)]
Check for
Updates

Mystique: Enabling Accurate and Scalable Generation of
Production Al Benchmarks

Mingyu Liang
Cornell University
Ithaca, New York, USA

Wenyin Fu

Menlo Park, California, USA

Louis Feng
Meta
Menlo Park, California, USA

ml2585@cornell.edu wenyinfu@meta.com lofe@meta.com
Zhongyi Lin Pavani Panakanti Shengbao Zheng
University of California, Davis Meta

Davis, California, USA
zhylin@ucdavis.edu

Srinivas Sridharan
Meta
Menlo Park, California, USA
ssrinivas@meta.com

ABSTRACT

Building large Al fleets to support the rapidly growing DL work-
loads is an active research topic for modern cloud providers. Gen-
erating accurate benchmarks plays an essential role in designing
the fast-paced software and hardware solutions in this space. Two
fundamental challenges to make this scalable are (i) workload rep-
resentativeness and (ii) the ability to quickly incorporate changes
to the fleet into the benchmarks.

To overcome these issues, we propose Mystique, an accurate
and scalable framework for production Al benchmark generation.
It leverages the PyTorch execution trace (ET), a new feature that
captures the runtime information of Al models at the granularity
of operators, in a graph format, together with their metadata. By
sourcing fleet ETs, we can build AI benchmarks that are portable
and representative. Mystique is scalable, due to its lightweight data
collection, in terms of runtime overhead and instrumentation effort.
It is also adaptive because ET composability allows flexible control
on benchmark creation.

We evaluate our methodology on several production Al mod-
els, and show that benchmarks generated with Mystique closely
resemble original Al models, both in execution time and system-
level metrics. We also showcase the portability of the generated
benchmarks across platforms, and demonstrate several use cases
enabled by the fine-grained composability of the execution trace.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISCA °23, June 17-21, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0095-8/23/06....$15.00
https://doi.org/10.1145/3579371.3589072

Menlo Park, California, USA
pavanip@meta.com

Menlo Park, California, USA
shengbao@meta.com

Christina Delimitrou

Massachusetts Institute of Technology

Cambridge, Massachusetts, USA
delimitrou@csail.mit.edu

CCS CONCEPTS

« Computing methodologies — Artificial intelligence; « Com-
puter systems organization — Cloud computing; Neural net-
works; « Software and its engineering — Source code generation.

KEYWORDS

artificial intelligence, cloud computing, benchmarking, perfor-
mance cloning, code generation

ACM Reference Format:

Mingyu Liang, Wenyin Fu, Louis Feng, Zhongyi Lin, Pavani Panakanti,
Shengbao Zheng, Srinivas Sridharan, and Christina Delimitrou. 2023. Mys-
tique: Enabling Accurate and Scalable Generation of Production Al Bench-
marks. In Proceedings of the 50th Annual International Symposium on Com-
puter Architecture (ISCA 23), June 17-21, 2023, Orlando, FL, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3579371.3589072

1 INTRODUCTION

Artificial Intelligence (AI) has experienced a strong resurgence with
the recent advances in Deep Learning (DL). It is rapidly expanding
into many areas, and has led to revolutionary changes, including
in natural language processing [7, 16], computer vision [27, 56],
gaming [55, 59], and recommendation systems [39, 65]. Almost
all cloud enterprises today deploy massive amounts of resources
towards Al computing to support their business. Building and main-
taining large Al fleets to efficiently support these DL workloads has
led to both hardware and software innovation across the system
stack [10, 14, 21-23, 29, 40, 64].

Having representative and agile Al benchmarks based on live
fleet production workloads would provide an invaluable resource
for fleet design and efficiency optimization [25, 26, 28, 33]. Inter-
nally, it can be used for system optimization (e.g., GPU or ASIC
accelerator design), performance characterization and analysis,
bug reproducibility, etc. It can also be shared with external hard-
ware vendors for early-stage performance testing, evaluation, and
joint HW/SW codesign, with minimal infrastructure support and a
streamlined IP sharing setup.

ISCA ’23, June 17-21, 2023, Orlando, FL, USA

The past few years have seen significant advancements in Al
benchmarking [1, 3, 11, 36, 52]. MLPerf, specifically, is an industry-
standard suite that covers diverse ML applications, DNN models and
optimizers, from training to inference. However, its model diver-
sity and updating speed, as Table 1 shows, cannot match the ever-
changing, highly-diverse Al production workloads across cloud
infrastructures. Due to workload churn, the execution character-
istics of workloads can quickly change over time [58], completely

changing the system requirements.
Table 1: MLPerf training benchmarks [38].

Area Model Last updated
Vision ResNet-50 May 17, 2021
Vision 3D U-Net Apr 14, 2021
Vision Mask R-CNN Mar 5, 2021
Language RNN-T Apr 7, 2021
Language BERT-large May 14, 2021
Commerce DLRM Feb 9, 2021
Research Mini Go Jun 19, 2020

Additionally, engineers or researchers need to manually select
and adapt existing production or open-source workloads to a form
that can be used for benchmarking. This process involves a non-
trivial investment, since it requires high expertise and compre-
hensive understanding of the workloads. Also, extracting only the
desired components from a production environment can be chal-
lenging, since production workloads have many supporting depen-
dencies (e.g., storage, data preprocessing, scheduler), and many
proprietary in-house libraries and tooling integration. This can lead
to a high cost for maintaining and updating the derived benchmarks
to keep up with the fast cadence of Al application design. Therefore,
there is a strong need for a new methodology which enables us to
efficiently generate Al benchmarks in production scale.

In this paper, we propose an efficient and scalable framework
to create Al benchmarks directly from production workflows in a
“replay as benchmark" manner. We present Mystique, a benchmark
generation framework for Al workloads, which leverages the new
PyTorch execution trace (ET) capability to record the runtime in-
formation of a model at operator granularity, and faithfully replay
it to reproduce the original performance. Mystique is efficient and
scalable as only a few lines of hook code are needed to collect the
traces and generate a benchmark from a production, cloud-scale Al
model. Mystique is open-source and publicly available.!

Our main contributions are:

e We build a scalable and automated end-to-end infrastruc-
ture that profiles and replays the execution traces from real
production Al workloads.

e We evaluate Mystique across several production PyTorch
workloads running in a warehouse-scale fleet, and show that
the generated benchmarks closely match the original, in
terms of performance and system-level metrics.

e We showcase the portability of the generated benchmarks
across platforms and evaluate several use cases Mystique
can be applied to, including early stage platform evaluation,
subtrace replay, and scaled-down performance testing.

!https://github.com/facebookresearch/param.

M. Liang, W. Fu, L. Feng, Z. Lin, P. Panakanti, S. Zheng, S. Sridharan, and C. Delimitrou

2 RELATED WORK
2.1 Al benchmarks

Benchmarks are an easy-to-use representation that captures the
most essential characteristics of a workload, while leaving out non-
critical aspects of the original application. Benchmarks are powerful
tools, as they enable evaluating a target system’s performance for a
given workload without the need for supporting all dependencies
the original application requires, e.g., libraries, upstream/down-
stream data pipeline setup, job orchestration. These advantages
are even more desirable for Al workloads, which are built over
complex programming frameworks, have more interconnected SW
components, and often run distributedly in cloud environments.

Therefore, providing a robust methodology to create realistic Al
benchmarks that reflect a deployment’s behavior is an attractive
proposition for all levels of system design, from Al accelerator
design to datacenter deployment orchestration.

Unsurprisingly, there have been numerous proposals on bench-
marking Al workloads [1, 3, 4, 11, 36, 37, 52, 66]. DeepBench [3]
provides a set of basic operations used by deep neural networks
(DNN) and evaluates them on different platforms. TBD [66] iden-
tifies eight representative DNN models, and performs a detailed
performance analysis on different deep learning frameworks and
hardware configurations. DAWNBench [11] measures the end-to-
end performance of training and inference, subject to a specified
accuracy, allowing innovation in software, algorithms, communica-
tion methods, etc. More recently, MLPerf [4, 36, 37, 52] has become
an industry-standard suite for ML performance, encompassing a
variety of models in different domains (vision, language, recom-
mendation, research) and different deployment scenarios, from
datacenter, to edge and mobile.

While this work has enriched and strengthened the availability
of Al benchmarks to the community, their coverage remains limited
compared to the vast spectrum of Al workloads deployed in pro-
duction. For instance, it is not uncommon to find thousands of Al
models in a hyperscaler’s fleet at any given time. Curating a small
set of benchmarks to approximate general behavior characteristics
from such a vast collection is a significant challenge. At the same
time, given the rapid pace of innovation in the Al space, new Al
workloads appear in datacenters on a daily basis, further hindering
the ability of benchmark characteristics to remain up to date.

In essence, we have a scalability issue both in terms of the model
space and in terms of time required for benchmark generation.
For example, diffusion models [50, 54] are a new class of genera-
tive models that generate diverse high-resolution images, however,
have not yet been included in any widely used benchmarks. On the
other hand, production models often include adaptations and opti-
mizations on top of open source models customized to their own
use cases, and thus can exhibit significantly different performance
characteristics from their corresponding open-source versions.

Our insight in dealing with this scalability issue is to rely on
automation to generate representative Al benchmarks instead of
the current manual curation approach. Mystique enables generating
benchmarks at scale with minimal manual input, and provides close
behavior resemblance to production flows.

Mystique: Enabling Accurate and Scalable Generation of Production Al Benchmarks

2.2 Simulation, emulation, and performance
modeling

Simulation, emulation, and performance modeling offer another
way to approximate a workload’s performance, when software or
hardware is unavailable. Sniper [9] is a parallel and scalable CPU
simulator using a high-level abstraction for simulating multicore
and multiprocessor systems. gem5 [6] is a modular microarchi-
tectural simulator that has been broadly used for GPU architec-
ture modeling [5, 13, 47]. GPGPU-Sim [31] provides a cycle-level
simulation model of NVIDIA GPUs running CUDA and OpenCL
workloads, and enables fast and detailed validation. While these
simulation techniques are not specific to Al, they have been ex-
tensively used to evaluate software and hardware proposals for Al
systems.

Similarly, there has been a lot of work on performance modeling
of ML workloads [30, 32, 34, 35, 62, 67]. Daydream [67] predicts
model runtime under certain optimizations based on the kernel-task
dependency graph. Habitat [62] uses wave scaling and MLPs to
predict the execution time of DNN training. Finally, CM-DARE [32]
proposes a performance model for distributed training with cloud-
based GPU servers to achieve cost savings and speedup.

While useful when hardware is unavailable, or requires non-
negligible changes, these simulators and performance models still
make approximations on the workload behavior and cannot fully
capture the complexity of a real system. Also, performance models
in particular, usually target specific use cases and cannot easily be
extended to a wide range of studies.

2.3 Performance cloning and synthetic
benchmarks

Performance cloning is an intuitive way to generate synthetic
benchmarks that preserve the performance of real-world work-
loads. Previous work profiled the architectural characteristics of
the target applications, and generated corresponding proxy bench-
marks [12, 24, 44, 45, 51, 57, 60]. MicroGrad [51] collects the CPU
metrics and uses a Gradient Descent based tuning mechanism to
produce workload clones and stress tests. PerfProx [44] generates
miniature proxies for real-world database applications, based on
performance metrics derived from hardware performance counters.
CAMP [45] models core performance, memory locality, and the in-
teraction between them to mimic BigData applications. ECHO [15]
focuses on cloning network behavior in distributed cloud applica-
tions using statistical models, and generates synthetic benchmarks
that resemble the locality and traffic characteristics of the original
services. Finally, Ditto [33] proposes an automated cloning frame-
work that can capture both the low- and high-level performance
metrics of distributed cloud applications.

However, these approaches only focus on CPU performance
and miss the critical performance engines exercised by AI work-
loads, namely GPUs or other accelerators. G-MAP [46] models the
memory access patterns and parallelism of GPU applications to cre-
ate memory proxies. GPGPU-MiniBench [63] generates miniature
proxies of CUDA GPGPU kernels to retain similar performance.
However, they focus on only memory or kernel behavior on GPU,
and do not consider the sequential execution on the CPU and the

ISCA 23, June 17-21, 2023, Orlando, FL, USA

interactions between CPUs and GPUs, and therefore cannot reflect
the full performance of Al models.

3 BACKGROUND

Finding realistic benchmarks that resemble production cloud work-
loads is a long-standing problem. Given the limitations of open-
source benchmarks and of approaches that rely on simulation or per-
formance modeling, generating synthetic benchmarks that mimic
the full stack performance of real applications can enable a wide
range of system studies.

Prior work on performance cloning and benchmark generation
mostly focuses on CPU-centric workloads, by collecting their ar-
chitectural characteristics and generating appropriate assembly in-
structions. Although, in theory we could apply the same approach
to Al applications, this would be overlooking the unique properties
that AT workloads exhibit. The fact that most AI workloads are im-
plemented with a handful of frameworks (e.g., PyTorch, Tensorflow,
JAX), makes capturing a logically complete yet—representation-
wise—succinct and reproducible snapshot possible. In PyTorch, ap-
plications invoke low-level operators, such as ATen [2], NCCL [41]
to fulfill their execution. By recording the execution information
at these invocation boundaries, we can faithfully reconstruct the
execution behavior of a complex AI workload.

We focus on generating benchmarks for PyTorch Al models. We
choose PyTorch as our first step because of its widespread use in
industry (and our worldwide production environment specifically)
as well as academia, and the rich profiling capabilities it offers.
Our approach can be extended to support other ML frameworks, as
discussed in Section 8.3. Below we describe what the execution trace
(ET) is, and how it enables us to generate realistic AI benchmarks.

3.1 Execution Trace (ET)

[+
& /
aten::as_strided

Figure 1: An example of PyTorch’s execution trace (the figure
only shows a subtrace for simplicity), in which the boxes are
PyTorch operators and the ovals are unique tensors. Arrows
represent inputs and outputs. Lines ending with a diamond
show parent-child relationships between the operators. Exe-
cution order is not shown here.

The execution trace of a PyTorch model is a runtime recording
of its operators together with their metadata, such as the execution

ISCA ’23, June 17-21, 2023, Orlando, FL, USA

order, operator schema, input/output arguments, as well as their
parent-child relationships. Figure 1 shows an example of such an
execution trace, where each node is a PyTorch operator and the
connections between the nodes indicate the parent-child relation-
ships, i.e., the calling stack of the operators. Table 2 shows the key
information captured for each node in more detail.

Table 2: Execution trace node schema.

Key Description
name Name of node
id Unique ID of this node
parent Parent node ID
op_schema PyTorch operator schema
inputs Array of input args
Actual values for non-tensor args
input_shapes Array of input shapes
Empty [] for non-tensor args
input_types Array of input types

Empty [] for non-tensor args
Array of output args
Actual values for non-tensor args
Array of output shapes
Empty [] for non-tensor args
Array of output types
Empty [] for non-tensor args

outputs
output_shapes

output_types

Each tensor argument is tagged with a unique ID (a six element
tuple) with its shape and data type. This unique ID is used to track
the data dependencies among operators and to distinguish each
tensor, as we will discuss in Section 4.4. The execution order across
operators is not explicitly recorded but can be inferred from the
node IDs, because they are assigned in increasing order, based on
execution order.

3.2 Advantages of ET

This execution trace records the metadata that is needed to repro-
duce the original execution behavior of each operator, offering us a
very intuitive way to generate synthetic benchmarks by replaying
all operators in the trace according to their original execution order
and data dependencies.

ET stands out among other similar recording approaches because:
1) its APl is easy to use and requires minimal source level changes
(collection can be enabled by a few lines of code, no performance
counters or architectural characteristics needed), 2) its hardware ag-
nostic design makes it portable across different hardware platforms,
3) it incurs very small performance overheads, which facilitates
a large-scale automated data collection setup in the background,
in a production environment, 4) it has a compactly defined data
schema which minimizes the storage support cost in production,
and 5) as each ET node is a self-contained entity, the ET format
provides great composability which enable more use cases, such as
new hardware platform evaluation and scaled-down performance
emulation (we discuss this in detail in Section 7). These traits make
ET ideal for encapsulating broad production workload behavior in
an agile manner.

M. Liang, W. Fu, L. Feng, Z. Lin, P. Panakanti, S. Zheng, S. Sridharan, and C. Delimitrou

3.3 PyTorch operators

Operators are the building blocks in the PyTorch framework, which
define the mathematical and logical transformations to be per-
formed on the data. Every operator includes a set of platform-
specific implementations, usually written in C/C++ or other domain
specific languages, to provide its functionality on the supported
hardware. The framework is designed to allow easy custom imple-
mentations for reasons spanning from increased performance to
enabling new hardware innovations. Among the models we have
profiled, we find that operators can be roughly divided into four
categories based on the implications each entails when trying to
replay them:

[l:l ATen [EEE Comms [Fused [Custom]

=
3 1.04

i)
o 0.81
g
0 0.6
o
S 0.4
8
o
5 0.2

o
O 0.0

Count CPU time GPU time

(exposed)
Figure 2: Fraction of different operators in a production
model running on 8 GPUs, in terms of their count, CPU
time, and exposed GPU time.

e ATen ops: ATen is the low-level tensor library and compute
backend for PyTorch. It performs the actual computation on
tensors, such as addition, matrix multiplication, and batch
normalization.

e Communication ops: Distributed training across multiple
devices has now become the norm to support large scale
Al models, as well as to increase the training speed. Dur-
ing distributed training, communication operators are used
for synchronization and data transmission among multiple
devices. For PyTorch, c10d [48] is the most popular commu-
nication library, which offers both collective communication
APIs (e.g., all_reduce() and all_to_all()) and P2P communica-
tion APIs (e.g., send() and recv()).

o Fused ops: Operator fusion is a common optimization tech-
nique that merges multiple operators into a single execution
instance to reduce the memory access and kernel dispatch
overhead. In PyTorch models, it can be easily enabled by ap-
plying the @torch.jit.script decorator to the model’s function
definition. There are a couple of available backends in JIT;
the default fuser on CPUs is NNC and on GPUs is NVFuser.
After PyTorch fuses the original operators, it will emit a
single fused operator in place of them during execution.

e Custom ops: To support the rapidly changing Al landscape,
PyTorch provides a user-friendly interface for users to define
custom operators. The interface is commonly used to create a
novel model building block or to provide a better implemen-
tation than the default routines. Using operators imported
from other libraries (e.g., FBGEMM [17] and torchrec [19])
in the application is another way to leverage such custom
operator support.

Mystique: Enabling Accurate and Scalable Generation of Production Al Benchmarks

Figure 2 shows the fraction of different types of operators for
one of the most popular production workloads running in our ware-
house fleet. We show the ratios across three metrics: operator count,
CPU time, and GPU time, which correspond, respectively, to the
number of occurrences of the operators, the execution time on
CPUs, and the execution time of the kernels launched on GPUs. In
particular, for communication operators, we measure the exposed
GPU time, which is the time that their launched kernels are not
running in parallel with any other computation kernels. As the
default compute backend of PyTorch, ATen operators take up the
lion share in terms of all three metrics. Fused operators are the
second in count but have the shortest GPU time. Custom and com-
munication operators are quantitatively modest, but have long GPU
time; the former are usually complex in functionality and therefore
expensive to execute, and the latter can also come at a significant
cost in large-scale distributed deployments.

Considering the high fraction of ATen and communication oper-
ators, we mostly focus on them during the operator reconstruction
phase, discussed in the next section.

4 MYSTIQUE DESIGN

Figure 3 shows a high-level overview of Mystique, our benchmark
generation framework based on ET replay. First, we collect both
the execution trace and the profiler trace of the fleet’s Al workloads
under live traffic. Then the ET analyzer and builder preprocess the
traces and select the most commonly-occurring ones. Currently,
we pass these ETs to the replayer in their original form and in
the future we plan to add more sophistication to accommodate
additional uses, such as operator obfuscation for enhanced IP pro-
tection. Finally, the ET replayer gets the input traces and creates
the desired benchmarks or configures them for different use cases.
The whole workflow is fully automated, so we can constantly up-
date the benchmarks using the latest collected traces without any
human involvement. Additionally, we add the feedback loop be-
tween the replay and original traces by comparing their similarity
to validate and improve our methodology. In the rest of this sec-
tion, we describe the trace collection, and each essential part of the
replay-based benchmarking methodology.

4.1 Trace collection

To collect the ET of a PyTorch model, a user currently needs to
insert simple hooks into the code to instantiate an ExecutionGra-
phObserver and use start() and stop() methods to control when the
execution is recorded. Typically, we only need to collect a single ex-
ecution iteration, requiring tens to hundreds of milliseconds, since
the execution trace of a model is mostly the same across iterations.
Each process has a single observer instance and if running under a
distributed setup, multiple execution traces will be collected, one
for each process. These traces need to be collected from the same
iteration, to ensure that the same communication operators are
recorded. The alternative can lead to deadlocks during replay, if we
cannot match the communication operators across ETs.

from torch.profiler import ExecutionGraphObserver

3/ # Instantiate the runtime observer

et_path = "/tmp/execution_trace. json"
et_observer = ExecutionGraphObserver ()

6

g

ISCA 23, June 17-21, 2023, Orlando, FL, USA

et_observer.register_callback(et_path)

Insert hooks into execution (e.g., training) loop

) def training_loop():

10

11

6

7| op_name,

Collects profiler trace
with torch.profiler.profile(
activities=[ProfilerActivity.CPU,
ProfilerActivity.CUDAT,
on_trace_ready=profiler_trace_handler,
) as pf:
for idx in range(100):
if idx == 10:
Start ET capture
et_observer.start()
if idx == 11:
Stop ET capture
et_observer.stop ()
model.step()
pf.step()

In some cases, collecting the ET alone is not enough to fully
reproduce the behavior of a workload, as it lacks the CUDA stream
execution information. In those cases, we combine ET with another
runtime trace, collected by the PyTorch Profiler[49]. We discuss
this in Section 4.5.

The pseudocode of trace collection is shown above. Adding the
ET observer and profiler to record the runtime information can
introduce some overheads to the performance of the original Al
model. However, this overhead is small and only occurs once, and
it does not affect the accuracy of the generated benchmark, as our
replay method does not rely on any temporal information captured
in these traces or hardware-level performance metrics.

4.2 Operators selection

Given an execution trace, we need to select which operators
to replay, because some of them are redundant. For example,
aten::linear() has included two of its child operators aten::t() and
aten::addmm() as part of its implementation. At runtime all three
operators will be caught in the ET, however, we only need to replay
the parent one, which in this case is aten::linear(). To identify these
redundant operators, since the parent operator is always executed
before its children, we can traverse the operators in the order of
execution, keep each operator we encounter and skip all its child
operators, based on the parent-child relationships captured in the
execution trace.

4.3 Operators reconstruction

4.3.1 ATen operators. We reconstruct each ATen operator through
the TorchScript IR (Intermediate Representation) using its captured
operator schema in ET, which includes the operator name and data
types for its input and output arguments. We implement a string-
based parser to extract this key information from the schema, which
is then used to build the canonical textual representation of the IR.
Finally, we compile the IR with TorchScript to create the callable
function for each operator to use during replay. The pseudocode
below demonstrates this procedure:

Captured op schema in ET

op_schema = "aten::add.Tensor(Tensor self,
Tensor other, x,
Scalar alpha=1) -> Tensor"

Extract name and arguments from schema
op_args = parser(op_schema)

3

9

ISCA ’23, June 17-21, 2023, Orlando, FL, USA

ET synthesis

M. Liang, W. Fu, L. Feng, Z. Lin, P. Panakanti, S. Zheng, S. Sridharan, and C. Delimitrou

1
Use cases !

Benchmark generation 4‘- -

‘ Scale-down simulation ‘]

ET analyzer }—>‘ ET builder }—H‘ ET replayer
A
i

Figure 3: Overview of our benchmark generation workflow using ET replay.

Build IR with extracted information

torchscript_ir_str = builder (op_name, op_args) = ""
graph (%x.1 Tensor,
%y .1 Tensor):

%4 : int = prim::Constant[value=1]()
%5 : Tensor = aten::add(%x.1, %y.1, %4)
return (%5)

wn

Compile IR to callable function

graph = torch._C.parse_ir(torchscript_ir_str)
cu = torch._C.CompilationUnit ()

func = cu.create_function(op_name, graph)

4.3.2 Communication operators. To reproduce the communication
pattern of the original workload, we need to replay the communi-
cation operators with their original arguments, such as the process
group and message size. The metadata can be obtained from the
execution trace; for the execution of the operators during replay, we
leverage the existing PyTorch distributed infrastructure and imple-
ment a wrapper over the low-level interfaces to pass the appropriate
parameters. We create new process groups and map them to the
original groups, and for each operator, we select the same data type
and size as the original, to ensure a similar communication pattern
in replay. Depending on the operator’s execution mode, we wait
for it to complete if it is blocking, or execute it asynchronously by
registering its callback to check back later.

4.3.3 Custom operators. Custom extension is a mechanism that
PyTorch developed to allow users to create their out-of-source
operators, distinct from the default backend. Similar to the other
operators, their input and output arguments are captured in the
execution trace, but that is not sufficient for replay, as we do not
know their specific implementations. To handle this case, we expose
an interface, which allows users to register their custom operators
together with their implementations. During replay, we look up
the registry and use the provided implementation to replay each
custom operator.

4.3.4 Fused operators. Pointwise operators can be fused into a
single kernel to amortize memory access time and kernel launch
time. However, the current implementation of execution trace does
not support the metadata of fused operators. For now, we skip these
operators altogether because they comprise only a small percentage
of the operator list, and have negligible impact to performance, as
shown in Fig. 2. Fusion behavior can be reproduced via PyTorch
JIT and we plan to add this support once its reproduction metadata
is available in ET.

All operator reconstruction happens during the initialization
phase of the replay, such that they can be directly invoked in the
real execution to avoid any runtime overhead.

4.4 Arguments and tensor management

In addition to the functionality, input arguments also play an im-
portant role to the performance of an operator. For arguments with
basic types, such as int or bool, we can simply save their values and
reuse them during replay, however, for part of the tensors we need
to instantiate them in advance.

If we track the occurrence of all tensors that are used as input,
we can divide them into two categories. We call one type interme-
diate tensors, which are generated as the output of an operator
executed earlier, before being used. The other category are exter-
nal tensors, whose generation is not observed in the execution
trace. This classification can be done by tracking the appearance of
each tensor based on its unique tensor ID, during the trace traversal
in execution order. For intermediate tensors, we save them at the
time of generation, and pass them to the downstream operators, ac-
cording to the data dependencies between operators. For external
tensors, we explicitly instantiate them before execution.

By default, we instantiate a tensor with the same shape and data
type as the original but with random values, as the performance
of an operator is not related to the values of the input tensors. We
find that this holds true for most operators, as we will show later
in the evaluation section, minus a few rare exceptions. One case
we have met is the lookup operator for embedding tables. One
of its input tensors stores the lookup indices, whose value directly
determines the access pattern and has a strong correlation with
performance. In this case, we would need to specify the values
for that tensor based on some additional information, such as the
table size, indices distribution, or pooling factor. Since not all this
information is captured in the ET, for now, we set the default values
for the missing information empirically, derived by the operators
in our production environment, and we additionally provide an
interface for users to further refine them. We leave automatically
processing such special cases to future work.

4.5 Parallel stream execution

A CUDA stream is a sequence of kernels that execute in issue-order
on the GPU, and CUDA applications are allowed to launch kernels
concurrently on different streams to improve device utilization
and execution efficiency. The most representative scenario is the
parallel execution of computation and communication kernels to
hide the networking overhead. Also, data transfer between the

Mystique: Enabling Accurate and Scalable Generation of Production Al Benchmarks

host and device is often optimized to run on a separate stream. A
model’s stream execution pattern can have a significant impact on
its performance, and we need to take this into account during the
benchmark generation.

To do so, we need to identify which stream each kernel is exe-
cuted on, and which operator launches each kernel, so that we can
prepare multiple streams and dispatch each operator to its corre-
sponding stream during replay. Unfortunately, current ET does not
include any stream or kernel information so we need to extract this
from another runtime trace, collected via the PyTorch profiler[49].
This profiler has been broadly used in the PyTorch community
and the extraction can be easily performed based on the launching
relationships between the operators and kernels. For now we use
this trace as an ET enhancement, and based on our feedback, the
ET working group is actively working on integrating the kernel
information into the ET representation.

4.6 Putting it all together

Our ET replay approach first collects the execution trace and pro-
filer trace of a model to capture both the operators with their meta-
data, and their launched GPU kernels. We then walk through the
trace according to the execution order, distinguish individual ten-
sors, and identify the operators to replay. Next, we reconstruct the
callable function for each operator, prepare the necessary tensors,
and initialize the distributed environment, if necessary. Finally, we
replay the operators on different streams with the same execution
order, input arguments (but not values for tensors), and data depen-
dencies as in the original workload, to faithfully reproduce their
original performance characteristics. In case of a distributed deploy-
ment, for validation purposes, the same number of processes will be
spawned as the original, each using a separate execution trace, and
repeating all the steps above. We also enable scaled-down replays
of an Al workload without the need for retraining, as discussed in
Section 7.3.

5 IMPLEMENTATION

Mystique is built on PyTorch in approximately 8,000 LoC. It cur-
rently supports all basic ATen operators, a large fraction of custom
operators used in our production workloads, a few common li-
braries like FBGEMM, and the c10d distributed library with all four
types of backends (nccl, gloo, mpi, ucc).

To leverage Mystique, it is required that users have access to the
source code to insert hooks into their PyTorch model to collect the
execution and profiler traces; typically around 10 lines of added
code. Although the profiling process incurs some runtime overhead,
its impact is negligible, since we only need to trace a single itera-
tion. We have also broadly tested it in our production deployment
at Meta, and have not observed any noticeable reliability change.
Our framework then takes the traces as input, follows the steps we
discussed in Section 4 to analyze the traces, and generates a single
PyTorch program as a benchmark. The program contains opera-
tors with a hardcoded execution order, input arguments and data
dependencies, and can directly run on any platform as a normal
PyTorch application. For the distributed training deployment, we
use mpirun [42] to create the distributed environment and spawn

ISCA 23, June 17-21, 2023, Orlando, FL, USA

multiple processes, each of which uses its own input traces to gener-
ate and execute the benchmark. Synchronization and data sharing
between processes is automatically achieved by the communication
operators.

Given the granularity and flexibility of the execution trace, our
ET replay method can be used to explore more use case scenarios,
in addition to completely replicating the original behavior, as we
discuss in Section 7.

6 EVALUATION
6.1 Platforms

We evaluate Mystique on a production cluster of 10 servers with
NVIDIA Tesla A100 GPUs and V100 GPUs, and unless specified,
the results are collected on A100 GPUs. We use CUDA 11.4 and
PyTorch 1.14 as our testing environment.

6.2 Workloads

We focus on the following four popular and representative models
in their respective fields, but have also validated Mystique against
many other Al models, with similar results.

e PARAM linear: PARAM [18] is a benchmark suite of com-

pute and communication microbenchmarks, as well as full

workloads for both training and inference. We select a rep-
resentative linear model with 20 linear layers and set batch
size to 512 and data type to float32.

ResNet: We choose the ResNet18 model from torchvi-

sion [20], with batch size 128 and data type float32. For

its distributed deployment, we use the default Distributed

Data-Parallel (DDP) training framework by PyTorch.

e ASR: We use a production multi-GPU automatic speech
recognition (ASR) training flow implemented with the
Fairseq [43] toolkit. At its core, ASR is a neural-network-
based acoustic model.

e RM: RM is a leading edge multi-node, multi-GPU production
recommendation model that pushes the boundary for large-
scale training. It is the production implementation that the
open-source DLRM benchmark [39] aims to approximate.
In our experiments, several configurations of this model
are used to cover different workload setups (e.g., different
distributed training set sizes).

6.3 Operators coverage

Table 3: Ops coverage rate across evaluated workloads.

Operators coverage
Model
Count Execution time
PARAM linear 100% 100%
ResNet 100% 100%
ASR 99.6% 75.7%
RM 96.8% 90.9%

ISCA ’23, June 17-21, 2023, Orlando, FL, USA

M. Liang, W. Fu, L. Feng, Z. Lin, P. Panakanti, S. Zheng, S. Sridharan, and C. Delimitrou

|« 14.9ms >
CPU ~=-=m=mcmceeao—,
. :
| |
I i 1 g g a
e |
| |
17 D ado faroata | :‘ “““““““““““““““““““““ {
L _Replay targets _ | | |
= R 41 AR R A |
GPU oo e o e e ,
. . ____ |
| 14.2ms >|
CPU
GPU

Figure 4: Runtime profiler traces of PARAM linear (top) and its benchmark (bottom) for a single training iteration. Within
each trace, the bars on the top are PyTorch operators executed on CPU and the bars at the bottom are GPU kernels, with length
indicating the real execution time. The color of bars represents the operator type and color matching shows type matching.

Table 3 shows the current operator coverage rate for our frame-
work across the different studied workloads. The coverage rate
denotes the percentage of operators that we are able to replay com-
pared to the total number of operators in a workload. We show
the fractions in terms of both count and execution time. Since we
support all ATen operators, which are the compute backend of Py-
Torch, we can achieve a very high coverage rate on the operator
count for all workloads. Two of our production workloads have
a relatively lower coverage in terms of execution time, since we
are currently missing support for fused operators and a subset of
custom operators, with the latter dominating the execution time
gap. These custom operators normally perform very specific tasks,
for example, a LSTM network in NLP models. We provide users
with a programmable interface to register more of their custom
operators, which can lead to higher coverage and accuracy.

6.4 End-to-end execution time

Figure 4 shows the runtime traces of a single training iteration
for the PARAM linear model (top), and its replayed benchmark
(bottom). Within each trace, we separate execution time between
threads running on the CPUs (top block for each trace) and kernels
running on the GPUs (bottom block).

In the original workload’s trace (top), there are two threads on
the CPUs since the backward operators are automatically performed
by PyTorch’s autograd engine on the other thread, and we similarly
use two threads in replay. The overall execution time of the operator

sequence in the replayed benchmark is 14.2 ms, very close to the
original’s 14.9 ms. When zoomed in, we can see that the execution
time of each individual replayed operator, i.e., the length of each bar,
and the execution pattern across operators, i.e., how bars interleave
with each other, is very similar to the original. The vertical height
of the bars is determined by the operator’s call stack depth. The
small difference in height between original and replayed is due to
additional wrappers like autograd::engine::evaluate_function in the
original model, which do not perform any meaningful work; in the
synthetic model we only replay their underlying operators (“Replay
targets” regions).

Table 4: E2e execution time of a single iteration.

Model Original Original Replay
(exclude unsupported)

PARAM linear 14.9ms 14.9ms 14.1ms

ResNet 64.4ms 64.4ms 70.7ms

ASR 316.3ms 239.3ms 229.1ms

RM 65.9ms 59.9ms 58.4ms

Table 4 shows the original and replayed execution time for a
single iteration of each workload running on a single GPU. For a
fair comparison, we also include the original execution time that
excludes the unsupported operators, and we use this calibrated
execution time for the rest of our evaluation. This table shows to

Mystique: Enabling Accurate and Scalable Generation of Production Al Benchmarks

ISCA 23, June 17-21, 2023, Orlando, FL, USA

Il Original [Replay

~ 100 800 400
g @ S

c 75 @ 600 <300
S Q g

5

S 50 2 400 Z 200
= - o

5 25 = 200 2 100
= T U]

PARAM ResNet ASR RM

PARAM ResNet

ASR RM PARAM ResNet ASR RM

Figure 5: Comparison of SM utilization, HBM bandwidth, and GPU power for each model and their replay counterparts.

what extent Mystique captures the covered operators’ execution
time. We obtain high accuracy across all applications, with 5.4%
error on PARAM linear, 9.8% error on ResNet, 4.3% error on ASR
and 2.5% error on RM, when comparing the overall performance of
all replayed operators.

6.5 System-level metrics

In addition to execution time, system-level metrics are also impor-
tant for a benchmark generation framework to capture, to ensure
high similarity with the original workload. Specifically, for these
Al workloads, we are more interested in GPU-related metrics, in-
cluding both macro- and micro-level characteristics.

6.5.1 Macro-level. Figure 5 shows three representative and widely
evaluated metrics for Al workloads, in production environments:
SM utilization, HBM bandwidth, and GPU power, across all work-
loads and their replay counterparts. All models are using a single
A100 GPU. We collect these metrics over thousands of iterations,
and show their average values. Compared to the other three work-
loads, RM has the highest resource utilization, and therefore the
highest power usage. The HBM bandwidth gap of ASR is a little
larger than the others, due to the small number of custom operators
we do not yet support. The results illustrate that different work-
loads exhibit very different performance characteristics at a macro
level, but can be accurately captured by our replay methodology,
and reproduced in the generated benchmarks.

0 IPC @ L1 hitrate B L2 hit rate B SM throughput
1.2

g
o

0.8

Similarity

Figure 6: Normalized per-kernel and overall micro-level ar-
chitectural metrics.

6.5.2 Micro-level. In Figure 6, we show the similarity between
the original ResNet and the generated benchmark, in terms of its
fine-grained performance characteristics, including IPC, L1 hit rate,

L2 hit rate and SM throughput. We choose the top 10 CUDA kernels
in terms of runtime and the overall performance among all kernels,
and normalize the data to that of the original model. The top 10 ker-
nels account for 50.3% of the total execution time, and the overall
deviation across all kernels is all within 2%. The results demon-
strate that Mystique can also faithfully clone microarchitectural
characteristics, which is inherited from our accurate replication of
the model at operator level.

6.6 Distributed training

Distributed training is now very common practice for Al work-
loads, as their model sizes and datasets keep rapidly growing. To
evaluate the scalability of our ET replay-based framework, we col-
lect the runtime traces of the RM workload running on 8 nodes
with 64 NVIDIA A100 GPUs total, and interconnected via NVLink
(intra-node) and a 200Gbps NIC per GPU (inter-node), and then
replay it under the same setting. To enable large-scale execution, we
adjust RM’s parameters, resulting in variations in behavior when
compared to the single-GPU version.

Table 5 shows the execution time per iteration and the system-
level metrics per GPU, averaged across the profiling duration and
all 64 GPUs, for the original model and the replayed benchmark.
The performance of the generated benchmark is very similar to that
of the original, with a slight difference primarily attributed to the
inaccuracy of a few communication operators replay. This evalua-
tion validates the scalability of Mystique for large-scale distributed
deployments.

Table 5: Scalability evaluation on 8 nodes with 64 GPUs.

Metric Original Replay
Execution time (ms) 102.5 113.1
SM utilization (%) 49.6 43.6
HBM bandwidth (GB/s) 4185 364.3
GPU power (W) 228.1 204.8

6.7 Cross platform validation

Mystique operates at operator-level to reproduce the performance
and resource characteristics of an original AI workload. This
hardware-agnostic operation allows the generated benchmark to
be portable across platforms without regeneration. To validate this,

ISCA ’23, June 17-21, 2023, Orlando, FL, USA

we test the performance of all four studied workloads and their
corresponding generated benchmarks on three platforms: Intel
Xeon Platinum CPU, NVIDIA Tesla V100, and NVIDIA Tesla A100.
We only use the trace collected on the A100 server to generate
the synthetic benchmarks, and then run them across the different
platforms.

[Original I Replay
Q

1.01 1.04

0.51 0.51

Normalized exec. time
Normalized exec. tim

CPU V100 A100
Param linear

CPU V100 A100
ResNet

1.0 .
- 1.0

Normalized exec. time
o
w
Normalized exec. time
o
w

CPU V100 Al00 CPU V100 Al00
ASR RM

Figure 7: Normalized execution time of all workloads and
their replayed benchmarks on different platforms.

Figure 7 shows the validation results of all four workloads. We
normalize the execution time of the replayed benchmark to that
of the original workload on each platform. For two production
workloads ASR and RM, we only show their performance on the
two GPU platforms, as they cannot directly run on CPU. The figure
shows that execution time between original and replayed applica-
tion matches across platforms, demonstrating the portability of our
replay methodology.

6.8 Power efficiency sensitivity sweep

—e— Original —e— Replay
- PARAM ResNet
- N N /\:
Q@
L
Tos 05
>
2
[J)
C
w0.0 0.0

100 150 200 250 300 350 100 150 200 250 300 350
Device power limit (W) Device power limit (W)
ASR RM

Jun
o

M“’/\,_‘

0.5

Energy efficiency
o
o ¢

°
o

100 150 200 250 300 350 0.0
Device power limit (W)

100 150 200 250 300 350
Device power limit (W)

Figure 8: Normalized energy efficiency under varying power
limit.

Power efficiency is an important metric in many system designs,
and large-scale training is no exception. Due to the sheer size of

M. Liang, W. Fu, L. Feng, Z. Lin, P. Panakanti, S. Zheng, S. Sridharan, and C. Delimitrou

our production training fleet, even a small power efficiency gain
translates to huge infrastructure cost savings. Here we demonstrate
that the benchmark generated by Mystique is able to mimic the
power efficiency characteristics of the original application, when
we sweep certain system design knobs (the device power limit in
this example).

Figure 8 displays the power efficiency sensitivity curves of all
studied workloads and their corresponding synthetic benchmarks,
as we set the GPU power limit to different levels. The x-axis is the
GPU power limit we want to sweep, and the y-axis is the normal-
ized power efficiency, defined as the throughput over power. Our
generated benchmarks closely track the sensitivity trend of the
original workloads, demonstrating that such a methodology can be
effectively used to evaluate system performance in the place of real
workloads, when they are not available.

7 USE CASES

By leveraging the execution trace (ET), Mystique opens up many
opportunities on how to conduct Al system evaluation. In this
section we describe several use cases we experimented with using
our current framework.

7.1 Subtrace replay

The execution trace is made up of nodes (operators) connected
through parent-child relationships; this composability allows us
to replay only a subtrace of interest or certain types of operators,
enabling fast and efficient testing of a specific component instead
of the entire model.

To do this, a user can leverage the record_function context man-
ager [49] in the PyTorch profiler to label an arbitrary range of code
with a user-defined name. Then in the ET, a new operator will
appear as the parent of all operators within that code range. When
traversing the trace to select which operators to replay, we can
use this name to easily locate this operator, and only replay the
subtrace underneath. In Figure 9, the subtrace located under the
operator ## forward:z ## is selectively replayed for the RM workload
to measure the performance of this specific segment of forward
process. The repeated replay traces in the bottom verify that we
are only replaying the target subtrace, and the results demonstrate
that the original performance of this subtrace is captured.

Py axnn
s pre—y . pr— "
o -

J 9.8ms [9.7ms |

Figure 9: Runtime traces of original model (top) and two
iterations of the subtrace replay (bottom). The original label
names are replaced for confidentiality reasons.

Similarly, by filtering operators based on their types, our frame-
work can also be easily configured to replay only specific types of
operators. For example, we have used it to quickly examine and

Mystique: Enabling Accurate and Scalable Generation of Production Al Benchmarks

locate network issues in our production environment, by replaying
the communication operators exclusively.

7.2 Early stage platform evaluation

Benchmarks are an essential tool to evaluate the performance of
new hardware platforms, especially when the full software environ-
ment is not yet fully equipped. While simple microbenchmarks can
provide some indication of performance, using a production-like
benchmark that exercises the full stack in a similar way to the orig-
inal workload lends significantly more confidence to the results.
However, in the early stages of a new platform design, it is often
difficult to run an exact copy of a complex Al model on it. Manually
forcing the full application stack to run can be time-consuming,
cumbersome, and error-prone.

Fortunately, Mystique provides a solution to this problem, as it
has minimal software dependencies and can be easily modified at
the operator level to skip unsupported operators. As illustrated in
Figure 10, when evaluating a new platform with limited software
installed, such as only the OS and necessary libraries like PyTorch
and CUDA, but without many in-house dependencies, libraries and
tools, our synthetic benchmarks can be used to accurately infer the
potential performance benefit of the new platform, as indicated by
the red line.

100

—e— Original
801 —®— Replay

60

40

Speedup over CPU

20

0

CPU V100 A100 New plat.

Figure 10: Execution time speedup for new, experimental
platform over CPU.

7.3 Scaled-down performance emulation

DL models have been growing exponentially in terms of their size,
complexity, and data requirements, leading to the rapid adoption
of large-scale training deployments in production environments.
Using models that require hundreds of GPUs for training is now
common in Al use cases, but evaluating their performance is chal-
lenging due to the high cost and complexity of deploying and sup-
porting large-scale testing setups. Therefore, there is a need to
evaluate a model’s large-scale training performance using a much
smaller setup.

Distributed data-parallel training involves workers performing
the same computation on their assigned data chunks, with the local
computation remaining unchanged with the number of workers.
The network communication, however, is the main performance
factor that varies with scale. Benchmarking at the granularity of
operators allows for evaluation of large-scale executions using
a smaller scale, achieved by adjusting the communication cost
during replay. This requires no changes to the original training

ISCA 23, June 17-21, 2023, Orlando, FL, USA

implementation, avoiding the need for domain specific knowledge
and coding changes.

Our initial approach involved adding dummy delay to the com-
munication path to account for the mismatch between small-scale
testing and large-scale deployment. The delay was determined em-
pirically based on the network cost model. We demonstrated the
feasibility of this approach by successfully reproducing the execu-
tion time of the 64 GPUs RM model training using only 2 GPUs.
Although there are opportunities to improve upon this simple ap-
proach, exploring them fully requires significant engineering effort,
so we defer further investigation to future work.

8 DISCUSSION

Mystique has successfully generated synthetic benchmarks for pro-
duction Al workloads and has already been used in several chal-
lenging system studies, by both internal teams and external part-
ners, such as Intel, NVIDIA, and AMD. At the same time, there are
even more interesting directions we plan to explore with this new
methodology.

8.1 Data processing and Al tax

The importance of considering the end-to-end behavior of Al appli-
cations is increasing due to the rise of data processing, also known
as the Al tax [8, 53, 61]. This is also our broader objective of gener-
ating Al benchmarks. As a first step, Mystique currently focuses
on Al model components that are deployed on GPU servers, as
1) in many hyperscale deployment environments, including ours,
data processing is deemed complex and critical, and as such, it is
usually decoupled from the AI model, and assigned to dedicated
CPU machines for execution, and 2) the execution of any processing
left on the GPU server is often overshadowed by the well-tuned
pipeline design, and requires minimal CPU resources compared
to the massive consumption on the GPUs. Mystique is now better
suited for training workloads than for inference workloads, where
Al tax has a larger presence on the GPU server. It is our next step
to utilize tools like Ditto [33] to incorporate the CPU execution
fraction to our framework.

8.2 Advanced ET analyzer and builder

We are currently using a simple ET analyzer based on population
weight to guide our selection of full ETs as replay samples from
the trace database. This can be enhanced by incorporating more
sophisticated weight calculations, such as timing costs. Moreover,
we can explore operator-level summary and weighting to further
improve the selection process, and leverage the composability of
ET to combine portions from different ETs into a single replay trace
for more efficient aggregation.

8.3 Adaptability to other ML frameworks and
domains

The essence of Mystique is leveraging the appropriate level of
abstraction provided by the framework to reproduce performance.
Currently, our framework focuses on PyTorch models due to their
widespread use in our environment, but it can be extended to other
ML frameworks, such as TensorFlow, MXNet. These frameworks
share a common feature, the use of computational graphs, such as

ISCA ’23, June 17-21, 2023, Orlando, FL, USA

ET in PyTorch, to express the model and execute operators. For
example, TensorFlow provides the ability to save a graph using
tf.function and to rerun it without the original code. Therefore,
our cloning methodology is transferable to other frameworks, to
create a synthetic benchmark that uses the same framework as the
original application.

Furthermore, we are investigating the feasibility of generating
benchmarks across different frameworks, e.g., replaying Tensor-
Flow graphs using PyTorch, to maximize the use and impact of
Mystique. To accomplish this, we are spearheading a collaboration
between academic and industrial partners to propose a standard,
portable format for execution traces that can be used across multiple
frameworks.?

Beyond Al we believe that with proper abstractions and profiling
capabilities, Mystique can be adapted to other domains or domain-
specific languages, for example, the RPC frameworks for cloud
microservices.

8.4 Improved privacy and IP protection

Given that AI models can provide a significant competitive edge
for a company, it is crucial to take extensive measures to protect
them. However, this can create challenges when attempting to
share the workload with external vendors for co-design or co-
optimization. Mystique can potentially address this issue by obfus-
cating the real ETs and substituting important IP-protected blocks
with performance-equivalent public ones. This approach allows for
efficient sharing of the workload, while still capturing the intended
performance behavior of a production workload.

9 CONCLUSION

We present Mystique, a new generation methodology for Al bench-
marks, based on execution traces replay. Mystique addresses the
scalability issues stemming from both the large model variety and
the constantly changing workload landscape. We demonstrate that
our methodology generates Al benchmarks highly similar to the
original applications, while being easy to use and portable across
platforms, without the need for regenerating. We have illustrated
several use cases for Mystique, including early stage platform eval-
uation, subtrace replay, and scaled-down performance testing, all
of which are highly challenging using existing techniques.

ACKNOWLEDGMENTS

We sincerely thank David Berard and Valentin Andrei from Meta
for their feedback to this work, and the anonymous reviewers for
their suggestions on earlier versions of this manuscript. This work
was in part sponsored by Meta through an internship and a student
researcher appointment. This work was also in part supported by
NSF CAREER Award CCF-1846046, an Intel Research Award, a
Sloan Research Fellowship, a Microsoft Research Fellowship, and a
Facebook Research Faculty Award.

REFERENCES

[1] Robert Adolf, Saketh Rama, Brandon Reagen, Gu-Yeon Wei, and David Brooks.
Fathom: Reference workloads for modern deep learning methods. In 2016 IEEE
International Symposium on Workload Characterization (IISWC), pages 1-10. IEEE,
2016.

Zhttps://github.com/chakra-et/chakra.

M. Liang, W. Fu, L. Feng, Z. Lin, P. Panakanti, S. Zheng, S. Sridharan, and C. Delimitrou

ATen. Aten. https://github.com/pytorch/pytorch/tree/master/aten.

Baidu. Deepbench. https://github.com/baidu-research/DeepBench.

Colby Banbury, Vijay Janapa Reddi, Peter Torelli, Jeremy Holleman, Nat Jeffries,
Csaba Kiraly, Pietro Montino, David Kanter, Sebastian Ahmed, Danilo Pau, et al.
Mlperf tiny benchmark. arXiv preprint arXiv:2106.07597, 2021.

Bradford M Beckmann and Anthony Gutierrez. The amd gem5 apu simula-
tor: Modeling heterogeneous systems in gem5. In Tutorial at the International
Symposium on Microarchitecture (MICRO), 2015.

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. The gem5 simulator. ACM SIGARCH computer architecture news,
39(2):1-7, 2011.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learners. Advances in neural infor-
mation processing systems, 33:1877-1901, 2020.

Michael Buch, Zahra Azad, Ajay Joshi, and Vijay Janapa Reddi. Ai tax in mobile
socs: End-to-end performance analysis of machine learning in smartphones.
In 2021 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 96-106. IEEE, 2021.

Trevor E Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: Exploring the
level of abstraction for scalable and accurate parallel multi-core simulation. In
Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1-12, 2011.

Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. Diannao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning. ACM SIGARCH Computer Architecture News,
42(1):269-284, 2014.

Cody Coleman, Deepak Narayanan, Daniel Kang, Tian Zhao, Jian Zhang, Luigi
Nardi, Peter Bailis, Kunle Olukotun, Chris Ré, and Matei Zaharia. Dawnbench:
An end-to-end deep learning benchmark and competition. Training, 100(101):102,
2017.

Deeksha Dangwal, Weilong Cui, Joseph McMahan, and Timothy Sherwood.
Safer program behavior sharing through trace wringing. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 1059-1072, 2019.

Victor Moya Del Barrio, Carlos Gonzalez, Jordi Roca, Agustin Fernandez, and
E Espasa. Attila: a cycle-level execution-driven simulator for modern gpu ar-
chitectures. In 2006 IEEE International Symposium on Performance Analysis of
Systems and Software, pages 231-241. IEEE, 2006.

Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-Efficient and
QoS-Aware Cluster Management. In Proceedings of the Nineteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). Salt Lake City, UT, USA, 2014, 2014.

Christina Delimitrou, Sriram Sankar, Aman Kansal, and Christos Kozyrakis.
ECHO: Recreating Network Traffic Maps for Datacenters of Tens of Thousands
of Servers. In Proceedings of the IEEE International Symposium on Workload
Characterization (IISWC), 2012.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Facebook. Fbgemm. https://github.com/pytorch/FBGEMM.

Facebook. Param benchmarks. https://github.com/facebookresearch/param.
Facebook. torchrec. https://github.com/pytorch/torchrec.

Facebook. torchvision models. https://pytorch.org/vision/stable/models.html.
Yu Gan and Christina Delimitrou. The Architectural Implications of Cloud
Microservices. In Computer Architecture Letters (CAL), vol.17, iss. 2, Jul-Dec 2018.
Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delimitrou. Sage:
Practical and scalable ml-driven performance debugging in microservices. In
Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2021, page 135-151,
New York, NY, USA, April 2021. Association for Computing Machinery.

Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung,
Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake
Padilla, and Christina Delimitrou. An Open-Source Benchmark Suite for Microser-
vices and Their Hardware-Software Implications for Cloud and Edge Systems. In
Proceedings of the Twenty Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), April 2019.
Karthik Ganesan and Lizy Kurian John. Automatic generation of miniaturized
synthetic proxies for target applications to efficiently design multicore processors.
IEEE Transactions on Computers, 63(4):833-846, 2013.

Udit Gupta, Young Geun Kim, Sylvia Lee, Jordan Tse, Hsien-Hsin S Lee, Gu-
Yeon Wei, David Brooks, and Carole-Jean Wu. Chasing carbon: The elusive
environmental footprint of computing. IEEE Micro, 42(4):37-47, 2022.

Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Brandon Reagen,
David Brooks, Bradford Cottel, Kim Hazelwood, Mark Hempstead, Bill Jia, et al.

Mystique: Enabling Accurate and Scalable Generation of Production Al Benchmarks

[27

[28]

[29]

[30]

(31

[32

[33]

[34]

[35]

&
&

[37

[38]

[39]

[45]

[46]

[47

[48]

The architectural implications of facebook’s dnn-based personalized recommen-
dation. In 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 488-501. IEEE, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770-778, 2016.

Samuel Hsia, Udit Gupta, Mark Wilkening, Carole-Jean Wu, Gu-Yeon Wei, and
David Brooks. Cross-stack workload characterization of deep recommendation
systems. In 2020 IEEE International Symposium on Workload Characterization
(IISWC), pages 157-168. IEEE, 2020.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al.
In-datacenter performance analysis of a tensor processing unit. In Proceedings of
the 44th annual international symposium on computer architecture, pages 1-12,
2017.

Daniel Justus, John Brennan, Stephen Bonner, and Andrew Stephen McGough.
Predicting the computational cost of deep learning models. In 2018 IEEE interna-
tional conference on big data (Big Data), pages 3873-3882. IEEE, 2018.
Mahmoud Khairy, Zhesheng Shen, Tor M Aamodt, and Timothy G Rogers. Accel-
sim: An extensible simulation framework for validated gpu modeling. In 2020
ACMY/IEEE 47th Annual International Symposium on Computer Architecture (ISCA),
pages 473-486. IEEE, 2020.

Shijian Li, Robert J] Walls, and Tian Guo. Characterizing and modeling dis-
tributed training with transient cloud gpu servers. In 2020 IEEE 40th International
Conference on Distributed Computing Systems (ICDCS), pages 943-953. IEEE, 2020.
Mingyu Liang, Yu Gan, Yueying Li, Carlos Torres, Abhishek Dhanotia, Mahesh
Ketkar, and Christina Delimitrou. Ditto: End-to-End Application Cloning for
Networked Cloud Services. In Proceedings of the Twenty Eighth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), April 2023.

Ying-Chiao Liao, Chuan-Chi Wang, Chia-Heng Tu, Ming-Chang Kao, Wen-Yew
Liang, and Shih-Hao Hung. Perfnetrt: Platform-aware performance modeling
for optimized deep neural networks. In 2020 International Computer Symposium
(ICS), pages 153-158. IEEE, 2020.

Zhongyi Lin, Louis Feng, Ehsan K Ardestani, Jaewon Lee, John Lundell, Changkyu
Kim, Arun Kejariwal, and John D Owens. Building a performance model for deep
learning recommendation model training on gpus. arXiv preprint arXiv:2201.07821,
2022.

Peter Mattson, Christine Cheng, Gregory Diamos, Cody Coleman, Paulius Micike-
vicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf,
et al. Mlperf training benchmark. Proceedings of Machine Learning and Systems,
2:336-349, 2020.

Peter Mattson, Vijay Janapa Reddi, Christine Cheng, Cody Coleman, Greg Diamos,
David Kanter, Paulius Micikevicius, David Patterson, Guenther Schmuelling,
Hanlin Tang, et al. Mlperf: An industry standard benchmark suite for machine
learning performance. IEEE Micro, 40(2):8-16, 2020.

MLCommons. Mlperf training benchmarks. https://mlcommons.org/en/training-
normal-21/.

Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-
Jean Wu, Alisson G Azzolini, et al. Deep learning recommendation model for
personalization and recommendation systems. arXiv preprint arXiv:1906.00091,
2019.

Thomas Norrie, Nishant Patil, Doe Hyun Yoon, George Kurian, Sheng Li, James
Laudon, Cliff Young, Norman Jouppi, and David Patterson. The design process
for google’s training chips: Tpuv2 and tpuv3. IEEE Micro, 41(2):56-63, 2021.
NVIDIA. nccl. https://developer.nvidia.com/nccl.

OpenMPIL. mpirun. https://www.open-mpi.org/doc/current/manl/mpirun.1.php.
Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng,
David Grangier, and Michael Auli. fairseq: A fast, extensible toolkit for sequence
modeling. In Proceedings of NAACL-HLT 2019: Demonstrations, 2019.

Reena Panda and Lizy Kurian John. Proxy benchmarks for emerging big-data
workloads. In 2017 26th International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 105-116. IEEE, 2017.

Reena Panda, Xinnian Zheng, Andreas Gerstlauer, and Lizy Kurian John. Camp:
Accurate modeling of core and memory locality for proxy generation of big-data
applications. In 2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 337-342. IEEE, 2018.

Reena Panda, Xinnian Zheng, Jiajun Wang, Andreas Gerstlauer, and Lizy K John.
Statistical pattern based modeling of gpu memory access streams. In Proceedings
of the 54th Annual Design Automation Conference 2017, pages 1-6, 2017.

Jason Power, Joel Hestness, Marc S Orr, Mark D Hill, and David A Wood. gemS5-
gpu: A heterogeneous cpu-gpu simulator. IEEE Computer Architecture Letters,
14(1):34-36, 2014.

PyTorch. c10d. https://pytorch.org/docs/stable/distributed. html.

[49

[51

[52

(53

[54

[55

‘o
o

[57

[58

[59

=
=

[61

[62

[63

(65

[66

[67

ISCA 23, June 17-21, 2023, Orlando, FL, USA

PyTorch. Pytorch profiler. https://pytorch.org/tutorials/recipes/recipes/profiler
recipe. html.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen.
Hierarchical text-conditional image generation with clip latents. arXiv preprint
arXiv:2204.06125, 2022.

Gokul Subramanian Ravi, Ramon Bertran, Pradip Bose, and Mikko Lipasti. Micro-
grad: A centralized framework for workload cloning and stress testing. In 2021
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 70-72. IEEE, 2021.

Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther
Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark
Charlebois, William Chou, et al. Mlperf inference benchmark. In 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA), pages
446-459. IEEE, 2020.

Daniel Richins, Dharmisha Doshi, Matthew Blackmore, Aswathy Thulaseedharan
Nair, Neha Pathapati, Ankit Patel, Brainard Daguman, Daniel Dobrijalowski,
Ramesh Illikkal, Kevin Long, et al. Missing the forest for the trees: End-to-end
ai application performance in edge data centers. In 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages 515-528.
IEEE, 2020.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily
Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,
Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with
deep language understanding. arXiv preprint arXiv:2205.11487, 2022.

David Silver, Aja Huang, Chris] Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, loannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. nature, 529(7587):484-489, 2016.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1-9, 2015.

Luk Van Ertvelde and Lieven Eeckhout. Dispersing proprietary applications
as benchmarks through code mutation. In Proceedings of the 13th international
conference on Architectural support for programming languages and operating
systems, pages 201-210, 2008.

Snehil Verma, Qinzhe Wu, Bagus Hanindhito, Gunjan Jha, Eugene B John, Ramesh
Radhakrishnan, and Lizy K John. Demystifying the mlperf training benchmark
suite. In 2020 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), pages 24-33. IEEE, 2020.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaél Mathieu, Andrew
Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, et al. Grandmaster level in starcraft ii using multi-agent reinforcement
learning. Nature, 575(7782):350-354, 2019.

Yipeng Wang, Amro Awad, and Yan Solihin. Clone morphing: creating new work-
load behavior from existing applications. In 2017 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pages 97-108. IEEE,
2017.

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani,
Kiwan Maeng, Gloria Chang, Fiona Aga, Jinshi Huang, Charles Bai, et al. Sustain-
able ai: Environmental implications, challenges and opportunities. Proceedings of
Machine Learning and Systems, 4:795-813, 2022.

GX Yu, Y Gao, P Golikov, and G Pekhimenko. Computational performance
predictions for deep neural network training: A runtime-based approach. CoRR,
vol. abs/2102.00527, 2021.

Zhibin Yu, Lieven Eeckhout, Nilanjan Goswami, Tao Li, Lizy K John, Hai Jin,
Chengzhong Xu, and Junmin Wu. Gpgpu-minibench: accelerating gpgpu micro-
architecture simulation. IEEE Transactions on Computers, 64(11):3153-3166, 2015.
Mark Zhao, Niket Agarwal, Aarti Basant, Bugra Gedik, Satadru Pan, Mustafa
Ozdal, Rakesh Komuravelli, Jerry Pan, Tianshu Bao, Haowei Lu, Sundaram
Narayanan, Jack Langman, Kevin Wilfong, Harsha Rastogi, Carole-Jean Wu,
Christos Kozyrakis, and Parik Pol. Understanding data storage and ingestion
for large-scale deep recommendation model training: Industrial product. In
Proceedings of the 49th Annual International Symposium on Computer Architecture,
ISCA ’22, page 1042-1057, New York, NY, USA, 2022. Association for Computing
Machinery.

Guorui Zhou, Xiaogiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui
Yan, Jungi Jin, Han Li, and Kun Gai. Deep interest network for click-through
rate prediction. In Proceedings of the 24th ACM SIGKDD international conference
on knowledge discovery & data mining, pages 1059-1068, 2018.

Hongyu Zhu, Mohamed Akrout, Bojian Zheng, Andrew Pelegris, Anand Jayara-
jan, Amar Phanishayee, Bianca Schroeder, and Gennady Pekhimenko. Bench-
marking and analyzing deep neural network training. In 2018 IEEE International
Symposium on Workload Characterization (IISWC), pages 88-100. IEEE, 2018.
Hongyu Zhu, Amar Phanishayee, and Gennady Pekhimenko. Daydream: Ac-
curately estimating the efficacy of optimizations for {DNN} training. In 2020
USENIX Annual Technical Conference (USENIX ATC 20), pages 337-352, 2020.

	Abstract
	1 Introduction
	2 Related work
	2.1 AI benchmarks
	2.2 Simulation, emulation, and performance modeling
	2.3 Performance cloning and synthetic benchmarks

	3 Background
	3.1 Execution Trace (ET)
	3.2 Advantages of ET
	3.3 PyTorch operators

	4 Mystique Design
	4.1 Trace collection
	4.2 Operators selection
	4.3 Operators reconstruction
	4.4 Arguments and tensor management
	4.5 Parallel stream execution
	4.6 Putting it all together

	5 Implementation
	6 Evaluation
	6.1 Platforms
	6.2 Workloads
	6.3 Operators coverage
	6.4 End-to-end execution time
	6.5 System-level metrics
	6.6 Distributed training
	6.7 Cross platform validation
	6.8 Power efficiency sensitivity sweep

	7 Use Cases
	7.1 Subtrace replay
	7.2 Early stage platform evaluation
	7.3 Scaled-down performance emulation

	8 Discussion
	8.1 Data processing and AI tax
	8.2 Advanced ET analyzer and builder
	8.3 Adaptability to other ML frameworks and domains
	8.4 Improved privacy and IP protection

	9 Conclusion
	Acknowledgments
	References

