
Mystique: Enabling Accurate and Scalable Generation of
Production AI Benchmarks

Mingyu Liang
Cornell University

Ithaca, New York, USA
ml2585@cornell.edu

Wenyin Fu
Meta

Menlo Park, California, USA
wenyinfu@meta.com

Louis Feng
Meta

Menlo Park, California, USA
lofe@meta.com

Zhongyi Lin
University of California, Davis

Davis, California, USA
zhylin@ucdavis.edu

Pavani Panakanti
Meta

Menlo Park, California, USA
pavanip@meta.com

Shengbao Zheng
Meta

Menlo Park, California, USA
shengbao@meta.com

Srinivas Sridharan
Meta

Menlo Park, California, USA
ssrinivas@meta.com

Christina Delimitrou
Massachusetts Institute of Technology

Cambridge, Massachusetts, USA
delimitrou@csail.mit.edu

ABSTRACT

Building large AI fleets to support the rapidly growing DL work-

loads is an active research topic for modern cloud providers. Gen-

erating accurate benchmarks plays an essential role in designing

the fast-paced software and hardware solutions in this space. Two

fundamental challenges to make this scalable are (i) workload rep-

resentativeness and (ii) the ability to quickly incorporate changes

to the fleet into the benchmarks.

To overcome these issues, we propose Mystique, an accurate

and scalable framework for production AI benchmark generation.

It leverages the PyTorch execution trace (ET), a new feature that

captures the runtime information of AI models at the granularity

of operators, in a graph format, together with their metadata. By

sourcing fleet ETs, we can build AI benchmarks that are portable

and representative. Mystique is scalable, due to its lightweight data

collection, in terms of runtime overhead and instrumentation effort.

It is also adaptive because ET composability allows flexible control

on benchmark creation.

We evaluate our methodology on several production AI mod-

els, and show that benchmarks generated with Mystique closely

resemble original AI models, both in execution time and system-

level metrics. We also showcase the portability of the generated

benchmarks across platforms, and demonstrate several use cases

enabled by the fine-grained composability of the execution trace.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISCA ’23, June 17ś21, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0095-8/23/06. . . $15.00
https://doi.org/10.1145/3579371.3589072

CCS CONCEPTS

· Computing methodologies→ Artificial intelligence; · Com-

puter systems organization → Cloud computing; Neural net-

works; · Software and its engineering→ Source code generation.

KEYWORDS

artificial intelligence, cloud computing, benchmarking, perfor-

mance cloning, code generation

ACM Reference Format:

Mingyu Liang, Wenyin Fu, Louis Feng, Zhongyi Lin, Pavani Panakanti,

Shengbao Zheng, Srinivas Sridharan, and Christina Delimitrou. 2023. Mys-

tique: Enabling Accurate and Scalable Generation of Production AI Bench-

marks. In Proceedings of the 50th Annual International Symposium on Com-

puter Architecture (ISCA ’23), June 17ś21, 2023, Orlando, FL, USA. ACM, New

York, NY, USA, 13 pages. https://doi.org/10.1145/3579371.3589072

1 INTRODUCTION

Artificial Intelligence (AI) has experienced a strong resurgence with

the recent advances in Deep Learning (DL). It is rapidly expanding

into many areas, and has led to revolutionary changes, including

in natural language processing [7, 16], computer vision [27, 56],

gaming [55, 59], and recommendation systems [39, 65]. Almost

all cloud enterprises today deploy massive amounts of resources

towards AI computing to support their business. Building and main-

taining large AI fleets to efficiently support these DL workloads has

led to both hardware and software innovation across the system

stack [10, 14, 21ś23, 29, 40, 64].

Having representative and agile AI benchmarks based on live

fleet production workloads would provide an invaluable resource

for fleet design and efficiency optimization [25, 26, 28, 33]. Inter-

nally, it can be used for system optimization (e.g., GPU or ASIC

accelerator design), performance characterization and analysis,

bug reproducibility, etc. It can also be shared with external hard-

ware vendors for early-stage performance testing, evaluation, and

joint HW/SW codesign, with minimal infrastructure support and a

streamlined IP sharing setup.

ISCA ’23, June 17ś21, 2023, Orlando, FL, USA M. Liang, W. Fu, L. Feng, Z. Lin, P. Panakanti, S. Zheng, S. Sridharan, and C. Delimitrou

The past few years have seen significant advancements in AI

benchmarking [1, 3, 11, 36, 52]. MLPerf, specifically, is an industry-

standard suite that covers diverseML applications, DNNmodels and

optimizers, from training to inference. However, its model diver-

sity and updating speed, as Table 1 shows, cannot match the ever-

changing, highly-diverse AI production workloads across cloud

infrastructures. Due to workload churn, the execution character-

istics of workloads can quickly change over time [58], completely

changing the system requirements.
Table 1: MLPerf training benchmarks [38].

Area Model Last updated

Vision ResNet-50 May 17, 2021
Vision 3D U-Net Apr 14, 2021
Vision Mask R-CNN Mar 5, 2021

Language RNN-T Apr 7, 2021
Language BERT-large May 14, 2021
Commerce DLRM Feb 9, 2021
Research Mini Go Jun 19, 2020

Additionally, engineers or researchers need to manually select

and adapt existing production or open-source workloads to a form

that can be used for benchmarking. This process involves a non-

trivial investment, since it requires high expertise and compre-

hensive understanding of the workloads. Also, extracting only the

desired components from a production environment can be chal-

lenging, since production workloads have many supporting depen-

dencies (e.g., storage, data preprocessing, scheduler), and many

proprietary in-house libraries and tooling integration. This can lead

to a high cost for maintaining and updating the derived benchmarks

to keep up with the fast cadence of AI application design. Therefore,

there is a strong need for a new methodology which enables us to

efficiently generate AI benchmarks in production scale.

In this paper, we propose an efficient and scalable framework

to create AI benchmarks directly from production workflows in a

łreplay as benchmark" manner. We present Mystique, a benchmark

generation framework for AI workloads, which leverages the new

PyTorch execution trace (ET) capability to record the runtime in-

formation of a model at operator granularity, and faithfully replay

it to reproduce the original performance. Mystique is efficient and

scalable as only a few lines of hook code are needed to collect the

traces and generate a benchmark from a production, cloud-scale AI

model. Mystique is open-source and publicly available.1

Our main contributions are:

• We build a scalable and automated end-to-end infrastruc-

ture that profiles and replays the execution traces from real

production AI workloads.

• We evaluate Mystique across several production PyTorch

workloads running in a warehouse-scale fleet, and show that

the generated benchmarks closely match the original, in

terms of performance and system-level metrics.

• We showcase the portability of the generated benchmarks

across platforms and evaluate several use cases Mystique

can be applied to, including early stage platform evaluation,

subtrace replay, and scaled-down performance testing.
1https://github.com/facebookresearch/param.

2 RELATEDWORK

2.1 AI benchmarks

Benchmarks are an easy-to-use representation that captures the

most essential characteristics of a workload, while leaving out non-

critical aspects of the original application. Benchmarks are powerful

tools, as they enable evaluating a target system’s performance for a

given workload without the need for supporting all dependencies

the original application requires, e.g., libraries, upstream/down-

stream data pipeline setup, job orchestration. These advantages

are even more desirable for AI workloads, which are built over

complex programming frameworks, have more interconnected SW

components, and often run distributedly in cloud environments.

Therefore, providing a robust methodology to create realistic AI

benchmarks that reflect a deployment’s behavior is an attractive

proposition for all levels of system design, from AI accelerator

design to datacenter deployment orchestration.

Unsurprisingly, there have been numerous proposals on bench-

marking AI workloads [1, 3, 4, 11, 36, 37, 52, 66]. DeepBench [3]

provides a set of basic operations used by deep neural networks

(DNN) and evaluates them on different platforms. TBD [66] iden-

tifies eight representative DNN models, and performs a detailed

performance analysis on different deep learning frameworks and

hardware configurations. DAWNBench [11] measures the end-to-

end performance of training and inference, subject to a specified

accuracy, allowing innovation in software, algorithms, communica-

tion methods, etc. More recently, MLPerf [4, 36, 37, 52] has become

an industry-standard suite for ML performance, encompassing a

variety of models in different domains (vision, language, recom-

mendation, research) and different deployment scenarios, from

datacenter, to edge and mobile.

While this work has enriched and strengthened the availability

of AI benchmarks to the community, their coverage remains limited

compared to the vast spectrum of AI workloads deployed in pro-

duction. For instance, it is not uncommon to find thousands of AI

models in a hyperscaler’s fleet at any given time. Curating a small

set of benchmarks to approximate general behavior characteristics

from such a vast collection is a significant challenge. At the same

time, given the rapid pace of innovation in the AI space, new AI

workloads appear in datacenters on a daily basis, further hindering

the ability of benchmark characteristics to remain up to date.

In essence, we have a scalability issue both in terms of the model

space and in terms of time required for benchmark generation.

For example, diffusion models [50, 54] are a new class of genera-

tive models that generate diverse high-resolution images, however,

have not yet been included in any widely used benchmarks. On the

other hand, production models often include adaptations and opti-

mizations on top of open source models customized to their own

use cases, and thus can exhibit significantly different performance

characteristics from their corresponding open-source versions.

Our insight in dealing with this scalability issue is to rely on

automation to generate representative AI benchmarks instead of

the current manual curation approach. Mystique enables generating

benchmarks at scale with minimal manual input, and provides close

behavior resemblance to production flows.

Mystique: Enabling Accurate and Scalable Generation of Production AI Benchmarks ISCA ’23, June 17ś21, 2023, Orlando, FL, USA

2.2 Simulation, emulation, and performance
modeling

Simulation, emulation, and performance modeling offer another

way to approximate a workload’s performance, when software or

hardware is unavailable. Sniper [9] is a parallel and scalable CPU

simulator using a high-level abstraction for simulating multicore

and multiprocessor systems. gem5 [6] is a modular microarchi-

tectural simulator that has been broadly used for GPU architec-

ture modeling [5, 13, 47]. GPGPU-Sim [31] provides a cycle-level

simulation model of NVIDIA GPUs running CUDA and OpenCL

workloads, and enables fast and detailed validation. While these

simulation techniques are not specific to AI, they have been ex-

tensively used to evaluate software and hardware proposals for AI

systems.

Similarly, there has been a lot of work on performance modeling

of ML workloads [30, 32, 34, 35, 62, 67]. Daydream [67] predicts

model runtime under certain optimizations based on the kernel-task

dependency graph. Habitat [62] uses wave scaling and MLPs to

predict the execution time of DNN training. Finally, CM-DARE [32]

proposes a performance model for distributed training with cloud-

based GPU servers to achieve cost savings and speedup.

While useful when hardware is unavailable, or requires non-

negligible changes, these simulators and performance models still

make approximations on the workload behavior and cannot fully

capture the complexity of a real system. Also, performance models

in particular, usually target specific use cases and cannot easily be

extended to a wide range of studies.

2.3 Performance cloning and synthetic
benchmarks

Performance cloning is an intuitive way to generate synthetic

benchmarks that preserve the performance of real-world work-

loads. Previous work profiled the architectural characteristics of

the target applications, and generated corresponding proxy bench-

marks [12, 24, 44, 45, 51, 57, 60]. MicroGrad [51] collects the CPU

metrics and uses a Gradient Descent based tuning mechanism to

produce workload clones and stress tests. PerfProx [44] generates

miniature proxies for real-world database applications, based on

performance metrics derived from hardware performance counters.

CAMP [45] models core performance, memory locality, and the in-

teraction between them to mimic BigData applications. ECHO [15]

focuses on cloning network behavior in distributed cloud applica-

tions using statistical models, and generates synthetic benchmarks

that resemble the locality and traffic characteristics of the original

services. Finally, Ditto [33] proposes an automated cloning frame-

work that can capture both the low- and high-level performance

metrics of distributed cloud applications.

However, these approaches only focus on CPU performance

and miss the critical performance engines exercised by AI work-

loads, namely GPUs or other accelerators. G-MAP [46] models the

memory access patterns and parallelism of GPU applications to cre-

ate memory proxies. GPGPU-MiniBench [63] generates miniature

proxies of CUDA GPGPU kernels to retain similar performance.

However, they focus on only memory or kernel behavior on GPU,

and do not consider the sequential execution on the CPU and the

interactions between CPUs and GPUs, and therefore cannot reflect

the full performance of AI models.

3 BACKGROUND

Finding realistic benchmarks that resemble production cloud work-

loads is a long-standing problem. Given the limitations of open-

source benchmarks and of approaches that rely on simulation or per-

formance modeling, generating synthetic benchmarks that mimic

the full stack performance of real applications can enable a wide

range of system studies.

Prior work on performance cloning and benchmark generation

mostly focuses on CPU-centric workloads, by collecting their ar-

chitectural characteristics and generating appropriate assembly in-

structions. Although, in theory we could apply the same approach

to AI applications, this would be overlooking the unique properties

that AI workloads exhibit. The fact that most AI workloads are im-

plemented with a handful of frameworks (e.g., PyTorch, Tensorflow,

JAX), makes capturing a logically complete yetÐrepresentation-

wiseÐsuccinct and reproducible snapshot possible. In PyTorch, ap-

plications invoke low-level operators, such as ATen [2], NCCL [41]

to fulfill their execution. By recording the execution information

at these invocation boundaries, we can faithfully reconstruct the

execution behavior of a complex AI workload.

We focus on generating benchmarks for PyTorch AI models. We

choose PyTorch as our first step because of its widespread use in

industry (and our worldwide production environment specifically)

as well as academia, and the rich profiling capabilities it offers.

Our approach can be extended to support other ML frameworks, as

discussed in Section 8.3. Belowwe describe what the execution trace

(ET) is, and how it enables us to generate realistic AI benchmarks.

3.1 Execution Trace (ET)

aten::linear

aten::t

aten::transpose

aten::as_strided

T16

T12

T15

aten::addmm

Figure 1: An example of PyTorch’s execution trace (the figure

only shows a subtrace for simplicity), in which the boxes are

PyTorch operators and the ovals are unique tensors. Arrows

represent inputs and outputs. Lines ending with a diamond

show parent-child relationships between the operators. Exe-

cution order is not shown here.

The execution trace of a PyTorch model is a runtime recording

of its operators together with their metadata, such as the execution

ISCA ’23, June 17ś21, 2023, Orlando, FL, USA M. Liang, W. Fu, L. Feng, Z. Lin, P. Panakanti, S. Zheng, S. Sridharan, and C. Delimitrou

order, operator schema, input/output arguments, as well as their

parent-child relationships. Figure 1 shows an example of such an

execution trace, where each node is a PyTorch operator and the

connections between the nodes indicate the parent-child relation-

ships, i.e., the calling stack of the operators. Table 2 shows the key

information captured for each node in more detail.

Table 2: Execution trace node schema.

Key Description

name Name of node

id Unique ID of this node

parent Parent node ID

op_schema PyTorch operator schema

inputs Array of input args

Actual values for non-tensor args

input_shapes Array of input shapes

Empty [] for non-tensor args

input_types Array of input types

Empty [] for non-tensor args

outputs Array of output args

Actual values for non-tensor args

output_shapes Array of output shapes

Empty [] for non-tensor args

output_types Array of output types

Empty [] for non-tensor args

Each tensor argument is tagged with a unique ID (a six element

tuple) with its shape and data type. This unique ID is used to track

the data dependencies among operators and to distinguish each

tensor, as we will discuss in Section 4.4. The execution order across

operators is not explicitly recorded but can be inferred from the

node IDs, because they are assigned in increasing order, based on

execution order.

3.2 Advantages of ET

This execution trace records the metadata that is needed to repro-

duce the original execution behavior of each operator, offering us a

very intuitive way to generate synthetic benchmarks by replaying

all operators in the trace according to their original execution order

and data dependencies.

ET stands out among other similar recording approaches because:

1) its API is easy to use and requires minimal source level changes

(collection can be enabled by a few lines of code, no performance

counters or architectural characteristics needed), 2) its hardware ag-

nostic design makes it portable across different hardware platforms,

3) it incurs very small performance overheads, which facilitates

a large-scale automated data collection setup in the background,

in a production environment, 4) it has a compactly defined data

schema which minimizes the storage support cost in production,

and 5) as each ET node is a self-contained entity, the ET format

provides great composability which enable more use cases, such as

new hardware platform evaluation and scaled-down performance

emulation (we discuss this in detail in Section 7). These traits make

ET ideal for encapsulating broad production workload behavior in

an agile manner.

3.3 PyTorch operators

Operators are the building blocks in the PyTorch framework, which

define the mathematical and logical transformations to be per-

formed on the data. Every operator includes a set of platform-

specific implementations, usually written in C/C++ or other domain

specific languages, to provide its functionality on the supported

hardware. The framework is designed to allow easy custom imple-

mentations for reasons spanning from increased performance to

enabling new hardware innovations. Among the models we have

profiled, we find that operators can be roughly divided into four

categories based on the implications each entails when trying to

replay them:

Count CPU time GPU time
(exposed)

0.0

0.2

0.4

0.6

0.8

1.0

Op
er

at
or

s b
re

ak
do

wn

ATen Comms Fused Custom

Figure 2: Fraction of different operators in a production

model running on 8 GPUs, in terms of their count, CPU

time, and exposed GPU time.

• ATen ops: ATen is the low-level tensor library and compute

backend for PyTorch. It performs the actual computation on

tensors, such as addition, matrix multiplication, and batch

normalization.

• Communication ops: Distributed training across multiple

devices has now become the norm to support large scale

AI models, as well as to increase the training speed. Dur-

ing distributed training, communication operators are used

for synchronization and data transmission among multiple

devices. For PyTorch, c10d [48] is the most popular commu-

nication library, which offers both collective communication

APIs (e.g., all_reduce() and all_to_all()) and P2P communica-

tion APIs (e.g., send() and recv()).

• Fused ops: Operator fusion is a common optimization tech-

nique that merges multiple operators into a single execution

instance to reduce the memory access and kernel dispatch

overhead. In PyTorch models, it can be easily enabled by ap-

plying the@torch.jit.script decorator to the model’s function

definition. There are a couple of available backends in JIT;

the default fuser on CPUs is NNC and on GPUs is NVFuser.

After PyTorch fuses the original operators, it will emit a

single fused operator in place of them during execution.

• Custom ops: To support the rapidly changing AI landscape,

PyTorch provides a user-friendly interface for users to define

custom operators. The interface is commonly used to create a

novel model building block or to provide a better implemen-

tation than the default routines. Using operators imported

from other libraries (e.g., FBGEMM [17] and torchrec [19])

in the application is another way to leverage such custom

operator support.

Mystique: Enabling Accurate and Scalable Generation of Production AI Benchmarks ISCA ’23, June 17ś21, 2023, Orlando, FL, USA

Figure 2 shows the fraction of different types of operators for

one of the most popular production workloads running in our ware-

house fleet. We show the ratios across three metrics: operator count,

CPU time, and GPU time, which correspond, respectively, to the

number of occurrences of the operators, the execution time on

CPUs, and the execution time of the kernels launched on GPUs. In

particular, for communication operators, we measure the exposed

GPU time, which is the time that their launched kernels are not

running in parallel with any other computation kernels. As the

default compute backend of PyTorch, ATen operators take up the

lion share in terms of all three metrics. Fused operators are the

second in count but have the shortest GPU time. Custom and com-

munication operators are quantitatively modest, but have long GPU

time; the former are usually complex in functionality and therefore

expensive to execute, and the latter can also come at a significant

cost in large-scale distributed deployments.

Considering the high fraction of ATen and communication oper-

ators, we mostly focus on them during the operator reconstruction

phase, discussed in the next section.

4 MYSTIQUE DESIGN

Figure 3 shows a high-level overview of Mystique, our benchmark

generation framework based on ET replay. First, we collect both

the execution trace and the profiler trace of the fleet’s AI workloads

under live traffic. Then the ET analyzer and builder preprocess the

traces and select the most commonly-occurring ones. Currently,

we pass these ETs to the replayer in their original form and in

the future we plan to add more sophistication to accommodate

additional uses, such as operator obfuscation for enhanced IP pro-

tection. Finally, the ET replayer gets the input traces and creates

the desired benchmarks or configures them for different use cases.

The whole workflow is fully automated, so we can constantly up-

date the benchmarks using the latest collected traces without any

human involvement. Additionally, we add the feedback loop be-

tween the replay and original traces by comparing their similarity

to validate and improve our methodology. In the rest of this sec-

tion, we describe the trace collection, and each essential part of the

replay-based benchmarking methodology.

4.1 Trace collection

To collect the ET of a PyTorch model, a user currently needs to

insert simple hooks into the code to instantiate an ExecutionGra-

phObserver and use start() and stop() methods to control when the

execution is recorded. Typically, we only need to collect a single ex-

ecution iteration, requiring tens to hundreds of milliseconds, since

the execution trace of a model is mostly the same across iterations.

Each process has a single observer instance and if running under a

distributed setup, multiple execution traces will be collected, one

for each process. These traces need to be collected from the same

iteration, to ensure that the same communication operators are

recorded. The alternative can lead to deadlocks during replay, if we

cannot match the communication operators across ETs.

1 from torch.profiler import ExecutionGraphObserver

2

3 # Instantiate the runtime observer

4 et_path = "/tmp/execution_trace.json"

5 et_observer = ExecutionGraphObserver ()

6 et_observer.register_callback(et_path)

7

8 # Insert hooks into execution (e.g., training) loop

9 def training_loop ():

10 # Collects profiler trace

11 with torch.profiler.profile(

12 activities=[ProfilerActivity.CPU ,

13 ProfilerActivity.CUDA],

14 on_trace_ready=profiler_trace_handler ,

15) as pf:

16 for idx in range(100):

17 if idx == 10:

18 # Start ET capture

19 et_observer.start ()

20 if idx == 11:

21 # Stop ET capture

22 et_observer.stop()

23 model.step()

24 pf.step()

In some cases, collecting the ET alone is not enough to fully

reproduce the behavior of a workload, as it lacks the CUDA stream

execution information. In those cases, we combine ET with another

runtime trace, collected by the PyTorch Profiler[49]. We discuss

this in Section 4.5.

The pseudocode of trace collection is shown above. Adding the

ET observer and profiler to record the runtime information can

introduce some overheads to the performance of the original AI

model. However, this overhead is small and only occurs once, and

it does not affect the accuracy of the generated benchmark, as our

replay method does not rely on any temporal information captured

in these traces or hardware-level performance metrics.

4.2 Operators selection

Given an execution trace, we need to select which operators

to replay, because some of them are redundant. For example,

aten::linear() has included two of its child operators aten::t() and

aten::addmm() as part of its implementation. At runtime all three

operators will be caught in the ET, however, we only need to replay

the parent one, which in this case is aten::linear(). To identify these

redundant operators, since the parent operator is always executed

before its children, we can traverse the operators in the order of

execution, keep each operator we encounter and skip all its child

operators, based on the parent-child relationships captured in the

execution trace.

4.3 Operators reconstruction

4.3.1 ATen operators. We reconstruct each ATen operator through

the TorchScript IR (Intermediate Representation) using its captured

operator schema in ET, which includes the operator name and data

types for its input and output arguments. We implement a string-

based parser to extract this key information from the schema, which

is then used to build the canonical textual representation of the IR.

Finally, we compile the IR with TorchScript to create the callable

function for each operator to use during replay. The pseudocode

below demonstrates this procedure:

1 # Captured op schema in ET

2 op_schema = "aten::add.Tensor(Tensor self ,

3 Tensor other , *,

4 Scalar alpha=1) -> Tensor"

5

6 # Extract name and arguments from schema

7 op_name , op_args = parser(op_schema)

ISCA ’23, June 17ś21, 2023, Orlando, FL, USA M. Liang, W. Fu, L. Feng, Z. Lin, P. Panakanti, S. Zheng, S. Sridharan, and C. Delimitrou

Execution trace

Profiler trace

ET analyzer

Benchmark generation
AI workloads Trace databases

ET replayer

Subtrace replay

Scale-down simulation

Trace collection ET synthesis Use cases

Similarity measurement

ET builder

Figure 3: Overview of our benchmark generation workflow using ET replay.

8

9 # Build IR with extracted information

10 torchscript_ir_str = builder(op_name , op_args) = ""

11 graph(%x.1 : Tensor ,

12 %y.1 : Tensor):

13 %4 : int = prim::Constant[value=1]()

14 %5 : Tensor = aten::add(%x.1, %y.1, %4)

15 return (%5)

16 ""

17

18 # Compile IR to callable function

19 graph = torch._C.parse_ir(torchscript_ir_str)

20 cu = torch._C.CompilationUnit ()

21 func = cu.create_function(op_name , graph)

4.3.2 Communication operators. To reproduce the communication

pattern of the original workload, we need to replay the communi-

cation operators with their original arguments, such as the process

group and message size. The metadata can be obtained from the

execution trace; for the execution of the operators during replay, we

leverage the existing PyTorch distributed infrastructure and imple-

ment a wrapper over the low-level interfaces to pass the appropriate

parameters. We create new process groups and map them to the

original groups, and for each operator, we select the same data type

and size as the original, to ensure a similar communication pattern

in replay. Depending on the operator’s execution mode, we wait

for it to complete if it is blocking, or execute it asynchronously by

registering its callback to check back later.

4.3.3 Custom operators. Custom extension is a mechanism that

PyTorch developed to allow users to create their out-of-source

operators, distinct from the default backend. Similar to the other

operators, their input and output arguments are captured in the

execution trace, but that is not sufficient for replay, as we do not

know their specific implementations. To handle this case, we expose

an interface, which allows users to register their custom operators

together with their implementations. During replay, we look up

the registry and use the provided implementation to replay each

custom operator.

4.3.4 Fused operators. Pointwise operators can be fused into a

single kernel to amortize memory access time and kernel launch

time. However, the current implementation of execution trace does

not support the metadata of fused operators. For now, we skip these

operators altogether because they comprise only a small percentage

of the operator list, and have negligible impact to performance, as

shown in Fig. 2. Fusion behavior can be reproduced via PyTorch

JIT and we plan to add this support once its reproduction metadata

is available in ET.

All operator reconstruction happens during the initialization

phase of the replay, such that they can be directly invoked in the

real execution to avoid any runtime overhead.

4.4 Arguments and tensor management

In addition to the functionality, input arguments also play an im-

portant role to the performance of an operator. For arguments with

basic types, such as int or bool, we can simply save their values and

reuse them during replay, however, for part of the tensors we need

to instantiate them in advance.

If we track the occurrence of all tensors that are used as input,

we can divide them into two categories. We call one type interme-

diate tensors, which are generated as the output of an operator

executed earlier, before being used. The other category are exter-

nal tensors, whose generation is not observed in the execution

trace. This classification can be done by tracking the appearance of

each tensor based on its unique tensor ID, during the trace traversal

in execution order. For intermediate tensors, we save them at the

time of generation, and pass them to the downstream operators, ac-

cording to the data dependencies between operators. For external

tensors, we explicitly instantiate them before execution.

By default, we instantiate a tensor with the same shape and data

type as the original but with random values, as the performance

of an operator is not related to the values of the input tensors. We

find that this holds true for most operators, as we will show later

in the evaluation section, minus a few rare exceptions. One case

we have met is the lookup operator for embedding tables. One

of its input tensors stores the lookup indices, whose value directly

determines the access pattern and has a strong correlation with

performance. In this case, we would need to specify the values

for that tensor based on some additional information, such as the

table size, indices distribution, or pooling factor. Since not all this

information is captured in the ET, for now, we set the default values

for the missing information empirically, derived by the operators

in our production environment, and we additionally provide an

interface for users to further refine them. We leave automatically

processing such special cases to future work.

4.5 Parallel stream execution

A CUDA stream is a sequence of kernels that execute in issue-order

on the GPU, and CUDA applications are allowed to launch kernels

concurrently on different streams to improve device utilization

and execution efficiency. The most representative scenario is the

parallel execution of computation and communication kernels to

hide the networking overhead. Also, data transfer between the

Mystique: Enabling Accurate and Scalable Generation of Production AI Benchmarks ISCA ’23, June 17ś21, 2023, Orlando, FL, USA

host and device is often optimized to run on a separate stream. A

model’s stream execution pattern can have a significant impact on

its performance, and we need to take this into account during the

benchmark generation.

To do so, we need to identify which stream each kernel is exe-

cuted on, and which operator launches each kernel, so that we can

prepare multiple streams and dispatch each operator to its corre-

sponding stream during replay. Unfortunately, current ET does not

include any stream or kernel information so we need to extract this

from another runtime trace, collected via the PyTorch profiler[49].

This profiler has been broadly used in the PyTorch community

and the extraction can be easily performed based on the launching

relationships between the operators and kernels. For now we use

this trace as an ET enhancement, and based on our feedback, the

ET working group is actively working on integrating the kernel

information into the ET representation.

4.6 Putting it all together

Our ET replay approach first collects the execution trace and pro-

filer trace of a model to capture both the operators with their meta-

data, and their launched GPU kernels. We then walk through the

trace according to the execution order, distinguish individual ten-

sors, and identify the operators to replay. Next, we reconstruct the

callable function for each operator, prepare the necessary tensors,

and initialize the distributed environment, if necessary. Finally, we

replay the operators on different streams with the same execution

order, input arguments (but not values for tensors), and data depen-

dencies as in the original workload, to faithfully reproduce their

original performance characteristics. In case of a distributed deploy-

ment, for validation purposes, the same number of processes will be

spawned as the original, each using a separate execution trace, and

repeating all the steps above. We also enable scaled-down replays

of an AI workload without the need for retraining, as discussed in

Section 7.3.

5 IMPLEMENTATION

Mystique is built on PyTorch in approximately 8,000 LoC. It cur-

rently supports all basic ATen operators, a large fraction of custom

operators used in our production workloads, a few common li-

braries like FBGEMM, and the c10d distributed library with all four

types of backends (nccl, gloo, mpi, ucc).

To leverage Mystique, it is required that users have access to the

source code to insert hooks into their PyTorch model to collect the

execution and profiler traces; typically around 10 lines of added

code. Although the profiling process incurs some runtime overhead,

its impact is negligible, since we only need to trace a single itera-

tion. We have also broadly tested it in our production deployment

at Meta, and have not observed any noticeable reliability change.

Our framework then takes the traces as input, follows the steps we

discussed in Section 4 to analyze the traces, and generates a single

PyTorch program as a benchmark. The program contains opera-

tors with a hardcoded execution order, input arguments and data

dependencies, and can directly run on any platform as a normal

PyTorch application. For the distributed training deployment, we

use mpirun [42] to create the distributed environment and spawn

multiple processes, each of which uses its own input traces to gener-

ate and execute the benchmark. Synchronization and data sharing

between processes is automatically achieved by the communication

operators.

Given the granularity and flexibility of the execution trace, our

ET replay method can be used to explore more use case scenarios,

in addition to completely replicating the original behavior, as we

discuss in Section 7.

6 EVALUATION

6.1 Platforms

We evaluate Mystique on a production cluster of 10 servers with

NVIDIA Tesla A100 GPUs and V100 GPUs, and unless specified,

the results are collected on A100 GPUs. We use CUDA 11.4 and

PyTorch 1.14 as our testing environment.

6.2 Workloads

We focus on the following four popular and representative models

in their respective fields, but have also validated Mystique against

many other AI models, with similar results.

• PARAM linear: PARAM [18] is a benchmark suite of com-

pute and communication microbenchmarks, as well as full

workloads for both training and inference. We select a rep-

resentative linear model with 20 linear layers and set batch

size to 512 and data type to float32.

• ResNet: We choose the ResNet18 model from torchvi-

sion [20], with batch size 128 and data type float32. For

its distributed deployment, we use the default Distributed

Data-Parallel (DDP) training framework by PyTorch.

• ASR: We use a production multi-GPU automatic speech

recognition (ASR) training flow implemented with the

Fairseq [43] toolkit. At its core, ASR is a neural-network-

based acoustic model.

• RM: RM is a leading edge multi-node, multi-GPU production

recommendation model that pushes the boundary for large-

scale training. It is the production implementation that the

open-source DLRM benchmark [39] aims to approximate.

In our experiments, several configurations of this model

are used to cover different workload setups (e.g., different

distributed training set sizes).

6.3 Operators coverage

Table 3: Ops coverage rate across evaluated workloads.

Model
Operators coverage

Count Execution time

PARAM linear 100% 100%

ResNet 100% 100%

ASR 99.6% 75.7%

RM 96.8% 90.9%

ISCA ’23, June 17ś21, 2023, Orlando, FL, USA M. Liang, W. Fu, L. Feng, Z. Lin, P. Panakanti, S. Zheng, S. Sridharan, and C. Delimitrou

CPU

GPU

11/20/22, 9:54 PM chrome://tracing

chrome://tracing 1/1

Record Save Load linear_replay_dev_trans.json Flow events Processes M View Options » ?

File Size Stats
M

etrics
Fram

e Data
Input Latency

Alerts

Nothing selected. Tap stuff.

python3.8 (pid 2624623): CPU X

python3.8 (pid 0): GPU 0 X

Process Spans X

 thread 2624623 (python3.8)

 thread 2624624 (python3.8)

stream 7

PyTorch Profiler

11/20/22, 9:54 PM chrome://tracing

chrome://tracing 1/1

Record Save Load linear_dev.json Flow events Processes M View Options » ?

File Size Stats
M

etrics
Fram

e Data
Input Latency

Alerts

Nothing selected. Tap stuff.

python3.8 (pid 1965390): CPU X

python3.8 (pid 0): GPU 0 X

Process Spans X

 thread 1965390 (python3.8)

 thread 1966752 (python3.8)

stream 7

PyTorch Profiler

14.9ms

14.2ms

CPU

GPU

Replay targets

Wrappers

Figure 4: Runtime profiler traces of PARAM linear (top) and its benchmark (bottom) for a single training iteration. Within

each trace, the bars on the top are PyTorch operators executed on CPU and the bars at the bottom are GPU kernels, with length

indicating the real execution time. The color of bars represents the operator type and color matching shows type matching.

Table 3 shows the current operator coverage rate for our frame-

work across the different studied workloads. The coverage rate

denotes the percentage of operators that we are able to replay com-

pared to the total number of operators in a workload. We show

the fractions in terms of both count and execution time. Since we

support all ATen operators, which are the compute backend of Py-

Torch, we can achieve a very high coverage rate on the operator

count for all workloads. Two of our production workloads have

a relatively lower coverage in terms of execution time, since we

are currently missing support for fused operators and a subset of

custom operators, with the latter dominating the execution time

gap. These custom operators normally perform very specific tasks,

for example, a LSTM network in NLP models. We provide users

with a programmable interface to register more of their custom

operators, which can lead to higher coverage and accuracy.

6.4 End-to-end execution time

Figure 4 shows the runtime traces of a single training iteration

for the PARAM linear model (top), and its replayed benchmark

(bottom). Within each trace, we separate execution time between

threads running on the CPUs (top block for each trace) and kernels

running on the GPUs (bottom block).

In the original workload’s trace (top), there are two threads on

the CPUs since the backward operators are automatically performed

by PyTorch’s autograd engine on the other thread, and we similarly

use two threads in replay. The overall execution time of the operator

sequence in the replayed benchmark is 14.2 ms, very close to the

original’s 14.9 ms. When zoomed in, we can see that the execution

time of each individual replayed operator, i.e., the length of each bar,

and the execution pattern across operators, i.e., how bars interleave

with each other, is very similar to the original. The vertical height

of the bars is determined by the operator’s call stack depth. The

small difference in height between original and replayed is due to

additional wrappers like autograd::engine::evaluate_function in the

original model, which do not perform any meaningful work; in the

synthetic model we only replay their underlying operators (łReplay

targetsž regions).

Table 4: E2e execution time of a single iteration.

Model Original Original Replay

(exclude unsupported)

PARAM linear 14.9ms 14.9ms 14.1ms

ResNet 64.4ms 64.4ms 70.7ms

ASR 316.3ms 239.3ms 229.1ms

RM 65.9ms 59.9ms 58.4ms

Table 4 shows the original and replayed execution time for a

single iteration of each workload running on a single GPU. For a

fair comparison, we also include the original execution time that

excludes the unsupported operators, and we use this calibrated

execution time for the rest of our evaluation. This table shows to

Mystique: Enabling Accurate and Scalable Generation of Production AI Benchmarks ISCA ’23, June 17ś21, 2023, Orlando, FL, USA

PARAM ResNet ASR RM

25

50

75

100

SM
 u

til
iz

at
io

n
(%

)

PARAM ResNet ASR RM

200

400

600

800

HB
M

 b
w

 (G
B/

s)

PARAM ResNet ASR RM

100

200

300

400

GP
U

po
w

er
 (W

)

Original Replay

Figure 5: Comparison of SM utilization, HBM bandwidth, and GPU power for each model and their replay counterparts.

what extent Mystique captures the covered operators’ execution

time. We obtain high accuracy across all applications, with 5.4%

error on PARAM linear, 9.8% error on ResNet, 4.3% error on ASR

and 2.5% error on RM, when comparing the overall performance of

all replayed operators.

6.5 System-level metrics

In addition to execution time, system-level metrics are also impor-

tant for a benchmark generation framework to capture, to ensure

high similarity with the original workload. Specifically, for these

AI workloads, we are more interested in GPU-related metrics, in-

cluding both macro- and micro-level characteristics.

6.5.1 Macro-level. Figure 5 shows three representative and widely

evaluated metrics for AI workloads, in production environments:

SM utilization, HBM bandwidth, and GPU power, across all work-

loads and their replay counterparts. All models are using a single

A100 GPU. We collect these metrics over thousands of iterations,

and show their average values. Compared to the other three work-

loads, RM has the highest resource utilization, and therefore the

highest power usage. The HBM bandwidth gap of ASR is a little

larger than the others, due to the small number of custom operators

we do not yet support. The results illustrate that different work-

loads exhibit very different performance characteristics at a macro

level, but can be accurately captured by our replay methodology,

and reproduced in the generated benchmarks.

ba
tch

_n
or

m_1
co

nv
_1

ba
tch

_n
or

m_2
max

_p
oo

l
co

nv
_2

co
nv

_3
da

ta
_s

hu
ffl

e
co

nv
_4

co
nv

_5
co

nv
_b

ac
kw

ar
d

ov
er

all

0.6

0.8

1.0

1.2

Si
m

ila
rit

y

IPC L1 hit rate L2 hit rate SM throughput

Figure 6: Normalized per-kernel and overall micro-level ar-

chitectural metrics.

6.5.2 Micro-level. In Figure 6, we show the similarity between

the original ResNet and the generated benchmark, in terms of its

fine-grained performance characteristics, including IPC, L1 hit rate,

L2 hit rate and SM throughput. We choose the top 10 CUDA kernels

in terms of runtime and the overall performance among all kernels,

and normalize the data to that of the original model. The top 10 ker-

nels account for 50.3% of the total execution time, and the overall

deviation across all kernels is all within 2%. The results demon-

strate that Mystique can also faithfully clone microarchitectural

characteristics, which is inherited from our accurate replication of

the model at operator level.

6.6 Distributed training

Distributed training is now very common practice for AI work-

loads, as their model sizes and datasets keep rapidly growing. To

evaluate the scalability of our ET replay-based framework, we col-

lect the runtime traces of the RM workload running on 8 nodes

with 64 NVIDIA A100 GPUs total, and interconnected via NVLink

(intra-node) and a 200Gbps NIC per GPU (inter-node), and then

replay it under the same setting. To enable large-scale execution, we

adjust RM’s parameters, resulting in variations in behavior when

compared to the single-GPU version.

Table 5 shows the execution time per iteration and the system-

level metrics per GPU, averaged across the profiling duration and

all 64 GPUs, for the original model and the replayed benchmark.

The performance of the generated benchmark is very similar to that

of the original, with a slight difference primarily attributed to the

inaccuracy of a few communication operators replay. This evalua-

tion validates the scalability of Mystique for large-scale distributed

deployments.

Table 5: Scalability evaluation on 8 nodes with 64 GPUs.

Metric Original Replay

Execution time (ms) 102.5 113.1

SM utilization (%) 49.6 43.6

HBM bandwidth (GB/s) 418.5 364.3

GPU power (W) 228.1 204.8

6.7 Cross platform validation

Mystique operates at operator-level to reproduce the performance

and resource characteristics of an original AI workload. This

hardware-agnostic operation allows the generated benchmark to

be portable across platforms without regeneration. To validate this,

ISCA ’23, June 17ś21, 2023, Orlando, FL, USA M. Liang, W. Fu, L. Feng, Z. Lin, P. Panakanti, S. Zheng, S. Sridharan, and C. Delimitrou

we test the performance of all four studied workloads and their

corresponding generated benchmarks on three platforms: Intel

Xeon Platinum CPU, NVIDIA Tesla V100, and NVIDIA Tesla A100.

We only use the trace collected on the A100 server to generate

the synthetic benchmarks, and then run them across the different

platforms.

CPU V100 A100
Param linear

0.0

0.5

1.0

No
rm

al
ize

d
ex

ec
. t

im
e

CPU V100 A100
ResNet

0.0

0.5

1.0
No

rm
al

ize
d

ex
ec

. t
im

e

CPU V100 A100
ASR

0.0

0.5

1.0

No
rm

al
ize

d
ex

ec
. t

im
e

CPU V100 A100
RM

0.0

0.5

1.0

No
rm

al
ize

d
ex

ec
. t

im
e

Original Replay

Figure 7: Normalized execution time of all workloads and

their replayed benchmarks on different platforms.

Figure 7 shows the validation results of all four workloads. We

normalize the execution time of the replayed benchmark to that

of the original workload on each platform. For two production

workloads ASR and RM, we only show their performance on the

two GPU platforms, as they cannot directly run on CPU. The figure

shows that execution time between original and replayed applica-

tion matches across platforms, demonstrating the portability of our

replay methodology.

6.8 Power efficiency sensitivity sweep

100 150 200 250 300 350
Device power limit (W)

0.0

0.5

1.0

En
er

gy
 e

ffi
ci

en
cy

PARAM

100 150 200 250 300 350
Device power limit (W)

0.0

0.5

1.0
ResNet

100 150 200 250 300 350
Device power limit (W)

0.0

0.5

1.0

En
er

gy
 e

ffi
ci

en
cy

ASR

100 150 200 250 300 350
Device power limit (W)

0.0

0.5

1.0
RM

Original Replay

Figure 8: Normalized energy efficiency under varying power

limit.
Power efficiency is an important metric in many system designs,

and large-scale training is no exception. Due to the sheer size of

our production training fleet, even a small power efficiency gain

translates to huge infrastructure cost savings. Here we demonstrate

that the benchmark generated by Mystique is able to mimic the

power efficiency characteristics of the original application, when

we sweep certain system design knobs (the device power limit in

this example).

Figure 8 displays the power efficiency sensitivity curves of all

studied workloads and their corresponding synthetic benchmarks,

as we set the GPU power limit to different levels. The x-axis is the

GPU power limit we want to sweep, and the y-axis is the normal-

ized power efficiency, defined as the throughput over power. Our

generated benchmarks closely track the sensitivity trend of the

original workloads, demonstrating that such a methodology can be

effectively used to evaluate system performance in the place of real

workloads, when they are not available.

7 USE CASES

By leveraging the execution trace (ET), Mystique opens up many

opportunities on how to conduct AI system evaluation. In this

section we describe several use cases we experimented with using

our current framework.

7.1 Subtrace replay

The execution trace is made up of nodes (operators) connected

through parent-child relationships; this composability allows us

to replay only a subtrace of interest or certain types of operators,

enabling fast and efficient testing of a specific component instead

of the entire model.

To do this, a user can leverage the record_function context man-

ager [49] in the PyTorch profiler to label an arbitrary range of code

with a user-defined name. Then in the ET, a new operator will

appear as the parent of all operators within that code range. When

traversing the trace to select which operators to replay, we can

use this name to easily locate this operator, and only replay the

subtrace underneath. In Figure 9, the subtrace located under the

operator ## forward:z ## is selectively replayed for the RMworkload

to measure the performance of this specific segment of forward

process. The repeated replay traces in the bottom verify that we

are only replaying the target subtrace, and the results demonstrate

that the original performance of this subtrace is captured.

11/17/22, 11:36 PM chrome://tracing

chrome://tracing 1/1

Record Save Load cmf_1_026.json Flow events Processes M View Options » ?

File Size Stats
M

etrics
Fram

e Data
Input Latency

Alerts

Nothing selected. Tap stuff.

python3.8 (pid 3167047): CPU X

python3.8 (pid 0): GPU 0 X

Process Spans X

960644672
 thread 3167047 (python3.8)

 thread 3172295 (python3.8)

stream 7
stream 20
stream 22

PyTorch Profiler

11/13/22, 8:01 PM chrome://tracing

chrome://tracing 1/1

Record Save Load cmf_overarch_subgraph_replay copy.json Flow events Processes M View Options » ?

File Size Stats
M

etrics
Fram

e Data
Input Latency

Alerts

Nothing selected. Tap stuff.

[xarexec] (pid 2720388): CPU X

[xarexec] (pid 0): GPU 0 X

Process Spans X

1
 thread 2720388 (python3.8)

stream 7

PyTorch Profiler

11/13/22, 8:01 PM chrome://tracing

chrome://tracing 1/1

Record Save Load cmf_overarch_subgraph_replay copy.json Flow events Processes M View Options » ?

File Size Stats
M

etrics
Fram

e Data
Input Latency

Alerts

Nothing selected. Tap stuff.

[xarexec] (pid 2720388): CPU X

[xarexec] (pid 0): GPU 0 X

Process Spans X

1
 thread 2720388 (python3.8)

stream 7

PyTorch Profiler

9.4ms

9.8ms 9.7ms

Figure 9: Runtime traces of original model (top) and two

iterations of the subtrace replay (bottom). The original label

names are replaced for confidentiality reasons.

Similarly, by filtering operators based on their types, our frame-

work can also be easily configured to replay only specific types of

operators. For example, we have used it to quickly examine and

Mystique: Enabling Accurate and Scalable Generation of Production AI Benchmarks ISCA ’23, June 17ś21, 2023, Orlando, FL, USA

locate network issues in our production environment, by replaying

the communication operators exclusively.

7.2 Early stage platform evaluation

Benchmarks are an essential tool to evaluate the performance of

new hardware platforms, especially when the full software environ-

ment is not yet fully equipped. While simple microbenchmarks can

provide some indication of performance, using a production-like

benchmark that exercises the full stack in a similar way to the orig-

inal workload lends significantly more confidence to the results.

However, in the early stages of a new platform design, it is often

difficult to run an exact copy of a complex AI model on it. Manually

forcing the full application stack to run can be time-consuming,

cumbersome, and error-prone.

Fortunately, Mystique provides a solution to this problem, as it

has minimal software dependencies and can be easily modified at

the operator level to skip unsupported operators. As illustrated in

Figure 10, when evaluating a new platform with limited software

installed, such as only the OS and necessary libraries like PyTorch

and CUDA, but without many in-house dependencies, libraries and

tools, our synthetic benchmarks can be used to accurately infer the

potential performance benefit of the new platform, as indicated by

the red line.

CPU V100 A100 New plat.0

20

40

60

80

100

Sp
ee

du
p

ov
er

 C
PU

Original
Replay

Figure 10: Execution time speedup for new, experimental

platform over CPU.

7.3 Scaled-down performance emulation

DL models have been growing exponentially in terms of their size,

complexity, and data requirements, leading to the rapid adoption

of large-scale training deployments in production environments.

Using models that require hundreds of GPUs for training is now

common in AI use cases, but evaluating their performance is chal-

lenging due to the high cost and complexity of deploying and sup-

porting large-scale testing setups. Therefore, there is a need to

evaluate a model’s large-scale training performance using a much

smaller setup.

Distributed data-parallel training involves workers performing

the same computation on their assigned data chunks, with the local

computation remaining unchanged with the number of workers.

The network communication, however, is the main performance

factor that varies with scale. Benchmarking at the granularity of

operators allows for evaluation of large-scale executions using

a smaller scale, achieved by adjusting the communication cost

during replay. This requires no changes to the original training

implementation, avoiding the need for domain specific knowledge

and coding changes.

Our initial approach involved adding dummy delay to the com-

munication path to account for the mismatch between small-scale

testing and large-scale deployment. The delay was determined em-

pirically based on the network cost model. We demonstrated the

feasibility of this approach by successfully reproducing the execu-

tion time of the 64 GPUs RM model training using only 2 GPUs.

Although there are opportunities to improve upon this simple ap-

proach, exploring them fully requires significant engineering effort,

so we defer further investigation to future work.

8 DISCUSSION

Mystique has successfully generated synthetic benchmarks for pro-

duction AI workloads and has already been used in several chal-

lenging system studies, by both internal teams and external part-

ners, such as Intel, NVIDIA, and AMD. At the same time, there are

even more interesting directions we plan to explore with this new

methodology.

8.1 Data processing and AI tax

The importance of considering the end-to-end behavior of AI appli-

cations is increasing due to the rise of data processing, also known

as the AI tax [8, 53, 61]. This is also our broader objective of gener-

ating AI benchmarks. As a first step, Mystique currently focuses

on AI model components that are deployed on GPU servers, as

1) in many hyperscale deployment environments, including ours,

data processing is deemed complex and critical, and as such, it is

usually decoupled from the AI model, and assigned to dedicated

CPUmachines for execution, and 2) the execution of any processing

left on the GPU server is often overshadowed by the well-tuned

pipeline design, and requires minimal CPU resources compared

to the massive consumption on the GPUs. Mystique is now better

suited for training workloads than for inference workloads, where

AI tax has a larger presence on the GPU server. It is our next step

to utilize tools like Ditto [33] to incorporate the CPU execution

fraction to our framework.

8.2 Advanced ET analyzer and builder

We are currently using a simple ET analyzer based on population

weight to guide our selection of full ETs as replay samples from

the trace database. This can be enhanced by incorporating more

sophisticated weight calculations, such as timing costs. Moreover,

we can explore operator-level summary and weighting to further

improve the selection process, and leverage the composability of

ET to combine portions from different ETs into a single replay trace

for more efficient aggregation.

8.3 Adaptability to other ML frameworks and
domains

The essence of Mystique is leveraging the appropriate level of

abstraction provided by the framework to reproduce performance.

Currently, our framework focuses on PyTorch models due to their

widespread use in our environment, but it can be extended to other

ML frameworks, such as TensorFlow, MXNet. These frameworks

share a common feature, the use of computational graphs, such as

ISCA ’23, June 17ś21, 2023, Orlando, FL, USA M. Liang, W. Fu, L. Feng, Z. Lin, P. Panakanti, S. Zheng, S. Sridharan, and C. Delimitrou

ET in PyTorch, to express the model and execute operators. For

example, TensorFlow provides the ability to save a graph using

tf.function and to rerun it without the original code. Therefore,

our cloning methodology is transferable to other frameworks, to

create a synthetic benchmark that uses the same framework as the

original application.

Furthermore, we are investigating the feasibility of generating

benchmarks across different frameworks, e.g., replaying Tensor-

Flow graphs using PyTorch, to maximize the use and impact of

Mystique. To accomplish this, we are spearheading a collaboration

between academic and industrial partners to propose a standard,

portable format for execution traces that can be used across multiple

frameworks.2

Beyond AI, we believe that with proper abstractions and profiling

capabilities, Mystique can be adapted to other domains or domain-

specific languages, for example, the RPC frameworks for cloud

microservices.

8.4 Improved privacy and IP protection

Given that AI models can provide a significant competitive edge

for a company, it is crucial to take extensive measures to protect

them. However, this can create challenges when attempting to

share the workload with external vendors for co-design or co-

optimization. Mystique can potentially address this issue by obfus-

cating the real ETs and substituting important IP-protected blocks

with performance-equivalent public ones. This approach allows for

efficient sharing of the workload, while still capturing the intended

performance behavior of a production workload.

9 CONCLUSION

We present Mystique, a new generation methodology for AI bench-

marks, based on execution traces replay. Mystique addresses the

scalability issues stemming from both the large model variety and

the constantly changing workload landscape. We demonstrate that

our methodology generates AI benchmarks highly similar to the

original applications, while being easy to use and portable across

platforms, without the need for regenerating. We have illustrated

several use cases for Mystique, including early stage platform eval-

uation, subtrace replay, and scaled-down performance testing, all

of which are highly challenging using existing techniques.

ACKNOWLEDGMENTS

We sincerely thank David Berard and Valentin Andrei from Meta

for their feedback to this work, and the anonymous reviewers for

their suggestions on earlier versions of this manuscript. This work

was in part sponsored by Meta through an internship and a student

researcher appointment. This work was also in part supported by

NSF CAREER Award CCF-1846046, an Intel Research Award, a

Sloan Research Fellowship, a Microsoft Research Fellowship, and a

Facebook Research Faculty Award.

REFERENCES
[1] Robert Adolf, Saketh Rama, Brandon Reagen, Gu-Yeon Wei, and David Brooks.

Fathom: Reference workloads for modern deep learning methods. In 2016 IEEE
International Symposium on Workload Characterization (IISWC), pages 1ś10. IEEE,
2016.

2https://github.com/chakra-et/chakra.

[2] ATen. Aten. https://github.com/pytorch/pytorch/tree/master/aten.
[3] Baidu. Deepbench. https://github.com/baidu-research/DeepBench.
[4] Colby Banbury, Vijay Janapa Reddi, Peter Torelli, Jeremy Holleman, Nat Jeffries,

Csaba Kiraly, Pietro Montino, David Kanter, Sebastian Ahmed, Danilo Pau, et al.
Mlperf tiny benchmark. arXiv preprint arXiv:2106.07597, 2021.

[5] Bradford M Beckmann and Anthony Gutierrez. The amd gem5 apu simula-
tor: Modeling heterogeneous systems in gem5. In Tutorial at the International
Symposium on Microarchitecture (MICRO), 2015.

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. The gem5 simulator. ACM SIGARCH computer architecture news,
39(2):1ś7, 2011.

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. Language models are few-shot learners. Advances in neural infor-
mation processing systems, 33:1877ś1901, 2020.

[8] Michael Buch, Zahra Azad, Ajay Joshi, and Vijay Janapa Reddi. Ai tax in mobile
socs: End-to-end performance analysis of machine learning in smartphones.
In 2021 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 96ś106. IEEE, 2021.

[9] Trevor E Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: Exploring the
level of abstraction for scalable and accurate parallel multi-core simulation. In
Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1ś12, 2011.

[10] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. Diannao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning. ACM SIGARCH Computer Architecture News,
42(1):269ś284, 2014.

[11] Cody Coleman, Deepak Narayanan, Daniel Kang, Tian Zhao, Jian Zhang, Luigi
Nardi, Peter Bailis, Kunle Olukotun, Chris Ré, and Matei Zaharia. Dawnbench:
An end-to-end deep learning benchmark and competition. Training, 100(101):102,
2017.

[12] Deeksha Dangwal, Weilong Cui, Joseph McMahan, and Timothy Sherwood.
Safer program behavior sharing through trace wringing. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 1059ś1072, 2019.

[13] Victor Moya Del Barrio, Carlos González, Jordi Roca, Agustín Fernández, and
E Espasa. Attila: a cycle-level execution-driven simulator for modern gpu ar-
chitectures. In 2006 IEEE International Symposium on Performance Analysis of
Systems and Software, pages 231ś241. IEEE, 2006.

[14] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-Efficient and
QoS-Aware Cluster Management. In Proceedings of the Nineteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). Salt Lake City, UT, USA, 2014, 2014.

[15] Christina Delimitrou, Sriram Sankar, Aman Kansal, and Christos Kozyrakis.
ECHO: Recreating Network Traffic Maps for Datacenters of Tens of Thousands
of Servers. In Proceedings of the IEEE International Symposium on Workload
Characterization (IISWC), 2012.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[17] Facebook. Fbgemm. https://github.com/pytorch/FBGEMM.
[18] Facebook. Param benchmarks. https://github.com/facebookresearch/param.
[19] Facebook. torchrec. https://github.com/pytorch/torchrec.
[20] Facebook. torchvision models. https://pytorch.org/vision/stable/models.html.
[21] Yu Gan and Christina Delimitrou. The Architectural Implications of Cloud

Microservices. In Computer Architecture Letters (CAL), vol.17, iss. 2, Jul-Dec 2018.
[22] Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delimitrou. Sage:

Practical and scalable ml-driven performance debugging in microservices. In
Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2021, page 135ś151,
New York, NY, USA, April 2021. Association for Computing Machinery.

[23] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung,
Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake
Padilla, and Christina Delimitrou. AnOpen-Source Benchmark Suite forMicroser-
vices and Their Hardware-Software Implications for Cloud and Edge Systems. In
Proceedings of the Twenty Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), April 2019.

[24] Karthik Ganesan and Lizy Kurian John. Automatic generation of miniaturized
synthetic proxies for target applications to efficiently design multicore processors.
IEEE Transactions on Computers, 63(4):833ś846, 2013.

[25] Udit Gupta, Young Geun Kim, Sylvia Lee, Jordan Tse, Hsien-Hsin S Lee, Gu-
Yeon Wei, David Brooks, and Carole-Jean Wu. Chasing carbon: The elusive
environmental footprint of computing. IEEE Micro, 42(4):37ś47, 2022.

[26] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Brandon Reagen,
David Brooks, Bradford Cottel, Kim Hazelwood, Mark Hempstead, Bill Jia, et al.

Mystique: Enabling Accurate and Scalable Generation of Production AI Benchmarks ISCA ’23, June 17ś21, 2023, Orlando, FL, USA

The architectural implications of facebook’s dnn-based personalized recommen-
dation. In 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 488ś501. IEEE, 2020.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770ś778, 2016.

[28] Samuel Hsia, Udit Gupta, Mark Wilkening, Carole-Jean Wu, Gu-Yeon Wei, and
David Brooks. Cross-stack workload characterization of deep recommendation
systems. In 2020 IEEE International Symposium on Workload Characterization
(IISWC), pages 157ś168. IEEE, 2020.

[29] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al.
In-datacenter performance analysis of a tensor processing unit. In Proceedings of
the 44th annual international symposium on computer architecture, pages 1ś12,
2017.

[30] Daniel Justus, John Brennan, Stephen Bonner, and Andrew Stephen McGough.
Predicting the computational cost of deep learning models. In 2018 IEEE interna-
tional conference on big data (Big Data), pages 3873ś3882. IEEE, 2018.

[31] Mahmoud Khairy, Zhesheng Shen, Tor M Aamodt, and Timothy G Rogers. Accel-
sim: An extensible simulation framework for validated gpu modeling. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA),
pages 473ś486. IEEE, 2020.

[32] Shijian Li, Robert J Walls, and Tian Guo. Characterizing and modeling dis-
tributed training with transient cloud gpu servers. In 2020 IEEE 40th International
Conference on Distributed Computing Systems (ICDCS), pages 943ś953. IEEE, 2020.

[33] Mingyu Liang, Yu Gan, Yueying Li, Carlos Torres, Abhishek Dhanotia, Mahesh
Ketkar, and Christina Delimitrou. Ditto: End-to-End Application Cloning for
Networked Cloud Services. In Proceedings of the Twenty Eighth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), April 2023.

[34] Ying-Chiao Liao, Chuan-Chi Wang, Chia-Heng Tu, Ming-Chang Kao, Wen-Yew
Liang, and Shih-Hao Hung. Perfnetrt: Platform-aware performance modeling
for optimized deep neural networks. In 2020 International Computer Symposium
(ICS), pages 153ś158. IEEE, 2020.

[35] Zhongyi Lin, Louis Feng, Ehsan KArdestani, Jaewon Lee, John Lundell, Changkyu
Kim, Arun Kejariwal, and John D Owens. Building a performance model for deep
learning recommendationmodel training on gpus. arXiv preprint arXiv:2201.07821,
2022.

[36] Peter Mattson, Christine Cheng, Gregory Diamos, Cody Coleman, Paulius Micike-
vicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf,
et al. Mlperf training benchmark. Proceedings of Machine Learning and Systems,
2:336ś349, 2020.

[37] PeterMattson, Vijay Janapa Reddi, Christine Cheng, Cody Coleman, Greg Diamos,
David Kanter, Paulius Micikevicius, David Patterson, Guenther Schmuelling,
Hanlin Tang, et al. Mlperf: An industry standard benchmark suite for machine
learning performance. IEEE Micro, 40(2):8ś16, 2020.

[38] MLCommons. Mlperf training benchmarks. https://mlcommons.org/en/training-
normal-21/.

[39] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-
Jean Wu, Alisson G Azzolini, et al. Deep learning recommendation model for
personalization and recommendation systems. arXiv preprint arXiv:1906.00091,
2019.

[40] Thomas Norrie, Nishant Patil, Doe Hyun Yoon, George Kurian, Sheng Li, James
Laudon, Cliff Young, Norman Jouppi, and David Patterson. The design process
for google’s training chips: Tpuv2 and tpuv3. IEEE Micro, 41(2):56ś63, 2021.

[41] NVIDIA. nccl. https://developer.nvidia.com/nccl.
[42] OpenMPI. mpirun. https://www.open-mpi.org/doc/current/man1/mpirun.1.php.
[43] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng,

David Grangier, and Michael Auli. fairseq: A fast, extensible toolkit for sequence
modeling. In Proceedings of NAACL-HLT 2019: Demonstrations, 2019.

[44] Reena Panda and Lizy Kurian John. Proxy benchmarks for emerging big-data
workloads. In 2017 26th International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 105ś116. IEEE, 2017.

[45] Reena Panda, Xinnian Zheng, Andreas Gerstlauer, and Lizy Kurian John. Camp:
Accurate modeling of core and memory locality for proxy generation of big-data
applications. In 2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 337ś342. IEEE, 2018.

[46] Reena Panda, Xinnian Zheng, Jiajun Wang, Andreas Gerstlauer, and Lizy K John.
Statistical pattern based modeling of gpu memory access streams. In Proceedings
of the 54th Annual Design Automation Conference 2017, pages 1ś6, 2017.

[47] Jason Power, Joel Hestness, Marc S Orr, Mark D Hill, and David A Wood. gem5-
gpu: A heterogeneous cpu-gpu simulator. IEEE Computer Architecture Letters,
14(1):34ś36, 2014.

[48] PyTorch. c10d. https://pytorch.org/docs/stable/distributed.html.

[49] PyTorch. Pytorch profiler. https://pytorch.org/tutorials/recipes/recipes/profiler_
recipe.html.

[50] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen.
Hierarchical text-conditional image generation with clip latents. arXiv preprint
arXiv:2204.06125, 2022.

[51] Gokul Subramanian Ravi, Ramon Bertran, Pradip Bose, and Mikko Lipasti. Micro-
grad: A centralized framework for workload cloning and stress testing. In 2021
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 70ś72. IEEE, 2021.

[52] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther
Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark
Charlebois, William Chou, et al. Mlperf inference benchmark. In 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA), pages
446ś459. IEEE, 2020.

[53] Daniel Richins, Dharmisha Doshi, Matthew Blackmore, Aswathy Thulaseedharan
Nair, Neha Pathapati, Ankit Patel, Brainard Daguman, Daniel Dobrijalowski,
Ramesh Illikkal, Kevin Long, et al. Missing the forest for the trees: End-to-end
ai application performance in edge data centers. In 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages 515ś528.
IEEE, 2020.

[54] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily
Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,
Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with
deep language understanding. arXiv preprint arXiv:2205.11487, 2022.

[55] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. nature, 529(7587):484ś489, 2016.

[56] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1ś9, 2015.

[57] Luk Van Ertvelde and Lieven Eeckhout. Dispersing proprietary applications
as benchmarks through code mutation. In Proceedings of the 13th international
conference on Architectural support for programming languages and operating
systems, pages 201ś210, 2008.

[58] Snehil Verma, QinzheWu, Bagus Hanindhito, Gunjan Jha, Eugene B John, Ramesh
Radhakrishnan, and Lizy K John. Demystifying the mlperf training benchmark
suite. In 2020 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), pages 24ś33. IEEE, 2020.

[59] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew
Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, et al. Grandmaster level in starcraft ii using multi-agent reinforcement
learning. Nature, 575(7782):350ś354, 2019.

[60] YipengWang, Amro Awad, and Yan Solihin. Clone morphing: creating new work-
load behavior from existing applications. In 2017 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pages 97ś108. IEEE,
2017.

[61] Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani,
Kiwan Maeng, Gloria Chang, Fiona Aga, Jinshi Huang, Charles Bai, et al. Sustain-
able ai: Environmental implications, challenges and opportunities. Proceedings of
Machine Learning and Systems, 4:795ś813, 2022.

[62] GX Yu, Y Gao, P Golikov, and G Pekhimenko. Computational performance
predictions for deep neural network training: A runtime-based approach. CoRR,
vol. abs/2102.00527, 2021.

[63] Zhibin Yu, Lieven Eeckhout, Nilanjan Goswami, Tao Li, Lizy K John, Hai Jin,
Chengzhong Xu, and Junmin Wu. Gpgpu-minibench: accelerating gpgpu micro-
architecture simulation. IEEE Transactions on Computers, 64(11):3153ś3166, 2015.

[64] Mark Zhao, Niket Agarwal, Aarti Basant, Buğra Gedik, Satadru Pan, Mustafa
Ozdal, Rakesh Komuravelli, Jerry Pan, Tianshu Bao, Haowei Lu, Sundaram
Narayanan, Jack Langman, Kevin Wilfong, Harsha Rastogi, Carole-Jean Wu,
Christos Kozyrakis, and Parik Pol. Understanding data storage and ingestion
for large-scale deep recommendation model training: Industrial product. In
Proceedings of the 49th Annual International Symposium on Computer Architecture,
ISCA ’22, page 1042ś1057, New York, NY, USA, 2022. Association for Computing
Machinery.

[65] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui
Yan, Junqi Jin, Han Li, and Kun Gai. Deep interest network for click-through
rate prediction. In Proceedings of the 24th ACM SIGKDD international conference
on knowledge discovery & data mining, pages 1059ś1068, 2018.

[66] Hongyu Zhu, Mohamed Akrout, Bojian Zheng, Andrew Pelegris, Anand Jayara-
jan, Amar Phanishayee, Bianca Schroeder, and Gennady Pekhimenko. Bench-
marking and analyzing deep neural network training. In 2018 IEEE International
Symposium on Workload Characterization (IISWC), pages 88ś100. IEEE, 2018.

[67] Hongyu Zhu, Amar Phanishayee, and Gennady Pekhimenko. Daydream: Ac-
curately estimating the efficacy of optimizations for {DNN} training. In 2020
USENIX Annual Technical Conference (USENIX ATC 20), pages 337ś352, 2020.

	Abstract
	1 Introduction
	2 Related work
	2.1 AI benchmarks
	2.2 Simulation, emulation, and performance modeling
	2.3 Performance cloning and synthetic benchmarks

	3 Background
	3.1 Execution Trace (ET)
	3.2 Advantages of ET
	3.3 PyTorch operators

	4 Mystique Design
	4.1 Trace collection
	4.2 Operators selection
	4.3 Operators reconstruction
	4.4 Arguments and tensor management
	4.5 Parallel stream execution
	4.6 Putting it all together

	5 Implementation
	6 Evaluation
	6.1 Platforms
	6.2 Workloads
	6.3 Operators coverage
	6.4 End-to-end execution time
	6.5 System-level metrics
	6.6 Distributed training
	6.7 Cross platform validation
	6.8 Power efficiency sensitivity sweep

	7 Use Cases
	7.1 Subtrace replay
	7.2 Early stage platform evaluation
	7.3 Scaled-down performance emulation

	8 Discussion
	8.1 Data processing and AI tax
	8.2 Advanced ET analyzer and builder
	8.3 Adaptability to other ML frameworks and domains
	8.4 Improved privacy and IP protection

	9 Conclusion
	Acknowledgments
	References

