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Abstract. Unoriented SL(3) foams are two-dimensional CW complexes
with generic singularities embedded in 3- and 4-manifolds. They nat-
urally come up in the Kronheimer–Mrowka SO(3) gauge theory for 3-
orbifolds and, in the oriented case, in a categorification of the Kuper-
berg bracket quantum invariant. The present paper studies the more
technically complicated case of SL(4) foams. Combinatorial evaluation
of unoriented SL(4) foams is defined and state spaces for it are studied.
In particular, over a suitably localized ground ring, the state space of
any web is free of the rank given by the number of its 4-colorings.
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1. Introduction

Foams, as they appear in link homology, are suitably decorated combinatorial
two-dimensional CW-complexes embedded in R

3. Combinatorial approach to
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GL(N) link homology, see [14,26–29] and other papers, is based on a special
evaluation of closed foams (foams without boundary) to elements of rings of
symmetric functions RN in N variables. One then uses so-called universal
construction of topologic theories [5,15] to build a lax TQFT from foam
evaluation. By lax TQFT, we mean a lax monoidal functor from a cobordism-
like category to a category of modules. This lax TQFT (or a topologic theory)
defines state spaces of plane graphs, which appear as generic plane cross-
sections of foams. Given a plane diagram of a link, one “resolves” it into a
collection of plane graphs and assigns a complex of state spaces, one space for
each graph in the resolution, with differentials coming from maps induced by
cobordisms in the topologic theory. Homology of this complex categorifies the
Reshetikhin–Turaev–Witten quantum link invariant with components colored
by fundamental representations of quantum GL(N). There are now many
categorical approaches to this link homology; for instance, one of the earliest
ones is based on matrix factorizations [21,36,37].

Other approaches are based on representation theory [4,31,32,34], co-
herent sheaves on quiver varieties [2,9], Fukaya–Floer categories on quiver
varieties [3,24,30], and mathematical physics [1,11,35]. Foam approach is
distinguished by being the most combinatorial, with relevant categories and
functors that control the theory appearing much later in the construction.

Spines are two-dimensional CW-complexes with generic singularities,
strongly reminiscent of foams. They naturally come up in the simple homo-
topy theory of 2-dimensional CW-complexes and in 3-manifold theory (as
2-skeleta of the Poincaré dual of a triangulation of a 3-manifold).

A variation on GL(N)-foams and their evaluations emerges in gauge
theory, via Kronheimer–Mrowka homology theory for 3-orbifolds [18–20,22].
The corresponding foams are sometimes called unoriented SL(3) foams [6,
7,22,23]. Kronheimer–Mrowka theory and unoriented SL(3) foams have a
close connection to the Four-Color Theorem, with the potential to give a
conceptual proof of the latter and rethink it via gauge theory and 3- and
4-dimensional topology. Unoriented SL(3) foams and webs are substantially
more complicated than their oriented counterparts, and beyond certain re-
ducible cases state spaces of unoriented webs have not been determined.

The present paper studies unoriented SL(4) foams and webs. Unori-
ented SL(4) webs relate to 4-regular planar graphs and their four colorings.
Colorability of 4-regular planar graph is well-understood [8,12]. However the
number of such colorings does not seem to have easy reduction local formula
for small facets. For instance, there is no simplification for

or

Hence it makes sense to change the setup a little bit and to replace a 4
valent-vertex:

� =



MJOM A Topological Theory for Unoriented Page 3 of 33    62 

imposing a flow-like condition on trivalent vertices and a complementary
condition on bivalent vertices. This is precisely our definition of colorings of
unoriented SL(4) webs, see Definitions 2.1 and 2.2.

Oriented SL(4) webs, whose definition can be found for instance in
[10,16], give a diagrammatic description of the sub-category of the category
of finite dimensional Uq(sl4)-modules generated as a monoidal category by
exterior powers of the fundamental representation. Their unoriented coun-
terparts that are discussed here mimic their combinatorics but forget the
orientations of edges. Their algebraic meaning is yet to be understood.

We introduce unoriented SL(4) webs (just called webs) and unoriented
SL(4) foams as cobordisms between webs. Fundamental SL(4) representation
V generates nontrivial exterior powers Λ2V and Λ3V , which can translate
into foams having corresponding facets of thickness two and three. To make
the presentation more compact, we do not consider facets of thickness three,
which can be avoided. Facets corresponding to V are called thin and those
corresponding to Λ2V are called thick.

The basic evaluation function on closed unoriented SL(4) webs counts
the number of Tait colorings t4(Γ) of edges of a web Γ. We write down some
skein relations for that function in Sect. 2

In Sect. 3 we define (unoriented SL(4)) foams F and their evaluations
τ(F ) to elements of the ring R of symmetric functions in four variables over
the 2-element field F2. Characteristic two reduction is forced upon us by
lack of facet orientations of our foams, just as in the SL(3) case [22]. The
notion of coloring of a foam is introduced, with thin (respectively thick)
facets labeled by a single pigment (respectively a pair of pigments) from the
set P = {1, 2, 3, 4}of four pigments, subject to compatibility conditions at
seams and vertices of the foam. Additionally, foams can carry defect lines at
thick facets, and a coloring needs to be reversed at a defect line. In Sect. 3.2
we write down a number of skein relations on foams.

In Sect. 4 state spaces of webs are defined via the universal construction.
The state space τ(Γ) of a web Γ is a graded R-module generated by all
foams F with boundary Γ modulo relations obtained by closing the foams
in all possible ways and evaluating closing foams. This approach to state
spaces is known as the universal construction to topologic theories, see earlier
references. It results in a lax monoidal functor from the category of foams to
the category of graded R-modules, see Theorem 4.3.

The reader might wonder why this functor is only lax and not fully
monoidal. The reason is quite technical but essentially it is a consequence of
not having enough categorified relations to reduce every web to the empty
one. The same difficulty appears in [22,23]. This is an indication that unori-
ented SL(4)-webs have a richer and more complex combinatorics than their
oriented analogs.

Skein relations from Sect. 3.2 give reduction (or direct sum decomposi-
tion) formulas for state spaces of webs that contains a region with at most
three sides or a region with four sides subject to some constraints, as ex-
plained in Theorem 4.5. We then introduce the notion of reducible web and
show that its state space τ(Γ) is a free graded R-module of rank equal to
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the number of Tait colorings of Γ. The graded rank of the state space of a
reducible web can be computed as well, giving a quantum-flavor invariant of
such webs. For non-reducible webs this invariant can be defined as well, but
at present we lack the tools to determine it (and to compute the state space
of any non-reducible web). An example of a non-reducible web is given in
that section.

Foam evaluation and state spaces are defined over the ring R of symmet-
ric polynomials in four variables X1, X2, X3, X4 with coefficients in F2. This
ring has elementary symmetric polynomials as generators, R ∼= F2[E1, . . . , E4].
Consider the discriminant δ2 of the polynomial

X4 + E1X
3 + E2X

2 + E3X + E4 =
4

∏

i=1

(X + Xi).

One can pass to the larger ring Rδ where δ2 (equivalently, δ), is invertible.
Inverting δ takes most of complexity out of the state spaces associated with
webs Γ. In particular, over Rδ, we are able to lift Tutte-like relations (14)–
(16) on the t4 invariant of various webs in Proposition 2.4 to direct sum
decompositions of state spaces, see Proposition 5.2. This implies that Rδ

state spaces τδ(Γ) are free Rδ-modules of rank t4(Γ). However, information
on the Z-grading of state spaces over R is lost when passing to Rδ, due to δ
as well as its factors Xi + Xj being invertible and inducing isomorphisms of
homogeneous terms of τδ(Γ).

SL(3) and SL(4) unoriented foam theories are similar and share the
same foundational unsolved problems, including understanding state spaces
of nonreducible planar webs. Some open questions are listed next:

• Develop techniques to compute state spaces of non-reducible unoriented
SL(3) and SL(4) webs and understand the corresponding quantum in-
variant of these webs.

• Is there a connection between unoriented SL(4) webs and gauge the-
ory similar to the one in [20,22] for unoriented SL(3) webs and gauge
theory?

• Is there a relation between evaluations of unoriented SL(4) foams with
thick facets only and SL(3) foams coming from the surjection of sym-
metric groups S4 −→ S3 given by the permutation action of S4 on the
pairs of pigments in {1, 2, 3, 4} with opposite pairs identified?

2. Webs and 4-Colorings

To work with the category of (unoriented SL(4)) foams, we start by consid-
ering (unoriented SL(4)) webs, which are suitable decorated planar graphs.

Definition 2.1. A web is an unoriented plane graph Γ with a label in {1, 2},
called thickness, associated to each edge. We write E(Γ) for the set of edges
of Γ, and say that an edge labeled i ∈ {1, 2} is an i-edge. Vertices of Γ can
be of three types:

(a) A trivalent vertex adjacent to three 2-edges (a 222-vertex).
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{i} {j}

{i, j}

{i, k} {j, k}

{i, j}

{j, k} {i, l}

Figure 1. From left to right: prototypical colorings at 112-
vertices, 222-vertices and defects

Figure 2. A web with one 222-vertex, seven 112-vertices and
a defect vertex

(b) A trivalent vertex adjacent to a 2-edge and two 1-edges (a 112-vertex).
(c) A bivalent vertex, that we call defect, adjacent to two 2-edges.

Definition 2.2. Define a pigment to be an element of the set P = {1, 2, 3, 4}.
We call P the set of pigments and define P(P) to be the set of all subsets of
P.

A coloring of a web Γ is a map

c : E(Γ) → P(P)

associating to each i-edge a subset of cardinality i of P = {1, 2, 3, 4}. We
require the following conditions on the coloring of adjacent edges:

(a) At each 112-vertex the coloring of the 2-edge is the union of colorings
of the two 1-edges.

(b) At each 222-vertex each of the colors of the adjacent 2-edges are the
three two-element subsets of a cardinality three subset of P.

(c) At each defect the colorings of the adjacent 2-edges are complementary.

Prototypical colorings at vertices are depicted on Fig. 2, with P = {i, j,
k, l}. We write t4(Γ) for the number of colorings of Γ and call it the Tait
number of Γ. The web Γ1 in Fig. 1 admits no colorings, and therefore t4(Γ1) =
0. The empty web ∅1 admits a single coloring.

Proposition 2.3. The function t4 is multiplicative with respect to disjoint
unions of webs. In particular, t4(∅1) = 1. Moreover, the following local rela-
tions hold:

t4
( )

= 4, t4
( )

= 6, (1)

t4
( )

= 0, t4

( )

= 0, (2)

t4 ( ) = t4 ( ) , t4

( )

= t4

( )

, (3)
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t4

( )

= 2 t4 ( ) , t4

( )

= 4 t4 ( ) , (4)

t4

( )

= 3 t4 ( ) , t4

( )

= 0, (5)

t4

( )

= t4

( )

(6)

t4

( )

= t4

( )

, t4

( )

= 2 t4

( )

, (7)

t4

( )

= t4

( )

, t4

( )

= 2 t4

( )

, (8)

t4

( )

= t4

( )

+ t4

( )

, (9)

t4

( )

= t4

( )

+ t4

( )

, (10)

t4

( )

= t4

( )

+ 2 t4

( )

, (11)

t4

( )

= t4

( )

+ t4

( )

, (12)

t4

( )

= 2

[

t4

( )

+ t4

( )

+ t4

( )

+ t4

( )]

.(13)

Note that the first term on the right-hand side of (10) can be further
simplified via (9).

The relation (2) says that a loop in a graph evaluates it to 0. Relations
(3) allow to simplify dots on thick strands and to cancel and move around
valency two vertices: two such dots on a single double strand can be removed,
and a dot can be moved from one double strand to an adjacent strand. Here
by a double strand we mean a consecutive chain of double edges separated
by valency two vertices, with valency three vertices at its two endpoints.

Four types of digon regions are possible in webs, and relations (4) and
(5) show how to simplify a web with a digon region when computing its Tait
number t4.

There are four types of triangular regions, and all can be simplified
(collapsed) to a point, sometimes at the cost of scaling t4 by two, see relations
(7), (8). In particular, relation (7a) allows to replace each vertex of type 222
in a web for three vertices of type 112. We will make use of this in the proof
of Proposition 2.5.
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Table 1. Colorings illustrating the proof of relation (9) in
Proposition 2.3. Left column denotes coloring of the end-
points, with {i, j, k, l} = P

i ij
i ij

1 0 1

k ij
k ij

2 1 1

j ij
k ik

0 0 0

k ij
j ik

1 1 0

In a square region, any quadruple of thicknesses 1 and 2 of the four
edges is possible, leading to six possibilities, up to rotation and reflection
1111, 1112, 1122, 1212, 1222, 2222. For five of these cases there are reduction
formulas allowing to simplify the regions when computing t4, see equations
(9)–(13). The case 1111, when the four edges in the square all have thickness
one, cannot be reduced, apparently.

None of the regions with five and more sides seem to simplify in a way
similar to the above proposition, as an N-linear combination of diagrams with
fewer regions or lower complexity.

Proof of Proposition 2.3. Relations follow by case by case inspection. We in-
clude a proof of relation (9). In Table 1, the matrix entry (a, b) is the number
of 4-colorings of the web b in the top row whose endpoints have been assigned
color combination a in the first column. Notice that any color must appear
an even number of times on the boundary of a web without defects, which
helps to list possible colorings. For the middle web, with two defects, one
checks directly that only two of the four types of boundary colorings shown
in the table may appear. In the table and in the notations throughout the
paper, {i, j, k, l} = {1, 2, 3, 4}.

�

Proposition 2.4. The following local Tutte-like relations hold:

t4

( )

+ t4

( )

= t4

( )

+ t4

( )

, (14)

t4

( )

+ t4

( )

= t4

( )

+ t4

( )

, (15)

t4

( )

+ t4

( )

= t4

( )

+ t4

( )

. (16)
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Proof. Via case by case inspection in a similar way to that of previous propo-
sition. �

Proposition 2.5. Relations in Propositions 2.3 and 2.4 determine t4.

This statement and its proof are analogous to [33, Theorem XII & XIII].

Proof. Assume that the web Γ is connected and does not contain vertices
of type 222 (otherwise, use relation (7a)), and denote by kΓ the number of
vertices of type 112 in Γ. It is clear that kΓ is even, since it is twice the number
of thick strands. Using relation (3a), we can further assume that each thick
strands contains at most one defect.

The proof follows by induction on kΓ. If kΓ is zero, then t4(Γ) is deter-
mined by relation (1) (and possibly by (2b)).

Assume now that the statement holds for any web Γ′ with kΓ′ < n, and
let kΓ = n.

Observe that (6) and (14) together with inductive hypothesis imply that
the local changes

←→ , ←→ ,

preserve the computability of t4 via the above relations.

Define Γ× as the 4-valent regular planar graph obtained from Γ by
contracting thick strands

�→ �→ ◦ .

The standard Euler characteristic argument for Γ× implies that it con-
tains one of the following local pieces (with or without labeling ◦ of the
vertices):

, or (17)

Observe that if two webs Γ1 and Γ2 lead to the same graph Γ×
1 =

Γ×
2 , then either t4(Γ1) and t4(Γ2) are both computable from relations in the

statement, or neither of them is. Then, for the first two cases in (17) we can
assume that the web Γ contains a local piece of the form

,

and relations (2a) and (4a) determine t4(Γ).

For the last case, we can assume that Γ contains a local piece of the
form
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where each red defect may or may not appear. Using relations (7b), (3) and
(15) we get the following chain of local transformations

t4

⎛

¿

À

⎠ = t4

( )

= t4

( )

= t4

⎛

¿

À

⎠ + t4

⎛

¿

À

⎠ − t4

⎛

¿

À

⎠ .

A similar computation works if starting with an even number of dot defects
shown in red. Inductive hypothesis completes the proof. �

The set of colorings of a given web can be endowed with an equivalence
relation induced by so-called Kempe moves.

Definition 2.6. Let Γ be a web and c and c′ be two colorings of Γ. We say
that c and c′ are related by a Kempe-move if they agree on every edge except
for edges on a closed even length cycle. Two colorings c1 and c2 of Γ are
Kempe-equivalent if they are related by a finite number of Kempe-moves.
Classes for this equivalence relation are called Kempe-classes.

We will make use of this definition in Sects. 4 and 5.

Remark 2.7. Kempe-moves are named after Alfred Kempe who introduced
these moves in his inconclusive (but very instructive) attempt to prove the
four color theorem [13]. These moves allow to construct new Tait colorings
of a web from a given one in a semi-local way.

3. Foams and Their Evaluation

Definition 3.1. A (closed) foam F is a finite 2-dimensional CW complex
whose facets are labeled 1 or 2 (this label is the thickness of that facet).
Locally it is required to be homeomorphic to one of the local models de-
picted in Fig. 3, where gray color represents facets of thickness 2.

Points having neighborhood homeomorphic to an open disc are regu-
lar. Points whose neighborhood is homeomorphic to the product of a tripod
and an open interval are seam points. Finally, those whose neighborhood is
homeomorphic to the cone over the 1-skeleton of a tetrahedron (see Fig. 4)
are singular vertices. There are three types of singular vertices and we refer
to them as 1422, 1323 and 26, where the exponent of 1 and 2 indicates the
number of facets of thickness 1 and 2 appearing in a regular neighborhood of
the singular point; see second row in Fig. 3.

The union of seams and singular vertices has a structure of a 4-valent
graph denoted s(F ).

Foams are required to be PL-embedded in R
3 and can be endowed with

additional combinatorial/geometrical data:
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Figure 3. Standard neighborhoods of a regular point (first
two diagrams in upper row), of a seam point of type 112 and
222 (third and fourth in upper row, respectively) and of a
singular vertex of type 1422, 1323 and 26 (first, second and
third in second row, respectively)

Figure 4. Standard neighborhoods of singular vertices in
Fig. 3 above are homeomorphic to cones over the K4 graph
with 2, 3 and 6 double edges, respectively

(1) Defect lines: A (possibly empty) set of PL-curves in the closure of facets
of thickness 2 in general position with respect to seams, that we denote
dft(F ). Defect lines are depicted by orange lines on figures. Points in a
defect line are not considered to be regular. A region of a foam F is a
connected component of

r(F ) = F \ (s(F ) ∪ dft(F )).

Each region r inherits thickness th(r) ∈ {1, 2} from the facet containing
r. We call r(F ) the set of regions of F .

(2) Decorations: A (possibly empty) collection of dots which are on regular
points. Dots floating in regions of thickness 1 (resp. 2) are labeled by
symmetric polynomial in 1 (resp. 2) variable, with variables having de-
gree 2. For dots on a region of thickness 1, we use the convention that
an integer a refers to the polynomial Xa (we sometimes omit the label
when a = 1). For dots on facets of thickness 2, we use e1 to refer to the
first elementary polynomial in two variables and Young diagrams refer
to their corresponding Schur polynomial in two variables.

(3) Kempe-specification: A map from the set of singular vertices of type 26

to {
,�}.

Remark 3.2. At this stage, one might think of Kempe-specification as an
arbitrary and cumbersome extra data. However, its importance will become
clear when coloring foams (see Sect. 3.1).
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A foam F with boundary is a CW-complex embedded in R
2 × [0, 1],

which have the same local models as a closed foam in R
2 × (0, 1) and is

homeomorphic to a product of a web with an interval in R
2 × [0, ε) and in

R
2 × (1 − ε, 1] for some positive ε. The web F ∩ R

2 × {i}, denoted ∂iF , is
called the i-boundary of F , for i ∈ {0, 1}.

Webs and foams form a corbordism-like category denoted Foam, whose
objects are webs and morphisms between Γ0 and Γ1 are foams F with bound-
ary such that Γi = ∂iF for i ∈ {0, 1}, considered up to ambient isotopy
relative to boundary and preserving all decorations. Identities are given by
product of webs with [0, 1], and the composition comes from stacking foams
and rescaling in the vertical direction. In this category, a closed foam gives a
cobordism from the empty web ∅1 to itself.

3.1. Foam Evaluation

Throughout this section we’ll work over the two-elements field F2 and use four
variables X1, . . . , X4 which by convention have degree 2 each. The graded
ring of symmetric polynomials F2[X1, X2, X3, X4]

S4 is denoted R and the
ring F2[Xi,

1
Xj+Xk

] 1≤i≤4
1≤j<k≤4

is denoted R′.

Schur polynomials (over F2) in two variables X and Y forms a linear
basis of F2[X, Y ]S2 . They are parameterized by Young diagrams λ = (λ1, λ2)
with at most two rows (λ1 ≥ λ2) and given by the following formula:

sλ(X, Y ) =
Xλ1+1Y λ2 − Xλ2Y λ1+1

X − Y
.

Definition 3.3. A coloring of a foam F is a map

c r(F ) −→ P(P)

from the set of its regions to subsets of P = {1, 2, 3, 4}such that the cardinality
of c(r) is the thickness of the region r ∈ r(F ), and c satisfies the following
requirements (we write ri for a region with th(ri) = i, for i = 1, 2):

(1) If three regions ra
1 , rb

1 and r2 are adjacent through a seam of type 112,
then c(r2) = c(ra

1)�c(rb
1), that is, the coloring of r2 is the disjoint union

of those of ra
1 and rb

1.
(2) If three regions ra

2 , rb
2 and rd

2 are adjacent through a seam of type 222,
then c(ra

2), c(rb
2), c(r

d
2) are the three two-element subsets of a cardinality

three subset of P.
(3) If two regions ra

2 and rb
2 are adjacent through a defect, then c(ra

2) ∪
c(rb

2) = P, i.e., their colors are complementary.
(4) The colors of the regions around a 26 singular vertex should follow a

pattern according to the Kempe-specification of this singular vertex: if
the Kempe-specification is �, the four pigments appear in the neighbor-
hood of the singular point, each of them on three facets. If the Kempe-
specification is 
, only three pigments appear in the neighborhood of the
singular point, each of them on four facets. These patterns are given on
Fig. 5.

If c is a coloring of F , the pair (F, c) is called a colored foam.
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Figure 5. Relation between Kempe-specification and local
coloring around a vertex of type 26. On the left (resp. right)
a coloring for a Kempe specification � (resp. 
) is shown.
These two types of colorings form the two Kempe-classes of

the web

Figure 6. 112 theta-foam and 222 theta-foam, having 12 and
24 different colorings, respectively

Remark 3.4. In Definition 3.3, the constraints (1–3) are inherited from col-
orings of web.

Example 3.5. • Coloring of a foam S ⊂ R
3 which is a connected closed

thin, respectively thick, surface is a subset of P(P) of cardinality one,
respectively two. Thus, such a foam has four, respectively six, colorings.

• By a 112 theta-foam Θ112 we mean a foam which is a union of one thick
and two thin disks along the circle. Its colorings are ordered pairs (i, j)
of pigments, with i �= j, and this foam has 12 colorings (Fig.6).

• A 222 theta-foam Θ222 is given by gluing three thick disks along the
boundary circles. Its colorings are in a bijection with ordered triples
(i, j, k) of distinct pigments. Each disk is colored by an unordered pair
of two pigments out of these three, and the number of colorings is 24.

Question 3.6. Is there a meaningful characterization of colorable SL(4) foams?

Let (F, c) be a colored closed foam and i < j two distinct elements of
P. The union of regions whose color contains exactly one element of {i, j} is
a closed surface denoted Fij = Fij(c) and called the (i, j)-bicolored surface of
(F, c). Since F is embedded in R

3, the surface Fij is orientable and its Euler
characteristic is therefore even. Hence we can define:

Q(F, c) =
∏

i<j∈P

(Xi + Xj)
χ(Fij)/2.

Recall that each decoration of F belongs to a region r and each region is
assigned a color c(r) by the coloring c. Each decoration is labeled by a sym-
metric polynomial in as many variables as the thickness of the regions it floats
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in. Hence, we can evaluate it in the variable {Xi, i ∈ c(r)} and call this the
colored evaluation of the decoration. For a colored foam (F, c), define P (F, c)
to be the product of colored evaluation of all decorations.

Finally define

τ (F, c) =
P (F, c)

Q(F, c)
∈ R′ and τ (F ) =

∑

c∈col(F )

τ (F, c) ∈ R′.

The quantity τ (F ) is called the evaluation of the foam F .
The symmetric group on 4 elements acts on the set of colorings of a

given foam and acts by permuting the variables (Xi)i∈P. One can check that
the following identity holds:

τ (F, σ · c) = σ · τ (F, c)

for any σ in S4.

Proposition 3.7. Let F be a foam F ⊂ R
3 which admits a coloring. Suppose

a thick facet f of F has a boundary circle C with an odd number of vertices
and there are no defects at the vertices along C. Then:

• The number of singular vertices of type 1323 is even.
• The number of singular vertices of type 1422 plus the number of singular

vertices of type 26 with � Kempe-specification is even.

Proof. Consider the regular neighborhood of C intersected with the facets of
F which are not f and which are adjacent to the seams included in C. It is
an I-bundle A over the circle, so in principle it could be either an annulus or
a Möbius band. From a local coloring analysis, one obtains that this I-bundle
is contained in F1,2, so it has to be an annulus. Hence if we orient the circle
we can speak of the right-hand and left-hand facets.

The thicknesses of the regions conforming A may be 1 or 2. At any
given point of C which is not a singular vertex, the thicknesses on the right-
hand and left-hand facets is the same. This thickness changes along C when
encountering a singular vertex of type 1323. This proves the first statement.

Regardless of their thicknesses, at each non-singular point of the circle,
either the coloring of the right-hand facet or that of the left-hand facet (but
not both) contains the pigment 1. This arrangement changes exactly when
encountering a vertex of type 1422 or 26 with � Kempe-specification. �

Definition 3.8. The degree deg(F ) of a foam F is an integer which is com-
puted as follows:

deg(F ) =
∑

dots on F

deg(polynomial labeling the dot)

− 3
∑

f facet,
th(f)=1

χ(f) − 4
∑

f facet,
th(f)=2

χ(f)

+ 5#{seam intervals of type 112}

+ 6#{seam intervals of type 222}

− 6#{singular vertex of type 26 and of type 1323}
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− 5#{singular vertex of type 1422

with even number of defect lines going through}

− 6#{singular vertex of type 1422

with odd number of defect lines going through}.

Recall that degrees are in variables that have degree 2, so that the first
term in the definition of deg(F ) is even. The above definition is designed so
that the following lemma holds, which gives a convenient way to compute the
degree of many foams.

Lemma 3.9. Suppose that a foam F carries no dots and admits a coloring c.
Then its degree is the negative of the sum of the Euler characteristics of the
bicolored surfaces of (F, c) for any coloring c. That is, the following formula
holds:

deg(F ) = −
∑

1≤i<j≤4

χ(Fij(c)). (18)

In particular, since F is embedded in R
3, if it admits a coloring then deg(F ) ∈

2Z.

Proof. The proof is an elementary but cumbersome inspection of different bi-
colored surfaces Fij of each local model for any (local) coloring. For instance,
a singular seam interval of type 112 whose adjacent regions are colored by, say,
{1}, {2} and {1, 2}, appears in exactly 5 bicolored surfaces: F12, F13, F14, F23

and F24. This fits with the first coefficient 5 in the formula of Definition
3.8. �

Using the same arguments as in [29] or [22], one obtains the following
result.

Proposition 3.10. If F is a foam of degree n, then τ (F ) is an element of R
of degree n. In particular, if deg(F ) < 0, then τ (F ) = 0.

Remark 3.11. The arguments in [29] or [22] uses foamy Kempe-moves to
prove the polynomiality of τ (F ). It is worth noting that Kempe-specification
is compatible with such moves: if one swaps pigments i and j along a con-
nected component of the (i, j)-bicolored surface of (F, c), one obtains a col-
oring c′ of F ; in particular it still fits the local model required by the Kempe-
specifications of singular vertices of type 26.

Example 3.12. Closed surfaces (of thickness 1 or 2) with or without defect
lines are a special case of foams, the simplest ones in a sense. Let us compute
τ (F ) for F = S1(•

a)), the evaluation of the sphere of thickness one, with no
defect lines and a • on it. In this case there is only one region and therefore
F has four colorings in bijection with elements of P. Let us denote them
ci, i ∈ P. One has:

τ (F, ci) =
Xa

i
∏

j �=i(Xi + Xj)
,
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so that:

τ (F ) =
∑

i

Xa
i

∏

j �=i(Xi + Xj)
=

∑

i Xa
i

∏

j,k �=i,j<k(Xj + Xk)
∏

j<k(Xj + Xk)
= Ha−3,

where Hd is the complete symmetric polynomial

Hd =
∑

t1+t2+t3+t4=d

Xt1
1 Xt2

2 Xt3
3 Xt4

4 ,

and Hd = 0 if d < 0.

Example 3.13. Consider F = S2(sλ), the sphere of thickness 2, with no defect
lines and a decoration by the Schur polynomial sλ. As before, there is only one
region and ( 4

2 ) = 6 colorings, in bijection with (unordered) pairs of elements
of P. Let cij be one of such colorings, with i < j. One has:

τ (F, cij) =
sλ(Xi, Xj)

(Xi + Xk)(Xi + X�)(Xj + Xk)(Xj + X�)

with {i, j, k, 	} = P, so that:

τ (F ) = sλ\ρ(2,2)

where sλ\ρ(2,2) is the Schur polynomial associated with the Young diagram
λ with the two boxes of each row removed if possible (if λi ≥ 2 ∀i). If λi = 1
for some i, we set sλ\ρ(2,2) = 0.

Example 3.14. Let F be the product of a web Γ with the circle S
1 and no

decoration. Colorings of Γ and F are in obvious one-to-one correspondence.
Let c be a coloring of F . For any i, j ∈ P, i < j, the surface Fij is a torus, so
that:

τ (F, c) = 1.

and since we work in characteristic 2, we get

τ (F, c) = t4(Γ) =

{

1 if Γ = ∅1,

0 otherwise.

The following relation, whose proof is by inspection, implies that Kempe-
specifications of 26-singular vertices can be described via foams without such
specifications.

Lemma 3.15. The following relations hold1:

τ

⎛

⎜

⎜

⎜

¿

�

À

⎟

⎟

⎟

⎠

= τ

⎛

⎜

⎜

⎜

¿

À

⎟

⎟

⎟

⎠

, (19)

1Recall that defects on foams are depicted by orange lines.



   62 Page 16 of 33 M. Khovanov et al. MJOM

τ

⎛

⎜

⎜

⎜

¿

�

À

⎟

⎟

⎟

⎠

= τ

⎛

⎜

⎜

⎜

¿

À

⎟

⎟

⎟

⎠

. (20)

3.2. Decomposition Relations

In this section skein relations on foams are determined. They lift t4 web eval-
uation relations of Proposition 2.3 (save the relation (13)) to isomorphisms
of state spaces, as will be shown in Theorem 4.5.

Lemma 3.16. The following relations hold:

τ

⎛

⎜

⎜

⎜

¿

À

⎟

⎟

⎟

⎠

=
∑

a+b+d=3

Ed · τ

⎛

⎜

⎜

⎜

¿ a•

b•

À

⎟

⎟

⎟

⎠

=

3
∑

a=0

⎛

⎜

⎜

⎜

¿

∑

b+d=3−a

Ed · τ

⎛

⎜

⎜

⎜

¿ a•

b•

À

⎟

⎟

⎟

⎠

À

⎟

⎟

⎟

⎠

(21)

τ

⎛

⎜

⎜

⎜

¿

À

⎟

⎟

⎟

⎠

=
∑

α∈YD(2,2) τ

⎛

⎜

⎜

⎜

¿ •α

•α
�

À

⎟

⎟

⎟

⎠

(22)

In the second relation α �→ α� is the involution on the set YD(2, 2) of six
Young diagrams with at most two rows and at most two columns determined
by:

∅� = � = � = .

The six terms on the RHS (right-hand side) of Eq. (22) are mutually-orthogonal
idempotents eα. In particular, evaluating a thick sphere that appears in the
composition eαeβ yields δα,β. The four terms on the RHS of (21) are mutually-
orthogonal idempotents e(a), 0 ≤ a ≤ 3, and the corresponding sums of thin
sphere evaluations in e(a)e(b) yields δa,b.

The proof of these statements (and of the other lemmas of this sec-
tion) relies on a case by case inspection of the possible colorings of the foams
involved and some sometimes cumbersome but simple manipulation of sym-
metric polynomials. They are very similar to proofs of analogous relations in
[29] or [22]. We include such a proof for relation (23).
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Lemma 3.17. The following relations hold (compare to Proposition 2.3 (4)
and (5a)):

τ

⎛

⎜

⎜

⎜

⎜

¿

À

⎟

⎟

⎟

⎟

⎠

= τ

⎛

⎜

⎜

⎜

⎜

¿

•

À

⎟

⎟

⎟

⎟

⎠

+ τ

⎛

⎜

⎜

⎜

⎜

¿

•

À

⎟

⎟

⎟

⎟

⎠

(23)

τ

⎛

⎜

⎜

⎜

⎜

¿

À

⎟

⎟

⎟

⎟

⎠

= τ

⎛

⎜

⎜

⎜

⎜

¿

•

À

⎟

⎟

⎟

⎟

⎠

+ τ

⎛

⎜

⎜

⎜

⎜

¿

•

À

⎟

⎟

⎟

⎟

⎠

(24)

τ

⎛

⎜

⎜

⎜

⎜

¿

À

⎟

⎟

⎟

⎟

⎠

=
∑

a+b=2 τ

⎛

⎜

⎜

⎜

⎜

¿ •

ea

• b

À

⎟

⎟

⎟

⎟

⎠

(25)

In these relations, all dots are on facets of thickness 1 (horizontal facets in
the last equation are thin). The three terms on the RHS of (25) are mutually-
orthogonal idempotents ea, 0 ≤ a ≤ 2 (with b = 2 − a in the formula), and
the corresponding decorated bubbles with one thin and one thick facet floating
in a thin region in eaea′ reduce to δa,a′ times the thin region.

Proof of relation (23). Denote F, G1 and G2 the three foams involved in (23)
read from left to right. Observe that foams G1 and G2 are identical except
for their decoration distributions. Denote H the foam G1 (or G2) with the
dot removed.

Every coloring c of F induces a coloring of H. Colorings of H which do
not induce colorings of F are precisely those for which the digon on the top
and on the bottom are colored in a symmetric way. Meaning in particular
that for those colorings, the dot of G1 and the dot of G2 are on facets with
the same color. Since the dot distribution is the only difference between G1

and G2, for such a coloring c′, we have: τ (G1, c
′) = τ (G2, c

′), so that

τ (G1, c
′) + τ (G2, c

′) = 0. (26)

Suppose now that c is a coloring of F , denote c the induced coloring
for H. It induces the same coloring of the top and bottom digons which
completely characterizes the local behavior of c for F and H. To fix notation
say that this digon coloring is as follows:

j

{i, j}{i, j}

i
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The only bicolored surface which is substantially different in (F, c) and in
(H, c) is {i, j}-colored and χ(Hij(c)) = χ(Fij(c)) + 2, so that:

Q(G1, c) = Q(G2, c) = Q(H, c) = (Xi + Xj)Q(F, c).

The extra dots on G1 and G2 gives:

P (G1, c) = XiP (H, c) = XiP (F, c) .P (G2, c) = XjP (H, c) = XjP (F, c).

This implies:

τ (G1, c) + τ (G2, c) =
Xi

Xi + Xj
τ (F, c) +

Xj

Xi + Xj
τ (F, c) = τ (F, c) . (27)

Summing over all colorings using (26) and (27) one obtains:

τ (F ) = τ (G1) + τ (G2) .

�

Lemma 3.18. The following relations hold (compare to Proposition 2.3 (3)):

τ

( )

= τ

( )

(28)

τ

⎛

⎜

⎜

⎜

⎜

¿

À

⎟

⎟

⎟

⎟

⎠

= τ

⎛

⎜

⎜

⎜

⎜

¿

À

⎟

⎟

⎟

⎟

⎠

(29)

Lemma 3.19. The following relation holds (compare to Proposition 2.3 (6)):

τ

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

¿

À

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= τ

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

¿

À

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(30)

Lemma 3.20. The following relations hold (compare to Proposition 2.3 (7)–
(8)):

τ

⎛

⎜

⎜

⎜

⎜

¿

À

⎟

⎟

⎟

⎟

⎠

= τ

⎛

⎜

⎜

⎜

⎜

¿

À

⎟

⎟

⎟

⎟

⎠

(31)

τ

⎛

⎜

⎜

⎜

⎜

¿

À

⎟

⎟

⎟

⎟

⎠

= τ

⎛

⎜

⎜

⎜

⎜

¿

À

⎟

⎟

⎟

⎟

⎠

(32)
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τ

⎛

⎜

⎜

⎜

⎜

¿

À

⎟

⎟

⎟

⎟

⎠

= τ

⎛

⎜

⎜

⎜

⎜

¿

�

�

À

⎟

⎟

⎟

⎟

⎠

+ τ

⎛

⎜

⎜

⎜

⎜

¿

�

�

À

⎟

⎟

⎟

⎟

⎠

(33)

τ

⎛

⎜

⎜

⎜

⎜

¿

À

⎟

⎟

⎟

⎟

⎠

= τ

⎛

⎜

⎜

⎜

⎜

¿

•

À

⎟

⎟

⎟

⎟

⎠

+ τ

⎛

⎜

⎜

⎜

⎜

¿

•

À

⎟

⎟

⎟

⎟

⎠

(34)

Lemma 3.21. The following relations hold (compare to Proposition 2.3 (9)–
(12)):

τ

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

¿

À

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= τ

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

¿

À

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ τ

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

¿

À

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(35)

τ

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

¿

À

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= τ

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

¿

À

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ τ

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

¿

À

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(36)

τ

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

¿

À

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= τ

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

¿

À

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ τ

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

¿

À

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(37)

τ

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

¿

À

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= τ

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

¿

À

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ τ

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

¿

•

e1

À

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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+τ

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

¿

•

e1
À

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(38)

Remark 3.22. Relations (28)–(32) have the form idΓ = ι ◦ p, where Γ is the
web at the top and bottom of the foams and the RHS of the relation factors
into foams ι and p between webs Γ and Γ′, so that the RHS foam can be

written as the composition Γ
p

−→ Γ′ ι
−→ Γ. Web Γ′ is the middle cross-

section of the foam on the right of the equation. Furthermore,

p ◦ ι = idΓ′ ,

which in each case can be checked by a direct computation. The foam p ◦ ι
is given by stacking the bottom half of the RHS foam above the top half of
the RHS foam in each of these equations. For relations (29) and (30) there
exists a homeomorphism of webs Γ ∼= Γ′ that extends to a homeomorphism of
foams ι and p allowing to derive the relation p ◦ ι = idΓ′ from ι ◦ p = idΓ. For
Eq. (29) this homeomorphism reverses the orientation of R

2 and R
2 × [0, 1]

(foam evaluation is invariant under orientation reversal in R
2 × [0, 1]).

Likewise, relations (23), (24) in Lemma 3.17 and relations (33), (34) in

Lemma 3.20 have the form idΓ = ι1 ◦p1 + ι2 ◦p2, where Γ
pi

−→ Γ′ ιi−→ Γ is the
factorization of the i-th foam on the RHS of the relation, i = 1, 2. Relations

pj ◦ ιi = δi,j idΓ′ , i, j ∈ {1, 2}

hold (direct computation).
Relations (35)–(37) in Lemma 3.21 have the form

idΓ = ι1 ◦ p1 + ι2 ◦ p2,

where Γ
pi

−→ Γi
ιi−→ Γ is the factorization of the i-th foam on the RHS of the

relation, i = 1, 2. Relations

pj ◦ ιi = δi,j idΓi
, i, j ∈ {1, 2}.

hold (direct computation). Relation (38) in Lemma 3.21 has a similar form,

idΓ = ι1 ◦ p1 + ι2 ◦ p2 + ι3 ◦ p3,

and, additionally, relations pj ◦ ιi = 0, j �= i, pi ◦ ιi = idΓi
hold.

4. State Spaces

Define the degree of a foam U : Γ0 → Γ1 by the same formula as in Def-
inition 3.8. If a foam F with boundary and no dots admits a coloring c,
formula (18) holds for it as well. Presence of dots increases the degree of the
foam by the sum of degrees of the dots.

Proposition 4.1. For composable foams U and V ,

deg(UV ) = deg(U) + deg(V ).
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Proof. The proof is analogous to that of [22, Proposition 3.1]. �

State space of a foam. Following [22], we define the state space of a web,
see also [5,14,29] for related constructions and [17] for a discussion.

Definition 4.2. Given a web Γ, its state space τ (Γ) is a Z-graded R-module
generated by symbols τ (U), for all foams U from the empty web ∅1 to Γ. A
relation Σiaiτ (Ui) = 0 for ai ∈ R and Ui ∈ HomFoam(∅1,Γ) holds in τ (Γ) if
and only if Σiaiτ (V Ui) = 0 for any foam V ∈ HomFoam(Γ, ∅1).

Theorem 4.3. A foam F determines a graded R-module homomorphism

τ(F ) τ(∂0F ) −→ τ(∂1F )

of degree deg(F ). These maps fit together into a lax monoidal functor

τ Foam −→ R−gmod

from the category of foams to the category of graded R-modules and homoge-
neous module homomorphisms.

We say that a graded module homomorphism is homogeneous of degree
i if it changes the degree of all homogeneous elements by i.

Proposition 4.4. Graded R-module τ(Γ) is finitely-generated, for any unori-
ented SL(4) web Γ.

Proof. The proof follows by directly extending the proof of Proposition 3.9
in [22] (including Proposition 3.6 and Corollary 3.7 there) from three to four
colors. We omit the details. �

There is a canonical isomorphism τ (∅1) ∼= R∅2 of R-bimodules. Here ∅1

is the empty web in R
2 and ∅2 is the empty foam in R

2 × [0, 1], thought of
as a degree 0 generator of the rank one free R-module τ(∅1).

The lemmas and remarks of Sect. 3.2 translate into:

Theorem 4.5. Relations in Proposition 2.3 can be lifted to the isomorphisms
below.

τ
( )

∼= [4], τ
( )

∼=
[3][4]

[2]
, (39)

τ
( )

= 0, τ
( )

= 0, (40)

τ
( )

∼= [2] τ ( ) , τ
( )

∼= [2] τ
( )

, (41)

τ
( )

∼= [3] τ ( ) , τ
( )

= 0, (42)

τ ( ) ∼= τ ( ) , τ

( )

∼= τ

( )

, (43)
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τ

( )

∼= τ

( )

(44)

τ

( )

∼= τ

( )

, τ

( )

∼= 2 τ

( )

, (45)

τ

( )

∼= τ

( )

, τ

( )

∼= [2] τ

( )

, (46)

τ

( )

∼= τ

( )

⊕ τ

( )

, (47)

τ

( )

∼= τ

( )

⊕ τ

( )

, (48)

τ

( )

∼= τ

( )

⊕ [2] τ

( )

, (49)

τ

( )

∼= τ

( )

⊕ τ

( )

, (50)

The first term on the RHS of (48) can be further simplified via (47).
Note that the last relation (13) in Proposition 2.3 is excluded from the above
proposition—the authors did not find the corresponding direct sum decom-
position for state spaces. Quantum integer

[n] :=
qn − q−n

q − q−1
= qn−1 + qn−3 + · · · + q1−n.

Powers of q correspond to grading shifts, with the notation

f(q)V = ⊕i∈ZV ai{i}, f(q) =
∑

i

aiq
i, ai ∈ N,

for the sum of copies of a Z-graded module V with multiplicities given by
coefficients of the polynomial f(q) ∈ N[q, q−1].

Relations (39) say that the state space of a web Γ with a thin, respec-
tively thick, innermost circle is isomorphic to four, respectively six copies
of the state space of that web without the circle, placed in degrees [4] =
q3 + q + q−1 + q−3 and [3][4]/[2] = (q2 + 1 + q−2)(q2 + q−2).

Remark 4.6. State spaces of thin and thick circles τ( ) and τ( ) are com-
mutative Frobenius R-algebras which are isomorphic to U(4)-equivariant co-
homology algebras, over F2, of the complex projective space CP

3 and the com-
plex Grassmannian Gr(2, 2) of two-dimensional subspaces in C

4. The ground
ring R is isomorphic to U(4)-equivariant cohomology of a point p:

R ∼= H∗
U(4)(p, F2), τ( ) ∼= H∗

U(4)(CP
3, F2), τ( ) ∼= H∗

U(4)(Gr(2, 2), F2).

Frobenius algebra structure comes from the functor τ applied to unknotted
surface cobordisms in R

2 × [0, 1] between unions of innermost circles.
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Furthermore, equivariant cohomology of partial and full flag varieties

Fl12 = {L1 ⊂ L2 ⊂ C
4|dim Li = i}, Fl123 = {L1 ⊂ L2 ⊂ L3 ⊂ C

4|dim Li = i}

can be identified with state spaces of the 112 theta-web and the state

space of the web .

τ
( )

∼= H∗
U(4)(Fl12, F2), τ

( )

∼= H∗
U(4)(Fl123, F2).

Introduce a rather naive complexity function on webs by assigning to a
web Γ the number ne(Γ) of edges of Γ. Circles count as edges. The LHS to
RHS transformations in Theorem 4.5 do not increase this complexity function
and strictly reduce it in all equations except (44), the second equation in (43),
and using (47) to further reduce (48).

Definition 4.7. Let Webs be the set of webs up to planar isotopy. We define
reducible finite subsets S ⊂ Webs inductively as follows:

• The empty subset is reducible.
• The subset {∅1} which consists of the empty web is reducible.
• Any non-colorable web (t4 = 0) is reducible.
• If S is reducible and T ⊆ S, T is reducible.
• If S and T are reducible then S ∪ T is reducible.
• Given a finite subset S ⊂ Webs and a graph Γ ⊂ S, suppose a portion

of Γ is as shown on the LHS of one of the equations in Theorem 4.5. Let
s(Γ) be the subset of graphs on the RHS of the corresponding formula.
If RHS is 0, set s(Γ) to be the empty subset. If (S \ {Γ}) ∪ s(Γ) is
reducible, then S is reducible.

We say that Γ is reducible if the set {Γ} is reducible.

The idea for this definition is to keep reducing a web by going from a
web in the LHS of one of the relations in Theorem 4.5 to the set of webs on
the RHS of these relations until each web is reduced to either the empty web
or some webs having no colorings for obvious reasons (see for example (40))
and can be removed.

Suppose that τ(Γ) is a free graded R-module. Define

tq(Γ) = grank(τ(Γ)) ∈ N[q, q−1].

to be the graded rank of τ(Γ).

Proposition 4.8. Suppose the web Γ is reducible. Then the state space τ (Γ)
is a free graded R-module. Its graded rank tq(Γ) can be computed inductively
via Theorem 4.5 by replacing direct sums with sums. Thus, isomorphisms of
state spaces in that proposition descend to skein relations on tq.

Example 4.9.

tq

( )

= tq

( )

+ [2]tq

( )

= [3][4]
(

[3] + [2]2
)
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For unoriented reducible SL(3) webs the corresponding quantum invari-
ant was considered by Mrudul [25] who, in particular, gave high lower bounds
for the ranks of Z[q, q−1]-modules of such webs with n ≤ 8 boundary points.
The relations on webs with boundary appear via the bilinear pairing on these
modules given by computing the quantum invariants on closed webs glued
from a pair of diagrams with the same boundary.

Remark 4.10. It is straightforward to extend the invariant tq(Γ) to all webs
Γ. To do so, take the finitely-generated graded R-module τ(Γ) and choose a
finite length resolution τ•(Γ) of it by finitely-generated graded R-modules.
This is possible since graded ring R has finite homological dimension (equal
to 4). Define tq(Γ) as the graded Euler characteristic of that resolution:

tq(Γ) =

n
∑

i=0

(−1)igrank(τ−i(Γ)) ∈ Z[q, q−1],

where the resolution lies in degrees −n,−n+1, . . . , 0. The main problem with
this definition and, more generally, with understanding τ(Γ) is the absence
of an algorithm or results to determine τ (Γ) for non-reducible webs. In fact,
we can not identify the R-module τ (Γ) even for a single non-reducible web
Γ. A related question is whether τ (Γ) is a free graded R-module for any web
Γ.

Relatedly, consider the disjoint union Γ1 � Γ2 of two webs. There is a
natural homomorphism of graded R-modules

τ(Γ1) ⊗R τ(Γ2) −→ τ(Γ1 � Γ2)

which is an isomorphism if either Γ1 or Γ2 is reducible. We don’t know
whether this map is an isomorphism for general Γ1,Γ2. Specializing Γ2 = Γ!

1

to the reflection of Γ in the plane, one can ask whether the Γ1-tube foam (bent
identity foam on Γ1) from ∅1 to Γ1�Γ!

1 is in the image of the homomorphism

τ(Γ1) ⊗R τ(Γ!
1) −→ τ(Γ1 � Γ!

1).

An example of a non-reducible web is shown in Fig. 7. This web ΓTST is
the graph of a solid called truncated square trapezohedron. It has 16 vertices
of type 112, two squared regions and 8 five-sided regions. ΓTST admits no
4-colorings with exactly four pigments. However, it can be colored with three
and two pigments, as described in the second row of Fig. 7. Observe that in
the SW corner of the figure each of the three pigments constitutes a single
cycle, while in the SE corner one of the pigments constitutes two cycles.

Any coloring c of ΓTST gives rise to three cycles in the graph and ex-
actly one of them is a Hamiltonian cycle in ΓTST . In Fig. 7 examples, it’s
the i-cycle, shown in blue. A Kempe move from c to c′ does not change
this Hamiltonian cycle. One can check that, in this way, Kempe-equivalence
classes of ΓTST -colorings are in a bijection with Hamiltonian paths in this
graph, of which there are four. Each of these classes contains 36 colorings,
including 24 tricolorings and 12 bicolorings, for the total of 144 colorings, so
that t4(ΓTST ) = 144. The symmetric group S4 acts transitively on each of
these sets of 24 and 12 colorings, respectively.
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Figure 7. Top left: the non-reducible web ΓTST . Top right:
a 3-coloring. Bottom left: i, j and k cycles of the coloring
shown in yellow, blue and green, respectively. Bottom right:
relabeling k to j (green to blue) results in a 2-coloring. Here
{i, j, k} ∈ P and i �= j, k. Any 4-coloring of ΓTST is ob-
tained from these two colorings via permutations of colors
and symmetries of the graph ΓTST in S

2

Web ΓTST is the non-reducible web with the smallest number of vertices
that we were able to construct.

Remark 4.11. We do not know the state space τ(ΓTST ). It is possible to add
new types of vertices to foams which are cones over ΓTST decorated by a
Kempe-equivalence class of ΓTST -colorings to define generalized SL(4) webs
and their evaluations, similar to the setup of [23]. In this enhanced setup,
the state space τ(ΓTST ) is isomorphic to the sum of four copies of the state
space of the web ,

τ (ΓTST ) ∼= 4 τ
( )

.

Colorings in a Kempe-equivalence class of ΓTST -colorings are in a bijection
with colorings of the web with a natural match on cycles in the two
colorings, leading to an isomorphism of state spaces.

5. Tutte Relations and Localization

5.1. Periodic Complexes

Unfortunately functor τ does not properly categorify the Tutte relations listed
in Proposition 2.4. Instead there are 4-periodic complexes which are, in gen-
eral, not exact lifting these relations. For instance, relation (14) has a cate-
gorical analog given by the following 4-periodic chain complex. Differentials
in that complex are homogeneous, of degrees 1, 3, 1, 1, respectively, clockwise
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starting from the top differential.

τ

( )

τ

( )

τ

( )

τ

( )

(51)

In this square the composition of two consecutive arrows is 0 since the
foams obtained by stacking two consecutive morphisms do not admit any
coloring. This periodic chain complex is in general not null-homotopic.

Relations (15) and (16) have the following counterparts:

τ

( )

τ

( )

τ

( )

τ

( )

and

τ

( )

τ

( )

τ

( )

τ

( )

5.2. Localization

Given a grading-preserving homomorphism ψ : R −→ S of commutative
rings, define a foam evaluation associated to it by

τψ(F ) = ψ(τ(F )) ∈ S.

Evaluation τψ gives rise to state spaces τψ(Γ) of webs and graded S-module
homomorphisms between state spaces τψ(F ) : ∂0F−→∂1F assigned to foams
F with boundary. These state spaces and homomorphisms between them
form a lax monoidal functor

τψ Foam −→ S−gmod.

The natural grading-preserving homomorphism

τ(Γ) ⊗R S −→ τψ(Γ)

of S-modules is an isomorphism if τ(Γ) is a free graded R-module. In partic-
ular, it is an isomorphism for all reducible webs.

Theorem 4.5 holds for functor τψ in place of τ .
Assume that the commutative ring S is zero in negative degrees and a

characteristic two field S0 ⊃ F2 in degree 0, so that S = S0 ⊕ S1 ⊕ S2 ⊕ . . .



MJOM A Topological Theory for Unoriented Page 27 of 33    62 

Then S is a graded local ring and any finitely-generated graded projective
module P over it has a well-defined graded rank rkq,S(P ) ∈ Z[q, q−1].

Proposition 5.1. If Γ is a reducible web,

rkq,S(τψΓ) = rkq(τ(Γ))

for any homomorphism ψ : R −→ S into a graded local ring as above.

Assume that some element x of S of positive degree d > 0 is invertible.
Then a free rank one S-module S is isomorphic to the shifted module S{d},
and one can at most hope to define q-degree as an element of the quotient
ring Z[q]/(qd − 1) of Z[q, q−1]. Note that, at least, for any commutative ring
S, any finitely-generated free module P over S has a well-defined rank given
by picking a maximal ideal m ⊂ S and defining rkS(P ) = dimS/m(P/mP ).
Furthermore, if S is a noetherian integral domain of finite homological di-
mension, this construction can be extended to a finitely-generated S-module
M by picking a finite length resolution P ∗(M) of M with finitely-generated
terms, tensoring all terms with the fraction field Q(S) and taking the Euler
characteristic of the resulting complex:

M � χ(P ∗(M) ⊗S Q(S)).

This allows to define the corresponding quantum invariant

χψ(Γ) = χ(P ∗(τψ(Γ)) ⊗S Q(S))

of webs Γ for ring homomorphisms ψ : R −→ S into noetherian integral
domains S of finite homological dimension, where S does not have to be
graded. If Γ is reducible, χψ(Γ) = t4(Γ) for any such ψ.

We now inspect how the theory behaves when inverting

δ =
∏

1≤i<j≤4

(Xi + Xj) = E3E2E1 + E2
3 + E4E

2
1 ∈ R,

where δ is the square root of the discriminant of the polynomial x4 +E1x
3 +

E2x
2 + E3x + E4 (in characteristic two square root of the discriminant is a

symmetric polynomial), and Ei is the i-th elementary symmetric function of
variables X1, X2, X3, X4.

Denote Rδ = R[δ−1] and consider the homomorphism ψδ : R −→ Rδ

as above (taking S = Rδ). The ring Rδ is a noetherian integral domain
of homological dimension three. As we shall see, over this ring we can lift
Tutte-like relations of Proposition 2.4 to periodic exact sequences. However,
Rδ has homogeneous invertible elements of degree 2 (for instance, elements
Xi + Xj), so that information about the grading on state spaces is lost upon
this localization.

Using δ−1 offers more flexibility and allows to define new decoration
called hollow dots which will be depicted by � on thin facets and by ◦ on
thick facets.

The hollow dot � is defined by:

� =
1

δ

(

(E3 + E2E1) + E2
1 • + E1 •2

)

.
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More concretely, a hollow dot � on a thin facet colored by i contributes
1

(Xi+Xj)(Xi+Xk)(Xi+X�)
to the evaluation formula.

The hollow dot ◦ is defined by:

◦ =
1

δ

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

¿ •e
2

2

•e1

+

•e2e1

•e
2

1

+

•e
2

1

•e2e1

+

•e2

•e
3

1

+

•e1

•e
2

1
e1

+

•e1e
2

2

À

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(52)

In other words, an hollow dot on a thick facet colored by {i, j}, con-
tributes, as a decoration, by 1

Xi+Xj
to the evaluation formula. It is also char-

acterized by:

◦ • = (53)

and can be written as the inverse of •.

With this new decoration at hand, one can show that the 4-periodic
complex (51) (with τδ instead of τ) is exact. Indeed we have the following
sections

τδ

( )

τδ

( )

τδ

( )

τδ

( )

◦

�

◦

◦
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which provide the following isomorphism:

τδ

( )

⊕ τδ

( )

∼= τδ

( )

⊕ τδ

( )

.

Similar foams with hollow dots, give analogous results for other periodic
complexes, so that we obtain:

Proposition 5.2. The functor τδ satisfies the following relations (compare to
Proposition 2.4):

τδ

( )

⊕ τδ

( )

∼= τδ

( )

⊕ τδ

( )

, (54)

τδ

( )

⊕ τδ

( )

∼= τδ

( )

⊕ τδ

( )

, (55)

τδ

( )

⊕ τδ

( )

∼= τδ

( )

⊕ τδ

( )

. (56)

Denote by tq=1(Γ) ∈ Z the specialization of the Laurent polynomial
tq(Γ) ∈ Z[q, q−1] to q = 1.

Theorem 5.3. For any web Γ the state space τδ(Γ) is a free Rδ-module of rank
t4(Γ) and

rkRδ
(τδ(Γ)) = t4(Γ) = tq=1(Γ).

Proof. The first equality follows from Propositions 2.5 and 5.2 and Theo-
rem 4.5. Proposition 5.2 and Theorem 4.5 imply that rkRδ

(τδ( · )) satisfies
the same relations as t4. Propositions 2.5 implies that these relations charac-
terize t4 completely. �

Suppose now that S ∼= k[E0], where deg(E0) = 2s, for some s ∈
{1, 2, 3, 4}. Pick a graded ring homomorphism ψ : R −→ k[E0] sending gen-
erators Ei, 1 ≤ i ≤ 4 to scaled powers of E0 or to 0, depending on the degree.
For instance, if s = 1, there are homomorphisms

ψ(E1) = μ1E0, ψ(E2) = μ2E
2
0 , ψ(E3) = μ3E

3
0 , ψ(E4) = μ4E4, μi ∈ k,

with not all μi = 0.

Proposition 5.4. If ψ(δ) �= 0 then for any web Γ the state space τψ(Γ) is a
free graded k[E0]-module of (ungraded) rank t4(Γ).

The proof is identical to that of Propositions 4.5 and 4.18 in [21]. �

We do not know how to compute the graded rank of τψ(Γ) when Γ is not
reducible and whether for some nonreducible graphs the rank may depend
on ψ.

If ψ(δ) = 0, at most we can derive is the inequality rk(τψ(Γ)) ≤ t4(Γ)
(compare with [6, Corollary 2.11]).

Likewise, assume given a homomorphism ψ : R −→ k into a field k and
ignore the grading of R.
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• If ψ(δ) �= 0 ∈ k then the theory can be fully understood, via Proposi-
tion 5.2, with k in place of Rδ. k-vector space τψ(Γ) is not graded and
dim(τψ(Γ)) = t4(Γ).

• If ψ(δ) = 0 ∈ k then τψ(Γ) is a finite-dimensional graded vector space
and dim(τψ(Γ)) ≤ t4(Γ), with equality at least for reducible Γ (c.f. [6,
Corollary 2.11]).
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