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One-dimensional topological theories with defects:

the linear case

Mee Seong Im and Mikhail Khovanov

Abstract. The paper studies the Karoubi envelope of a one-dimensional
topological theory with defects and inner endpoints, defined over a field. It
turns out that the Karoubi envelope is determined by a symmetric Frobenius
algebra K associated to the theory. The Karoubi envelope is then equivalent
to the quotient of the Frobenius–Brauer category of K modulo the ideal of
negligible morphisms. Symmetric Frobenius algebras, such as K, describe two-
dimensional TQFTs for the category of thin flat surfaces, and elements of the
algebra can be turned into defects on the side boundaries of these surfaces.
We also explain how to couple K to the universal construction restricted to
closed surfaces to define a topological theory of open-closed two-dimensional
cobordisms which is usually not an open-closed 2D TQFT.
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1. Introduction

Universal construction [BHMV95,Kho20a] starts with an evaluation func-
tion for closed n-manifolds to produce state space for closed (n − 1)-manifolds and
maps between these spaces associated to n-cobordisms. This results in a functor
from the category of n-dimensional cobordisms to the category of vector spaces (if
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the evaluation function takes values in a field) which usually fails to be a TQFT,
with the tensor product of state spaces for two (n − 1)-manifolds N1,N2 properly
embedded into the state space for their union:

(1) A(N1) ⊗A(N2) ⊂�→ A(N1 ⊔N2).
Universal construction for foams in R

3 in place of n-cobordisms is used as an inter-
mediate step in constructing link homology theories [Kho04,MV07,RW20], see
also a review in [KK20] and papers [Kho20b,Mei21] for other uses and references
for the universal construction.

The universal construction turns out to be interesting already in low dimen-
sions, including in dimensions two [Kho20b,KS21,KOK22,KQR21] and one
[Kho20a,IK22,IZ22,IKO23,GIK+23]. In the latter case, one needs to add zero-
dimensional defects (0-submanifolds) with labels in a set Σ. An oriented interval
with a collection of Σ-labelled defects encodes a word ω, that is, an element of the
free monoid Σ∗ on the set Σ. An oriented circle with labels in Σ encodes a word up
to cyclic equivalence. Given an evaluation of each word and a separate evaluation
of words up to cyclic equivalence, there is an associated rigid linear monoidal cat-
egory, defined in studied in [Kho20a]. It is straightforward to see [Kho20a] that
the hom spaces in the resulting categories are finite-dimensional if and only if the
evaluations are given by rational noncommutative power series [BR90,RRV99].

In the present paper we study this category for a rational evaluation α. The
Karoubi closure of the resulting category can be reduced to the Karoubi closure of a
category built from a symmetric Frobenius algebra K that can be extracted from α,
as explained in Section 2.4. Sections 2.1-2.3 are devoted to the setup, basic theory
and various examples. In Section 3 we review thin flat surface 2D TQFTs associated
to symmetric Frobenius algebras and explain how to enhance these TQFTs by 0-
dimensional defects floating along the boundary that carry elements of the algebra.
Throughout the paper we run comparisons between one-dimensional theories with
defects and two-dimensional theories without defects and discuss nonsemisimple
versus semisimple TQFTs in two dimensions.

The Boolean analogues of these categories and their relation to automata and
regular languages are investigated in [IK22], where the absence of linear structure
creates additional complexities.

2. One-dimensional topological theories with defects over a field

We fix a ground field k.

2.1. A one-dimensional defect TQFT from a noncommutative power

series. Start with a finite set (or alphabet) Σ. Let Σ∗ be the set of finite words in
letters of Σ (elements of Σ), and Σ∗○ be the set of circular words, i.e., elements of
Σ∗ up to the equivalence relation ω1ω2 ∼ ω2ω1. The empty word ∅ is included in
both Σ∗ and Σ∗○ . Suppose we are given an evaluation

(2) α = (αI, α○),
where

(3) αI ∶ Σ∗ �→ k, α○ ∶ Σ∗○ �→ k
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Figure 2.1.1. A morphism from −−+ to +−−+ in Cα represented
by a diagram with 3 inner endpoints. This diagram has 7 outer
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Figure 2.1.2. An example of computing the composition of mor-
phisms in Cα.

are two functions on words and circular words in Σ, respectively, with values in
a field k. To α, following [Kho20a] (also see earlier work [KS21,KOK22] for
a similar framework), there is assigned a symmetric k-linear monoidal categoryCα. Its objects are finite sign sequences ε, thought of as oriented 0-manifolds, and
morphisms are k-linear combinations of oriented 1-cobordisms with 0-dimensional
defects, the latter decorated by elements of Σ. See 2.1.1. One-cobordisms can
have “inner” boundary points, in addition to “outer” boundary points that define
the objects for the morphism. Forming the composition of two such cobordisms
may result in components without any “outer” boundary points, called floating

intervals and circles. See 2.1.2. These floating components are evaluated via the
interval and circle evaluation functions αI and α○, respectively, and the composition
is then reduced to a diagram without floating connected components.

Two linear combinations of such morphisms between sequences ε and ε′ are
equal if any closures of these two linear combinations evaluate to the same element
of k via α, see [KS21,Kho20a].
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Figure 2.1.3. Top row: diagrams of ∣∅⟩, ∣ω⟩ ∈ A(+) and the action
of a on ∣ω⟩. Bottom row: similar diagrams for A(−).

The state space Aα(ε) ∶= HomCα(∅0, ε) of a sequence ε is defined as the space
of homs from the empty sign sequence ∅0 to ε in Cα (we use different notations∅ ∈ kΣ∗ for the empty word and ∅0 for the empty oriented 0-manifold and the
corresponding object of Cα).

We say that α is rational if the following equivalent conditions hold:

● State spaces Aα(ε) are finite-dimensional for all ε.● Hom spaces in Cα are finite-dimensional.● Spaces A(+) and A(+−) are finite-dimensional.● A(+−) is finite-dimensional.

Each of these conditions is equivalent to both of the noncommutative power series
αI, α○ in (2), (3) being rational in the sense of [BR90] (having a finite-dimensional
state space, equivalently, a finite-dimensional syntactic algebra, see also [Kho20a]).

Category Cα is k-linear and preadditive. For rational α, it is convenient to
consider the Karoubi closure Kar(Cα) of Cα (also denoted DCα in [KS21,Kho20a]
in this and related cases) given by forming finite direct sums of objects and then
adding objects for idempotent endomorphisms of these direct sums. The category
Kar(Cα) is k-linear, additive, idempotent-closed, with finite-dimensional hom spaces
over k. There is a fully-faithful functor

(4) Cα �→ Kar(Cα).
Assume from now on that evaluation α is rational. k-vector space A(+) is a

left kΣ∗-module, that is, a module over the ring of noncommutative polynomials in
letters in Σ, equivalently the monoid algebra of the free monoid Σ∗. Module A(+)
has a distinguished element ∣∅⟩ corresponding to the diagram with an empty word,
and action of ω ∈ Σ∗ that takes it to ∣ω⟩. Element ∣∅⟩ is a cyclic vector in A(+), so
A(+) = kΣ∗∣∅⟩; see Figure 2.1.3, top row.

A(−) is the dual vector space of A(+), also carrying a distinguished vector ⟨∅∣,
with a right action of kΣ∗; see Figure 2.1.3, bottom row.

The space A(+) comes with the trace map

(5) tr ∶ A(+) �→ k, tr(∣ω⟩) = αI(ω).
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Figure 2.1.4. Figure of the trace map on A(+) and of the pairing (6).

Diagrammatically, we evaluate an oriented interval with the word ω written on it
using αI. The trace map is nondegenerate: if x ∈ A(+) with x /= 0, then there exists
ω ∈ Σ∗ such that tr(ωx) /= 0.

The trace map is part of the perfect pairing

(6) ( , ) ∶ A(−) ⊗A(+) �→ k, where ⟨ω1∣ ⊗ ∣ω2⟩ ↦ αI(ω1ω2),
given by concatenating words ω1, ω2 written on “half-intervals” into the word ω1ω2

on an interval and evaluating it, see Figure 2.1.4.
The pairing makes the left action of kΣ∗ on A(+) and the right action of kΣ∗

on A(−) adjoint:

(xω, y) = (x,ωy) = αI(xωy), x ∈ A(−), y ∈ A(+), ω ∈ Σ∗.
Action of Σ∗ on A(+) induces a k-algebra homomorphism

(7) kΣ∗
φα�→ Endk(A(+))

of the algebra of noncommutative polynomials into a finite-dimensional matrix al-
gebra. Denote by

(8) B0 ∶= im(φα)
the image of kΣ∗ in Endk(A(+)). It is a unital subalgebra of the matrix algebra.
The algebra B0 is the entire Endk(A(+)) if and only if the representation A(+)
of kΣ∗ is absolutely irreducible. Note that A(+),A(−),B0 and the actions above
depend only on αI, not on α○.

Vice versa, suppose we are given a finite-dimensional representation V of kΣ∗

with a cyclic vector v0 and a nondegenerate trace tr ∶ V �→ k. Here v0 corresponds
to the undecorated upward-oriented half-interval (half-interval with the empty word∅ on it). The trace is nondegenerate in the sense that for any v ∈ V, v /= 0 there
exists a word ω such that tr(ωv) /= 0.

To this data one assigns rational noncommutative series via the evaluation
αI(ω) = tr(ωv0) for ω ∈ Σ∗ so that A(+) = V = kΣ∗v0 and A(−) = V ∗, where v0

is a cyclic vector. This gives a bijection between isomorphism classes of rational
evaluations (rational noncommutative power series in Σ) and nondegenerate triples(V, v0, tr) with an action of Σ∗. The action of infinite-dimensional algebra kΣ∗ on
V factors through a faithful action of the finite-dimensional algebra B0 ⊂ Endk(V ).

Also, given a finite-dimensional algebra B0 with a set of generators Σ, its
faithful action on a finite-dimensional vector space V with a cyclic vector v0 and a
nondegenerate trace form on V , this recovers the noncommutative series αI via the
above recipe, with A(+) ≅ V .
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Figure 2.1.5. Left: basis vectors vi and vi. Middle and right:
writing ⟨ω∣ ∈ A(−) and ∣ω⟩ ∈ A(+) in these bases. In the special case
ω = ∅, the half-intervals are undecorated and the corresponding
equations are shown in (9).

There is a minimalist way to extend the above structure of A(+) with an action
of Σ∗, a cyclic vector and a trace to a symmetric monoidal category C′αI

, which
turns out to be a TQFT with defects. In this construction evaluation of decorated
circles is derived from that for decorated intervals. To define C′αI

, first enhance

the graphical calculus for decorated half-intervals by picking a basis {v1, . . . , vk}
of A(+) and the dual basis {v1, . . . , vk} of A(−), with k = dimA(−) = dimA(+).
Denote vectors vi, vi by placing the label i at the end of the suitably oriented half-
interval, see Figure 2.1.5, left. A half-interval decorated by ω ∈ Σ∗ can be written
as a linear combination of the basis vectors, by writing ⟨ω∣ and ∣ω⟩ in these bases,
see Figure 2.1.5, middle and right. In the special case of undecorated half-intervals,
ω = ∅, and
(9) ⟨∅∣ = k∑

i=1

λ∅i vi, ∣∅⟩ = k∑
i=1

λ∅i v
i, λ∅i ∈ k.

There is then the surgery formula (the dual basis relation), shown in Fig-
ure 2.1.6 left, for cutting any half-interval in the middle, where any floating intervals
that appear are evaluated via αI. This formula also tells us that, for consistency,
a circle carrying word ω should be evaluated to the trace of ω acting on A(+)
(equivalently, on A(−)),
(10) α○(ω) ∶= trA(+)(ω) = trA(−)(ω),
see Figure 2.1.7. Choose an interval on the circle, replace it by the sum of i, i-
colored half-intervals, 1 ≤ i ≤ k, and evaluate via αI. We denote the circular series
associated to a rational series αI in this way by αtr

I
, so that

(11) αtr

I
(ω) = α○(ω) = trA(+)(ω).

Necessarily, αtr

I
is a rational circular series in the same set Σ of variables as αI.

The coefficient of of the empty word ∅ in this series equals dimA(+).
To a rational series αI we assign a symmetric monoidal category C′αI

whose
objects are finite sign sequences ε. Morphisms from ε to ε′ are k-linear combinations
of diagrams of decorated half-intervals and outer arcs, see Figure 2.1.8, left diagram.
An arc is outer if it has both endpoints on the boundary of the diagram (i.e., among
the signed points of ε and ε′). A half-interval has one floating (inner) endpoint and
one endpoint on the boundary of the diagram (outer endpoint). Each floating
endpoint is either decorated by i ∈ {1, . . . , k} or undecorated. Some evaluation
rules for floating cobordisms are given in Figures 2.1.4, 2.1.6, 2.1.7.
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Figure 2.1.6. Left: surgery formula id = k∑
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vi⊗vi in the symmet-

ric monoidal category C′αI
. Center: floating i, j-interval evaluates

to (vi, vj) = δi,j . Right: a more general floating i, j-interval with
the ω dot and its evaluation.
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Figure 2.1.7. An ω-decorated circle evaluates to the trace of op-
erator ω on A(+) and on A(−).

− + +
ω1

+ − + + + −
ω2

j
i

ω3

ω4

+
a

i

avi ∈ A(+)

= k∑
j=1

j

j

+

a

i

= k∑
j=1

vj(avi)
+

j

= k∑
j=1

vi(vja)
+

j

= k∑
j=1

vi(vja)vj

Figure 2.1.8. Left: A diagram for a morphism in CαI
. Right:

simplifying an a-decorated half-interval, a ∈ Σ (this works, more
generally, for any word ω in place of a letter a). Here vj(avi) =(vj , avi) = (vja, vi) = vi(vja).

To summarize these rules, we observe that in the category C′αI
arcs and half-

intervals can be decorated by words ω ∈ Σ∗. Half-intervals can be decorated by both
a label i at the floating (inner) endpoint and words ω. Floating intervals and circles
(these appear upon composition of morphisms) are evaluated using the following
rules (see rules in Figure 2.1.5 on the right, Figures 2.1.6 and 2.1.7):

● A floating interval with unlabelled endpoints and decorated by word ω

evaluates to αI(ω). Alternatively, an interval with one or two unlabelled
endpoints is evaluated by first converting unlabelled endpoints into a linear
combination of labelled endpoints, see equation (9), or, more generally via
Figure 2.1.5 by writing ⟨ω∣ as a linear combination of v1, . . . , vk and ∣ω⟩
as a linear combination of v1, . . . , vk.● An interval with labelled endpoints i, j and decorated by a word ω evalu-
ates to vi(vjω), see Figure 2.1.6.● A circle decorated by ω evaluates to the trace of ω on A(+) or A(−), see
Figure 2.1.7.
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Figure 2.1.9. Left: an undecorated circle evaluates to k =
dimA(+) in C′αI

. Right: a basis element of HomC′
αI

(− + −−,+ − +),
i1, . . . , j4 ∈ {1, . . . , k}.

With these evaluation rules at hand, we apply the universal construction to
build the category C′αI

. The evaluation rule for decorated circles makes decomposi-
tion of the identity in Figure 2.1.6 hold. Consequently, any outer arc reduces to a
linear combination of half-intervals, with endpoint decorated by i ∈ {1, . . . , k}. Half-
intervals with dots are further reduced to linear combinations of endpoint-decorated
dotless half-intervals.

Composing an undecorated outer arc with a possibly decorated half-interval
results in a half-interval with the same decoration. Composing two half-intervals
results in a floating interval, which is then evaluated via αI. An undecorated outer
arc can be written as a linear combination of pairs of half-intervals via Figure 2.1.6
relations. In particular, an undecorated circle evaluates to k = dimA(+), see Fig-
ure 2.1.9 left.

The result is a symmetric monoidal k-linear category C′αI
. It has easily de-

scribable hom spaces. A basis of Hom(ε, ε′) is given by drawing the unique dia-
gram of half-intervals ending at all signs of ε and ε′ and adding all possible labels
i ∈ {1, . . . , k} to each inner endpoint of the diagram, see an example in Figure 2.1.9
on the right. In particular,

(12) dimk(Hom(ε, ε′)) = k∣ε∣+∣ε
′∣,

where ∣ε∣ is the length of the sequence ε. This category is a one-dimensional TQFT
with defects, in the sense that the state space of the concatenation of sequences is
the tensor product of state spaces for individual sequences:

(13) A(εε′) ≅ A(ε) ⊗A(ε′), A(ε) ≅ A(ε1) ⊗A(ε2) ⊗ ⋅ ⋅ ⋅ ⊗A(εn),
where ε = ε1ε2⋯εn, εi ∈ {+,−}.

We emphasize that the category C′αI
depends only on the interval evaluation αI.

Evaluation of decorated circles is computed as the trace of the action of Σ∗ on the
state space A(+) associated to αI.

Denote by Kar(C′αI
) the Karoubi envelope of C′αI

given by allowing finite di-
rect sums of objects of C′αI

and then passing to the idempotent closure. Category
Kar(C′αI

) is an additive symmetric monoidal k-linear category.
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Figure 2.1.11. Equivalence of idempotents ei and ej and iso-
morphism of objects (+, ei), (+, ej), with morphisms β1, β2 written
next to top and bottom arrows, respectively.

Consider idempotents ei ∈ EndC′
αI

(+) given by a pair of i-labelled half-intervals,

i = 1, . . . , k, see Figure 2.1.10 on the left. These are mutually-orthogonal idempo-
tents giving a decomposition of the identity id+ endomorphism

(14) id+ = e1 + e2 + . . . + ek, eiej = δi,jei,

see Figure 2.1.10 on the right. There is a similar decomposition of the identity for
the dual object − via idempotents e′1, . . . , e

′
k, see Figure 2.1.10.

Note that the dual simple object (−, e′i), see Figure 2.1.10 in the middle, is iso-
morphic to (+, ei), via the pair of morphisms show in that figure on the right. Recall
that idempotent endomorphisms e, e′ are equivalent (and corresponding objects of
the Karoubi envelope are isomorphic) if there exist two-way composable morphisms
β1, β2 such that e = β2β1 and e′ = β1β2. For idempotents ei, e

′
i these two morphisms

are written next to the arrows between these idempotents in Figure 2.1.10 on the
right.

Furthermore, objects (+, ei) and (+, ej) are isomorphic, for i /= j, 1 ≤ i, j ≤ k,
via the morphisms shown in Figure 2.1.11.
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The endomorphism rings of objects (+, ei) and (−, e′i) are the ground field k,
and these 2k objects, over i = 1, . . . , k, are pairwise isomorphic. The generating
object + is the sum of k of them. This quickly leads to the following result that
Kar(C′αI

) generated by (+, ei), (−, e′i) over i = 1, . . . , k is equivalent to the tensor
category k−vect of finite-dimensional k-vector spaces.

Proposition 2.1. The Karoubi envelope of C′αI
is equivalent, as an additive

symmetric monoidal category, to the category of finite-dimensional k-vector spaces:

(15) Kar(C′αI
) ≅ k−vect.

Proof. The equivalence is given by the functor that takes each (+, ei) to a
one-dimensional vector space Vi, each (−, e′i) to its dual V ∗i and takes + to the
k-dimensional space V = V1 ⊕ . . .⊕ Vk. �

The proposition tells us that Kar(C′αI
) has a very simple structure. The com-

plexity of noncommutative rational power series αI is hidden in the action of Σ∗

on A(+) ≅ V . More generally, given a TQFT taking values in k-vector spaces, the
target category of that TQFT is k−vect or some variation of it, so a version of the
above proposition holds as well.

The interesting question here is to explicitly compute the circular evaluation
αtr

I
given a rational interval evaluation αI or, equivalently, rational noncommutative

power series αI. We obtain αtr

I
by considering A(+) and the action of kΣ∗ on it, so

that the coefficient at ω of the noncommutative circular series of αtr

I
is the trace of

ω on A(+), see (10), and the generating function of the circular evaluation is

(16) Ztr

αI
∶= ∑

ω∈Σ∗
trA(+)(ω)ω.

For more than one variable, ZαI
is a noncommutative power series in elements of Σ.

Circular evaluation αtr

I
gives a canonical extension of αI to a TQFT with defects.

This extension is unique, in appropriate sense. It is straightforward to write down
in the 1-variable case, see Section 2.2.

Given a k[Σ∗]-module M , finite-dimensional over k, its characteristic function
Ç(M), defined in [RRV99], is given by

(17) Ç(M) ∶= ∑
ω∈Σ∗

trM(ω)ω.
Expression (16) is the characteristic function of kΣ∗-module A(+).

2.2. One-variable case and comparison to two-dimensional theory.

Consider the above construction in the case of a single variable, Σ = {a}. Then
there is only one type of a dot, necessarily labelled a, and n dots on an interval
can be denoted by a single dot labelled n. The interval evaluation in encoded by a
one-variable power series

(18) ZI(T ) ∶= ∑
n≥0

αI,nT
n.

A well-known theorem, see [Kho20a, Proposition 2.1] and [Kho20b, Theorem
2.3], says that ZI(T ) is a rational series (A(+) is finite-dimensional) if and only if
it is a rational function,

(19) ZI(T ) = P (T )
Q(T ) ,
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−

+

−

Figure 2.2.1. Going from a 1D to a 2D topological theory. Signed
points become oriented circles and half-intervals turn into oriented
disks.

+ − +

+

Figure 2.2.2. Left: an arc is converted into an annulus. Due to
the opposite orientations at the arc’s ends, the standard embedding
of two oppositely oriented circles into R2 extends only to an immer-
sion, not an embedding, of an annulus into the lower half-space.
This is not an issue for us due to considering 2D cobordisms, not
embedded 2D cobordisms. Right: An arc with a dot is converted
to a torus with two punctures.

for some polynomials P (T ),Q(T ), with Q(0) /= 0.

We would like to explicitly compute αtr

I
in this case, given the generating func-

tion above (equivalently, given interval evaluation αI).
The state space A(+) can be identified with the state space A(1) in [Kho20b,

Section 2] of a circle in the 2D topological theory [Kho20b] associated to the same
generating function ZI(T ). In that 2D topological theory, closed connected oriented
surface of genus n evaluates to αI,n ∈ k, while in our 1D defect topological theory
an interval with n dots evaluates to αI,n, see the correspondence in Figure 2.2.3
right.

The reason is that there is a functor from the category of (oriented) dotted
one-cobordisms to the category of (oriented) two-cobordisms. This functor sends +
(and −) to an oriented circle. It sends a half-interval to a disk, a dotless arc to an
annulus, and an outer arc with a single dot to a two-holed torus, see Figures 2.2.1
and 2.2.2.

There is a bijection between homeomorphism classes of decorated connected
dotted 1-manifolds with boundary + and connected oriented surfaces with boundary
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+
n

⋮ n handles
n ⋯

n handles

Figure 2.2.3. Half-interval with n dots becomes a genus n surface
with one boundary circle. An n-dotted interval is transformed into
a closed genus n surface.

n ⇐⇒

n + 1 handles

Figure 2.2.4. A circle with n dots is mapped to a genus (n + 1) surface.

S
1, see Figure 2.2.3 left, where n-dotted half-interval corresponds to a genus n

surface with one boundary circle.

This leads to a natural isomorphism of state spaces

(20) A(+) ≅ A(S1)
of the 1D topological theory with defects with a rational generating function in (18)
for interval evaluation and the 2D topological theory with the same generating func-
tion. Notice also a canonical isomorphism A(+) ≅ A(−) sending upward-oriented
half-interval with n dots to the downward-oriented half-interval with n dots, n ≥ 0
(this isomorphism exists when ∣Σ∣ = 1 and otherwise requires αI to be invariant
under word reversal).

One can look to compare the state spaces for these two theories (in two dif-
ferent dimensions) beyond a single point and a circle. In the above thickening
construction, a circle with n dots corresponds to a genus n + 1 closed surface, see
Figure 2.2.4, so for the best match we pick the circular series in the 1D theory to
be

(21) Zα○(T ) = TZαI
(T ), α○,n+1 = αI,n, n ≥ 0.

Then there is a natural k-linear map

(22) A(+−) ψ+−�→ A(2)
from the state space of +− in the 1D theory to that of two circles in the 2D theory,
with the generating functions (18), (21) for the 1D theory and (18) for the 2D
theory, given by the above thickening of dotted 1D cobordisms to 2D cobordisms.
This map respects evaluations and is, in fact, an isomorphism, so that A(+−) ≅ A(2)
in the two theories.
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More generally, for any sign sequence ε there is natural map

(23) A(ε) ψε�→ A(∣ε∣)
extending to a monoidal functor È between corresponding categories for 1D and
2D evaluations. Map Èε is not surjective, for instance, for ∣ε∣ = 3 and the constant
evaluation function ZI(T ) = β ∈ k, β /= 0. Element of A(3) which is the 3-holed
sphere is not in the image of Èε, for any length 3 sign sequence ε. Also, È++ is not,
in general, surjective, with the annulus element of A(2) not in its image.

We now come back to the problem of computing αtr

I
given αI, for one-element

Σ = {a}. Let us first examine two special cases.

● The generating function ZI(T ) = ∑k
i=0 aiT

i is a polynomial of degree k.
Then dimA(+) = k+1 and the operator of multiplication by a is nilpotent.
Consequently, circular evaluation α○ is the constant function, taking value
0 on any nonzero power of a, with the generating function Z○(T ) = k + 1.● The generating function is a reduced fraction of the form

(24) ZI(T ) = f(T )
(λ − T )k , k ≥ 1, λ /= 0, deg(f(T )) < k.

Then A(+) is a cyclic k[a]-module isomorphic to k[a]/((λa− 1)k), where
we quotient by the reciprocal polynomial of (λ−a)k, see [Kho20a]. Note
that trace of am on this quotient space does not depend on f(T ) above,
subject to the conditions in (24). Substituting u = λa − 1, so that a =
1
λ
(u + 1), the trace of am on k[u]/(uk) is given by

(25) tr(am) = λ−mk.

A rational function, over an algebraically closed field k, has a unique partial
fraction decomposition

(26) ZI(T ) = P (T )
Q(T ) = r∑

i=1

fi(T )(λi − T )ki

+f0(T ), λi /= 0, deg(fi(T )) < ki, i = 1, . . . , r.

Then the trace circular series associated with this generating function is

Ztr

αI
(T ) = deg(f0) + 1 + ∑

m≥0

( r∑
i=1

kiλ
−m
i Tm)(27)

= deg(f0) + 1 + r∑
i=1

ki ∑
m≥0

(λ−1i T )m

= deg(f0) + 1 + r∑
i=1

ki

1 − λ−1i T

If ZI(T ) in (26) is a proper fraction, that is, f0(T ) = 0, we set deg(f0) + 1 = 0 in
(27). Note that the characteristic polynomial for the trace series is a divisor of the
characteristic polynomial for the original series.

If eigenvalues of a on A(+) are μ1, . . . , μn, listed with multiplicities, then

(28) Ztr

αI
(T ) = n∑

i=1

1

1 − μiT
,

which is [RRV99, Example 2.6].
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+ −

∣∅⟩ ⊗ ⟨∅∣

+ −
ω1 ω2

∣ω1⟩ ⊗ ⟨ω2∣

+ −

↷(∅) ∈ A(+−)
+ −

ω↷(ω) ∈ A(+−)
Figure 2.3.1. A spanning set for the module A(+−). First and
third figure (from the left) are a generator ∣∅⟩⊗⟨∅∣ of A(+)⊗A(−)
and the unit element 1 of A(+−), respectively.

xy =
x

○
y

=
x y

+ −
x ×

+

v

+
x

v

Figure 2.3.2. Top: multiplication in A(+−). Bottom: action of
A(+−) on A(+). Bottom: action of A(+−) on A(+).

It is an interesting problem to explicitly write down noncommutative trace
series Ztr

αI
(Σ) associated with an arbitrary rational noncommutative series ZαI

(Σ)
when the number of variables ∣Σ∣ is greater than one.

2.3. A topological theory when a circular series is added. To build
a more general monoidal category, we additionally pick a circular rational series
α○, see [Kho20a, IK22]. Here α = (αI, α○) is a pair: a rational noncommutative
series αI and a circular rational noncommutative series α○. We build categoryCα from it as in Section 2.1 by evaluating floating decorated intervals and circles
via αI and α○ correspondingly and applying the universal construction to derive
further relations on linear combinations of cobordisms with outer boundary, see
also [Kho20a,Kho20b,KS20]. As before, objects of Cα are finite sign sequences
ε.

In the category Cα, state spaces A(+),A(−) depend only on αI and they are
spanned by elements ∣ω⟩, ω ∈ Σ∗, respectively ⟨ω∣, ω ∈ Σ∗. State space A(+−) is
spanned by diagrams of two types:

(1) pairs of decorated half-intervals with opposite orientations,
(2) decorated outer arcs,

see Figure 2.3.1.
A(+−) is naturally a unital associative finite-dimensional algebra, with the unit

element given by an outer arc with the trivial decoration and with the multiplication
shown in Figure 2.3.2. Algebra A(+−) acts on A(+) on the left, see Figure 2.3.2.

Denote by I the subspace of A(+−) spanned by diagrams of type (1), see
Figure 2.3.1 second from left picture. This subspace is a two-sided ideal of A(+−)
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and a unital k-algebra with the unit element 1′ = ∑k
i=1 v

i ⊗ vi shown in Figure 2.1.6
on the right hand side of the equality. Note that the equality 1′ = 1 fails unless
α○ = αtr

I
. In general, the right hand side diagram is the unit element of A(+−) and

the left hand side is the idempotent 1′.
There is a natural algebra isomorphism

(29) I ≅ A(+) ⊗A(−) ≅ End(A(+))
coming from the faithful action of I on A(+), given by restricting the action from
that of A(+−).

The kernel K of the action of A(+−) on A(+) is a two-sided ideal of A(+−),
complementary to I, giving a direct product decomposition

(30) A(+−) ≅ I ×K.

In this decomposition both terms on the right are unital k-algebras, with the unit
element of K given by the image of 1 ∈ A(+−) under the projection, that is, by

(31) 1K ∶= 1 − 1′ = 1 − k∑
i=1

vi ⊗ vi.

In particular, 1K generates K as an A(+−)-bimodule.
Denote by U the subspace of A(+−) spanned by diagrams of type (2), that

is, by decorated arcs connecting + and − boundary points, see the picture on the
right in Figure 2.3.1. Recall that we denote by

↷(ω) the arc decorated by ω, see
Figure 2.3.1 on the right. U is a unital subalgebra of A(+−) and there are algebra
inclusions

(32) U ⊂ A(+−) ⊃ A(+) ⊗A(−) ≅ I.
Subalgebra U surjects onto K upon projection to the second term in the direct
product (30), and there is a short exact sequence

(33) 0�→ U ∩ I �→ U �→ K �→ 0.

The first term

(34) U ′ ∶= U ∩ I
is a two-sided ideal of U . Elements in U ′ are linear combinations of decorated arcs
(elements of U) that decompose in A(+−) into linear combinations of pairs of half-
intervals. These decompositions are unique as elements of A(+)⊗A(−) ≅ I ⊂ A(+−).

This data carries a triple of discrete invariants:

(35) (dimA(+),dim(U ′),dimK),
which are three non-negative integers. Note that dimA(−) = dimA(+), dimI =(dimA(−))2 and dim(U ′) ≤ (dimA(+))2.

Remark 2.2. The natural inclusion A(+) ⊗A(−) ⊂ A(+−) is an isomorphism
if and only if K = 0. This is exactly the case when there is a decomposition of the
identity, that is, when the undecorated arc 1 ∈ A(+−) lies in I ≅ A(+)⊗A(−), that
is, when 1 is decomposable (also when 1 = 1′, see earlier). In this case A(+−) ≅
A(+)⊗A(−) and, more generally, A(εε′) ≅ A(ε)⊗A(ε′) for any sign sequences ε, ε′.

Equivalently, the category Cα gives a TQFT rather than just a topological
theory (with defects) if and only if K = 0. This is possible for a unique rational
circular series α○ = αtr

I
associated with αI and with the identity decomposition

determined by αI, see formula (11). Circular evaluation α○ is then the trace of
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basis of
A(+−) ∶

+ − + − α( ) = 1

α( ) = λ

+

v

−

v∗

w =
+ −

−
+ −

∈ K
w

= λ − 1 w = 0 w2 = w

Figure 2.3.3. Example 2.3. Top, left to right: a basis of A(+−),
evaluation α, vectors v and v∗. Bottom, left to right: spanning
vector w of K and its properties.

+ −
U

I = A(+) ⊗A(−)

K

+ −

+ −− + −

Figure 2.3.4. Example 2.3. One-dimensional subspaces I, U andK in A(+−), with dimA(+−) = 2.

action of words on A(+), see formula (16), with α○(ω) = αtr

I
(ω) = trA(+)(ω) for

ω ∈ Σ∗. The resulting theory α = (αI, α○) is a TQFT.
The Boolean version of the identity decomposition (which requires A(+) to be

a distributive semilattice) is considered in [IK22].

Example 2.3. Consider the case when Σ is empty. Then there are only two
closed connected cobordisms, undecorated interval and circle. Suppose they evalu-
ate to 1 and λ /= 1, respectively, see Figure 2.3.3, top middle. Then A(+) and A(−)
are one-dimensional, with basis vectors v and v∗, respectively, see Figure 2.3.3, top
right. The space A(+−) is two-dimensional, with the basis shown in Figure 2.3.3,
top left. The subalgebra K is one-dimensional, K = kw, with a basis element w

shown in Figures 2.3.3, bottom left, and 2.3.4. The algebra U is one-dimensional,
with the unit element (an arc) as the basis element, see Figure 2.3.4.

In this example U ∩ I = U ∩ K = 0, and projection of U onto K along I is an
algebra isomorphism, See Figure 2.3.4. The triple of parameters is (1, 0, 1). There
is algebra decomposition A(+−) ≅ I ×K = k(1 −w) × kw.

When Σ = {a} is a one-element set, decoration of an interval or a circle is
determined by the number n ≥ 0 of dots on it. If an n-dotted interval evaluates to
αI,n and n-dotted circle evaluates to α○,n, the evaluation is encoded by a pair of
one-variable power series in a variable T :

(36) ZI(T ) ∶= ∑
n≥0

αI,nT
n, Z○(T ) ∶= ∑

n≥0

α○,nT
n,
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n

αI,n

n

α○,n

Figure 2.3.5. Connected closed cobordisms when Σ has cardinal-
ity one and their evaluations αI,n and α○,n.

+
= s

+ = 1

= λ

+ −
=

+ −
− t

+ −

n

=
n + 1

− t

n n + 1

= t

n

+ (t + 1)n
n

= tnλ + (t + 1)n − tn

Figure 2.3.6. Evaluation (38) and skein relations for that topo-
logical theory; s = t + 1.

see Figure 2.3.5. A simple modification of a result from [Kho20a] shows the
following.

Proposition 2.4. A one-variable evaluation α = (αI, α○) is rational (the hom
spaces in the category Cα are finite-dimensional) if and only if both ZI(T ) and
Z○(T ) are rational functions in T , i.e.,

(37) ZI(T ) = PI(T )
QI(T ) , Z○(T ) = P○(T )

Q○(T ) .
It is also easy to see that α is a rational evaluation if and only if the state

spaces A(+),A(+−) are finite-dimensional.

Example 2.5. Let us construct an example with parameters (1, 1, 1) as in (35).
Since dim(U) = 2, take Σ = {a}. Since dimA(+) = 1, the dot acts by some scalar s
on the endpoint, see Figure 2.3.6. Pick evaluation of undecorated interval and circle
to be 1 and λ /= 1, respectively, and introduce parameter t for the skein relation in
Figure 2.3.6 top right.

Attaching half-interval at the top right endpoint in each diagram of the relation
implies s = t + 1. Closing up the skein relation by an arc with n dots gives an
inductive formula for a circle with n dots. Generating functions (37) are

(38) ZI(T ) = 1

1 − (t + 1)T , Z○(T ) = λ − 1

1 − tT
+ 1

1 − (t + 1)T .

Inductive skein relation to reduce the number of dots is shown in Figure 2.3.7 on
the left. Figure 2.3.7 on the right shows the unit element and the basis vector of
algebra K ≅ k, equal to 1 − 1′.

We get a decomposition A(+−) ≅ I × K ≅ k × k of A(+−) into the product of
two copies of the ground field.
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+ −

2

= (2t + 1)
+ −

− (t2 + t)
+ −

K = k
⎛
¿

À
⎠

+ −
−

+ −

Figure 2.3.7. Evaluation (38). Left: we have the relation a2 =(2t+1)a−(t2+ t), which can also be written as (a− t)(a− t−1) = 0.
Right: K is a one-dimensional space.

a
a

= 0
A(+) basis

A(−) basis

+ +
− −

−
− μ

1

1

0

+ +

+ −
=

+ −
= λ

n ≥ 1

= 0

= μ = 1
n ≥ 2

= 0

Figure 2.3.8. Example 2.6. Evaluation for the generating func-
tions in (39), some relations and bases. Top row: a2 = 0, bases
of A(+) and A(−), the matrix of bilinear pairing. Second row:
simplification of a dotted arc and circle evaluations. Third row:
interval evaluations.

A(+−) basis:

+ − + − + − + − + −

I = A(+) ⊗A(−) basis:

+ − + − + − + −

Figure 2.3.9. Example 2.6. Bases of A(+−) and A(+)⊗A(−) for
the evaluation (39). In the decomposition A(+−) ≃ K × I factor K
is one-dimensional, spanned by the vector in Figure 2.3.12.

Example 2.6. Let us give an example with dimA(+) = 2, dim(U ′) = 1,
dim(K) = 1 and U ′ = I ∩ U , a nilpotent ideal in U . Let Σ = {a} and make a

nilpotent, a2 = 0 ∈ U , see Figure 2.3.8. Then {⟨∅∣, ⟨a∣} is a basis of A(+) and for
the bilinear pairing A(+) ×A(−) �→ k we can choose the one in Figure 2.3.8, with
a parameter μ ∈ k. Additionally, choose a relation reducing dot on an arc to a pair
of dotted half-intervals. Evaluation α is then shown in Figure 2.3.8 second and
bottom rows.
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+ − + − + − + − + − + −

+ −

+ −

+ −

+ −

+ −

+ −

μ2

μ

μ

1

μ

1

μ

1

0

0

1

0

μ

0

1

0

1

0

1

0

0

0

0

0

μ

1

1

0

λ

0

1

0

0

0

0

0

A(+−) acts on A(+) = Span{ }
+

,

+

+ −

acts
by

+ +

+

+

μ

0

1

0

+ −

acts
by

+ +

+

+

0

μ

0

1

+ −

acts
by

+ +

+

+

1

0

0

0

+ −

acts
by

+ +

+

+

0

1

0

0

+ −

acts
by

+ +

+

+

1

0

0

1

+ −

acts
by

+ +

+

+

0

1

0

0

Figure 2.3.10. Pairing on A(+−) for Example 2.6. Left: matrix
of bilinear pairing. Right: action of A(+−) on A(+).

0�→ U ∩ I �→ U �→ K �→ 0

0�→ (a) �→ k[a]/(a2) �→ k�→ 0

= ≃ =

U = ï ð
+ −

,

+ −

=
+ −

U ∩A(+) ⊗A(−) = ï ð
+ −

Figure 2.3.11. In this short exact sequence, dimU = 2, dimK = 1,
dimI = 4, and dimU∩I = 1. The ideal (a) is nilpotent since a2 = 0.
Algebra U is not semisimple and the sequence does not split.

K = Spank {
+ −

+ μ

+ −
−

+ −
−

+ −
}

Figure 2.3.12. The unit element of K, Example 2.6, with
dim(K) = 1.

Space A(+−) is spanned by the six vectors, with the pairing given in Fig-
ure 2.3.10 (rows 4 and 6 are equal and columns 4 and 6 are equal). Dropping the
last row and column gives us a basis of A(+−) of cardinality 5. See Figure 2.3.9.

The structure of the short exact sequence (33) for this example is shown in
Figure 2.3.11 left. The generating functions are

(39) ZI(T ) = μ + T, Z○(T ) = λ,

see also Figure 2.3.8.

2.4. Karoubi envelope decomposition for arbitrary rational α. We
now go back to the case of arbitrary Σ of finite cardinality and a rational pair
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+
x

ω

= 0

+

x

ω = 0

+

+

y =

+

+

y

Figure 2.4.1. Left: elements x ∈ K annihilate A(+) and A(−).
Right: two possible notations for y ∈ A(+−). Also see Figure 2.4.5.

+ −

x

tr
α

x

Figure 2.4.2. Trace map on K ⊂ A(+−).
α = (αI, α○). Recall the direct product decomposition of A(+−) into K and the
matrix ring I, and the formula for the unit element of K:

(40) A(+−) ≅ I ×K, I ≅ Endk(A(+)), 1K = 1 − k∑
i=1

vi ⊗ vi.

Elements of K placed on arcs act trivially on A(+) and A(−), see Figure 2.4.1. In
the earlier examples, elements of K are shown in Figures 2.3.3, 2.3.7, 2.3.12, where
in each case dimK = 1.

Denote by

(41) p ∶ U ⊂ A(+−) pK�→ K
the composition of the inclusion of algebra U into A(+−) and projection pK onto K
along I. The latter map can be written as either left or right multiplication by 1K,

(42) pK(y) = 1K y = y1K,

and, hiding the inclusion, we can write p(x) = 1K x = x1K for x ∈ U .
Furthermore, the surjection kΣ∗ �→ U can be composed with p above. Denote

the resulting algebra homomorphism by

(43) p∗ ∶ kΣ∗ �→ K, p∗(ω) = 1Kω = ω1K, ω ∈ Σ∗,
where, when multiplying by 1K, we view ω as an element of U or A(+−).

Introduce a a trace map tr on K by the circular closure and evaluation, see
Figure 2.4.2,

(44) tr ∶ K �→ k.

Note that, in general, both αI and α○ are used for the evaluation, since elements ofK are linear combinations of elements of U and A(+) ⊗A(−). The circular closure
on elements on U , respectively A(+) ⊗A(−), is computed via α○, respectively αI.
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The following relation between traces holds:

(45) tr(p∗(ω)) = α○(ω) − αtr

I
(ω), ω ∈ Σ∗,

where

(46) αtr

I
(ω) ∶= trA(+)(ω).

Recall that evaluation αtr

I
depends only on the interval evaluation αI and is given

by the trace of words on A(+).
Note that tr(ω) = α○(ω), since we view ω as an element of either kΣ∗ or U ,

via the projection onto the latter. In formula (45) projection p∗ appears, which
introduces an additional term.

Remark 2.7. If comparing to formula (11), recall that there circular series α○
was picked to depend on αI and give a 1D TQFT, while here we are considering
arbitrary rational αI, α○.

Extending linearly from ω to elements of kΣ∗, we get

(47) tr(p∗(z)) = α○(z) − αtr

I
(z), z ∈ kΣ∗,

Proposition 2.8. Trace tr in formula (44) turns K into a symmetric Frobenius
algebra with the unit element 1K.

A Frobenius algebra is called symmetric if tr(xy) = tr(yx) for any elements x, y.

Proof. The trace (44) on K is symmetric, since the circular closure is sym-
metric. The pairing A(+−)⊗A(+−) �→ k is non-degenerate, and elements of K are
orthogonal to those of I = A(+) ⊗A(−) in this pairing. Consequently and in view
of the direct product (hence direct sum) decomposition (40), any nonzero element
of K can be paired to some element of K to get a nontrivial evaluation, implying
that the trace is non-degenerate. �

Remark 2.9. Vice versa, any symmetric Frobenius algebra (B, trB) can be
obtained from some rational evaluation α = (αI, α○) in this way. For that, choose a
set Σ of generators of algebra B and form circular series α○(ω) = trB(ω), viewing
ω ∈ Σ∗ as an element of B via the monoid homomorphism Σ∗ �→ B, where B is
naturally a monoid under multiplication. Set the interval evaluation αI identically
to zero, αI(ω) = 0 for any word ω. Then A(+) = 0 = A(−), the trace αtr

I
= 0, andK = A(+−) ≅ B with the trace tr. Similar examples can be produced with A(+) /= 0.

Pair (B, trB) as in Remark 2.9 gives rise to monoidal category CB obtained via
the universal construction as follows. First consider the category C′B with objects –
finite sign sequences and morphisms finite k-linear combinations of one-dimensional
cobordisms with defects. Floating endpoints are not allowed this time, and defects
are labelled by elements of B, see Figure 2.4.3 on the left. Concatenation and
addition of defects corresponds to multiplication and addition in B, and decorated
circles are evaluated via the trace on B, see Figure 2.4.3.

Since B is not, in general, commutative, it is essential to require strands to
be oriented, to make sense of the concatenation formula in Figure 2.4.3 (second
diagram from left). The resulting category C′B can be thought as a decorated
version of the oriented Brauer category and is known as the Frobenius–Brauer

category [SS22,MS22,Sav21]. Next, we apply the universal construction to C′B
(since trace trB allows to evaluate any closed diagram) to get the quotient category,
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− + + −

− +

b1

b2

b3
+

+
b1

b2
=

+

+
b1b2

+

+
b1 +

+

+
b2 =

+

+
b1 + b2

b = trB(b)

Figure 2.4.3. Left: a diagram for a morphism from −+ to − ++− in categories C′B and CB . Middle: concatenation and addition
relations. Right: evaluation of a decorated circle.

+ −

x

=
+ −

x

+ −

x

α

x

+ −

x

α
x

Figure 2.4.4. The two trace maps on A(+−).

denoted CB . Equivalently, one can define CB as the quotient of C′B by the ideal of
negligible morphisms. Trace on B is omitted from our notations for these two
categories, but both C′B and CB depend on it as well.

Remark 2.10. Algebra A(+−) carries two trace maps, see Figure 2.4.4. This
pair of maps is nondegenerate on A(+−), in a suitable sense. In the above construc-
tion only the first trace map is considered.

Remark 2.11. It is interesting that starting with a 1-dimensional theory with
defects one obtains a symmetric Frobenius algebra K, since the latter describes a
2D TQFT for thin surfaces, see [KQ20, page 19] as well as [LP08,LP09,MS06,
Lau06,KQR21], hinting at a sort of dimensional lifting. We discuss this later in
the paper, in Section 3.

Algebra A(+−) has an idempotent decomposition (40), which we can write as

(48) 1 = 1K + k∑
i=1

vi ⊗ vi,

with each vi ⊗ vi, 1 ≤ i ≤ k and 1K together constituting k + 1 mutually orthogonal
idempotents. There are natural algebra isomorphisms

(49) EndCα(+) ≅ A(+−) ≅ EndCα(−)op.
given by bending strands, see Figures 2.4.5 and 2.4.6.
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+

+

x ⇐⇒
+ −

x

⇐⇒

−

−

x

rotate 180○

Figure 2.4.5. Strand bending leads to isomorphisms (49).

+ −

x y

vs

+

+

x

y

Figure 2.4.6. Multiplications in A(+−) and EndCα(+) match un-
der the isomorphism (49).

+

+

=

+

+

1+K + k∑
i=1

+

+

i

i

−

−

=

−

−

1−K + k∑
i=1

−

−

i

i

Figure 2.4.7. Idempotent decompositions for id+ and id−.

The corresponding orthogonal idempotent decompositions in EndCα(+) and
EndCα(−)op are given by

(50) id+ = 1+K + k∑
i=1

vi ⊗ v∗i , id− = 1−K + k∑
i=1

vi ⊗ vi∗,

see Figure 2.4.7

Consider the Karoubi envelope Kar(Cα) of Cα, also denoted DCα in [Kho20a].
Denote by e+0 , e

+
1 , . . . , e

+
k the idempotents in the endomorphism ring of +, see (50),

so that e+0 = 1+K and ei = vi ⊗ v∗i , and use the same notation but with − instead of
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+ for the − object, so that

(51) id+ = e+0 + . . . + e+k, id− = e−0 + . . . + e−k

Objects + and − in the category Kar(Cα) are isomorphic to the direct sum of objects

(52) + ≅ ⊕k
i=0(+, e+i ), − ≅ ⊕k

i=0(−, e−i ).
For 0 ≤ i ≤ k objects (+, e+i ) and (−, e−i ) are dual. Furthermore, we have

Proposition 2.12. Objects (+, e+i ) and (−, e−i ) are isomorphic, for i ≥ 1. Ob-
jects (+, e+i ) and (+, e+j ) are isomorphic, for i, j ≥ 1. Each of these objects is iso-

morphic to the identity object 1 of Kar(Cα).
Proof. It is enough to set up pairs of morphisms between the corresponding

objects of Cα such that the compositions are the corresponding idempotents. These
morphisms are shown in Figure 2.1.11 for objects (+, e+i ) and (+, e+j ). For objects(+, e+i ) and (−, e−i ) the morphisms are shown in Figure 2.1.10 on the right. Note
also that EndKar(Cα)((+, e+i )) = k. Isomorphisms between each of (+, e+i ) and (−, e−i )
and 1 are given by the half-intervals (up oriented for +, down oriented for −) with
the top or bottom boundary + or −. The identity object 1 is represented by the
empty 0-manifold ∅0 (by the empty sign sequence). �

Corollary 2.13. 2k objects (+, e+1), . . . , (+, e+k) and (−, e−1), . . . , (−, e−k) are
pairwise isomorphic, and each is isomorphic to 1. For any of these objects X

the endomorphism ring EndKar(Cα)(X) ≅ k.

Denote by C′ the full tensor additive subcategory of Kar(Cα) generated by these
2k objects and 1. It is a rigid category.

Proposition 2.14. The category C′ is tensor (symmetric monoidal) equiva-
lent to the category k−vect of finite-dimensional k-vector spaces with the standard
tensor structure. It is Karoubi-closed.

Proof. This is immediate since monoidal generators of C′ are all equivalent
to 1. The unit object 1 ∈ Ob(Kar(Cα)) generates a full monoidal subcategory of
Kar(Cα) which is monoidal equivalent to k−vect. �

Recall the complementary idempotent e+0 = 1+K to e+>0 ∶= e+1 + . . . + e+k in id+, see
Figure 2.4.7. Likewise, e−0 = 1−K is the complementary idempotent to e−>0 ∶= e−1+. . .+e−k
in id−. Consider the corresponding objects of Kar(Cα):
(53) X+0 ∶= (+, e+0), X−0 ∶= (−, e−0), X+>0 ∶= (+, e+∗), X−>0 ∶= (−, e−∗).
Then the first pair of objects is monoidal orthogonal to the second pair in the
following strong sense. For any n > 0, m ≥ 0

HomKar(Cα)((X+0 ⊕X−0 )⊗n, (X+>0 ⊕X−>0)⊗m) = 0,(54)

HomKar(Cα)((X+>0 ⊕X−>0)⊗m, (X+0 ⊕X−0 )⊗n) = 0,(55)

that is, the space of homs between any nonempty finite tensor product of X+0 and
X−0 and a finite tensor product of X+>0 and X−>0 is zero. In particular, there is only
the 0 morphism between any nonempty finite tensor product of X+0 and X−0 and 1.

Equations (54), (55) follow from the orthogonality between elements of K and
elements of A(+), A(−) shown in Figure 2.4.1 on the left and center.

Objects X+0 and X−0 are dual. Denote by C̃α the full monoidal additive and
Karoubi-closed subcategory of Kar(Cα) generated by these two objects (and object
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1). We now relate this category to the Frobenius–Brauer category C′K associated
to the Frobenius algebra (K, trK) and its negligible quotient CK, see earlier.

Recall that to a symmetric Frobenius k-algebra (B, trB), we have assigned a
category C′B (the Frobenius–Brauer category) of 1-cobordisms with dots decorated
by elements of B subject to relations in Figure 2.4.3. Then category CB is the quo-
tient of C′B via the universal construction for the evaluation of closed B-decorated
1-manifold via trB. Equivalently, CB is the gligible quotient of C′B, the quotient by
the 2-sided ideal of negligible morphisms.

Now specialize to the symmetric Frobenius algebra (K, trK) associated to the
evaluation α. We have canonical k-algebra isomorphisms End(X+0 ) ≅ K ≅ End(X−0 ).

Proposition 2.15. These isomorphisms extend to a monoidal and full functor

(56) F0 ∶ C′K �→ Kar(Cα)
taking the object + ∈ Ob(C′K) to X+0 = (+, e+0) and object − to X−0 = (−, e−0).

Proof. The functor F0 takes 1 to 1. It takes an arc carrying a dot labelled
x ∈ K to the arc with the same label, which is now viewed as a morphism in Kar(Cα)
between products of X+0 and X−0 . For instance, The arc in Figure 2.4.4 on the left,
for x ∈ K, can be viewed as a morphism in C′K from 1 (the identity object in C′K)
to the object +− and, alternatively, as a morphism in Kar(Cα) from 1 (the identity
object in Kar(Cα)) to the object X+0 ⊗X−0 .

Earlier computations, including orthogonality relations (54), (55) imply thatF0 is well-defined and surjective on morphisms (a full functor). �

Category Kar(Cα) is the Karoubi envelope of Cα, the latter defined via the
universal construction for the evaluation α. Restricting evaluation α to closures of
elements of K ⊂ A(+−) results in the trace trK on K used in the construction of the
category C′K and its gligible quotient CK (quotient via the universal construction).
The two evaluations – in categories Cα and C′K – match, for the above inclusionK ⊂ A(+−) . Consequently, we obtain the following statement.

Proposition 2.16. Functor F0 in (56) factors through the gligible quotientCK of C′K and induces a fully-faithful and monoidal functor

(57) F ∶ CK �→ Kar(Cα)
In particular, functor F0 factorizes as the composition

(58) C′K �→ CK F�→ Kar(Cα).
where the first arrow is the gligible quotient functor.

Functor F induces a monoidal functor

(59) Kar(F) ∶ Kar(CK) �→ Kar(Cα).
Proposition 2.17. Functor Kar(F) is an equivalence of categories.

Proof. Recall the complementary object X+>0 to X+0 in + ∈ Ob(Kar(Cα), so
that + ≅ X+0 ⊕ X+>0. Likewise, X−<0 is complementary to X−0 with respect to the
object − of Kar(Cα). Objects X+>0 and X−<0 are both isomorphic to the direct sum
of k copies of the object 1. Consequently, the category Kar(Cα) is equivalent to
the Karoubi closure of the monoidal subcategory generated by X+0 and X−0 . Taking
earlier propositions into consideration completes the proof. �
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We now explain the meaning of these results. Starting with a rational evalua-
tion α = (αI, α○) we formed the decomposition A(+−) ≅ I×K, with I ≅ A(+)⊗A(−)
and the complementary factor K orthogonal, in a suitable sense, to A(+) and A(−).

Algebra K is symmetric Frobenius, with the nondegenerate trace given by the
closure operation in Figure 2.4.2. Note also the trace formula (45) for the trace
computed on the projection from kΣ∗ ⊂ A(+−) onto K as the difference α○ − αtr

I
.

Symmetric Frobenius algebras (Frobenius algebras B with a symmetric trace,
tr(xy) = tr(yx), x, y ∈ B) are also called just symmetric algebras. To the symmetric
algebra (K, trK) we assign the Frobenius–Brauer category C′K and its gligible quo-
tient CK. Then there is a natural fully-faithful monoidal functor F ∶ CK �→ Kar(Cα),
see Proposition 2.16, inducing an equivalence (59) of Karoubi envelopes of CK andCα.

Conceptually, passing to the Karoubi envelope Kar(Cα) allows one to reduce
the consideration to the Frobenius algebra K together with the trace trK on it.
Decorated half-arc morphisms go between 1 and summands of + and − objects
which are equivalent to 1 and can be ignored in the Karoubi envelope. In a sense,
no genuinely new idempotents appear when considering half-intervals. Beyond the
identity object 1 we only need the objects X+0 ,X

−
0 coming from K, tensor products

of these objects and summands of these tensor products to describe a category
equivalent to Kar(Cα).

General one-variable case. Let us specialize again to a single variable to gener-
alize examples 2.5–2.6. Consider a general one-variable case Σ = {a}, with rational
evaluation functions as in (37), (36). State space A(+) depends on ZI(T ) only, and
let

(60) ZI(T ) = PI(T )
QI(T ) , nI = deg(PI(T )), mI = deg(QI(T )),

for polynomials PI(T ),QI(T ) with QI(0) /= 0. Consider the polynomial

(61) gI(T ) ∶= TmIQI(1/T )Tmax(0,nI−mI+1) = TmI+max(0,nI−mI+1)QI(1/T ),
the product of the reciprocal polynomial of QI(T ) and a power of T . Then gI(T ) is
the characteristic polynomial for the action of a on A(+), see [Kho20b,KOK22]
for the equivalent case of the state space of a circle in a two-dimensional topological
theory. In particular,

(62) dimA(+) = dimA(−) = deg(gI(T )) = mI +max(0, nI −mI + 1).
and A(+) is a cyclic k[a]-module given by

(63) A(+) ≅ k[a]/(gI(a)).
Note that for any rational series

(64) Z(T ) = P (T )
Q(T ) , n = deg(P (T )), m = deg(Q(T )), Q(0) /= 0,

we can form the corresponding polynomial

(65) gZ(T ) ∶= TmQ(1/T )Tmax(0,n−m+1) = Tm+max(0,n−m+1)Q(1/T ),
which is the characteristic polynomial for the action of a on the state space A(+)
associated to the series Z(T ).
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In the direct product decomposition A(+−) ≅ I ×K the factor I ≅ A(+)⊗A(−)
can be understood from this data. To handle K, let us start with the potentially
larger algebra U . These algebras fit into a diagram of surjective homomorphisms

(66) k[a] p0�→ U
p�→ K, p∗ ∶ k[a] �→ K, p∗ ∶= p p0,

where map p0 sends an to an arc with n dots (see Figure 2.3.1 on the right and
specialize ω = an), and p is the composition of the inclusion of U into A(+−) and
projection onto K, see (41). Finally, let p∗ ∶= p ○ p0, see (43).

Algebra U is naturally a quotient U ≅ k[a]/(g(a)), for some polynomial g(a).
A polynomial f(a) is 0 in U if and only if it (1) acts trivially on A(+) (equivalently,
f(a) ∈ (gI(a))) and (2) belongs to the kernel of the bilinear form on U given by(f1, f2) = tr(f1f2), with the trace given by closing an arc into into a circle and
evaluating it via α○, see the top right diagram in Figure 2.4.4.

Evaluation α○ is encoded by a rational series

(67) Z○(T ) = P○(T )
Q○(T ) , n○ = deg(PI(T )), m○ = deg(QI(T )),

with Q○(0) /= 0. Form the polynomial (as in (61))

(68) g○(T ) ∶= Tm○Q○(1/T )Tmax(0,n○−m○+1) = Tm○+max(0,n○−m○+1)Q○(1/T ),
Then the principal ideal (g○(a)) ⊂ k[a] is the kernel of the above bilinear form,
and U is naturally the quotient of k[a] by the intersection of the two principal
ideals (gI(a)) and (g○(a)). Let gα(a) ∶= lcm(gI(a), g○(a)) be the lcm of these two
polynomials. We get a canonical isomorphism

(69) U ≅ k[a]/(gα(a)) ≅ k[a]/(lcm(gI(a), g○(a))).
Coming back to K, recall that it is a quotient of U and k[a], see (66) and (43),

via quotient maps p and p p0, respectively.
Form the trace series Ztr

I
∶= Ztr

αI
(T ) of ZαI

(T ), see formulas (26)-(28), and the
difference of the two series

(70) Z○I(T ) ∶= Z○(T ) −Ztr

I
(T ).

Let g○I(T ) be the characteristic polynomial for the action of a associated to these
series, see (65).

The relation (45) on the trace, reproduced below,

(71) tr(p∗(ω)) = α○(ω) − αtr

I
(ω), ω ∈ Σ∗,

implies that under the homomorphism p∗ in (66) the trace on ω = an, viewed
as an element of K, is given by the coefficient at Tn of the series Z○I(T ) above.
Consequently, there is a natural isomorphism

(72) K ≅ k[a]/(g○I(a)),
with g○I(T ) associated to the series Z○I(T ). The quotient map U �→ K takes a ∈ U
to p∗(a) ∈ K. From the isomorphisms

(73) U ≅ k[a]/(lcm(gI(a), g○(a))), K ≅ k[a]/(g○I(a))
that respect the surjection, we obtain an inclusion of ideals (lcm(gI(a), g○(a))) ⊂(g○I(a)), so that the one-variable polynomial g○I(T ) is a divisor of lcm(gI(T ), g○(T )).
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3. From 1D to 2D

3.1. Category of thin flat surfaces and symmetric Frobenius algebras.

Factorization A(+−) ≅ I ×K allows us to understand, as described above, the cate-
gory Kar(Cα). The term I contributes objects isomorphic to 1 to the Karoubi enve-
lope, while the symmetric Frobenius algebra K leads to a K-decorated Frobenius–
Brauer category and its negligible quotient, which is equivalent to Kar(Cα).

Thus, from a one-dimensional theory with defects we can extract a key piece of
structure, the symmetric Frobenius algebra (K, trK) which, on one hand, describes
Kar(Cα), and on the other has a strongly two-dimensional flavor, since it gives a
tensor functor on a suitable category of 2-dimensional cobordisms with corners.

In this section we review the two-dimensional nature of non-necessarily com-
mutative symmetric algebras (B, trB) and their interpretation via tensor functors
from the category of thin flat surfaces with boundary and corners to k−vect. A
version of this correspondence goes back at least to Moore-Segal [MS06], also
see [Lau05,Lau06,LP07,LP08,Cap13,KQR21] and unpublished notes [KQ20].
Our modest contribution is to point out that elements of B can be placed as la-
belled dots (0-dimensional defects) along the inner edges of cobordisms and to
provide a neck-cutting formula in this language. We discuss obstacles in the non-
semisimple case to extending a thin surface TQFT to an open-closed TQFT as
in [MS06,LP07,LP08,Cap13]. We also show how a combination of a symmetric
Frobenius algebra and an evaluation series for closed cobordisms leads to a uni-
versal construction which occupies an intermediate role between open-closed two-
dimensional TQFT [MS06,LP07,LP08] and general two-dimensional topological
theories for surfaces with corners [KQR21].

The category TCob2 of thin flat surfaces is defined in [KQR21], where it is
denoted TFS. It has objects n ∈ Z+ = {0, 1, 2, . . .} represented by n disjoint intervals
in R ordered from left to right. Morphisms from n to m in TCob2 are surfaces S

with boundary and corners together with an immersion into the strip R × [0, 1],
see Figure 3.1.1 for an example. A surface inherits an orientation from that of
R×[0, 1]. An immersion can have overlaps, that can be perturbed in R

2×[0, 1] into
an embedding of S into the latter. Two morphisms are equal if the corresponding
oriented surfaces are diffeomorphic rel boundary (forgetting the immersion or the
embedding). We refer to [KQR21] for details.

Category TCob2 is symmetric monoidal, with the monoidal structure given by
placing objects and morphisms next to each other, in parallel. Figure 3.1.2 shows a
possible set of generating morphisms of the monoidal category TCob2. Figure 3.1.3
shows some relations in TCob2, and we refer to [Lau05,KQR21] for a complete
set of relations.

The following result is well-known, c.f., [MS06,LP07,LP08,LP09,KQ20].

Proposition 3.1. Symmetric monoidal functors F ∶ TCob2 �→ k−vect are clas-
sified by symmetric Frobenius k-algebras (B, trB), assigning multiplication, unit,
trace, comultiplication and permutation maps to cobordisms in Figure 3.1.1.

Denote the functor associated to (B, trB) by FB. In this notation we sup-
press the dependence of FB on the trace map trB. Note that the symmetric trace
condition comes from the Figure 3.1.4 equality of morphisms in TCob2.
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Figure 3.1.1. Left: a thin flat surface for a morphism 5 → 3 in
TCob2. Right: Same morphism represented by a thin flat sur-
face embedded in R

2 × [0, 1]. Different connected components of
a surface are shaded in different ways to make it easier to discern
overlapping regions.

ι tr m ∆ id1

=

P

Figure 3.1.2. A set of generating morphisms in the symmetric
monoidal category TCob2. The labels next to morphisms denote
the structure maps of a symmetric Frobenius algebra associated
to a monoidal functor from TCob2 to k−vect, see Proposition 3.1
below. From left to right, these are the unit map ι, the trace map
tr, multiplication m and its dual ∆, identity, and permutation map
P .

= =

= =

= =

Figure 3.1.3. Some relations in TCob2 on these generating morphisms.
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=

Figure 3.1.4. Equality of these two morphisms from 2 to 0 cor-
responds to the symmetricity of the trace: tr(xy) = tr(yx), where
x, y ∈ B.

a

(a)
a

(b)
a

(c) (d)

a

Figure 3.1.5. (a) Endomorphism 
a of B, 
a(x) = ax, (b) Endo-
morphism ra of B, ra(x) = xa, (c) Element a ∈ B, (d) Trace map
B �→ k, where x↦ tr(ax).

a1
a2

= a1a2
a1
a2 = a2a1 a1 + a2 = (a1 + a2)

Figure 3.1.6. Merging and adding boundary dots.

The more familiar correspondence is that between commutative Frobenius alge-
bras and symmetric monoidal functors from the category Cob2 of oriented surfaces
with boundary to k−vect. In that case object n of Cob2 is represented by n circles,
not intervals, and the Frobenius algebra is commutative.

In this case of cobordisms between closed 1-manifolds and commutative Frobe-
nius algebras (A, trA) the functor can be enhanced by introducing dots floating
on the components of a cobordism and labelled by elements of A. Such dotted
cobordism can be evaluated to a linear map between tensor powers of A, with dot
a denoting multiplication by a map ma ∶ A�→ A,ma(x) = ax.

A similar enhancement exists for tensor functors FB ∶ TCob2 �→ k−vect as
above and we could not find it in the literature. We explain it now.

A dot labelled a ∈ B on a side boundary denotes the endomorphism of multipli-
cation by a in B. The endomorphism is the left multiplication 
a by a if the local
orientation at the dot is up and right multiplication by a if the local orientation at
the dot is down, see Figure 3.1.5.

Likewise, an a-labelled dot at the side boundary of a half-disk denotes either
the element a ∈ B or the map x↦ tr(ax) from B to k, see Figure 3.1.5.

Dots can move freely along side boundaries and relations in Figure 3.1.6 hold.
Figure 3.1.7 depicts that dots may slide past local maxima and minima.
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a = a
a = a

Figure 3.1.7. Dot sliding past local maxima and minima.

= n∑
i=1

xiyi a = tr(a)

Figure 3.1.8. Left: the surgery relation. Right: evaluation of a
dot on the boundary of disk.

c = c = c

Figure 3.1.9. Central element c floating inside a thin surface can
move on and off the boundary.

β1 β2 β3

Figure 3.1.10. Endomorphisms β1, β2, β3 of object 1 in category TCob2.

Pick a basis {xi}ni=1 of the vector space B and the dual basis {yi}ni=1 of B

with respect to the trace form, so that tr(xiyj) = δi,j . Then the surgery relation
holds, see Figure 3.1.8 left, that allows to cut a surface along an interval connecting
two side boundary points. In particular, any closed surface in TCob2 (a surface
with empty horizontal boundary, that is, an endomorphism of object ∅1), with side
boundary decorated by elements of B, can be evaluated to an element of k. Indeed,
each connected component of such surface has nonempty side boundary and the
surgery relation can be iteratively applied for an evaluation.

One can further augment possible decorations by allowing elements c of the
center Z(B) to float inside a surface. Such a floating dot denotes the multiplication
by c endomorphism ofB. A floating central element c can land onto a side boundary,
see Figure 3.1.9.

Recall from [KQR21] that category TCob2 has three commuting endomor-
phisms β1, β2, β3 of object 1, see Figure 3.1.10. These endomorphisms were de-
noted b1, b2, b3 in [KQR21] and satisfy the relation β1β3 = β2

3 . Consider the func-
tor FB from TCob2 to k−vect. It takes these endomorphisms to k-linear maps
FB(β1), FB(β2), FB(β3).

Proposition 3.2. FB(β1) and FB(β2) are B-bimodule endomorphisms B �→
B, determined by central elements b1 ∶= FB(β1)(1) and b2 ∶= FB(β2)(2), b1, b2 ∈
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a

=
a

a

=

a

Figure 3.1.11. Moving a dot along a side boundary shows that
maps FB(β1), FB(β2) are B-bimodule maps. Two out of four of
these dot moving relations are shown.

a

=
a

a

=
a

Figure 3.1.12. Dot sliding along side boundaries of the β1 cobor-
dism implies factorization (74) of FB(β3).

Z(B). Map FB(β3) can be factored as

(74) B
qB�→ [B,B] βB�→ Z(B) ιB�→ B

for a unique linear map βB, where qB is the quotient map by the commutator
subspace and ιB the inclusion of the center into B.

Proof. Maps FB(β1) and FB(β2) are B-bimodule maps, since a-dots can be
slid along the side edges of these cobordisms from near a corner at the bottom to
the matching corner point at the top, see Figure 3.1.11.

For the map FB(β3), a dot a near the bottom left corner can be moved to
the dot a near the bottom right corner, by dragging it along a side boundary, see
Figure 3.1.12 on the left. Consequently, FB(β3)(ab) = FB(β3)(ba) for any a, b ∈ B,
so that FB(β3) factors through map qB .

Likewise, a-dot at the top left corner of β3 can be moved to the top right corner
of β3, by dragging it along a side boundary, see Figure 3.1.12 on the right. This
means aFB(β3)(b) = FB(β3)(b)a for any a, b ∈ B, that is, FB(β3)(b) belongs to the
center Z(B) of B. Hence, FB(β3) admits a factorization (74). �

The map

(75) βB ∶ B/[B,B] �→ Z(B)
is associated to a Frobenius algebra B with a symmetric trace.

Example 3.3. Consider the group algebra B = k[Cp] of a prime order cyclic
group Cp = {1, g∣ gp = 1} over a field k of characteristic p with the trace

(76) trB ∶ B �→ k, trB(1) = 1, trB(gi) = 0, 0 < i < p.
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=

tr ⊗ 1

m⊗ 1

1⊗ P

1⊗∆

∆

Figure 3.1.13. Factorization of the maps β3 and FB(β3). Here
P is the permutation cobordism.

The comultiplication structure map of this thin surface TQFT is

(77) ∆(gi) = p−1∑
i=0

gj ⊗ gi−j .

The map FB(β3) is the composition

(78) (trB ⊗ 1)(m⊗ 1)(1⊗ P )(1⊗∆)∆,

see Figure 3.1.13. Computing this map for the group algebra B yields FB(β3) = 0
and βB = 0.

Choosing a finite set Σ of labels for the side boundary dots, one obtains a
decorated version TCob2,Σ of the thin flat surface category, where side boundaries
can carry dots labelled by elements of Σ as in Figures 3.1.5, 3.1.7, for instance. A
symmetric Frobenius algebra (B, trB) as above together with a map of sets Σ�→ B

determines a symmetric monoidal functor TCob2,Σ �→ k−vect.
Example 3.4. For Frobenius B in Example 3.3 and Σ = {g}, the relations

for the resulting functor are shown in Figure 3.1.14, where a dot labelled i ∈ Z/p
denotes multiplication by gi at that position (a dot labelled 0 can be erased).

3.2. Open-closed TQFTs and topological theories.

Open-closed 2D TQFTs and knowledgeable Frobenius algebras. The usual cat-
egory of oriented cobordisms between closed one-manifolds and the category of
thin flat surfaces TCob2 can be unified into the category of open-closed 2D cobor-
disms [MS06,LP08,Laz01,Lau06]. In that category OCCob2 objects are compact
oriented 1-manifolds with boundary, thus finite unions of intervals and circles. Mor-
phisms are diffeomorphism classes (rel boundary) of oriented surfaces with bound-
ary and corners. These surfaces have side boundary and corner points where side
boundaries meet top and bottom boundary intervals. We refer to [LP08] for details.
As a set of generating morphisms one can take the union of

● standard generating morphisms for thin surfaces in Figure 3.1.2 that cor-
respond to the structure maps of a symmetric Frobenius algebra, and the
permutation map P of two intervals,● standard generating morphisms for the usual category of two-dimensional
oriented cobordisms. These morphisms correspond to the structure maps
in a commutative Frobenius algebra and the transposition of two circles,
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i

j
= i + j (mod p) i = trB(gi) =

⎧⎪⎪«⎪⎪¬
1 if i ≡ 0(mod p)
0 if i /≡ 0(mod p)

= p−1∑
i=0

i p − i
= 0 i

= 0 ∀ i ∈ Z/p

= 0

Figure 3.1.14. Boundary dots and relations for the thin surface
TQFT in Examples 3.3, 3.4. The relation in the top right corner
is the trace formula for B. The second and third relations in the
second row and the bottom row relation follow from the surgery
formula (first relation in the second row) and char(k) = p.

j j∗

Figure 3.2.1. Zipper and cozipper cobordisms j and j∗ in OCCob2.

● Zipper and cozipper cobordisms, see Figure 3.2.1, and the transposition
of an interval and an circle, similar to the transposition P of two intervals
in Figure 3.1.2.

A 2D TQFT for the open-closed category consists of a symmetric Frobenius
algebra (B, trB), which is the state space of an interval, and a commutative Frobe-
nius algebra (C, trC), describing the state space of a circle. These two Frobenius
algebras are subject to the following interactions:

(1) There exists a trace-respecting coalgebra homomorphism j ∶ B �→ C (the
zipper homomorphism), see Figure 3.2.1 left. Its dual is the cozipper map
j∗ ∶ C �→ B, see Figure 3.2.1 right. That j is a coalgebra homomorphism
comes from diffeomorphisms (rel boundary) in the top row of Figure 3.2.2;
j intertwines comultiplication and the counit maps of the two coalgebras.
The dual (cozipper) map intertwines the two multiplications and takes
the unit element of C to the unit element of B, thus it is an algebra
homomorphism. These properties of j∗ correspond to the relations given
by rotating those in the top row of Figure 3.2.2 by 180○.

(2) Maps j, j∗ are subject to● The knowledge relation, shown on the left in the second row in 3.2.2,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

ONE-DIMENSIONAL TOPOLOGICAL THEORIES WITH DEFECTS 139

≅ ≅

≅ ≅

≅

Figure 3.2.2. Defining relations in the category OCCob2 that in-
volve zipper and cozipper homomorphisms.

● The duality between the zipper and the cozipper, shown on the right
in the second row of 3.2.2,● The Cardy condition, see the third row in 3.2.2.

Remark 3.5. Lauda and Pfeiffer [LP08,LP09] view a cobordism as a mor-
phism from the top boundary to the bottom boundary, while our convention is the
opposite. They also denote a symmetric Frobenius algebra by A instead of our B,
and zipper morphism by ι instead of j, so that, for instance, the zipper morphism

is C
ι�→ A in [LP08,LP09] and B

j�→ C in the present paper.

Such pairs (B,C) are called knowledgeable Frobenius algebras, see [LP09, Def-
inition 2.2]. Examples of many such pairs in the literature are build from a strongly

separable symmetric Frobenius algebra B. An algebra is called strongly separable
if the trace form (a, b)� = trA(La ○Lb) is non-degenerate, where La is the operator
A�→ A of left multiplication by a.

A strongly separable symmetric Frobenius algebra B extends to a knowledge-
able Frobenius algebra (B,C) by taking C = Z(A) to be the center of A, see [LP07,
LP09]. A strongly separable algebra is necessarily semisimple.

Example 3.6. Consider the thin surface TQFT and the Frobenius algebra B

in Examples 3.3, 3.4. One can look to extend this open TQFT F to an open-closed
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= = 1

x C

mx

C

= 0 i

xi

i

j

= 0

Figure 3.2.3. Top row, left to right: evaluation of a one-holed
sphere; element x ∈ C is given by one-holed disk; endomorphism
mx(c) = xc of multiplication by x. Bottom row, left to right:
x2 = 0 (cobordism for x2 contains the cobordism in the center of
Figure 3.1.14 as a subcobordism), element xi ∈ C, products xixj =
0.

TQFT (to a knowledgeable Frobenius algebra (B,C)). Then the commutative
Frobenius algebra C associated to a circle should have a distinguished element
x ∈ C, x = j(1B) shown in Figure 3.2.3 in the top row and given by a cup with a
hole in it. It is the image of the identity element 1B of B under the zipper map j.
The trace trC(x) = 1 since a dotless disk evaluates to 1, so that x /= 0 ∈ C. On the
other hand, x2 = 0 since the corresponding cobordism contains a subsurface shown
in the middle of the second row in Figure 3.1.14, which evaluates to 0. Thus, C
contains a subalgebra k[x]/(x2).

More generally, C contains elements xi = j(gi), i ∈ Z/p, with x = x0, see
Figure 3.2.3 bottom row. We have
(79)

xi xj = 0, i, j ∈ Z/p, ∆C(xi) = p−1∑
k=0

xi+k ⊗ xp−k, trC(xi) = δi,0, j∗(xi) = 0, i ∈ Z/p.
These elements (or their linear combinations) may potentially be 0 for i /= 0. The
trace on C must be nondegenerate, pairwise products of xi’s are 0 and trC(xi) = 0
for i /= 0. To avoid introducing more generators for C, we further assume that xi = 0
for i /= 0 and look to complete B to a knowledgeable Frobenius algebra (B,C) with
C ≅ k[x]/(x2). Then the zipper and the cozipper maps are

j ∶ B �→ C,j(gi) = 0, i /= 0 ∈ Z/p, j(1B) = x, im(j) = kx,

j∗ ∶ C �→ B,j∗(1C) = 1B, j∗(x) = 0, im(j∗) = k 1.

with j∗j = 0, map j a coalgebra homomorphism and j∗ an algebra homomorphism.
Each individual map j, j∗ is nonzero but has a one-dimensional image. To define
the trace on C, pick a parameter λ ∈ k:
(80) trC(1) = λ, trC(x) = 1.
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The multiplication (x2 = 0) and trace on C determine the comultiplication

(81) ∆C(1) = 1⊗ x + x⊗ 1 − λx⊗ x, ∆C(x) = x⊗ x.

The remaining open-closed TQFT relations, as shown in Figure 3.2.2, are straight-
forward to check.

In this knowledgeable Frobenius algebra, both B and C are nonsemisimple
algebras. The handle (or punctured torus) element of C equals mC ○∆C(1) = 2x,
and a closed surface of genus g evaluates to α0,g, where

(82) α0,0 = λ, α0,1 = 2, α0,g = 0 for g > 1

(recall that the coefficients belong to a field k of characteristic p). Evaluation αm,g

of a connected surface of genus g with m side boundary circles is

(83) α1,0 = 1, αm,g = 0 if m > 0 and g /= 0.

Thus, in this evaluation, at most three coefficients: α0,0, α0,1, α1,0 are nonzero.
More generally, j∗j = 0 if and only if αm,g = 0 for allm ≥ 1, g ≥ 1 andm ≥ 2, g ≥ 0.
Example 3.7 in [LP09] is somewhat similar to the present example, with the

algebra B isomorphic to the one above (and char(k) = p), algebra C = k[x]/(x2 −
ht−t) two-dimensional and nonsemisimple when parameters h, t satisfy h2 = 4t, but
with different zipper and trace maps. In particular, j∗j /= 0 in that example (ι ι∗ /= 0
in the notations of [LP09]).

In the above example of a knowledgeable Frobenius pair (B,C) both B and C

are nonsemisimple and the maps βB and FB(β3), see (74) and (75), are zero, so
that j∗j = 0.

Frobenius algebras that appear in link homology and categorification are typ-
ically nonsemisimple, which creates an obstacle to merging link homology with
open-closed 2D TQFTs, where a vast majority of examples is built from semisim-
ple Frobenius algebras. This obstruction is discussed in [LP09] and [Cap13].
One well-known way out of this is a functorial extension of link homology to tan-
gles [Kho02] and then to tangle cobordisms [Kho06,BN05].

This discrepancy between semisimple Frobenius algebras common in open-
closed TQFTs in dimension two and rather special nonsemisimple Frobenius alge-
bras that give rise to link cobordism TQFTs in dimension four and categorification
of quantum invariants is an interesting phenomenon that is not fully understood.

Combining a symmetric Frobenius algebra with the universal construction for

closed surfaces. Even when symmetric Frobenius B does not extend to a knowl-
edgeable Frobenius (B,C) it is possible to extend B to a functor from OCCob2 to
the category of vector spaces but with a weaker axioms than that of a TQFT. This
can be achieved by combining the Frobenius structure (B, trB) with the universal
construction.

Symmetric Frobenius algebra (B, trB) gives a thin flat surface TQFT. In par-
ticular, it evaluates any connected oriented surface Sn,g with n ≥ 1 boundary com-
ponents and g handles to a number αB,n,g ∈ k. This number can be computed
by viewing the surface as an endomorphism of the identity object 0 of TCob2 and
computing the element of k it goes to under the functor FB. Alternatively, one can
use the surgery relation in Figure 3.1.8 and other relations in Figures 3.1.8, 3.1.6.

Doing the universal construction in the modification of TCob2 where side bound-
aries are decorated by generators of B results in the TQFT FB.
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To extend to all oriented surfaces, we choose an evaluation α0,g ∈ k of a closed
oriented surface of genus g for all g ≥ 0. It is convenient to require that the
generating function

(84) Z0(T ) ∶= ∑
g≥0

α0,gT
g

is rational. With this additional choice evaluations of all surfaces Sn,g, n, g ≥ 0 of
genus g with n boundary circles are defined.

The universal construction can be applied to the category OCCob2 of open-
closed cobordisms. To get a better match with state spaces build from (B, trB) for
cobordisms that have corners, it is convenient to pick a set W of generators of B
and allow these generators to float on side boundaries of cobordisms. One obtains a
minor modification, denoted OCCob2(W ) of the category OCCob2. Endomorphisms
of the 0 object of OCCob2 that come from surfaces with decorated side boundaries
are then evaluated via (B, trB) while evaluations of closed surfaces are encoded in
the generating function (84).

Let us do the universal construction for OCCob2(W ) evaluating surfaces with
side boundary their possible W -decorations via (B, trB) and closed surfaces via
coefficients of (84). The resulting category and a functor is an extension of the thin
surface TQFT associated with (B, trB). Objects of OCCob2(W ) are finite unions
I⊔k ⊔ (S1)⊔m of intervals and circles. Denote the state space of that one-manifold
by A(k,m). Then the surgery formula still applies near each interval component,
and the state space simplifies via the isomorphism

(85) A(k,m) ≅ B⊗k ⊗A(0,m).
That is, the state space is isomorphic to the tensor product of B’s, one for each
interval, and the state space of m circles. The latter state space contains a subquo-
tient isomorphic to the state space of m circles in the closed 2D topological theory
with the generating function (84), as studied in [Kho20b,KS20,KOK22]. The
state space A(0,m) may be strictly bigger than the latter state space, due to the
presence of surfaces that bound m circles at the top but have side circles (such
surfaces can be viewed as morphisms in OCCob2(W ) from the identity object 0 to
m circles).

This universal construction based on (B, trB) and rational power series (84) oc-
cupies an intermediate position between open-closed TQFTs and the more general
universal construction for surfaces with boundary and corners studied in [KQR21].
In the present case (B, trB) allows to evaluate surfaces of all genera with at least
one side boundary circle and produce a TQFT (as long as we add additional ob-
servables on the boundary lines for generators of B) for these surfaces, then extend
to cobordisms that may have top and bottom boundary circles and closed surfaces
via (84). Without enlarging OCCob2 to OCCob2(W ) the resulting state space of
the union of k intervals could be only a subspace of B⊗k.

Remark 3.7. Going back to the category TCob2 of thin flat surfaces, one can
further introduce one-dimensional interval defects that connect two points on the
boundary of a surface. These defects are labelled by endomorphisms of B (by
k-linear maps B → B), see Figure 3.2.4.
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Figure 3.2.4. A line defect connecting two boundary points can
be labelled by an element of Endk(B).

Remark 3.8. Categorifications of the Heisenberg algebra come from the study
of natural transformations on compositions of the induction and restriction func-
tors between symmetric groups or Hecke algebras [Kho14,LS13]. More general
categorifications of the Heisenberg algebra [BSW22,Sav19,RS17,BSW21] add
elements of a Frobenius algebra as decorations on strands of diagrams in those
graphical calculi. The neck-cutting formula in Figure 3.1.8 on the left is called the

Frobenius skein relation in that case and is referred to as teleportation in [BSW22].
A symmetric Frobenius algebra gives a TQFT for thin flat surfaces (two-

dimensional objects), which is one of the indications that various Heisenberg alge-
bra categorifications should admit reformulations via a suitable graphical calculus
of foam-like objects in R

3 rather than graphs (or intersecting decorated lines) in
R

2.

4. Embeddings into a 1D TQFT and dimensional lifting

Embeddings into a 1D TQFT: semisimplicity restriction. It is natural to ask
under what conditions on K and the trace trK is the corresponding one-dimensional
theory of arcs with K-defects and the circle evaluation given by trK embeddable into
a one-dimensional TQFT. Oriented 1D TQFTs are described by finite-dimensional
vector spaces V , with the state space of +− oriented 0-manifold isomorphic to
V ⊗ V ∗. When viewed as an algebra under the composition in Figure 2.4.6 it is
naturally isomorphic to the endomorphism or the matrix algebra Endk(V ) ≅Mn(k).

Suppose given a symmetric Frobenius algebra (B, trB). It gives rise to the
category of arcs with B-defects and circles evaluated via trB and the negligible
quotient of that category. A monoidal functor from either of these two categories
into a 1D TQFT given by V is described by a homomorphism of algebras φ ∶ B �→
Mn(k) that converts trace trB to the usual trace on the matrix algebra Mn(k),
that is tr(φ(a)) = trB(a),∀a ∈ B. That is, φ must intertwine the two traces. Then
φ is necessarily an inclusion and trB(1) = n = dim(V ).

Consider the Jacobson radical J ⊂ B. Then J is a two-sided nilpotent ideal,
Jn = 0, and B/J is semisimple. Any element x ∈ J is nilpotent and φ(x) is a
nilpotent matrix, so that tr(φ(x)) = 0. Consequently, trB(x) = 0, for all elements
x in the Jacobson radical. Nondegeneracy of trB implies that J = 0, so that B is
semisimple, and we obtain the following result.

Proposition 4.1. A one-dimensional topological theory with B-labelled de-
fects associated to (B, trB) can be embedded into a one-dimensional TQFT over
k−vect only if B is semisimple.

We see that trB can come from a trace on a matrix algebra in the above way
only if B is a semisimple k-algebra, while in applications (for instance, to link
homology) we most often encounter cases when B is not semisimple.
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Furthermore, assuming that B is semisimple, only few traces on B correspond
to embeddings into one-dimensional TQFTs. Namely, B ≅ ∏k

i=1Matni
(Di) is then

isomorphic to the product of matrix algebras over finite-dimensional division rings
Di over F and representation V has the form V ≅ ⊕k

i=1Vi, where

(86) Vi ≅ (Dni

i )ri
is the sum of ri copies of the column representation Dni

i of the matrix algebra
Matni

(Di). Under this isomorphism,

(87) trB = k∑
i=1

ri tri,

where tri is the trace on Matni
(Di) with values in k which is the composition of

the matrix algebra trace and the map tr′i ∶ Di �→ k which is the trace of left
multiplication in Di viewed as a k-vector space.

For example, suppose that the division ring Di is commutative, thus it is a
field F such that k ⊂ F is a finite extension and that ni = 1. Any non-zero k-linear
map ε ∶ F �→ k turns F into a commutative Frobenius k-algebra, but only the
trace map trk ∶ F �→ k and its multiples r trk, r ∈ N (further assuming that F /k is
separable) come from embeddings into a 1D TQFT.

Dimensional liftings. We see that trace-preserving embeddings of symmetric
Frobenius algebras into matrix algebras are scarce. At the same time, a symmetric
Frobenius algebra (B, trB) gives rise to a 2D TQFT for thin surfaces as explained
earlier. A one-dimensional TQFT with defects α produces a two-dimensional
TQFT, restricted to thin surfaces, via the symmetric Frobenius algebra (K, trK).
This dimensional lifting from one to two dimension can be very loosely compared
to the Drinfeld center of a monoidal category (and the Drinfeld double of a Hopf
algebra). Monoidal categories are naturally two-dimensional structures, with mor-
phisms often represented by planar diagram. The Drinfeld center of a monoidal
category is a braided monoidal category, providing invariants of braids and lifting
the structure one dimension up, from two to three dimensions. Likewise, the Drin-
feld double of a Hopf algebra converts a two-dimensional structure (the category of
representations of a Hopf algebra is monoidal) to a three-dimensional structure (a
quasitriangular Hopf algebra, with the category of representations being a braided
monoidal category).

The graphical nature of a monoidal category C is that of planar networks of
morphisms between tensor products of objects of C. Such planar networks can be
thought of as defects in the two-dimensional theory of the underlying plane R

2.
Drinfeld’s center and doubling constructions lift these “two-dimensional theories
with defects” to three-dimensional theories.

Of course, the above discussion and comparison of dimensional liftings is highly
informal.
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