averaging over multiple boxes effectively increases the
volume, so we obtain this factor of Nbox (the result is equivalent
to taking the square root of the diagonal of Ctest).

Our emulators achieve very good accuracy across most
observables and scales. For wp(rp), we obtain ∼1%–4%, with a
minimum at intermediate scales. For ξ0(s), we achieve ∼1%–

2% error on scales between 1 and 10 h−1 Mpc, and up to 13%
for the smallest-scale bin. ξ2(s) has the lowest performance, due
to high noise levels, with errors ranging from ∼5% to order
unity depending on the scale. For PU(s), we see extremely
small errors of <1% below 20 h−1 Mpc scales, due to the low
variation of the statistic there; up to 35 h−1 Mpc, we achieve
∼1%–7% error, with the error increasing even more for the
highest-scale bins. Finally, for M(s), we achieve 1%–3% error
on scales below 1 h−1 Mpc, and <1% error at larger scales.

At most scales, we see that our emulator error is comparable
to the raw sample variance of the AEMULUS simulations
adjusted for the effective volume. The exception is wp(rp),
whose error remains a bit larger than this level at all scales;
however, this is not entirely unexpected, as the emulation
performance error includes both the sample variance and the
emulator prediction error.

5.2. Parameter Inference Recovery Tests on a Single Mock

We apply our approach with our GP emulator and MCMC
to obtain the posterior distributions of the 18 parameters for a
given cosmology+HOD model. As we have five realizations of
each test cosmology, we populate all of these with the same
HOD and measure the desired statistics on each of them, and
then take the mean of these to obtain the measured statistic.
These are the values that we compare to the emulator prediction
at each step of the MCMC chain. The AEMULUS test volume
summed over the five boxes is N h1.05 Gpcbox

1 3´ =-( )
h5.79 Gpc1 3-( ) . This is significantly larger than the volume of

the highest-redshift shell used in AEMULUS V: h1.63 Gpc1 3-( ) ,
based on the redshift range 0.48< z< 0.62 and the CMASS
+LOWZ area of 8447 deg2. For that analysis, the CMASS data
was subsampled to a number density of h2 10 Mpc4 1 3´ - - -( ) ,
the same as used here, and thus we can make a direct
comparison of the volumes. The larger volume of the AEMULUS
test boxes by a factor of a few suggests that these are a
meaningful test of the precision we will achieve when we apply
the approach to data.
We start by performing the inference based on each of the

five observables alone. In Figure 3, we show the results on a
single cosmology+HOD model; Figure 3(a) shows key
cosmological parameters, and Figure 3(b) shows key HOD
and assembly bias parameters. We have chosen the latter set of
parameters because they are particularly degenerate with
cosmological parameters. We see that the different observables
have varying effectiveness at constraining the parameters. For
instance, for this example mock, ξ0(s) provides strong
constraints on its own on the cosmological parameters, while
the other statistics constrain them more weakly, though ξ2(s)
provides surprisingly strong constraining power on γf. For the
HOD and assembly bias parameters, PU(s) and M(s) provide
constraining power on fenv, though wp(rp) constrains it even
more strongly, and ξ0(s) constrains vbs well. We also note that,
because our test set HOD parameter space has the same ranges
as our training space, some of the test mocks will have some
parameters near the edge of the parameter space. While this
may slightly affect the robustness of the MCMC chains in those
regions of parameter space, it applies to a small fraction of the
parameters across the mocks and should not affect our overall
results. Additionally, we note that we have applied optimized
smoothing of the posteriors (the default of the getdist
plotting software), and this occasionally leads to posterior tails
that go slightly beyond the edge of the prior space; we check
that the unsmoothed posteriors are entirely within the priors.
Next, we explore the constraining power of combining the

observables when running the MCMC chains. We start with just
wp(rp), and then one at a time add in ξ0(s), ξ2(s), PU(s), andM(s).
The results are shown in Figure 4 for the same model and
parameters as Figure 3. As additional observables are added, we
obtain tighter and tighter constraints on the parameters. In
particular, we can compare the constraints with the three standard
observables to those when including the two beyond-standard
statistics. For the parameters Ωm, σ8,Msat, and fenv, we see a clear
increase in both precision and accuracy when including these
new statistics. This indicates promise for the power of the
beyond-standard statistics to add additional cosmological infor-
mation beyond that provided by typical statistics.
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Figure 2. The accuracy of our Gaussian process emulator predictions for the projected correlation function wp(rp), monopole and quadrupole of the two-point
correlation function ξo(s) and ξ2(s), underdensity probability function PU(s), and marked correlation function M(s). Top panels show the measured statistics (circles),
averaged over Nbox test boxes for each model, and the corresponding emulator predictions (lines) for each cosmology+HOD model. The colors denote different
cosmologies. The middle panels show the fractional error of each of the predictions. The bottom panels show the inner 68% region of the fractional errors (black line),
compared to the sample variance of the simulations (light blue). The sample variance scaled by Nbox adjusts for the effective increase in volume of comparing
emulator predictions to the mean of Nbox measurements.

Figure 3. Recovery tests for a single cosmology+HOD model, using a single observable for each MCMC chain. Contours are shown for (a) key cosmological
parameters and (b) key HOD and assembly bias parameters.
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5.3. Statistical Results of Recovery Tests

We perform this MCMC inference for all 70 of our recovery
test models (7 cosmologies populated with 10 unique HODs
each, averaged over the 5 realizations). We first assess the
accuracy of the recovered parameters by computing the
cumulative distribution function (CDF) of the error on the
inferred parameter (difference between the median and truth),
normalized by the uncertainty, for the 70 recovery test models.
Figure 5(a) shows this CDF for each of the observables used for
inference on their own. We find that, for most of the parameters
of interest, the CDF follows a unit normal distribution, which is
an indication that the recovery is unbiased. (We note that the
CDF is not an ideal statistic to measure bias, as the function

values are dependent on all previous values, but a histogram with
only 70 samples is too noisy to make statements about accuracy.)
The exception is Ωm when using wp(rp) or ξ0(s); we find that the
distribution is biased by ∼0.5σ to lower values of Ωm. There is
also a similar slight bias in the γf fσ8 distribution, which we find
to be from its dependence on Ωm. This bias is small but
surprising, as these are both such standard statistics.
To see if the issue could be a result of small number

statistics, we run a larger set of recovery tests with wp(rp) as the
sole observable (including all bins), using the full 700 model
test suite (each of the seven cosmologies populated with the
same 100 HOD models). We compute the CDF of these 700
results and see that the same bias toward low Ωm values
persists. With this larger sample, the histogram is less noisy,

Figure 4. Recovery tests for a single cosmology+HOD model, successively adding in the observables. Contours are shown for (a) key cosmological parameters and
(b) key HOD and assembly bias parameters.

Figure 5. Cumulative distribution functions (CDFs) of the differences between the true parameter value and the median of MCMC chain samples, divided by the
uncertainty σ. Panel (a) shows CDFs for each of the observables on their own, and panel (b) adding in the observables successively; panel (b) excludes the two largest-
scale wp(rp) bins from all combinations, due to a bias discussed in the text. The dashed line shows the CDF of a unit normal distribution for comparison.
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and the bias is small but clearly visible in the histogram as well.
One possibility is that there are degeneracies with other
cosmological or HOD parameters that contribute to wp(rp) and
ξ0(s) favoring lower Ωm values, but this is difficult to
disentangle.

We further investigate this issue by excluding successively
larger scales of wp(rp) and ξ0(s) from our analysis, as large-
scale clustering should be the most affected by Ωm. We find
that removing the two largest-scale bins, above 12.5 h−1 Mpc
(with logarithmic averages of 17.7 and 35.4 h−1 Mpc) results in
an unbiased CDF of recovered Ωm values. We check the effect
of this bias on the precision of the recovered parameters by
rerunning our recovery tests excluding the two largest-scale
bins for wp(rp) and ξ0(s) (but including these bins for the other
observables that use them). We find that, when excluding these
scales, the precision we obtain on Ωm using wp(rp) decreases by
∼ 13% and using ξ0(s) by 16% (averaged over 70 test models);
this is similar when using the three standard statistics, and
reduces to a precision decrease of only 9% when including all
five statistics. For the quantity γf fσ8, removing these two bins
does significantly decrease the precision by 49% when using
only wp(rp), but for ξ0(s), this only decreases it by 4%. For the
three standard statistics, the decrease is 8%, and for all five, it is
only 4%. This corresponds to very small changes to our main
target result, the relative increased precision when including the
beyond-standard statistics compared to the standard statistics,
showing that our overall results are robust to this bin exclusion
choice. The exception is that excluding these two large-scale
bins actually increases the relative precision on Ωm, perhaps
because the beyond-standard statistics, likely M(s), are
capturing the large-scale information that we are excluding
from wp(rp) and ξ0(s).

For the rest of the results in this paper, except where noted,
we exclude the two largest-scale bins for both wp(rp) and ξ0(s).
We show the CDF when using combinations of successively
more observables in Figure 5(b). We find that these distribu-
tions are now generally unbiased for wp(rp), as well as other

parameter combinations that include wp(rp) and ξ0(s), for all of
the cosmological parameters; the CDFs generally follow the
unit normal distribution. Both Ωm and γf fσ8 show distributions
slightly tighter than the normal distribution, indicating that we
have overestimated our errors. This means that our errors may
be conservative, but the difference is small and we do not
expect this to have significant effects on our results.
We next show our results on the precision of the recovered

parameters. For each parameter, we compute the uncertainty σ
on the posterior, defined as the symmetrized inner 68%
confidence region, marginalized over the other parameters. In
Figure 6(a), we show the inverse uncertainty 1/σ for each of
the key cosmological parameters, including the combined
quantity γf fσ8, averaged over all 70 test models, when using
each of the statistics alone for the inference. It should be noted
that larger bars indicate tighter constraints. We compare this to
the uncertainty obtained when just using the prior. We see that
all of the statistics on their own provide additional constraining
power over the prior, for all parameters: PU(s) provides the
most information for Ωm; all the statistics besides ξ2(s)
constrain σ8 similarly; and ξ0(s) constrains γf and γf fσ8 the
most strongly. The amount of information from wp(rp) is
relatively high compared to that found by other analyses (e.g.,
Lange et al. 2022); we find that this is largely due to our choice
to integrate out to only 40 h−1 Mpc along the line of sight,
which preserves information in RSDs. We test integrating out
to 80 h−1 Mpc and find much less information content in wp(rp)
alone, though it still contains some. For the beyond-standard
statistics, it is noteworthy that PU(s) and M(s) do provide
information on their own, in particular on Ωm and σ8.
We next perform recovery tests adding in each observable

one at a time for the full test suite. We show the results in
Figure 6(b), again for the mean of 70 test models. We see that
the inverse uncertainty monotonically increases as we add in
additional observables. Our main result is that the constraining
power increases significantly between using only the combined
standard observables, wp(rp)+ξ0(s)+ξ2(s) (blue), and when

Figure 6. The precision of recovery tests for key parameters, averaged over the 70 test models. The quantity 1/σ is the inverse uncertainty on the posterior
marginalized over the other parameters, with σ defined as the symmetrized inner 68% region. The precision using only the prior is shown by the gray dashed line.
Black bars show the uncertainty on 1/σ using bootstrap estimation. Panel (a) shows the precision for tests with single observables, and panel (b) for successively
adding in each observable.
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adding in the beyond-standard statistics as well, wp(rp)+ξ0(s)+
ξ2(s)+PU(s)+M(s) (red). The change in precision for these two
cases tells us the amount of additional information contained in
these new statistics: The precision increases (defined as the
fractional decrease in the uncertainty σ) by 27% for Ωm, 19%
for σ8, 13% for γf, and 12% for the combined growth of
structure parameter γf fσ8. These are significant increases, given
the current precision of cosmological measurements.

5.4. Scale Dependence

We investigate the dependence of our parameter constraints
on the scales used in the inference. To analyze the contribution
of small scales, we vary the minimum scale bin used and rerun
the MCMC chains, for each parameter individually as well as
the five-observable combined constraint. The results are shown
in Figure 7, averaged over the 70 test models. We note that the
PU(s) uses a different binning scheme than the other
observables, so it is only shown on the scales on which it is
computed, 5–45 h−1 Mpc, and when it is included in combina-
tion with the other observables, it results in an overall shift in
precision below 5 h−1 Mpc. For this reason, we add the PU(s)
and M(s) in the opposite order as the rest of this paper. We also
include using just the combination ξ0(s)+ ξ2(s), as many
analyses do. Similarly, we run recovery tests varying the
maximum scale. The 1/σ lines for the minimum and maximum
scale variation will cross each other at a particular scale; this
scale is marked by a vertical bar and indicates the scale at
which equal information is provided by scales smaller than and
larger than this scale. Thus, a vertical bar far in the small-scale
regime means that most of the information comes from small
scales (as only the smallest scales are needed on their own to

equal the information content in all the larger scales), and
conversely, a vertical bar at large scales means that most
information comes from large scales.
As we include smaller scales, the precision increases mostly

monotonically. Using the vertical bars described above, we find
that, for γf fσ8, using the five-observable constraint, scales from
0.1 to 6 h−1 Mpc provide as much information as the scales
6–50 h−1 Mpc. We find that the information content continues
to increase as we include smaller scales, until a scale of
∼0.5 h−1 Mpc. This is a remarkable finding, given that
previous analyses either have not pushed to scales this small
or did not find as significant of a contribution from small
scales; we discuss this further in Section 6.
To understand this result, we look at the constraints from

individual observables for γf fσ8. For ξ0(s), half of the
information comes from scales below ∼2.25 h−1 Mpc; for M
(s), below ∼5.75 h−1 Mpc; and for wp(rp), below ∼15h−1 Mpc.
Thus, ξ0(s) is driving the large amount of information on γf fσ8
at small scales, with a contribution from M(s). We also look at
the constraints on the individual key cosmological parameters
Ωm, σ8, and γf; for the five-observable constraint, half the
information on σ8 comes from scales below ∼ 3.3 h−1 Mpc; on
f, below ∼ 6.5 h−1 Mpc; and on Ωm, below ∼ 10 h−1 Mpc.
Thus, the small-scale constraints on γf fσ8 are driven mainly by
the ability of small scales to constrain σ8. Looking at the
commonly used statistic combination ξ0(s)+ ξ2(s), we see that
the precision nearly flattens out for scales below ∼10 h−1 Mpc
for Ωm and σ8. Including wp(rp) adds significant constraining
power at small scales for all of the parameters; we discuss this
further below. Finally, adding in PU(s) and M(s) accesses a
significant amount of additional information at smaller scales,
in particular for Ωm and σ8.

Figure 7. The precision of recovery tests as a function of the minimum scale used in the analysis, averaged over the 70 test models. The maximum scale remains fixed
at the maximum bin value. The precision is shown for chains using a single observable, as well as for several multiobservable combinations. The vertical bars indicate
the scale at which half of the constraining power for that observable is in larger scales and half in smaller scales. We note that PU(s) is measured on different scales
than the other observables, from 5 to 45 h−1 Mpc, so at a minimum scale below 5 h−1 Mpc it results in an overall shift in precision.
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Notably, the significant additional constraining power from
adding in wp(rp) to ξ0(s)+ ξ2(s) differs from the findings of
Lange et al. (2022), who found that it only marginally improved
constraints. Given that the effect of wp(rp) is somewhat stronger
for γf and γf fσ8 in our analysis, and Lange et al. (2022) do not
include this velocity field rescaling parameter, it seems that the
increase in constraining power we find is due to the sensitivity of
wp(rp) to velocity information. Indeed, we only integrate out to

h40 Mpcmax
1p = - , while Lange et al. (2022) uses a value of

h80 Mpcmax
1p = - . We perform a test using this larger value

and find that, as expected in this case, wp(rp) does not add much
more constraining power to either γf or γf fσ8. We further
investigate this by fixing the γf parameter in our inference to the
true value for each test mock and rerunning the inference, with
the goal of isolating the effect of this parameter. We find that,
when we do this, the difference between the constraints using
wp(rp)+ ξ0(s)+ ξ2(s) and ξ0(s)+ ξ2(s) only is greatly reduced:
with free γf, dropping wp(rp) leads to a 63% reduction in
precision on γf fσ8, while with fixed γf, it is only a 27% reduction
on γf fσ8 (which in this case is determined only by the precision
on f and σ8). Thus, we conclude that our choice of maxp preserves
significant velocity information that allows wp(rp) to constrain the
growth of structure parameter through its sensitivity to the halo
velocity field rescaling parameter γf. Though this is a plausible
explanation, the information content of wp(rp) being independent
of ξ0(s) and ξ2(s) is still a somewhat surprising result, and the
combination of these statistics should be considered carefully in
future work.

5.5. Recovery Tests on External Models

A key assumption on which our approach relies is that the
HOD model is sufficiently flexible to span the space of observed
data. The HOD is just one way of relating halo properties to the
galaxy distribution, and it incorporates certain (physically and
empirically motivated) assumptions about galaxy formation. This
is notable in relation to perturbation theory approaches, which
require a large number of nuisance parameters to model higher-
order statistics such as the bispectrum (e.g., Philcox et al. 2022),
while the HOD is a relatively compact parameterization that
makes stronger assumptions while showing promise in still being
able to model high-order statistics (e.g., Zhang et al. 2022a). To
check that our HOD model is sufficiently flexible to model our
chosen statistics, we test our approach on a catalog constructed
with a different galaxy formation prescription that incorporates
different assumptions than the HOD, namely Subhalo Abundance
Matching (SHAM; e.g., Kravtsov et al. 2004; Vale &
Ostriker 2004; Conroy et al. 2006). This is an important
validation step before applying our emulators to real data. When
we adapt our emulators for the full data analysis, we will perform
additional tests in this vein to ensure that our framework
encompasses the range of expected galaxy formation scenarios.

For this test, we use mock catalogs generated from the UNIT
simulations13 (Chuang et al. 2019) to check that our framework
generalizes beyond the AEMULUS N-body simulations. The
UNIT simulations have a mass resolution of 1.2× 109 h−1Me
and consist of two pairs of simulations constructed with the
fixed-and-paired inverse-phase technique (Angulo & Pont-
zen 2016). Each simulation has a volume of h1 Gpc1 3-( ) ,
leading to an effective volume significantly larger than the
AEMULUS boxes, so the clustering statistic measurements

should be more precise. To test that our approach is robust to
our use of an HOD model with environment-dependent galaxy
assembly bias, we instead populate the UNIT simulations using
the SHAM approach. SHAM assigns galaxies to subhalos
based on a rank-ordered relation between galaxy mass and
subhalo mass, with some additional parameters to regulate the
scatter, and it is able to reproduce galaxy assembly bias to some
extent. We specifically use the SHAM method of Lehmann
et al. (2016) to generate our UNIT mocks.
For this test, we require a data covariance matrix for the

UNIT mock data, and we use the GLAM Particle-Mesh
simulations (Klypin & Prada 2018) for this purpose. These
simulations have many independent realizations; we use 986
boxes for our covariance estimate. They are all at the same
cosmology; we consider the covariance of the fractional
differences from the mean for each statistic. The GLAM boxes
have a volume of h1 Gpc1 3-( ) , so we rescale the covariance
matrix for the effective UNIT volume. We use the emulator
covariance matrix Cemu described in Section 4.2, add this to the
data covariance, and then perform a Gaussian smoothing on
this total covariance matrix to obtain the final covariance we
use in the likelihood function.
We compute the statistics on the UNIT SHAM mocks in the

same way as for the AEMULUS mocks, first including redshift-
space distortions for the UNIT galaxies. All of the measured
statistics are within 1σ of the mean of the training set mocks.
Still, we find that, when we perform a full MCMC over all the
parameters with the UNIT statistics, some of the parameter
constraints are slightly biased (∼ 1–2σ) when adding the two
beyond-standard statistics to the data vector. We note that we
also encountered a similar issue when attempting a recovery
test using the Uchuu simulations (Ishiyama et al. 2021)
populated with SHAM galaxies. Below, we will show results
based on the UNIT simulation, but the main findings for the
SHAM tests hold for Uchuu as well. This suggests that our
HOD parameter space or parameterization may not be
sufficiently flexible to encompass the details of the SHAM-
distributed galaxies, and that the differences between the HOD
and SHAM galaxies manifest in the beyond-standard statistics
much more than in the standard statistics. This is an important
issue to investigate further in future work.
For our SHAM recovery tests, we thus choose to focus our

constraints on the growth-related parameters. We fix two of the
cosmological parameters, w and h, to their fiducial values
(similar to adopting a CMB prior on them), as they are not part
of the goals of this analysis (nor other small-scale clustering
analyses that use this approach). We leave all other
cosmological parameters and all HOD parameters free in the
MCMC exploration. We also exclude the two largest-scale bins
for wp(rp) and ξ0(s), as these showed a slight bias in the
AEMULUS recovery test results (see Section 5.3). The results of
the tests for the UNIT simulation are shown in Figure 8, both
using just standard statistics and including the beyond-standard
statistics. We find that, in both cases, we can accurately recover
the UNIT cosmological parameters as well as γf. The inclusion
of the beyond-standard statistics results in an increase in
precision of 40% on Ωm, 25% on σ8, 30% on γf, and 17% on
γf fσ8; this is similar to (in fact, even better than) our findings
with AEMULUS recovery tests. We do note that, for some of the
parameters, the results become slightly more biased when
adding in the beyond-standard statistics, but all parameters are
still recovered to within 1σ. This may be related to the13 http://www.unitsims.org
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aforementioned issue with differences between the SHAM and
HOD galaxies that are captured by those statistics. We also test
fixing other combinations of cosmological parameters, and find
that fixing w and Neff (with h and the others free) or fixing w
and Ωb produces results similar to the case shown here. Fixing
more than two of these parameters does not change the results,
so we chose the two-fixed-parameter test as our fiducial case.
While this SHAM test does reveal caveats to our approach, the
results are still promising for the application of this framework
to real data sets.

6. Discussion and Conclusions

We have constructed Gaussian process emulators for galaxy
clustering statistics using the AEMULUS simulation suite,
including the nonstandard statistics the underdensity prob-
ability function PU(s) and the marked correlation functionM(s),
which we expect to contain additional information relevant to
constraining cosmological parameters of interest. We achieve
typical prediction errors of ∼2% with our emulator, depending
on the scale and statistic. Using held-out test simulations, we
perform recovery tests to determine how well we can constrain
the input parameters. We find that including the beyond-
standard statistics significantly increases the precision on the
recovered parameters, by 19% on σ8, 27% on Ωm, and 12% on

γf fσ8. We confirm that our framework is robust to different
simulations and galaxy bias models by testing it on mock
catalogs constructed from the UNIT simulations and the
SHAM method, on which we achieve unbiased constraints
and a similar improvement in precision when including the
beyond-standard statistics.
To follow this proof-of-concept work, we will apply these

emulators to measure the growth of structure in a current
galaxy sample (BOSS or DESI). We expect that our
combination of beyond-standard statistics with small-scale
emulation will improve constraints; for instance, Satpathy et al.
(2019) used the marked correlation function to analyze the
BOSS data and found that their results were limited by
modeling RSD effects on small scales. This analysis will
require a careful treatment of many issues and subtleties in real
data. We will have to handle redshift evolution, by working in
redshift slices with emulators trained at the proper redshift. We
will require a sample constant in number density, both to match
our emulators and because void- and density-based statistics
are particularly sensitive to variations in number density. One
of the main issues when applying to BOSS data will be fiber
collisions, which lead to galaxies without measured redshifts,
producing a nontrivial impact on clustering measurements
especially at small scales (e.g., Zehavi et al. 2002).

Figure 8. Recovery test on the UNIT mock catalog. Constraints are shown for the cosmological parameters and γf when using just the standard statistics (blue), and
when including the PU(s) and M(s) (red); the prior is shown for comparison (gray), and the true parameter values are shown in the dashed gray lines. We keep w and h
fixed, as discussed in the text. The parameters are recovered accurately, with the beyond-standard statistics adding increased precision on the parameters of interest.
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Additionally, we will have to handle survey geometry effects
including edges and bad fields. The underdensity probability
function and the local density-based marks used for the marked
correlation will both be especially sensitive to these issues; we
will apply fiber collision weights to the statistics and volume
corrections to the spheres used for the density computations,
and perform robust tests to ensure that we can recover unbiased
parameters.

The application of this work to the BOSS sample will extend
the project of AEMULUS V (Zhai et al. 2023). The AEMULUS V
analysis used wp(rp), ξ0(s), and ξ2(s), the standard statistics
discussed in this paper, and obtained tight constraints on the
growth of structure parameter fσ8 in three redshift bins. The
analysis obtained a low value of fσ8 compared to Planck
constraints based on a ΛCDM+GR model, adding to a recent
wave of similarly low results based on small-scale clustering
(Chapman et al. 2021; Lange et al. 2022; Yuan et al. 2022).
These studies are also based on standard clustering statistics;
bringing in additional statistics and thus additional constraining
power will allow for clearer tests of internal consistency
between these analyses, as well as testing the demonstrated
tension with Planck results.

There are multiple effects that could be contributing to this fσ8
tension. One is additional baryonic effects that influence galaxy
formation and are unmodeled in the HOD, introducing errors;
while these are unlikely to be relevant at current precision, in
future surveys they may become important. Future work will
incorporate additional flexibility in the galaxy bias and assembly
bias models to test this hypothesis, and this will in turn require
increased constraining power from the data. The complementary
information provided by nonstandard statistics, as shown in this
work, will be important in offsetting this flexibility to obtain
high-precision constraints on fσ8 and help confirm or rule out this
explanation for the fσ8 tension. Another potentially relevant effect
is that of massive neutrinos, which suppress the growth of
structure in a scale-dependent way. The next generation of the
AEMULUS simulations (AEMULUS ν; DeRose et al. 2023) will
incorporate massive neutrinos, and the emulation of nonstandard
statistics will also be important in obtaining precise small-scale
constraints from this updated model.

In this work, we have included a detailed handling of the
covariances between the observables, incorporating both the
data and emulator covariances in our inference. To estimate the
relative contribution of these sources of uncertainty in our
target analysis, we perform a volume-based scaling of the data
covariance of the AEMULUS test boxes (Caemulus) to one of our
target samples, the CMASS high-z bin. We find that this data
covariance is of similar order to the emulator covariance, and
the dominating source of uncertainty depends on the
observable and scale; in either case, they are never more than
a factor of ∼2 different. While this indicates that we are still
theory-limited in some regimes, this is reasonable given the
newness of the emulator approach. A comparison between the
emulator and data covariances for the standard statistics is also
shown in Figure 15 of AEMULUS V (Zhai et al. 2023), which
similarly finds that the errors are comparable. Future iterations
of this type of analysis will be able to reduce the theory
uncertainty through a combination of more training simulations
(as in AEMULUS ν), larger simulation volumes, and improved
emulation techniques. These improvements will become
increasingly important as the data uncertainty also gets reduced
with future observations.

The effects of galaxy assembly bias are not yet a concern,
given the current precision of our surveys, as shown in the Zhai
et al. (2023) BOSS RSD analysis, but as both our data and
constraining power of methods improve, this will become a key
source of uncertainty. Previous works have found a small but
significant dependence on halo environment (e.g., Zehavi et al.
2018; Yuan et al. 2021). The density-sensitive statistics we
investigate here—namely the M(s) with marks given by the
galaxy number density on 10 h−1Mpc scales, and the PU(s),
which measures underdense regions across a large range of scales
—target this environmental bias. We have shown that these
statistics are well-positioned to improve constraints on cosmo-
logical parameters by breaking degeneracies between cosmolo-
gical and environmental assembly bias effects. Other sources of
assembly bias, such as halo formation time, concentration, and
spin, could be analyzed with marked correlation functions based
on these properties or other similarly targeted statistics; these can
be readily incorporated into our emulation framework.
More broadly, this work confirms that additional, beyond-

standard clustering statistics, namely the PU(s) and M(s), can
increase the constraining power in existing data, with little added
cost. This approach could be extended to include other statistics
that depend on the goals of the analysis. These could include the
three-point function (e.g., Takada & Jain 2003; McBride et al.
2011), the kNN-CDF (Banerjee & Abel 2021), and galaxy group
statistics such as the group multiplicity function (e.g., Berlind &
Weinberg 2002) and the group velocity dispersion. We will explore
some of these in future work. It is important to note that these
statistics may be more sensitive to the choice of galaxy bias model
than standard statistics, as we found in our initial tests on SHAM
galaxies (Section 5.5). This should be carefully checked when
incorporating new statistics; in our case, we do find that including
the PU(s) andM(s) result in slightly biased parameter constraints on
the SHAM galaxies when all cosmological parameters are left free.
This may point to the need for an even more flexible HOD
parameterization, an investigation we leave for future work.
One of the primary goals of the AEMULUS project is to extract

information from small-scale clustering, which is difficult to model
theoretically and expensive to simulate fully. Here, we have shown
that there is significant information at small scales for nearly all of
the statistics we analyze. For the constraint on γf fσ8, we find that
scales from 0.1 to 6 h−1Mpc contribute half of the information
content, and that there is additional information all the way down
to 0.5 h−1Mpc. This confirms a similar result by Zhai et al. (2019),
which uses wp(rp), ξ0(s), and ξ2(s), and includes the halo velocity
field scaling parameter γf. Some recent analyses have not found as
much additional information at these small scales. Lange et al.
(2022) conclude that, for their low-redshift sample, which is closer
in number density to the one analyzed here, scales between
1 and 2h−1Mpc increase the constraining power on fσ8 by a small
amount, and scales below ∼1h−1Mpc not at all. As discussed in
Section 5.4, they do not incorporate a γf parameter to scale the
velocity field, and they do not use wp(rp) as we do. This model
flexibility, which the work of Zhai et al. (2019) also includes,
combined with a statistic sensitive to velocity information, may
allow us to extract additional information from small scales. The
analysis by Lange et al. (2022) does include an assembly bias
model using the decorated HOD framework (Hearin et al. 2016),
but this is not as flexible as our three-parameter environmental
assembly bias model. Our increased flexibility on this front may
also contribute to the discrepancy, though future work should
revisit these hypotheses.
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Finally, in this work we built emulators at fixed redshift and
scale. To apply to different data sets, we will require predictions
at various redshifts, for which suites of emulators can be
constructed and trained at the needed redshifts; an extension of
this work could construct emulators that are able to make
predictions as a continuous function of redshift. In a similar vein,
here we emulated the clustering statistics at fixed scale, with a
different model trained for each bin. In future work, we could
train the model on all bins simultaneously to include the full
covariance properties; even better, we could include scale as an
input parameter and make predictions at any scale.
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Appendix A
Covariance Matrix Comparison

We compare the posteriors of recovery tests when using the
original noisy covariance matrix compared with the Gaussian-
smoothed covariance matrix, as described in Section 4.2. The
results are shown in Figure 9 for two different cosmology+HOD
models for a mix of key cosmological and HOD parameters. We
find that, for the generally well-behaved model (Figure 9(a)), the

Figure 9. A comparison of the effect of the covariance matrix on recovered parameters. Panels (a) and (b) show recovery tests of key parameters for two different
cosmology+HOD models, using all five observables, with the original covariance matrix compared to the covariance matrix with a Gaussian smoothing.
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posteriors are similar between the two covariance matrices, with
the smoothed matrix resulting in slightly more accurate parameter
estimates. For the less well-behaved model (Figure 9(b)), the
posteriors are quite noisy with the original covariance matrix.
Using the smoothed version cleans up some of the spurious
modes in the posteriors, suggesting that the smoothing does help
in avoiding issues related to noise in the covariance matrix.
However, some of the modes persist even when using the
smoothed matrix, indicating that perhaps we are still not properly
sampling our parameter space, or that some of these regions of
parameter space may be actual good fits to the observables and
indicate true degeneracies in the parameters.

Appendix B
Recovery Test Results for HOD & Assembly Bias

Parameters

We show the precision of our recovery tests for the HOD
parameter Msat and the three assembly bias parameters, fenv,
δenv, and σenv, in Figure 10. Results are shown averaged over
the 70 test models, when successively adding in each of our
five observables. We see that, for all of the parameters, each of
the observables provides additional information on the
parameter, with the exception of ξ2(s). The two beyond-
standard statistics PU(s) and M(s) provide significantly
increased precision compared to the standard statistics alone.
This indicates that the additional constraining power from these
statistics for the cosmological parameters may be related to
their heightened sensitivity to assembly bias, as well as the
ability of the combination of many observables to constrain the
flexible HOD model.

It is somewhat surprising that wp(rp) on its own provides
significant constraining power over the prior on fenv, the
amplitude of environmental assembly bias. Investigating the
relationship between these, we find that, with the rest of the
parameters fixed, at large scales, wp(rp) decreases as fenv is
increased. This makes sense because positive fenv values
effectively transfer halos from high- to low-density regions,
reducing overall clustering, which translates to a lower two-
halo term. It is notable that this effect is significant enough to
be able to constrain this parameter, highlighting the importance
of including a flexible model of environmental assembly bias.

Appendix C
Full Posterior Plots

We show contour plots of all the recovered parameters for a
single cosmology+HOD test model in Figure 11, when
successively adding in our observables. In Figure 11(a), we
show the cosmological parameters; in Figure 11(b), a
combination of the key cosmological, HOD, and assembly
bias parameters; and in Figure 11(c), all the HOD and assembly
bias parameters. We can clearly see the degeneracies between
many of the parameters here, and for many of these, including
the beyond-standard statistics breaks the degeneracy. This is
true for degeneracies between cosmological parameters and
HOD parameters, as with σ8 and Msat; between HOD
parameters, as with vbs and ;Mlogs and between assembly bias
parameters, as with fenv and σenv. This helps explain how the
combination of our flexible assembly bias model and the
emulation of beyond-standard statistics improves our precision
on cosmological parameter constraints.

Figure 10. The precision of recovery tests when successively adding in observables, averaged over the 70 test models, for the HOD parameter Msat and the three
assembly bias parameters. Definitions are the same as in Figure 6(a).

17

The Astrophysical Journal, 961:208 (20pp), 2024 February 1 Storey-Fisher et al.



Figure 11. Posteriors for all free parameters in our recovery test of a single cosmology+HOD model, when adding in observables successively. Contours are shown
for (a) all cosmological parameters; (b) a mix of the key cosmological, HOD, and assembly bias parameters; and (c) all HOD and assembly bias parameters.
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