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Abstract

We analyze clustering measurements of BOSS galaxies using a simulation-based emulator of two-point statistics.
We focus on the monopole and quadrupole of the redshift-space correlation function, and the projected correlation
function, at scales of 0.1∼ 60 h−1 Mpc. Although our simulations are based on wCDM with general relativity
(GR), we include a scaling parameter of the halo velocity field, γf, defined as the amplitude of the halo velocity
field relative to the GR prediction. We divide the BOSS data into three redshift bins. After marginalizing over other
cosmological parameters, galaxy bias parameters, and the velocity scaling parameter, we find
fσ8(z= 0.25)= 0.413± 0.031, fσ8(z= 0.4)= 0.470± 0.026, and fσ8(z= 0.55)= 0.396± 0.022. Compared with
Planck observations using a flat Lambda cold dark matter model, our results are lower by 1.9σ, 0.3σ, and 3.4σ,
respectively. These results are consistent with other recent simulation-based results at nonlinear scales, including
weak lensing measurements of BOSS LOWZ galaxies, two-point clustering of eBOSS LRGs, and an independent
clustering analysis of BOSS LOWZ. All these results are generally consistent with a combination of
g s » 0.75
f
1 2

8 . We note, however, that the BOSS data is well fit assuming GR, i.e., γf= 1. We cannot rule out
an unknown systematic error in the galaxy bias model at nonlinear scales, but near-future data and modeling will
enhance our understanding of the galaxy–halo connection, and provide a strong test of new physics beyond the
standard model.

Unified Astronomy Thesaurus concepts: Observational cosmology (1146); Cosmology (343); Large-scale structure
of the universe (902)

1. Introduction

Clustering analysis of galaxies provides important informa-
tion for us to understand the spatial distribution and evolution
of the underlying dark matter. The relationship between
luminous galaxies and dark matter can serve as a constraint
on galaxy formation physics, which is necessary for an
unbiased determination of cosmological parameters. The
observations from large-scale cosmological surveys, e.g., the
Sloan Digital Sky Survey (SDSS-I/II; York et al. 2000;
Abazajian et al. 2009), the Two Degree Field Galaxy Redshift
Survey (2dFGRS; Colless et al. 2001; Cole et al. 2005),
WiggleZ (Drinkwater et al. 2010), BOSS (Dawson et al. 2013),
and eBOSS (Dawson et al. 2016) have provided spatial

information for millions of galaxies and produced significant
results that inform our understanding of the universe. Ongoing
and future spectroscopic surveys such as the Dark Energy
Spectroscopic Instrument (DESI; DESI Collaboration et al.
2016), 4MOST (de Jong et al. 2016), PFS (Takada et al. 2014),
Euclid (Laureijs et al. 2011, 2012), and NASA’s Nancy Grace
Roman Space Telescope (Roman, Dressler et al. 2012; Green
et al. 2012; Spergel et al. 2015; Wang et al. 2022) will continue
to map the structure of the universe with unprecedented
volumes and precision. The compilation and analysis of these
current and future data will enhance our ability to measure the
structure and evolution of the universe in the past billions of
years. Using a method developed previously in this series, in
this paper we analyze BOSS data to extract cosmological
information from clustering on small scales and put constraints
on cosmological parameters.
Retrieval of cosmological information on small scales is

challenging due to the lack of an accurate and convenient
analytic model to describe the nonlinear dynamics of dark
matter, as well as our incomplete understanding of the baryonic
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processes that impact the spatial distribution of galaxies. In
Zhai et al. (2019), we proposed an emulator approach for
galaxy clustering based on N-body simulations to investigate
this problem, targeting massive BOSS galaxies at z = 0.55. The
idea is to run a limited number of high-resolution cosmological
simulations that can efficiently sample cosmological parameter
space. We then augment these dark matter only (DMO)

simulations with a galaxy bias model to compute galaxy
correlation functions. Our galaxy bias model is based on the
halo occupation distribution (HOD; see Wechsler & Tin-
ker 2018 and references therein). This theoretical template is
combined with Gaussian processes (GP) to model the
dependence of galaxy statistics on both cosmology and galaxy
bias. The resultant product is able to make predictions for an
arbitrary set of parameters, both cosmological as well as those
controlling the galaxy–halo connection, in an accurate and
efficient manner. Therefore, it is possible to sample this
enlarged parameter space to achieve the posterior distribution
of unknown cosmological parameters and correctly marginalize
over nuisance parameters. We demonstrate that there is more
constraining power at nonlinear scales than linear scales to
constrain the growth rate of structure. In this paper, we apply
this method to BOSS galaxies distributed within
0.18< z< 0.62 to constrain various parameters of our
cosmological model and measure the growth rate of structure.
Since the pioneering works of Heitmann et al. (2009, 2010),
Lawrence et al. (2010), and Heitmann et al. (2014), the
emulator approach has been widely applied in the literature to
model the statistics of galaxy and dark matter on nonlinear
scales. Using the N-body simulation from the Aemulus Project
(DeRose et al. 2019), we have constructed emulators for the
halo mass function (McClintock et al. 2019a), the halo bias
function (McClintock et al. 2019b), the nonlinear power spectra
of biased tracers (Kokron et al. 2021), and for investigating
galaxy assembly bias (McLaughlin et. al. in preparation). This
approach has also been used in studies such as the
EuclidEmulator (Euclid Collaboration et al. 2019) to model
the nonlinear corrections to the dark matter power spectrum in
preparation for the Euclid mission, the DARK EMULATOR
(Nishimichi et al. 2019; Kobayashi et al. 2020; Miyatake et al.
2022) for dark matter halo statistics over a wide redshift range,
extensions to Lambda cold dark matter (ΛCDM) cosmologies
(Giblin et al. 2019; Ramachandra et al. 2021), baryonic effects
in the matter power spectrum (Aricò et al. 2021), the modeling
of the Lyα forest flux power spectrum (Rogers et al. 2019; Bird
et al. 2019; Pedersen et al. 2021; Walther et al. 2021), galaxy
lensing, and clustering for BOSS-LOWZ galaxies (Wibking
et al. 2019, 2020), the weak lensing signal of galaxy clusters
(Salcedo et al. 2022), and so on.

Based on the Aemulus suite, Lange et al. (2022) measured
the linear growth rate for the BOSS-LOWZ galaxies using
clustering measurement on small scales, while Chapman et al.
(2022) applied the emulator method of Zhai et al. (2019) and
performed a cosmological analysis with eBOSS-LRG data
using a similar range of scales. This work extends the previous
works in three different ways. First, we use a different, and
larger, redshift range. Second, we incorporate a model for the
effects of galaxy assembly bias. Third, through a scaling
parameter, we decouple the velocity field of dark matter halos
from that predicted by general relativity (GR), enabling us to
constrain departures from GR.

This paper is a direct application of Zhai et al. (2019) to data
from BOSS DR12. The method to construct the emulator for
the galaxy correlation function remains the same but with two
main differences in the analysis: (1) galaxy selection from
BOSS DR12 and (2) incorporating assembly bias in the HOD
model. Zhai et al. (2019) modeled BOSS-CMASS galaxies at
effective redshift z∼ 0.55 with the number density of
= ´ - - -n h4.2 10 Mpc3 1 3[ ] , corresponding to the peak value

over the redshift range. However, the flux limit of the selection
can introduce incompleteness in terms of luminosity or stellar
mass. Thus, in this paper, we apply additional selection criteria
to the BOSS galaxies to reduce the effect of sample
incompleteness, although this effect is shown to be minor for
the clustering analysis (Tinker et al. 2017; Zhai et al. 2017).
In Zhai et al. (2019), the connection between galaxies and

dark matter halos is modeled by populating halos in the DMO
simulations with a parameterized HOD. In particular, we
assumed that the relationship can be simply modeled by P(N|
M), the probability distribution that a halo of mass M contains
N galaxies of a given class, combined with parameters for
spatial and velocity bias of galaxies within halos. This basic
form assumes that the galaxy population, and therefore the
clustering, is determined by halo mass only. However, result
based on N-body simulations reveals that the halo clustering
may depend on properties other than halo mass, which has been
referred to variously as assembly bias or secondary bias
(Wechsler et al. 2002; Sheth & Tormen 2004; Gao et al. 2005;
Harker et al. 2006; Wechsler et al. 2006; Wechsler &
Tinker 2018). The investigation of this assembly bias effect
has been performed extensively with N-body simulations and
semi-analytical models for galaxy formation and evolution.
Depending on which secondary property is studied, the
clustering of dark matter halos may have different levels of
correlation. This effect can, theoretically, propagate into the
distributions of galaxies that live in these halos and thus add
additional complexity to the galaxy clustering analysis. Current
studies have shown small but non-negligible correlation of
galaxy and halo clustering with internal properties such as halo
age, concentration, or spin, or external properties such as large-
scale environment (see, e.g., Mao et al. 2015; Hearin et al.
2016; Lehmann et al. 2017; Villarreal et al. 2017; Mao et al.
2018; Salcedo et al. 2018; Shi & Sheth 2018; Zentner et al.
2019; Contreras et al. 2021 and references therein). Although
the precise details and physical reasons for the assembly bias
are not fully understood, it is now clear that it is necessary to
incorporate this effect into the standard HOD approach to
create a robust model for the analysis of BOSS galaxy
clustering, and to correctly marginalize over any such effect
when obtaining constraints on cosmological parameters.
Therefore, in this work, we extend the basic HOD model by
adding more parameters to describe the clustering dependence
on halo environment.
In addition to yielding unbiased cosmological constraints,

searching for the galaxy assembly bias itself is also an active
topic of research. However, recent attempts based on SDSS and
BOSS galaxies present contradictory results on the significance
of galaxy assembly bias (Vakili & Hahn 2019; Walsh &
Tinker 2019; Salcedo et al. 2022; Yuan et al. 2021). Although
the construction of the assembly bias models in these studies is
different, it implies that our understanding of the galaxy
assembly bias is not complete, necessitating a general and
flexible parameterization within the galaxy bias model. Using
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the emulator approach and the extended HOD model, we
investigate this problem and examine any bias induced in the
cosmological constraint in this paper.

The emulator approach applied in this paper enables
constraints on fundamental cosmological parameters using
small-scale galaxy clustering, with an emphasis on the growth
of the dark matter structure. Our pilot study (Zhai et al. 2019)
demonstrated that small-scale clustering has more constraining
power than large scales using perturbation theory to measure
the parameter combination fσ8. The result of this analysis can
give accurate measurement over the entire redshift range of
BOSS galaxies. In addition, our modeling of the dark matter
halo velocity field also marginalizes over the modification of
underlying gravity. We employ a phenomenological model by
scaling the velocity field of dark matter halos with a free
parameter. This extra degree of freedom can mimic, in a
simplified manner, the effect of modified gravity. Therefore,
clustering analyses in redshift space are able to probe
deviations from GR. The result can help us better understand
the families of cosmological models proposed to explain the
cosmic acceleration.

Our paper is organized as follows: in Section 2, we introduce
the BOSS galaxies and the sample selection. Section 3
describes the simulation suites used in the analysis. Section 4
lays out the galaxy–halo connection model. Section 5
introduces galaxy statistics for the clustering measurement.
Section 6 describes the construction of the covariance matrix
and prior for the likelihood analysis. Section 7 presents our
cosmological measurements and systematics analysis. We
discuss and list our conclusions in Section 8.

2. Observational Data

In this paper, the analysis uses the large-scale structure
catalog created from the BOSS observations as described in
Reid et al. (2016), including the survey footprint, veto masks,
and observational systematics. We use both the galaxy and
random catalogs created for clustering measurements. BOSS
targets galaxies with two selection algorithms: the LOWZ
sample at z∼ 0.3 and the CMASS sample at z∼ 0.55. We
follow the strategy of Alam et al. (2017) to use a combined
LOWZ+CMASS sample covering the entire redshift range of
0.2< z< 0.7. We note that the color cuts and flux limits used
in target selection introduce incompleteness in the BOSS
galaxies, i.e., the BOSS galaxy sample is not a volume-limited
sample. A typical halo occupation analysis assumes that the
galaxy sample being modeled is volume limited. Although the
incompleteness of BOSS galaxies has been quantified in
Leauthaud et al. (2016) and Tinker et al. (2017), the results
show that the incompleteness does not have a significant
impact on the clustering measurement or HOD analysis of the
data (Zhai et al. 2017), this incompleteness should be
minimized in order to construct galaxy samples that are best
suited for HOD analysis. Therefore, we prepare the galaxy
selection as follows.

We first compute the galaxy number density, n(z), of the
BOSS sample assuming a spatially flat ΛCDM with Ωm= 0.31
as a fiducial model to compute the cosmic volume. The result is
shown in Figure 1 for the North Galactic Cap (NGC) and South
Galactic Cap (SGC), respectively. The local minimum at
z∼ 0.4 represents the transition between CMASS and LOWZ.
We then split the galaxy sample into three redshift slices:
0.18< z< 0.32 (low-z), 0.32< z< 0.48 (med-z), and

0.48< z< 0.62 (high-z) and analyze the clustering measure-
ments separately for each redshift slice. For each subsample,
we apply a thin redshift binning with, e.g., Δz= 0.005. In each
of these fine slices, we convert the i-band apparent magnitude
of the galaxies to absolute magnitude and rank-order by the
luminosity. Then we select the bright end of this galaxy
subsample to have a number density that is constant across the
redshift slice. For low-z, we use ´ - - -h2.5 10 Mpc4 1 3[ ] . For
both med-z and high-z, we use ´ - - -h2.0 10 Mpc4 1 3[ ] . This
results in a galaxy sample with a constant number density
across each of the redshift ranges of interest, as shown in the
solid lines in Figure 1. We apply this selection separately for
NGC and SGC and ensure they have the same number density
by definition. Table 1 summarizes the number of galaxies in the
resultant samples. In Figure 2, we display the distribution of i-
band absolute magnitude for each galaxy sample in NGC and
SGC, respectively. Although the luminosity threshold varies
some across each bin in order to preserve the number density,
this is significantly closer to a volume-limited sample than the
original flux-limited target selection. Thus, these new galaxy
samples are more appropriate for halo occupation analysis.

3. Simulations

The nonlinear dynamics of dark matter can be well captured
by N-body simulations (see, e.g., Klypin et al. 2011, 2016).
This also provides the theoretical framework for us to extract
cosmological information from the BOSS galaxies. In this
section, we introduce the simulation suites employed in our
work, as well as examinations of systematics. Table 2
summarizes the key information of these simulation suites
and their functions in our analysis. Briefly, we use three
different types of simulations: (1) the AEMULUS simulation
suite (DeRose et al. 2019), which is used to build the emulator,
(2) high-resolution simulations that resolve substructure, which
are used to test the emulator, and (3) lower-resolution particle
mesh (PM) simulations run with the GLAM code (Klypin &
Prada 2018) to construct a covariance matrix for the BOSS
clustering measurements.

3.1. The Aemulus Suite

We use the AEMULUS15 simulation presented in DeRose
et al. (2019) to build and test the emulator for galaxy clustering.
The AEMULUS suite comprises 75 boxes of dark-matter-only
N-body simulations, with 40 simulations at different cosmol-
ogies for training the emulator, and 35 additional simulations at
seven cosmologies for testing. The test set has five realizations
at each cosmology for better statistics. The cosmologies of the
training set are chosen based on the wCDM model in an
optimized Latin hyper-cube designed parameter space (Heit-
mann et al. 2009). The cosmological parameters for the
AEMULUS suite are the matter density Ωm, the baryon energy
density Ωb, the amplitude of matter fluctuations σ8, the
dimensionless Hubble parameter h, the spectral index of the
primordial power spectrum ns, the equation of state of dark
energy w, and the number of relativistic species Neff. All the
simulations have a volume of 1.05 h−1 Gpc with 14003 dark
matter particles, yielding a mass resolution appropriate for
resolving halos that host massive galaxy populations like the
BOSS samples. For Ωm= 0.3, the particle mass is

15 https://aemulusproject.github.io
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∼3.5× 1010 h−1Me. We use the training set to build the
emulator for the different galaxy clustering statistics, and we
use the test set to evaluate the emulator performance and

quantify the uncertainty, as done in Zhai et al. (2019). In
Table 3, the first section summarizes the cosmological
parameters and the range relevant for the emulator construction
in the following sections. We refer the readers to DeRose et al.
(2019) for more details on the AEMULUS simulations.

3.2. Uchuu and UNIT

We use the Uchuu16 (Ishiyama et al. 2021) and UNIT17

(Chuang et al. 2019) simulations to build galaxy mocks and do
recovery tests of our emulator. The galaxy–halo connection in
our emulator is based on an HOD in which the parameters of
the mean occupation function vary with halo environment, thus
mimicking the effect of galaxy assembly bias. In order to
validate the robustness of this approach in modeling the galaxy
clustering at nonlinear scale and the inferred cosmological
measurement, we test this approach against mock galaxy
catalogs produced via the SubHalo Abundance Matching
method (SHAM; i.e., Kravtsov et al. 2004; Vale & Ostri-
ker 2004; Conroy et al. 2006; see Wechsler & Tinker 2018 for
a review). This model assigns galaxies to dark matter halos
based on the assumption that the stellar mass or luminosity of a
galaxy is correlated with the properties of the dark matter halo
or sub-halo hosting this galaxy. The SHAM model has far
fewer parameters than HOD but it can well match observed
galaxy statistics (e.g., Lehmann et al. 2017). The standard
mapping process between galaxies and dark matter halos in the
SHAM approach yields some amount of galaxy assembly bias.
Therefore, testing our HOD-based model with this SHAM
model is able to tell us whether different models of assembly
bias can bias the cosmological constraints.
We use two simulation suites to create SHAM mocks:

Uchuu and UNIT; both adopt the Planck 2015 cosmology
(Planck Collaboration et al. 2016). The Uchuu simulation has
2.1 trillion dark matter particles in a -h8 Gpc1 3[ ] box with a
particle mass of 3.27× 108 h−1Me. This volume is ∼8 times
larger than the test boxes from AEMULUS, enabling a more
precise measurement of clustering statistics. For the UNIT

Figure 1. The comoving number density of the BOSS DR12 galaxies as a
function of redshift. The sample used in our analysis is defined by the galaxy
brightness such that both NGC and SGC can reach a constant number density,
as indicated by the horizontal lines. The gray vertical lines split the galaxies
into low-z, med-z, and high-z subsamples that will be analyzed individually.

Table 1

Number of Galaxies Used in Our Analysis

Redshift Type NGC SGC

0.18 < z < 0.32 DR12 115187 54399
Selected 82103 34249

0.32 < z < 0.48 DR12 230093 103861
Selected 158610 66509

0.48 < z < 0.62 DR12 342844 143024
Selected 209697 89950

Figure 2. Distribution of the i-band absolute magnitude of the BOSS galaxies. Our sample corresponds to the brighter end with a nearly hard cut at −23. This redshift-
dependent selection can provide a galaxy sample with constant number density across redshift, which is close to a volume-limited sample.
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simulations, we use the 1 h−1Gpc boxes with a particle number
of 40963. This simulation adopts the inverse phase technique
(Angulo & Pontzen 2016) to reduce cosmic variance. We use
all four boxes (two pairs) in our analysis for galaxy clustering,
implying that the effective volume is higher than -h4 Gpc1 3[ ] .
For both simulations, we use the method of Lehmann et al.
(2017) to assign galaxies to dark matter halos and subhalos. In
this method, the property used to rank halos is a combination of
the maximum circular velocity within the halo, vmax, and the
virial velocity, vvir. This combination allows the user to vary
the amount of assembly bias the galaxies exhibit. More details
on the parameters used and the results of the tests are given in
Appendix E.

3.3. GLAM Simulations

We use the GLAM18 simulations to construct the covariance
matrix for the likelihood analysis. The GLAM simulations are
run with the new parallel particle-mesh N-body code (PPM-
GLAM) with a box size of 1h−1Gpc and 20003 particles. The
high speed of this code has enabled nearly 1000 independent
realizations at the Planck cosmology, a set of simulations large
enough to construct a robust covariance matrix for all our

clustering measurements. In our work, we use 986 boxes with
redshift outputs equal to the mean redshifts of our BOSS
samples, to estimate the covariance matrix for our BOSS
correlation function measurements. The details of the GLAM
simulation can be found in Klypin & Prada (2018).

4. Galaxy–Halo Connection Model

In this paper, we adopt the HOD approach to model the
galaxy–halo connection. The HOD describes the galaxy
population within dark matter halos in a statistical manner.
We start with the model of Zhai et al. (2019) to define the mean
occupation function for central and satellite galaxies, which is
in turn based on the Zheng et al. (2005) HOD model. Our
implementation includes three additional parameters that
control the concentration of the radial distribution of satellite
galaxies and velocity biases of both centrals and satellites. The
parameters are summarized in the second section of Table 3.
Note that the ranges of certain parameters are enlarged
compared to Zhai et al. (2019) to better fit the BOSS
measurements. This is due to the fact that the galaxy number
density in this paper is lower than that of the Zhai et al. (2019)
emulator; thus, we are modeling the clustering of an
intrinsically brighter galaxy population with a higher clustering
amplitude. For reference, in Appendix A, we show the
clustering measurements for the BOSS galaxies with and
without our selection based on luminosity. Due to the

Table 2

Simulations Used for the Analysis in This Paper

Simulation Cosmology Box Size Number of Simulations What it is Used for Reference

Aemulus Multiple 1.05 h−1 Gpc 75 Building the emulator DeRose et al. (2019)
GLAM Planck-like 1.0 h

−1 Gpc 986 Covariance matrix Klypin & Prada (2018)
Uchuu Planck 2.0 h−1 Gpc 1 External test of SHAM Ishiyama et al. (2021)
UNIT Planck 1.0 h−1 Gpc 2 pairs External test of SHAM Chuang et al. (2019)

Table 3

Parameters Used in Our Emulator, Their Physical Meaning, and the Parameter Space Range for Each Parameter

Parameter Meaning Range

Cosmology Ωm Matter energy density [0.255, 0.353]
Ωb Baryon energy density [0.039, 0.062]
σ8 Amplitude of matter fluctuations on 8 h

−1 Mpc scales. [0.575, 0.964]
h Dimensionless Hubble constant [0.612, 0.748]
ns Spectral index of the primordial power spectrum [0.928, 0.997]
w Dark energy equation of state [−1.40, −0.57]
Neff Number of relativistic species [2.62, 4.28]
γf Amplitude of halo velocity field relative to wCDM+GR [0.5, 1.5]

HOD Mlog sat Typical mass scale for halos to host one satellite [14.0, 15.5]
α Power-law index for the mass dependence of the number of satellites [0.2, 2.0]

Mlog cut Mass cutoff scale for the satellite occupation function [10.0, 13.7]
s Mlog Scatter of halo mass at fixed galaxy luminosity [0.05, 1.0]

ηcon Concentration of satellites relative to the dark matter halo [0.2, 2.0]
ηvc Velocity bias for central galaxies [0.0, 0.7]
ηvs Velocity bias for satellite galaxies [0.2, 2.0]
fmax Incompleteness parameter for central occupancy [0.1, 1.0]

Assembly bias fenv Amplitude parameter for assembly bias [−0.3, 0.3]
δenv Position parameter for assembly bias [0.5, 2.0]
σenv Width parameter for assembly bias [0.1, 1.0]

Note. For the HOD parameters, assembly bias parameters, and for γf, the range is used as a flat prior in the analysis. For the cosmological parameters, we use a prior
defined by the training cosmologies themselves. See the text for further details.

16 http://www.skiesanduniverses.org/Simulations/Uchuu/
17 https://unitsims.ft.uam.es
18 http://www.skiesanduniverses.org/Simulations/GLAM/
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correlation between galaxy luminosity and their host halo mass,
these galaxies are likely living in more massive halos and are
thus more clustered.

Compared with the previous model in Zhai et al. (2019), the
critical change in this analysis is the addition of a galaxy
assembly bias model, in which galaxy occupation depends on
halo properties other than mass. With the lack of consensus on
observational constraints on galaxy assembly bias, there is
flexibility to choose secondary halo properties to investigate the
assembly bias, including both internal and external properties.
In this work, we focus on the bias introduced by the
environment, i.e., an external property. In particular, we define
the halo environment as the dark matter overdensity of dark
matter halo. We measure the relative density δ of dark matter
halos using a top-hat window function with radius of
10 h−1Mpc. Then we modify the HOD model by scaling the
parameter Mmin through

d d
s

= +
-

M M f1 erf . 1min min env
env

env

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥

¯ ( )

This functional form modulates the dependence of Mmin as a
function of local density and its value can be determined by
other HOD parameters when galaxy number density is fixed
(Zhai et al. 2019). The amplitude parameter fenv controls the
overall strength of the dependence and the resultant level of
assembly bias, the position parameter δenv determines the
threshold to split halos living in over- and under-dense regions,
and the width parameter σenv controls the smoothness of the
transition from under-density to overdensity. This assembly
bias model allows the minimum mass scale for dark matter
halos to host a central galaxy to depend on halo environment,
which has a direct impact on the occupancy of centrals and
satellites and therefore can change the clustering signal
compared with basic HOD model, see, e.g., Figure 4 of Walsh
& Tinker (2019). The degrees of freedom introduced through
this parameterization can also enable the investigation of
galaxy formation physics by looking at galaxies formed in
halos of same mass but different environment. For the
following analysis, setting fenv= 0 can simply turn off the
modeling of assembly bias and returns the basic HOD model.
The parameterization chosen allows for significant flexibility in
assembly bias; the impact on clustering can be negligible or
very large. The change induced by the assembly bias can be to
either increase or decrease the clustering amplitude, and the
effect can occur at any density.

The HOD model assumes the central occupancy Ncen

approaches 1 at the very massive end, i.e., the most massive
halos must host an LRG at the center. However, this is not
necessarily true given the target selection of BOSS galaxies and
the mass incompleteness (Leauthaud et al. 2016). In order to
investigate its impact on our measurement of linear growth rate
from small scales, we introduce the parameter fmax to scale the
amplitude of Ncen within the range [0.1, 1.0]. This parameter is
equivalent to fΓ in Lange et al. (2022) for a similar discussion.
Other earlier works for a similar modeling can be found in
Hoshino et al. (2015) and Chapman et al. (2022).

The addition of these new parameters makes our previous
HOD model more flexible. The construction of the emulator in
this extended parameter space for the galaxy correlation
function follows the method developed in Zhai et al. (2019).

More details, and the performance of the emulator, are
described in Appendix C. We note that the choice of the
assembly bias model in this paper is not the only option. It is
possible to incorporate galaxy assembly bias that depends on
other properties of dark matter halos. However, recent studies
based on hydrodynamic simulation and semi-analytic model
show that the local environment of the halo at the present day is
an excellent predictor of assembly bias (Han et al. 2019; Xu
et al. 2021; Yuan et al. 2021), as well as results from N-body
simulation (Yuan et al. 2022). Therefore, we apply this
particular model of assembly bias throughout this work, but
extensions to other models are also possible. In addition, this
assembly bias model only applies to the host halos and not to
subhalos. Correlations caused by satellites, for example,
introduced by relationships with concentration, halo formation
time, etc. can be modeled using a more flexible method; but we
do not address those here. We note that there are alternatives to
extend the basic HOD model with assembly bias, e.g., the
decorated HOD algorithm (Hearin et al. 2016; see also
McLaughlin et. al. (in preparation). This model redistributes
galaxies within the same halo mass bin by secondary halo
property, while preserving the original HOD after margin-
alization. Our implementation is less physically motivated, but
has more flexibility to describe the types of galaxy assembly
bias signals induced by various forms the assembly bias
may take.

5. Measuring Galaxy Clustering

5.1. Two-point Correlation Function

We quantify the clustering for both BOSS and simulated
data sets using the two-point correlation function (2PCF) ξ(r),
which measures the excess probability of finding two galaxies
separated by a vector distance r, relative to a random
distribution, for all |r|= r. In practical applications, the
distance to galaxies is determined by redshift, which can be
distorted by peculiar velocities, also known as the redshift-
space distortion (RSD) effect. Therefore, the measured galaxy
distribution in redshift space is different than in real space, but
these differences are driven by the amplitude of the peculiar
velocity field and thus contain information about the growth
rate of large-scale structure. We measure ξZ(rp, π) on a two-
dimensional grid of separations perpendicular rp and parallel
(π) to the line of sight through

p p= = -
s

s sr
l

l
, , 2p

2·

∣ ∣
· ( )

with l= (s1+ s2)/2 (Davis & Peebles 1983; Fisher et al. 1994),
the subscript Z denotes redshift space. In order to reduce the
effect of redshift-space distortions and extract information in
real space (with subscript R in the following equation), we
compute the projected correlation function (Davis & Pee-
bles 1983)

ò òpx p px p= = = +
¥ ¥

w r d r d r r2 , 2 .

3

p p Z p R p
0 0

2 2( ) ( ) ( )

( )

This integral needs to be truncated at some scale in the
measurement from the observational sample or mock catalog.
We choose p = 80max h

−1 Mpc, which is large enough to give
stable results. To encapsulate the clustering in redshift space,
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we measure the multipoles of the correlation function. With
μ= rp/s, we use the standard decomposition with Legendre
polynomial to obtain

òx m x m m=
+

-
s

ℓ
L s d

2 1

2
, , 4ℓ ℓ Z

1

1

( ) ( ) ( ) ( )

where Lℓ is the Legendre polynomial of order ℓ. Most of the
information in redshift space is contained in the first few even
multipoles and in this work we use ξ0 and ξ2.

5.2. Measurement from BOSS

Using the galaxy samples defined in Section 2, we measure
the 2PCF through the estimator (Landy & Szalay 1993)

x p =
- +

r ,
DD 2DR RR

,
5p( ) ( )

where DD, DR, and RR are suitably normalized numbers of
(weighted) data–data, data–random, and random–random pairs
in each separation bin. The positions of the BOSS galaxies are
converted from R.A., decl., and redshift to Cartesian
coordinates assuming a Planck 2015 ΛCDM model with
Ωm= 0.307. The choice of cosmology for this transformation
has a negligible impact on the final result (Chapman et al.
2022; Lange et al. 2022).

In BOSS clustering measurements, there is an important
systematic due to fiber collisions. The spectroscopic redshift of
BOSS galaxies is obtained by fibers, which have a physical
scale of 62″ on a given tile; any two fibers cannot be placed
closer than this scale. This leads to a fraction of galaxies
without redshift determination. The loss of these galaxies has
an impact on the clustering measurement at all scales, and is
more significant on small scales. This fiber collision effect has
been corrected using multiple methods in the clustering
measurements, such as nearest neighbor or angular up-
weighting methods. In our analysis, we adopt the method
developed in Guo et al. (2012), which is based on the fact that
the fiber collision can be resolved in areas that are observed
within more than one tile. This method can recover the
projected and redshift space 2PCF on scales below and above
the collision scale. Our final measurements of the BOSS
galaxies are shown in Figure 3 for all three redshift bins. For wp

and ξℓ, we choose logarithmically spaced bins for rp or s from

0.1–60.2 h−1Mpc, resulting in nine data points for each
statistic. For ξℓ, μ is binned linearly with 40 bins from 0–1.
Both the measurement from BOSS galaxies and from the
mocks use the same binning scheme.

6. Likelihood Analysis

6.1. Covariance Matrix

The covariance matrix is of critical importance in the
likelihood analysis. Here we pursue several methods of
quantifying the covariance matrix of the BOSS clustering
measurements in order to determine the sensitivity of our
results to the details of the matrix construction. It can be
estimated using a large number of simulations, or through the
data themselves, and the matrix can employ a combination of
these two approaches. Based on the observational data, we first
measure the covariance matrix through jackknife resampling
with 400 roughly equal sub-areas of the BOSS angular
footprint. We note that this method may lead to a noise-
dominated covariance matrix due to the limited size of
subsamples. Simulation-based methods have significantly less
noise, but have inherent assumptions when constructing the
mock galaxies used. To construct these mocks, we use the
emulator of the 2PCF as constructed in the previous section to
find an HOD model that can give consistent clustering
measurements with the data. In particular, we fix the
cosmological parameters to be those of the GLAM cosmology,
and we also assume no assembly bias (i.e., fenv= 0). The
resulting HOD model is then used to populate the halos within
the GLAM simulations to produce 986 galaxy mocks. We
repeat this process for all three redshifts. The correlation matrix
of these two approaches give quite consistent behavior of the
galaxy 2PCF, with the fact that the mock-based method is
substantially smoother and thus reduces the effect of noise in
the calculation of the likelihood.
With these two methods, we construct the following four

covariance matrices:

1. Jackknife: Full covariance matrix from jackknife
resampling.

2. GLAM: Full covariance matrix from the GLAM mocks.
3. Fiducial: Diagonal elements from jackknife resampling

combined with the correlation matrix from GLAM
mocks.

Figure 3. 2PCF of BOSS galaxies, including wp(left), ξ0(middle), and ξ2 (right) for all three redshift bins. The lines are the prediction of the best-fit model with
varying cosmology, HOD, and assembly bias parameter, assuming the fiducial model for the covariance matrix (see more details in Section 6.1). The best-fit model
uses data from wp + ξ0 + ξ2. The results for low-z and high-z are shifted slightly for plotting purposes.

7

The Astrophysical Journal, 948:99 (25pp), 2023 May 10 Zhai et al.



4. Modified fiducial: Same as the fiducial, but using a
different HOD model for the galaxy mocks.

As listed above, our fiducial matrix uses the data to set the
amplitude of the errors, but we use the simulations for the
shape of the covariance matrix. The off-diagonal elements are
scaled by the corresponding diagonal elements. In the modified
fiducial matrix, we choose a different HOD model from one of
the training sets that is close to the 2PCF measurement from
BOSS and use this HOD model to regenerate 986 GLAM
mocks. This tests any sensitivity to the details of the galaxy
bias model. We apply this test to the high redshift z = 0.55
subsample. We find minimal dependence on the details of the
HOD model. Further details on this test and the construction of
the various covariance matrices can be found in Appendices B
and G.

The covariance matrices described above correspond to the
contribution from sample variance in the data Csam. When we
perform the actual analysis, we also need to take into account
the uncertainties from the emulator itself. Thus, the final
covariance matrix is

= +C C C , 6sam emu ( )

where Cemu is the intrinsic error from the emulator prediction.
To compute this, we adopt the same method as in Zhai et al.
(2019). Simply put, the raw emulator performance shown as
the shaded area in Figure 15 has two contributions: intrinsic
error of the emulator and sample variance of the testing
simulations. We assume these two terms are independent and
therefore the intrinsic error of the emulator is the total error
with the sample variance subtracted off in quadrature. In
addition, we also assume the emulator error is independent
among different rp and s bins; thus, Cemu is diagonal only. This
differs from Zhai et al. (2019), in which we assumed Cemu had
the same correlation matrix as Csam, but our tests show this has
a minor impact on the final constraints. A follow-up analysis is
left for future work (Storey-Fisher et al. 2022).

6.2. Sampling Algorithm and Priors

We perform our analysis using the likelihood function

x x x x= - - --Cln
1

2
, 7emu obs

1
emu obs( ) ( ) ( )

where ξemu and ξobs are the correlation function from the
emulator and observational data, respectively, and C is the
covariance matrix as defined above. Depending on tests, ξobs is
from either BOSS measurements or galaxy mocks.

The likelihood analysis is done through Bayesian statistics.
In particular, we explore the parameter space using the nested
sampling algorithm (Skilling 2004) implemented in the
MULTINEST (Feroz et al. 2009; Buchner et al. 2014) package.
This method can compute the Bayes evidence through the
integral

ò= p p pp d , 8( ) ( ) ( ) 

where p(p) is the prior given parameter vector p. The Bayes
evidence has been widely used to evaluate the model selection
in different scientific fields. The output from MULTINEST also
gives posterior distributions of the parameters in the model.
Compared with traditional methods to obtain the posterior,

such as the Markov Chain Monte Carlo–like method we used
in Zhai et al. (2019), nested sampling needs fewer evaluations
to reach convergence. In our analysis, we choose 1000 live-
points to sample the high-dimensional parameter space. A
typical run for likelihood analysis using emulators of all three
statistics wp+ ξ0+ ξ2 takes roughly 5000 CPU hr to get
converged results.
Another critical ingredient is the prior p(p). For our HOD

parameters, we choose a flat and uninformative prior defined by
the range of the parameters (Table 3). However, the
cosmological parameter space in our analysis is restricted by
the sampling of the training cosmologies; see for instance,
Figure 3 of DeRose et al. (2019). This means the that emulator
is only guaranteed to produce a reliable prediction of the 2PCF
within this CMB+BAO+SNIa defined area. Therefore, we
define a prior space for the cosmological parameters based on
the training cosmologies. In particular, this prior is defined by
an ellipsoid in seven-dimensional space and we restrict the
nested sampling to be within this prior range. We present more
details of the training area in Appendix D.

6.3. Recovery Tests

Before we apply this likelihood analysis to the BOSS
galaxies, we first perform a recovery test using the SHAM
galaxy mocks. The details and results are shown in
Appendix E. It shows that with different details for the SHAM
mock construction, our HOD-based emulator is able to recover
the input cosmology successfully with the parameters con-
strained within 1σ level, and thus validate the emulator
construction. In Appendix G, we present the constraints using
different setups for the covariance matrix. The consistency
between different covariance matrices shows that the effect on
the final cosmological measurement is not significant. Com-
pared with the smoother correlation matrix from the GLAM
mock, the noise in the jackknife resampling method does not
bias the cosmological constraints.

7. Results from BOSS Galaxies

In this section, we present constraints using BOSS galaxies.
We begin with a presentation of our results when implementing
myriad priors and assumptions on the analysis. We then focus
on the impact that galaxy assembly bias has on our results. Our
results are summed up in our constraints on the growth rate of
structure, both when assuming GR or when allowing γf, the
scaling parameter of the velocity field, to be a free parameter.
Last, we compare our results to others in the field that use
simulation-based approaches to extract cosmological informa-
tion from small scales.

7.1. Constraints on Key Cosmological Parameters

The fiducial covariance matrix is constructed using the
jackknife resampling for the uncertainty and GLAM mocks for
the off-diagonal elements of the correlation matrix as explained
in the previous section. All results in this section will use this
covariance matrix. The observational data for galaxy statistics
are wp+ ξ0+ ξ2. In order to have a comprehensive invest-
igation, we perform several tests as follows:

1. Fiducial: Varying cosmological parameters + HOD
parameters + assembly bias parameters.
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2. Planck Prior: Gaussian prior on a subset of the
cosmological parameters (Ωm, Ωb, σ8, h, ns) using the
latest Planck 2018 measurements. In particular, we use
the result from the chain plikHM_TTTEEE_lowl_lo-
wE_lensing. We use this particular chain as Planck
2018 measurements throughout the paper, unless it is
described explicitly. The other cosmological parameters
w, Neff, and γr have the same prior as the fiducial case.

3. Fixing γf= 1.0: This forces the analysis to use GR to
describe gravity.

4. Fixing w=−1: This forces the analysis assum-
ing ΛCDM.

5. No assembly bias: We set fenv= 0 to turn off the
assembly bias modeling.

In Figure 4, we present the constraints on the key parameters
of interest (Ωm, σ8, γf) for the three redshift bins respectively.
The constraints on the model parameters are also summarized
in Table 4. Using our fiducial priors, all three redshift bins yield
similar constraints on these parameters that influence the
growth of structure. As expected, there is a degeneracy between
σ8 and γf, with higher values of σ8 yielding lower values of γf.
The amplitude of this degeneracy curve lies below the Planck
+GR value of (σ8, γf)= (0.82, 1.0). This implies that the
peculiar velocity field of BOSS galaxies is roughly 15% lower
than the Planck+GR prediction. Although we focus on the
cosmological parameters that control the growth of structure,
the constraints on all cosmological parameters, for each redshift
bin, are shown in Figure 5 and presented in Appendix F.

Figure 4. Constraint on some of the key parameters of the low-z (left), med-z (middle), and high-z (right) subsamples, using wp + ξ0 + ξ2. The contours show 1σ and
2σ confidence levels. The result shows a comparison of three different tests: (1) fiducial test (blue): varying cosmology+HOD+assembly bias parameters with an
uninformative prior; (2) adopting a Gaussian prior on a subset of the cosmological parameters (Ωm, Ωb, σ8, h, ns) using the Planck 2018 observation (red); (3) fixing
γf = 1 with no deviation from GR (black); and (4) fixing w = −1 to be ΛCDM (cyan). The dashed lines for cosmological parameters indicate the best-fit model of
Planck with γf = 1 and fenv = 0.

Table 4

Constraints on the Cosmological Parameters, HOD Parameters, and Assembly Bias Parameters Using Clustering Measurement of BOSS Galaxies

Parameter 0.18 < z < 0.32 0.32 < z < 0.48 0.48 < z < 0.62

Ωm 0.315 ± 0.019 (40%) 0.313 ± 0.018 (37%) 0.313 ± 0.018 (37%)

Ωb 0.052 ± 0.0035 (30%) 0.053 ± 0.0036 (31%) 0.052 ± 0.0038 (33%)

σ8 0.733 ± 0.043 (22%) 0.726 ± 0.047 (24%) 0.76 ± 0.052 (27%)

h 0.659 ± 0.022 (32%) 0.657 ± 0.021 (31%) 0.663 ± 0.024 (35%)

ns 0.963 ± 0.017 (50%) 0.964 ± 0.017 (50%) 0.963 ± 0.018 (53%)

Neff 3.61 ± 0.378 (45%) 3.582 ± 0.372 (45%) 3.319 ± 0.387 (47%)

w −0.87 ± 0.105 (24%) −0.825 ± 0.112 (27%) −0.874 ± 0.131 (32%)

γf 0.998 ± 0.104(21%) 1.155 ± 0.119(24%) 0.931 ± 0.095(19%)

Mlog sat 14.3 ± 0.07 (9%) 14.44 ± 0.127 (17%) 14.43 ± 0.21 (28%)

α 1.2 ± 0.148 (16%) 0.978 ± 0.154 (17%) 0.839 ± 0.231 (26%)

Mlog cut 11.64 ± 0.99 (53%) 11.78 ± 0.96 (52%) 12.44 ± 1.34 (73%)

s Mlog 0.435 ± 0.156 (35%) 0.336 ± 0.163 (36%) 0.7 ± 0.145 (32%)

ηvc 0.154 ± 0.092 (26%) 0.135 ± 0.083 (24%) 0.301 ± 0.094 (27%)

ηvs 1.0 ± 0.088 (10%) 1.131 ± 0.107 (12%) 1.074 ± 0.112 (12%)

ηcon 1.227 ± 0.342 (38%) 0.589 ± 0.189 (21%) 0.606 ± 0.24 (27%)

fmax 0.819 ± 0.114 (25%) 0.738 ± 0.13 (29%) 0.82 ± 0.124 (27%)

fenv −0.054 ± 0.091 (30%) 0.022 ± 0.109 (36%) −0.092 ± 0.084 (28%)

δenv 1.261 ± 0.481 (64%) 0.961 ± 0.411 (55%) 1.155 ± 0.45 (60%)

σenv 0.551 ± 0.257 (57%) 0.588 ± 0.248 (55%) 0.577 ± 0.25 (56%)

Note. The training priors for the cosmological parameters are adopted throughout the analysis and the numbers in the parenthesis represent the ratio of 68% interval
compared with the range of training space.
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Although the MULTINEST algorithm adopted in our like-
lihood analysis is not designed for goodness-of-fit analysis, the
posterior produced from the computation allows the search of a
minimum for χ2 that is close to the result from a minimization
algorithm. In our fiducial analysis, the free parameters include
seven cosmological parameters, one parameter for dark matter
halo velocity field γf, and 12 total HOD parameters. The data
vector has nine points for each of wp, ξ0, and ξ2. Therefore, the
number of degrees of freedom is 8. We find χ2

= 6.88 for the
low-z subsample, χ2

= 6.52 for the med-z subsample, and
χ2

= 16.8 for the high-z subsample. We note that the high-z
subsample gives a large χ2 relative to the degrees of freedom.
However, this result is dominated by the fit to ξ0 at the smallest
radial bin. We recompute the χ2 by excluding this single data
point using the best-fit model. The resulting value is
χ2

= 12.32, indicating a more reasonable result. Although
these results imply a statistically good fit to the data, we note
that χ2 per degree of freedom is only a rough indicator. The
data points are correlated, reducing the number of degrees of
freedom. However, for the clustering analysis in this paper and
our particular attention to the measurement of growth rate of
structure, most of the constraining power is only from a subset
of parameters, implying that the effective number of degrees of
freedom is actually higher than the eight listed above (i.e., see
the discussion in Lange et al. 2022).

In addition to our fiducial constraints on the key cosmolo-
gical parameters, Figure 4 also shows the results when adopting
a Planck prior for all cosmological parameters. This then yields
the value of the halo velocity field relative to GR, γf, that is
required to match the data. As expected from the fiducial
results, when enforcing this prior, the best-fit values of γf are all
below unity, with values of 0.87, 0.97, and 0.84, all with errors
of ∼0.05. More notable, however, is that the χ2 values of the

best-fit models are higher than in the fiducial analysis, with
Δχ2

= 5, 4, and 5, for low-z, med-z, and high-z respectively,
indicating the mild difficulty of the Planck cosmology to fit the
data, even with the added freedom of scaling the halo velocity
field and a 12 parameter halo occupation model that includes
assembly bias.
For comparison, these three figures also show results for an

analysis in which the cosmological parameters adopt the
fiducial prior, but with γf= 1. This analysis is thus a fully
ΛCDM+GR fit to the data. These results are indicated with the
black contours in the Ωm–σ8 panel. In all three redshift slices,
the results are consistent with the fiducial analysis, and yield
minimal changes to the best-fit χ2 values, with Δχ2

≈ 0, 3, and
0 from low-z to high-z, respectively. The constraints on Ωm are
consistent with the Planck results, but the constraints on σ8 are
significantly lower, with best-fit values of ∼0.75. This analysis
demonstrates that a ΛCDM+GR model is sufficient to describe
the data, but there is tension with the amplitude of clustering
inferred from the CMB. The last test is to fix w=−1, i.e., force
the model to be ΛCDM. Reducing this degree of freedom can
change the best-fit χ2 values by∼ 1–2 for all three redshift
bins. The final constraint on the key cosmological parameters is
quite consistent with the fiducial test but we note that fixing
w=−1 can alter the degeneracies between some parameter
pairs. The improvement in the measurement of linear growth
rate is not surprising as in earlier work (Chapman et al. 2022).
To visually demonstrate the impact of these prior assump-

tions on the fits to the data, in Figure 6 we present the best-fit
emulator predictions for the galaxy correlation functions in all
redshift bins, with residuals of the fits relative to the data. For
wp(rp), the fits are relatively consistent regardless of assump-
tion. However, the adoption of the Planck prior impacts the
amplitude of the monopole, especially for the low-z and high-z
redshift slices. It is this change that drives the Δχ2 values.

7.2. Halo Occupation Parameter Constraints

We note again that we include two parameters that
encapsulate velocity bias between galaxies and dark matter.
First, the orbits of satellite galaxies within their host halos may
move faster or slower than expected from the virial velocity
dispersion (ηvs). Second, central galaxies may have nonzero,
random, velocities with respect to their host halos (ηvc). The
velocity bias for BOSS central galaxies shows deviation from
zero with a significance of a few sigmas, and the deviation
increases as we go to higher redshift. This indicates that
centrals are not at rest with respect to their host halos,
consistent with earlier findings in Guo et al. (2015), Yuan et al.
(2021), and Lange et al. (2022). Note that we use a slightly
different definition of the velocity bias for centrals than these
works, but the results are consistent.
The velocity bias for satellites is consistent with unity,

indicating the velocity distribution of the satellites is well
described by the virial dispersion of the dark matter halos. This
is in agreement with Lange et al. (2022), who perform a similar
clustering analysis using BOSS galaxies at z = 0.25 and 0.4, as
well as with the higher redshift eBOSS-LRG analysis of
Chapman et al. (2022). This is in tension at some level with the
result in Guo et al. (2015) where the authors report a 2σ
constraint of αs< 1 using BOSS DR11 galaxies, but we note
their analysis is at fixed cosmology. Using CMASS galaxies,
Yuan et al. (2021) find that satellite galaxies slightly prefer
higher velocity than the dark matter particles but this result is

Figure 5. Constraints on cosmological parameters from our analysis. The
dashed lines correspond to the best-fit measurement from Planck using the
baseline ΛCDM model.
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still consistent with ours. However, their result has a large
variation depending on the details of the fit. This implies the
necessity of more detailed investigation of the velocity field
traced by satellites.

In our model, satellite galaxies follow a Navarro–Frenk–
White (NFW) density profile, with a concentration parameter
that is proportional to that of the dark matter (ηcon). For the
med-z and high-z bins, the satellite concentration parameter is
roughly half that of the dark matter. For the low-z bin, the best-
fit value of ηcon is higher, but the overall constraints on satellite

concentrations are weak. Our constraints in the low-z bin are
consistent with those of Lange et al. (2022) at the same
redshift. It is important to note that ηcon is not degenerate with
any of our cosmological parameters.
In all three redshift bins, the data prefer a slight nonzero

value of the assembly bias parameter fenv, the parameter that
governs the amplitude and sign of the bias. Positive fenv implies
that the HOD halo mass scale increases at high densities by
approximately 10%, lowering the number of galaxies at high
densities and reducing the overall amplitude of clustering. For

Figure 6. Best-fit model of wp (left), ξ0 (middle), and ξ2 (right) for three subsamples, as well as the residuals with respect to the BOSS measurements. Different lines
correspond to the tests as explained in the text. The bottom panels of each plot show the residual normalized by the observed uncertainty, and the horizontal thin lines
correspond to the 1σ and 2σ levels.
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reference, this value of fenv lowers the large-scale galaxy bias
by ∼5% when all other HOD parameters are fixed. However,
we note that the statistical significance of the result is 1σ in
each redshift bin. This is in agreement with some earlier
attempts, such as those of Walsh & Tinker (2019), Salcedo
et al. (2022), and Lange et al. (2022), but in contrast to analyses
by Zentner et al. (2019) and Yuan et al. (2021). We note that
these works employ different models for assembly bias with
different data sets and simulations; thus, a direct comparison of
each result is not straightforward. Galaxy assembly bias may
depend on multiple halo properties, such as concentration, age,
and environment (Han et al. 2019). Although the local density
is an excellent indicator, it is possible that assembly bias due to
other halo properties or their combinations is not fully
accounted for. A detailed comparison of the assembly bias
models and an evaluation of their impacts on the clustering
analysis is necessary but beyond the scope of this paper. In
McLaughlin et. al. (in preparation), we apply a similar emulator
approach to model projected galaxy correlation function and
galaxy lensing signal, and explicitly investigate the impact of
assembly bias on the cosmological inference.

For reference, we present the full 1D and 2D constraints on
all cosmological and halo occupation parameters in our
analysis in Appendix F.

7.3. Effect of Assembly Bias

Incorporation of assembly bias in our emulator enables the
investigation of its impact on the cosmological inference. Using
our BOSS clustering data, we repeat the analysis by turning off
the assembly bias, i.e., assuming a prior of fenv= 0 in the
likelihood analysis. The constraints on σ8 and γf for three
redshift bins are shown in Figure 7. Restricting the analysis in
this way has a minimal impact on the key cosmological
constraints. The largest shift on the contour plot is seen in the
high-z subsample, but it is still well within the 1σ level. This
result is consistent with the expectation from the fiducial
analysis that the constraint on fenv shows only statistically weak
deviations from 0. For comparison, the predictions of the
emulator using the best-fit model without assembly bias are
shown as the green dotted–dashed curves in Figure 6.

Although this analysis demonstrates that the inclusion of
galaxy assembly bias is not required to achieve unbiased
cosmological constraints from the BOSS sample, we still must
note potential caveats. Although our model is designed with
flexibility in mind, it may not mimic all potential impacts of
galaxy assembly bias. The assembly bias can be a combination
of multiple secondary properties and the choice of the model in
a particular analysis can be arbitrary. Our current model only

applies to the host halos within the HOD formalism, and not to
satellite galaxies separately. This requires a complicated model
for the assembly bias (see, e.g., Xu et al. 2021). However,
bringing in complementary observables can increase our ability
to constrain more sophisticated models. With more statistics,
such as higher order moments of the redshift space correlation
function, void statistics, and galaxy lensing, we can take a
greater leap in constraining both galaxy assembly bias and
cosmological parameters. By constructing multiple GP-based
emulators for galaxy correlation function and excess surface
density of galaxy–galaxy lensing, McLaughlin et. al. (in
preparation) explicitly investigate the impact on cosmological
inference from galaxy assembly bias. Similar to the method
used here, the local density of dark matter halo is used as the
secondary halo property within the HOD framework. However,
that work extends the modeling to both centrals and satellites.
The result based on CMASS and LOWZ-like mocks shows that
the incorporation of assembly in the model can help reduce the
bias for cosmological inference, and can become more
important at small scales below 1 h−1 Mpc.

7.4. Measurement of Structure Growth Rate

One of the main goals of measuring galaxy clustering at the
nonlinear scale is to precisely measure the growth rate of
structure, quantified by the parameter combination fσ8. In our
model, the parameters that impact this quantity are Ωm, σ8, and
γf. Based on the fiducial analysis, our constraints on Ωm are
uncorrelated with other parameters and they are generally in
agreement with the Planck results, regardless of prior
assumptions. There is a clear degeneracy between σ8 and γf,
as can be seen in the previous figures, which we focus on in
Figure 8 by plotting the results from all three redshift slices
together. The degeneracy curve traced out by these results is
approximately g s~ -

f 8
2. We note that the results approach the

lower limit of σ8 in the cosmological prior, which likely
influences the exact shape of this degeneracy curve. The Planck
ΛCDM+GR value lies just outside the 1σ–2σ constraints in
this plane. The right panel shows the posterior probability of
the parameter combination s gf8

2 for all three redshift bins, with
the Planck value indicated with the vertical lines. Expressed
using this parameter combination, the results from the three
different redshift bins are in good agreement with one another,
and in tension with the Planck value.
The growth of structure parameter, f, is determined by both

the matter density and the amplitude of the halo velocity field.
Thus, one can think of our constraint on fσ8 as g sW z zf m

0.55
8( ) ( ).

In detail, we use the CAMB software to compute the exact

Figure 7. Constraint on parameter σ8 and γf from the fiducial constraint (blue) and forcing fenv = 0 (red), i.e., assuming a model with no assembly bias. The dashed
line denotes the Planck observation for σ8 and γf = 1.
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value of f given the redshift and cosmology. After margin-
alizing all the cosmological, HOD, and assembly bias
parameters, are constraints are

s = = f z 0.25 0.413 0.031, 98( ) ( )

s = = f z 0.4 0.470 0.026, 108( ) ( )

s = = f z 0.55 0.396 0.022. 118( ) ( )

They correspond to fractional errors of 7.8%, 5.6%, and 5.5%,
respectively, matching the precision expected from Zhai et al.
(2019). The corresponding constraints from Planck 2018 are
0.473± 0.006, 0.478± 0.005, and 0.474± 0.004. Considering
the uncertainties of both measurements, we find our measure-
ments are lower than Planck by 1.9σ, 0.3σ, and 3.4σ for the
three redshifts. We discuss these differences in the following
section.

In Figure 9, we display our measurements of fσ8 for each of
our three redshift bins, and we compare these values with other
results in the literature, as well as the prediction from a flat
ΛCDM model using Planck 2018 results. The measurements
are collected from clustering analyses of galaxies from surveys
including 6dFGS (Beutler et al. 2012), GAMA (Blake et al.
2013), SDSS-I/II main galaxy sample (Howlett et al. 2015,
MGS), WiggleZ (Blake et al. 2012), VIPERS (de la Torre et al.
2013), and eBOSS-LRG (Bautista et al. 2021). Note that all
these analyses assume GR as the underlying gravity. We also
include measurements using BOSS galaxies, using either large-
scale or small-scale clustering data. On large scales, Alam et al.
(2017) give the consensus constraints on fσ8 and BAO distance
scales over the redshift range of CMASS+LOWZ using RSD
multipoles. Their measurement and uncertainty of fσ8 show a
clear dependence on redshift. We linearly interpolate their

Figure 8. Left: constraint on parameters σ8 and γf for all three BOSS subsamples in the fiducial case. Right: one-dimensional distribution of the parameter
combinations s gf8

2 . The vertical red line shows the measurement from the Planck 2018 observation with γf = 1.

Figure 9. Measurement of the growth rate of structure from our analysis using BOSS DR12 galaxies, as well as a compilation of the results in the literature. The black
line with the shaded area indicates the prediction from the Planck 2018 release assuming a flat ΛCDM cosmology. The data include 6dFGS (Beutler et al. 2012),
GAMA (Blake et al. 2013), SDSS-I/II main galaxy sample (Howlett et al. 2015, MGS), WiggleZ (Blake et al. 2012), Vipers (de la Torre et al. 2013), and eBOSS-
LRG (Bautista et al. 2021). In addition, we also display measurements using BOSS galaxies similar to our work: DR12 final consensus results (Alam et al. 2017),
BOSS-CMASS RSD analysis (Reid et al. 2014), and BOSS LOWZ small-scale analysis (Lange et al. 2022). Note that our results of fσ8 is quoted from the
measurement of fσ8γf. We omit γf in the y-axis to be in line with the measurements used for cosmological implications. In other words, except for our analysis
(including Chapman et al. 2022) and Reid et al. (2014), all the other studies implicitly assume γf = 1, i.e., the gravitational interaction is described by GR. The
symbols are split into two categories: large-scale (open) and small-scale (filled) measurements. Note that our measurements and eBOSS results at the same redshifts
are shifted slightly for plotting purposes.
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results to our redshift and compare the constraints. At z = 0.4
and 0.55, our fiducial result is consistent within 0.4σ and 1.3σ,
respectively, indicating the internal consistency of the BOSS
analysis.19

On small scales, there are a number of other studies. Lange
et al. (2022) perform the measurements using a cosmological
evidence modeling approach for BOSS galaxies at z = 0.25 and
0.4, marginalized over AEMULUS cosmological models. Chap-
man et al. (2022) apply the emulator approach to model the
eBOSS-LRG at z = 0.7 and extract the measurement of the
linear growth rate that is close to our method. Reid et al. (2014)
present a 2.5% measurement of fσ8 for the CMASS galaxies,
but we note that this analysis is at fixed cosmology, and thus,
the error is likely underestimated (see the discussion in Zhai
et al. 2019).

We also extract constraints on structure growth assuming
γf= 1, which is consistent with most of the other analyses
using GR as the underlying gravity model. The results are

s = = f z 0.25 0.416 0.022, 128( ) ( )

s = = f z 0.4 0.448 0.025, 138( ) ( )

s = = f z 0.55 0.401 0.019, 148( ) ( )

corresponding to fractional errors of 5.2%, 5.7%, and 4.7%,
respectively. This result has similar accuracy as Lange et al.
(2022) where the authors claim a 5% measurement of fσ8 at
z = 0.25 and 0.4. Our constraints for the samples at z = 0.25
and 0.4 are somewhat tighter because we include the projected
correlation function, wp, in the analysis to anchor the galaxy
bias in real space. Although wp has limited cosmological
sensitivity, it can strengthen the constraints on the HOD
parameters themselves, which can yield tighter cosmological
parameters by breaking degeneracies between cosmology and
bias that exist in the RSD data. The tension of our
measurements with Planck is 2.5σ, 1.3σ, and 3.7σ for three
redshifts. In general, the γf= 1 prior raises the values of fσ8,
closer to the Planck values. However, the reduced uncertainties
make the tension more significant. We also present the
measurement of fσ8 with w=−1 in Figure 9. This prior yields
quite consistent measurement as our fiducial analysis but can
shrink the uncertainty slightly. It is known that a cosmology
with w≠−1 predicts different growth history of structure
compared with ΛCDM cosmology (Lue et al. 2004). In our
analysis, assuming this prior w=−1 mainly changes degen-
eracy for some of the parameters, for instance, the contour plot
for Ωm (Figure 4). However, it does not alter the estimate of fσ8
significantly due to the velocity scaling parameter, which is
flexible to model a wide range of growth history.

7.5. Scale Dependence

In addition, we investigate the impact of scales considered in
the clustering analysis. Figure 10 compares the posterior
probabilities of fσ8 for our fiducial analysis, which has a
minimum scale of 0.1 h−1 Mpc, to two other analyses that
increase the minimum scale used. Here we choose minimum
scales of 0.4 and 3.5 h−1 Mpc. The former choice is motivated
by the scale of the fiber collision effect; the latter choice is

motivated by the transition between the one-halo and two-halo
terms in the galaxy clustering signal. The results for a
minimum scale of 0.4 h−1 Mpc are consistent with those of
the fiducial scale, both in terms of the values of fσ8 and their
uncertainties. However, the results for 3.5 h−1 Mpc are
substantially different and the offset decreases with redshift.
Although the new posteriors overlap with the fiducial, the best-
fit values increase and the errors, as expected, widen. The
tension with the Planck results is substantially alleviated,
although the high-z result is still low by ∼2σ. These results
agree with similar tests in Chapman et al. (2022), which imply
that the lower values of fσ8, and the tension with Planck, is
driven by the fully nonlinear regime.

7.6. Comparison with Other Studies Using Small-scale
Clustering

As shown in Figure 9, the small-scale, BOSS LOWZ
analysis of Lange et al. (2022) is in good agreement with our
constraints on fσ8 at z = 0.4, but it is higher than ours at
z = 0.25. Even though these analyses use the same set of
galaxies at this redshift, there are a number of differences in
both the modeling and in the data that may drive this
difference. Lange et al. (2022) employ a novel statistical
method using the AEMULUS simulations without explicitly
constructing an emulator. Rather, they use the likelihood at
each AEMULUS cosmology to fit the likelihood function of fσ8.
On the data side, the galaxy statistics used include anisotropic
clustering in redshift space of moments up to hexadecapole, but
not wp. As shown in Chapman et al. (2022), including wp

reduces fσ8 relative to the multipoles alone. In addition, their
analysis is restricted to scales above 0.4h−1 Mpc, which
roughly corresponds to the fiber collision scale of BOSS
LOWZ galaxies. Last, on the data side, is that Lange et al.
(2022) only use the NGC, whereas our analysis uses both NGC
and SGC data. On the modeling side, there are significant
differences as well. Lange et al. (2022) assume γf= 1 (GR
only), which we find also marginally changes the value of fσ8.
Although one single explanation does not seem able to explain
the difference in these two analyses at z = 0.25, the cumulative
effect of all the differences can explain a significant amount.
As a direct application of the emulator approach, Chapman

et al. (2022) measure small-scale galaxy clustering of eBOSS
LRGs at z = 0.7 to constrain the growth rate of structure. This
analysis is closest in spirit to our work, with the exception of
our incorporation of assembly bias. They use the emulator of
Zhai et al. (2019), updated to match the redshift and number
density of eBOSS, and include the fmax parameter discussed
above. Chapman et al. (2022) present two constraints on fσ8:
one using clustering data down to 0.1 h−1 Mpc, and another
restricted to scales about 7 h−1 Mpc. The full-scale analysis
yields a value of fσ8 that, like our BOSS measurements, is
significantly below the Planck value. The larger-scale analysis
lies in between, with errors such that it is consistent with both
the small-scale result and the Planck value. Chapman et al.
(2022) also perform a number of notable tests that help to
validate the emulator approach taken in this paper. Since
measurements of the galaxy correlation function assume a
cosmology in order to convert redshift to distance, this choice
may lead to the so-called Alcock–Paczynski (Alcock &
Paczynski 1979) effect. Chapman et al. (2022) examine this
effect for small-scale clustering, finding that the impact on
parameter constraints is negligible. Therefore, we do not

19 We note that the BOSS measurements are correlated due to overlapping
redshift bins, thus the fact that our results are lower than the Alam et al. (2017)
constraints at both redshifts is not necessarily indicative of a systematic bias.
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explicitly model this effect in our analysis. In addition, the
eBOSS galaxies at higher redshift can experience significant
errors in the galaxy redshifts, leading to a biased measurement
of fσ8 of up to 0.5σ. Since BOSS galaxies are at lower redshift,
the amplitude of redshift errors is significantly smaller.
However, to be certain that there is no impact on our results, in
Appendix H, we examine this by running parameter recovery
tests using test data that incorporate redshift uncertainty. Our
results show that the impact of redshift uncertainty is negligible
for the BOSS galaxies.

In Figure 11, we project our measurement of g s
f
0.5

8 and
compare with other analyses in the literature, including the
aforementioned works in Lange et al. (2022), Chapman et al.
(2022), Ivanov (2021), Kobayashi et al. (2022), and Chen et al.
(2022) using redshift-space distortion, and galaxy lensing
analyses from Singh et al. (2020), Wibking et al. (2020),
Krolewski et al. (2021), White et al. (2022), Asgari et al.
(2020), and Abbott et al. (2022). In the top panel, we express
the RSD measurement by parameter combination g s

f
0.5

8, which
basically measures the amplitude of matter perturbation.
Compared with the Planck result, all clustering analyses using
low redshift galaxies, with the exception of the z∼ 0.25 bin
from Lange et al. (2022), give lower estimates of the
perturbation amplitude than Planck (including Kobayashi
et al. 2022, which is slightly more consistent with Planck).
Note that the eBOSS-LRG (Chapman et al. 2022) result with
γf= 1 has a consistent measurement with Planck, but with a
high χ2. In the bottom panel, we compile some of the latest
galaxy lensing measurements of s= WS 0.3m8 8 . The overall
results of our clustering analysis are in agreement with these
lensing analyses in that the lensing amplitude is also lower than
the Planck prediction (Leauthaud et al. 2017). A more robust
analysis can combine the galaxy lensing measurement and
RSD signals to improve the accuracy and the constraint on any
deviation from GR or ΛCDM and also incorporate a more
flexible model for galaxy–halo connection (Zu 2020).

8. Discussion and Conclusion

Galaxy clustering at small scales has been demonstrated to
have a significant amount of cosmological constraining power,
especially for the parameters that govern the growth and
amplitude of structure. This paper extends the emulator
approach for modeling galaxy clustering developed in Zhai
et al. (2019) to analyze the clustering of BOSS galaxies. In

addition to the standard cosmological parameters of Ωm and σ8,
we introduce the parameter γf to scale the velocity field of dark
matter halos to mimic the effect of modified gravity. At all
redshifts covered by BOSS, our constraints on the parameter
combination fσ8 are below those predicted by the ΛCDM+GR
model assuming the current Planck cosmology, with varying
levels of statistical significance at each redshift bin. This result
is similar to that of the lensing is low phenomenon (Leauthaud
et al. 2017) in which the galaxy–galaxy lensing signal of the
BOSS galaxies is lower than that predicted assuming a Planck
cosmology by 30% (Leauthaud et al. 2017; Wibking et al.
2020). As shown in Figure 11, there are a growing number of

Figure 10. Scale dependence of the constraint on fσ8 from BOSS galaxies. Results are shown for three redshift ranges, respectively, as indicated in each panel. The
range covered by the training prior is marked as the yellow shaded area.

Figure 11. Top: measurement of g s
f
0.5

8 from our BOSS galaxy analysis (blue
square), compared with other works using similar galaxy statistics at both linear
and nonlinear scales. Bottom: latest measurements of s= WS 0.3m8 8 using
galaxy lensing statistics. The vertical lines in both panels correspond to the
Planck measurements (Planck Collaboration et al. 2020).

15

The Astrophysical Journal, 948:99 (25pp), 2023 May 10 Zhai et al.



results using small-scale clustering and lensing that are in
tension with the current Planck cosmology.

There are three primary ways that this tension between our
galaxy clustering results and the Planck constraints can be
ameliorated. These include (1) new physics that imparts
deviations from general relativity, (2) cosmological solutions
in the form of massive neutrinos, and (3) astrophysical
solutions rooted in galaxy formation processes.

The first of these solutions, in which gravity deviates from
GR in order to change the prediction for the halo velocity field
at a fixed matter density, is not favored. The first reason is that
this class of explanation does not necessarily resolve the
tension between the Planck cosmology and the aforementioned
lensing results. For example, models with weaker gravity than
GR boost the lensing signal in the two-halo term (Leauthaud
et al. 2017), but would reduce the value of fσ8 (Samushia et al.
2014). This resolves one tension at the cost of amplifying the
other. But the second reason is that, by our own analysis, such a
solution is not favored by the redshift-space distortions. In our
fiducial analysis, γf= 1 (i.e., gravity is GR) is within ∼1σ. If
we adopt a Planck prior for all cosmological parameters except
γf, we do find that γf< 1 to high significance, but this model is
not a good fit to the data. However, when allowing the
cosmology to be free but adopting a prior of γf= 1, our model
is a good descriptor of the BOSS clustering data.

The second solution addresses the tensions created by both
lensing and clustering results simultaneously. From Figure 11,
the collected results from both of these probes indicate the need
for a lower value of σ8 than derived from cosmic microwave
background (CMB) data. The values of these two constraints
on the amplitude of matter fluctuations, one at z< 1 and the
other at z≈ 1100, can be reconciled to some degree through the
presence of massive neutrinos. The presence of massive
neutrinos suppresses the growth of structure, which manifests
in a scale-dependent manner with smaller scales being more
highly affected. Given the current constraints on the sum of
neutrino masses to be <0.12 eV, it is unlikely that massive
neutrinos can fully resolve the tension between the results listed
above and the Planck constraints on the clustering amplitude,
but it goes in the right direction to resolve both lensing and
RSD results, and it could alleviate a significant amount of the
tension.

The last of the primary solutions involves the galaxy–halo
connection. In this paper, we have attempted to make our
galaxy bias model as flexible as possible, constructing a model
with 11 free parameters. However, the tension between our
results and the Planck cosmology is primarily driven by the
clustering signal at 3 h

−1 Mpc, a scale that probes galaxy
pairs within a single host halo as well as the transition between
1-halo and 2-halo galaxy pairs. Thus, a systematic error in the
HOD approach cannot be ruled out. The tests presented in this
paper use abundance matching techniques to create the test
data. These test many of the assumptions in our model, such as
spherical halos with isothermal velocity distributions and NFW
density profiles for satellite galaxies. However, sub-halo
abundance matching does not incorporate baryonic effects that
may influence the spatial distribution of galaxies. Currently,
hydrodynamic simulations are not large enough to present
statistically robust tests of the emulator. But it may be possible
to incorporate the impact of baryons on the spatial distribution
of galaxies in larger, dark matter only simulations, providing a
more rigorous test (Hearin et al. 2016, 2021). The effects of

galaxy formation on the galaxy–halo connection, and thus
galaxy clustering, may present itself either through assembly
bias or in an occupation function that is not well represented
with our current model.
The chief observational systematic, that of fiber collisions

between BOSS spectra, is not likely to be a dominant source of
bias. We note that the discrepancy with the Planck cosmology
persists if we exclude data below 0.4 h−1 Mpc, the scale at
which collisions become significant in the highest redshift bin.
We also note that the method of correcting for collisions
employed in this paper is distinct from the method used in the
Chapman et al. (2022) emulator analysis of eBOSS-LRG
clustering, but both studies are consistent in finding tension
with Planck when including the smallest scales. On the other
hand, we have incorporated the emulator uncertainty through-
out the analysis which is non-negligible in the total covariance,
implying that we can have another boost in the constraining
power if the emulator error can be reduced significantly or
totally removed. This can be nontrivial. In our pilot study (Zhai
et al. 2019), we use the analytical model of wp (Tinker et al.
2005, 2012) with full control of the uncertainty of the input
training data and test data. With similar coverage of the
parameter space as in this paper, the intrinsic emulator error can
be reduced to a sub-percent level across a wide range of scales,
thus much lower than the data uncertainty. However, the
simulation-based emulator is worse and the performance varies
with scale. This may indicate factors other than the GP
algorithm that can weaken the emulator performance, including
but not limited to the modeling of the training error and the
specifics of the simulations such as volume, resolution, and
small-scale density field. A more thorough exploration for the
emulator error can help to answer this question and will be
useful for future studies.
For the last two of the proposed solutions listed above, the

AEMULUS Project is in an excellent position to make significant
progress. The natural next step in the development of
simulations for emulator development is to create new
simulations that incorporate neutrinos as an active particle
species along with the dark matter. This will properly model
the differential growth of structure induced by such particles,
giving our next-generation emulators the ability to incorporate
and constrain the sum of the neutrino masses. These
simulations are currently underway (DeRose et al. 2023).
Adding new parameters to the galaxy bias model, be they
applicable to the mean occupation function or related to
assembly bias, is a straightforward process. The addition of
new parameters in a model necessitates increased constraining
power from data. The AEMULUS approach, however, is open-
ended. Nonstandard galaxy clustering statistics, such as void
statistics, marked statistics, and kNN statistics, can be emulated
with equal efficacy to redshift-space distortions and weak
lensing. These statistics bring in complementary information
that can be used to constrain new freedom in HOD models
(Tinker et al. 2008; Vakili & Hahn 2019; Walsh & Tinker 2019;
Wang et al. 2019; Szewciw et al. 2022). The next generation of
AEMULUS emulators will include complementary, nonstandard
statistics (Storey-Fisher et al. 2022).
The measurement of the growth and amplitude of large-scale

structure is a crucial test of our cosmological model. It provides
complementary information to geometric probes, i.e., the
cosmic distance measurements from observation of Type Ia
supernovae and baryon acoustic oscillations. The measurement
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of fσ8 as a function of redshift is able to constrain the growth
history of the cosmic density field. For the large families of
dark energy and modified gravity models that are proposed to
explain cosmic acceleration, the growth measurement is able to
distinguish them and pare down the viable parameter space.
The accurate and model-independent measurement presented in
this paper serves as the latest attempt. In future work, we will
explore the cosmological implications of this latest
measurement.

The AEMULUS Project aims at providing accurate and
unbiased emulators for galaxy statistics at any redshift and
number density. This paper represents the first application to
the BOSS data set. The overall performance is consistent with
the estimates of our earlier work, and additional improvement
is also possible. Ongoing surveys, most notably DESI, will
increase the statistical constraining power of observational data
and will thus require higher precision and accuracy from
theoretical models. The next generation of Aemulus simula-
tions and emulators will allow the analysis of small-scale
clustering to continue down the path on which this paper lies.
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Appendix A
Luminosity Selection on Galaxy Clustering

The selection of galaxies based on their luminosity results in
a brighter subsample. In Figure 12, we show the 2PCF of these
galaxies and in comparison with the original BOSS galaxies.
Due to the correlation between galaxy brightness and the host
halo mass, our subsample reveals an increased amplitude of
correlation function. The impact is significant for wp at all
scales, and becomes weaker for RSD multipoles on small
scales. This change requires the emulator of 2PCF from Zhai

et al. (2019) to be retrained to explain the measurements as
described in the text.

Appendix B
Construction of Covariance Matrix

The construction of the covariance matrix is described in
detail in Section 6.1. In this appendix, we present the
measurement of the 2PCF and the resultant correlation matrix
in Figures 13 and 14, respectively. The top panel of Figure 14
shows the correlation matrix of wp, ξ0, and ξ2 using the
jackknife resampling method of BOSS galaxies, and the bottom
panel is from the GLAM mocks. For the high-z subsample, we
produce another set of GLAM mocks based on a random HOD.
The correlation function is shown as the dashed purple line in
Figure 13 with different clustering amplitude. However, the
resultant correlation matrix is similar to the first GLAM mocks
(bottom panel of Figure 14). Based on these galaxy mocks, we
construct the covariance matrix in the likelihood analysis as
explained in the text, and test the impact of different choices of
covariance matrix in Appendix G.

Appendix C
Construction of the Emulator

The construction of the emulator for wp, ξ0, and ξ2 follows
the same method as in Zhai et al. (2019), including the
modeling of the training error, the choice of kernel function for
the GP and the optimization method. In particular, we define
the likelihood function with the training sample as Equation
(15) of Zhai et al. (2019) for each statistic. The hyper-
parameters in the kernel which define the distance metric are
for individual model parameters. The training process is to
optimize the above likelihood function and the resultant hyper-
parameters form the final emulator to make predictions for a
new model parameter set. Since the HOD parameter space is
extended with additional parameters for assembly bias and
widened ranges for Msat and α, the sampling of the emulator
needs to be improved. Our test shows that using 80 HODs per
cosmology is able to provide sufficient sampling for the
emulator accuracy, which is a 60% increase compared with
Zhai et al. (2019). The 2PCF of the galaxy mocks from both the
training sample and test sample is computed by the publicly
available code CORRFUNC (Sinha & Garrison 2020). Given the
number density of our galaxy mocks, the average cost of one
model evaluation using emulators for wp+ ξ0+ ξ2 is at the
level of 1 CPU-second. In Figure 15, we present the overall
accuracy of the emulator for wp, ξ0, and ξ2 at three redshifts.
The training error and test sample error are also shown for
comparison. The emulator performance is quite similar to the
pilot study in Zhai et al. (2019). For wp and ξ0, the emulator
accuracy is close to or better than the sample variance. At
scales from 1–10 h

−1 Mpc, the accuracy is better than 1% or
2%, which enables the use of the clustering measurement at the
most informative scales. The emulator performance is worse
for ξ2, but it is still able to contain useful information for
cosmological constraint.

Appendix D
Prior for the Likelihood Analysis

The sampling in the cosmological parameter space is
restricted within the area covered by training cosmologies.
We incorporate this restriction by defining a prior for
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cosmological parameters. We first compute the mean mcos and
covariance matrixCcos of the seven parameters using AEMULUS
training cosmologies. Then for an arbitrary point μ in the
cosmological parameter space, we define a distance metric

c m m m m= - --C . D1
cos
2

cos cos
1

cos[ ] [ ] ( )

We choose a threshold value for c < 12
cos
2 that only allows

sampling that can satisfy this condition. This roughly
corresponds to the 3σ level of this multivariate Gaussian
distribution. The resulting seven-dimensional ellipsoid is able
to enclose the training cosmologies. In Figure 16, we display
the projection of the training cosmologies, as well as the prior
space.

Appendix E
Test on SHAM Catalogs

We construct the SHAM catalog following the model
proposed in Lehmann et al. (2017). This model adopts a
velocity proxy to allow continuous transition between two-halo

properties:
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Note that we add subscript “sham” to distinguish αsham from
the HOD parameter α. When αsham= 0, vα= vvir, equivalent to
matching galaxy by halo mass. When αsham= 1, =av vmax, the
matching is based on maximal circular velocity. The typical
value of αsham is restricted within [0, 1]; however, we can
artificially increase the value to increase the dependence of
clustering on vmax and therefore boost the level of assem-
bly bias.
In Figure 17, we present the measurements of wp, ξ0, and ξ2

for the SHAM catalogs using different values of scatter and
αsham. The scatter parameter denotes the standard deviation of
the stellar mass of galaxies at a fixed value of halo mass. We
first perform the recovery test on the Uchuu SHAM catalog.

Figure 12. 2PCF wp (left), ξ0 (middle), and ξ2 (right) for the three subsamples of BOSS galaxies with and without luminosity selection. Dashed lines denote
measurements using all the galaxies, while the solid lines and squares denote our subsample selected by brightness. The low-z and high-z subsamples are shifted
vertically for plotting purposes.

Figure 13. Correlation function of the GLAM mocks to construct the covariance matrix. The squares with error bars are measurements from BOSS galaxies. The red,
blue, and black lines are obtained by populating the GLAM mocks with an optimized HOD parameter set and the GLAM cosmology. We do not require the mocks to
give consistent results as observation, since the GLAM cosmology may not be the true cosmology. In order to further test the covariance matrix, we randomly pick a
HOD model to populate the GLAM halo catalog for high-z galaxies, as shown by the dashed purple lines. The clustering amplitude shows different behavior but the
correlation matrix only shows mild variation.
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The covariance matrix in the likelihood analysis is similar to
the fiducial model as introduced in Section 6.1: the correlation
matrix is from the GLAM mocks and the diagonal elements
correspond to the sample variance of the AEMULUS training
box. Since the Uchuu simulation has a box size of 2h−1Gpc,
we also use the ratio of the volume to scale the diagonal
elements to match the Uchuu volume. These two tests are

distinguished as (1−1Gpc) and (2h−1Gpc), respectively. Since
this volume factor only applies to the sample variance Csam,
while the emulator error remains the same, the difference in the
finalized covariance matrix is diluted. Figure 18 displays the
final constraints on the cosmological parameters and the key
assembly bias parameter fenv. We can see that the input
cosmology of the Uchuu simulation is well recovered within 1σ

Figure 14. Top: correlation matrix for galaxy statistics wp, ξ0, and ξ2 obtained by jackknife resampling of the BOSS galaxies. Bottom: the correlation matrix
constructed using GLAM mocks.

Figure 15. Performance of the emulator for wp (left), ξ0 (middle), and ξ2 (right) for three redshifts. The solid blue line stands for the training error, while the red line
stands for the error of the test samples. We also show the uncertainty from BOSS measurement as green dashed lines for reference. The test samples have multiple
boxes and populations to suppress sample variance and shot noise. The shaded area represents the inner 68% distribution of the emulator performance.
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using the galaxy correlation function at a nonlinear scale. It
shows that the assembly bias induced in the sub-halo matching
process does not bias the cosmological constraint, and supports
the robustness of our emulator. The two tests with different
diagonal elements of the covariance matrix (1−1Gpc) and
(2h−1Gpc) show quite similar results, with the (2h−1Gpc) case
presenting a slightly tighter constraint on the contour plot. It is
consistent with the expectation that the larger volume can
suppress the sample variance, but with a smaller difference due
to the intrinsic emulator error since the volume scaling is only
applied to the sample variance and the contribution from
emulator error remains unchanged. This can make the (volume

scaled) sample variance subdominant in the final covariance
matrix.
In Figure 19, we present the same recovery tests on the

UNIT SHAM catalog. For simplicity, we assume the sample
variance of the measurement of the correlation function is
equivalent to the training box of the AEMULUS suite. The actual
effective volume of the UNIT boxes is nontrivial to estimate due
to the inverse phase technique to reduce cosmic variance.
However, the overall findings based on this recovery test is
likely to hold. For different values of the scatter and αsham, our
HOD-based model is also able to recover the input cosmology.
The result is quite similar to the Uchuu simulation.

Figure 16. Illustration of the prior space in the likelihood analysis for cosmological parameters. The black dots are the 40 training cosmologies from AEMULUS suite.
Since Box023 has an outlier value of σ8, we just use the other 39 models to get a covariance matrix of the cosmological parameters. Then we define a distance metric
χ2 and only allow the sampling of the points within a threshold. This defines a 7D ellipsoid with uniform and uninformative distribution. The red dots show the
resulting sampling in the prior space, i.e., the ellipsoid imposed with the range of each parameter as shown in the first section of Table 3.

Figure 17. Galaxy 2PCF of the SHAM catalogs using Uchuu and UNIT simulations at z ∼ 0.55, in comparison with high-z BOSS galaxies.
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Appendix F
Constraint on All the Parameters

Figure 20 displays the full triangle plot for the constraint on
all the parameters in our model using measurements of
wp+ ξ0+ ξ2. The results of the three subsamples are shown
on top of each other.

Appendix G
Likelihood Test of Covariance Matrix

In this section, we show the constraint using different
covariance matrices as constructed in Section 6.1. We use the
high-z (0.48< z< 0.62) subsample to present our results, but
the low-z and med-z subsamples give similar results. For the
high-z subsample, we remind the readers that we create another
set of GLAM mocks using a randomly chosen HOD. Figure 21
presents the finalized constraint using wp+ ξ0+ ξ2 for all these
different covariance matrices. We find that the overall
constraint is stable against difference choices of covariance
matrix with some offset for a subset of the parameters. In order
to explicitly investigate the impact on the resultant measure-
ment of the structure growth rate, we extract fσ8 from these
analyses and present the distribution in Figure 22. The results
show that different constructions of the covariance matrix give
quite consistent measurements of the linear growth rate of
structure.

Appendix H
Redshift Uncertainty

One of the systematics in the clustering analysis is redshift
uncertainty, or velocity dispersion, which can be estimated by
repeat observations. The examination of BOSS galaxies shows
that this uncertainty can be described by a Gaussian distribution
with some value of standard deviation. The result based on
both LOWZ and CMASS reveals a clear dependence of the

Figure 18. Recovery test of the Uchuu SHAM catalog with αsham = 1.0 and
scatter = 0.15. The constraint uses wp + ξ0 + ξ2 (right). The covariance matrix
corresponds to the fiducial choice. Since the Uchuu simulation has larger
volume than BOSS, we scale the uncertainties of the sample variance to match
a 1 and 2h−1 Gpc box, respectively, and compare the constraints. Our result
shows that this difference is diluted to some extent by the contribution from the
emulator error; however, the sample variance corresponding to a larger box still
gives a tighter constraint, consistent with expectation. The result shows that the
input cosmology can be recovered within 1σ for all the cosmological
parameters. This demonstrates the robustness of our assembly bias augmented
HOD model and the construction of the emulator.

Figure 19. Test on the SHAM catalog constructed using UNIT simulation with αsham = 1 and scatter = 0.08. The galaxy statistics employed in the analysis is
wp + ξ0 + ξ2 for the high-z subsample. The left-hand panel shows the SHAM catalog constructed with scatter = 0.15, while the right-hand panel is for scatter = 0.19.
The test is done on SHAM catalogs with different values of αsham, which is a measure of the significance of assembly bias. The result shows that our HOD-based
model can give unbiased recovery of the input cosmology.
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dispersion on redshift, see Bolton et al. (2012) for a detailed
analysis. From a theoretical point of view, this velocity
dispersion can be captured through our HOD modeling by
the parameters γf and velocity bias for central and satellites. In
order to explicitly investigate the impact of this systematics on
our cosmological measurements. We randomly pick 10 HOD
models from our test suite, and add this velocity dispersion to
the velocity of the galaxies in the mock and do the recovery test
using the same set of emulators. In particular, we choose the
high-z subsample (0.48< z< 0.62) in this analysis, add an
additional velocity component randomly drawn from a
Gaussian distribution with a standard deviation of 30 km s–1

corresponding to the maximum estimate in Bolton et al. (2012)
within our redshift range. We perform the recovery tests using
galaxy statistics wp+ ξ0+ ξ2 for models with and without this
additional velocity component, and present the inferred
measurement of structure growth rate in Figure 23. The dots
with error bars represent the 1σ and 2σ uncertainties of fσ8
recovered from the mocks compared with the input truth. This
result shows that this velocity dispersion has a negligible
impact on the final constraint. Since the velocity dispersion is
increasing with redshift, the low-z and med-z subsamples can
experience a less significant effect. Therefore, this result
validates the robustness of our measurement.

Figure 20. 1D and 2D contours of the parameters for our fiducial constraint using wp + ξ0 + ξ2.

22

The Astrophysical Journal, 948:99 (25pp), 2023 May 10 Zhai et al.



In Chapman et al. (2022), the velocity dispersion is
examined for the eBOSS-LRG sample. Since these high-
redshift galaxies have an average velocity dispersion of
91.8 km s−1, a factor of 3 higher than our high-z BOSS
galaxies, it can impact the cosmological constraint to a higher
extent. For full-scale measurement, the parameter γf can be
biased with an offset of 0.5σ. Although this component of
systematics does not bias the BOSS measurements as in this
paper, it imposes an additional concern for high-redshift
galaxies in the near future, e.g., ELGs from eBOSS, DESI,
etc. Either a more flexible emulator or forward modeling is
needed to achieve unbiased cosmological inference.
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