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Wreath-like products of groups and their
von Neumann algebras I: W*-superrigidity

By IoNuT CHIFAN, ADRIAN I0ANA, DENIS OSIN, and BIN SUN

Abstract

We introduce a new class of groups called wreath-like products. These
groups are close relatives of the classical wreath products and arise natu-
rally in the context of group theoretic Dehn filling. Unlike ordinary wreath
products, many wreath-like products have Kazhdan’s property (T). In this
paper, we prove that any group G in a natural family of wreath-like prod-
ucts with property (T) is W*-superrigid: the group von Neumann algebra
L(G) remembers the isomorphism class of G. This allows us to provide
the first examples (in fact, 2%° pairwise non-isomorphic examples) of W*-
superrigid groups with property (T).

1. Introduction

The von Neumann algebra L(G) of a countable discrete group G is de-
fined as the weak operator closure of the complex group algebra CG acting
on the Hilbert space £2G by left convolution [MvN36]. If G is infinite abelian,
then L(G) is isomorphic (via the Fourier transform) to L°°([0,1]). However,
understanding how the isomorphism class of L(G) depends on G for non-
commutative groups is a notoriously challenging problem, which has been at
the forefront of research in operator algebras since the creation of the field.
This problem is typically studied when L(G) is simple, i.e., a II; factor, which
is equivalent to G having infinite conjugacy classes of non-trivial elements (ab-
breviated ICC).

The classification problem for group von Neumann algebras was first con-
sidered by Murray and von Neumann in [MvN43]. They proved that L(G) is
isomorphic to their hyperfinite II; factor for any locally finite ICC group G,
but not for the free group G = Fy. Three decades later, Connes’ celebrated
classification of injective factors [Con76] showed that, more generally, all II;
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factors arising from ICC amenable groups G are isomorphic to the hyperfinite
II; factor. On the other hand, non-amenable groups were used to provide large
classes of non-isomorphic II; factors in [Sch63], [McD69], [ConT75].

The first instance of rigidity for von Neumann algebras was discovered
by Connes in 1980. He showed that L(G) has countable fundamental and
outer automorphism groups for any ICC group G with Kazhdan’s property
(T) [Con80]. Shortly after, Connes [Con82] proposed the following far-reaching
rigidity conjecture.

CONJECTURE 1.1 (Connes Rigidity Conjecture). If G and H are ICC
property (T) groups such that L(G) = L(H), then G = H.

Supportive evidence for this conjecture was provided in the 1980s by re-
sults in [CJ85], [Pop86], [CH&9]. In particular, Cowling and Haagerup [CH89]
proved that L(G) % L(H) for any lattices G < Sp(n,1), H < Sp(m,1) for
n # m. More recently, the existence of uncountably many non-isomorphic
property (T) group factors was proved in [Oza04]. In addition, Connes’ rigid-
ity conjecture was shown to hold up to countable classes in [Pop07b] (see
also [IPV13]).

In the past two decades, there has been striking progress in the classifica-
tion of group II; factors due to Popa’s discovery of deformation/rigidity theory.
In [Pop06d], Popa proved that the class G of wreath product groups Z wr I' with
I' ICC property (T) satisfies the following version of Connes’ rigidity conjec-
ture: if L(G) 2 L(H) for G, H € G, then G = H. Subsequently, several other
classes of groups satisfying this property were found, e.g., in [Pop08], [PV08§],
[Ioa07], [IM22].

By a result in [CJ85], if an ICC group G has property (T), then so does
any other group H such that L(G) =2 L(H). Thus, Connes’ rigidity conjecture
is equivalent to asking if every ICC property (T) group G is W*-superrigid in
the sense that L(G) = L(H ) implies G = H for any group H (see [Pop07b, §3]).
The first class of W*-superrigid groups was discovered by Popa, Vaes and the
second author in [IPV13], where a large class of generalized wreath groups were
shown to have this property. Later on, additional examples of W*-superrigid
groups were found in [BV14], [Berl5], [CI18], [CDAD23b], [CDAD23a].

Despite the remarkable breadth of Popa’s deformation/rigidity theory,
classifying von Neumann algebras of property (T) groups remained a long-
standing challenge. The reason is that the presence of deformations, which is
at the heart of Popa’s theory, typically excludes property (T). In particular,
the well-known problem of finding at least one W*-superrigid ICC group with
property (T) remained open. This problem has circulated among the experts
since the reformulation of Connes’ rigidity conjecture as a superrigidity ques-
tion in [Pop07b, §3] (see also [I[PV13, §1], [Ioal8, §6.2], [Pet, Prob. R.5], [Hou21,
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§5]). It was the main focus of a 2018 workshop at the American Institute of
Mathematics where it was explicitly posed by Vaes as [AIM18, Prob. 2.1].

In this paper, we obtain the first examples of W*-superrigid groups with
property (T). To state our main results, we need an auxiliary definition.

Definition 1.2. Let A, B be arbitrary groups, I an abstract set, and B ~ [
a (left) action of B on I. We say that a group W is a wreath-like product of
groups A and B corresponding to the action B ~ I if W is an extension of
the form

(1.1) 1—@PAa—W--B—1,

i€l
where A; = A and the action of W on AU) = @P;cr Ai by conjugation satisfies
the rule

(1.2) wAw ! = Ae(w)-i

for all ¢ € I. The map ¢: W — B is called the canonical homomorphism
associated with the wreath-like structure of W.

If the action B ~ I is regular (i.e., free and transitive), we say that W is
a reqular wreath-like product of A and B. The set of all wreath-like products
of groups A and B corresponding to an action B ~ I (respectively, all regular
wreath-like products) is denoted by WR(A, B ~ I) (respectively, WR(A, B)).

The notion of a wreath-like product generalizes the ordinary (restricted)
wreath product of groups. Indeed, for any groups A and B, we obviously have
Awr B € WR(A, B). Conversely, it is not difficult to show that W = Awr B
whenever the extension (1.1) splits.

We are now ready to state the main result of our paper.

THEOREM 1.3. Let A be a non-trivial abelian group, and let B be a non-
trivial ICC subgroup of a hyperbolic group. Let B ~ I be an action such that
for every i € I, Stabp(i) is amenable. Suppose that G € WR(A,B ~ I) is a
group with property (T).

If H is any countable group and 0: L(G) — L(H) is a *-isomorphism
for some t > 0, then G =2 H and t = 1. Moreover, there exist a group
isomorphism 0: G — H, a character n: G — T and a unitary w € L(H) such
that 0(ug) = n(g)wvsgyw* for every g € G, where (ug)gec and (vy)nen denote
the canonical generating unitaries of L(G) and L(H), respectively.

If B is an ICC group and B ~ [ is an action with infinite orbits, then
any group G belonging to WR(A, B ~ I), for some group A, is ICC (see
Lemma 4.11(b)). This implies that any G as in Theorem 1.3 is ICC.

In Section 2, we observe that examples of wreath-like products G €
WR(A, B ~ I) satisfying the assumptions of Theorem 1.3 naturally occur in
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the context of group theoretic Dehn filling. (While in this paper we focus on
wreath-like products G with abelian base A, in the companion paper [CIOS23]
we construct an abundance of wreath-like products with non-commutative
bases.) Here we mention just one particular case. For an element h of a
group H, we denote by ((h)) the minimal normal subgroup of H containing h.

THEOREM 1.4. Let H be a torsion-free hyperbolic group, and let h € H
be a non-trivial element. For any sufficiently large k € N, the group H/{h*)
1s hyperbolic, ICC, and we have

H/[(R*), (h*)) € WR(Z, H/(h*) ~ 1),

where the action H/{h*) ~ I is transitive with finite cyclic stabilizers.

In fact, we prove a more general result that also holds for hyperbolic
groups with torsion (see Theorem 2.6). Combining Theorem 1.4 with Theo-
rem 1.3, we obtain many examples of non-trivial, W*-superrigid, ICC groups
with property (T).

COROLLARY 1.5. Let H be a torsion-free hyperbolic group with prop-
erty (T), and let h € H \ {1}. For any sufficiently large k € N, the group
H/[(RFY), (h*)] is ICC and W*-superrigid.

Note that the group H/[{(h*)), {h*))] also has property (T) being a quotient
of H. Torsion-free hyperbolic groups with property (T) are abound; in fact,
every property (T) group is a quotient of a torsion-free, hyperbolic, property
(T) group by a result of Cornulier [Cor05]. Moreover, such groups are generic
in the Gromov randomness model at density 1/3 < d < 1/2 [KK13], [O1105].
Finally, we mention some concrete linear examples.

Ezample 1.6. Let L be a uniform lattice in Sp(n, 1). By Selberg’s lemma,
there exists a finite index torsion-free subgroup H < L. Being a finite in-
dex subgroup of L, H is also a uniform lattice in Sp(n,1) and, therefore, is
hyperbolic and has property (T).

Wreath-like products obtained via Theorem 1.4 are not, in general, reg-
ular. However, a little modification discussed in Section 2.3 allows us to con-
struct 280 regular wreath-like products satisfying the assumptions of Theo-
rem 1.3. Thus, we obtain the following.

COROLLARY 1.7. There exist 280 pairwise non-isomorphic, property (T),
1CC groups that are W*-superrigid.

The proof of Theorem 1.3 is given in Section 4.3 and relies on a se-
ries of techniques and ideas from deformation/rigidity theory (e.g., [Pop06al,
[Pop06¢], [Pop06d], [Pop07a], [Pop08], [Ioa07], [OP10], [CI10], [PV10], [loall],
[IPV13], [PV14b], [CIK15]). We refer the reader to the beginning of Section 4
for an outline of the proof of Theorem 1.3. This proof plays property (T)
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against properties of wreath-like product groups similar to properties of ordi-
nary wreath products.

Although wreath product groups Awr B are known to have remarkably
rigid von Neumann algebras (see, e.g., [Pop06¢c], [Pop06d], [Pop08], [loa07],
[loall], [IPV13], [IM22]), no wreath product Awr B, with A non-trivial abelian
and B torsion free, is W*-superrigid by [IPV13, Th. 1.2]. It is precisely the
presence of property (T) that allows us to prove a stronger rigidity statement
for wreath-like products G € WR(A, B ~ I). Using property (T) for G, rather
than just for the quotient group B, is one of the main novelties of this paper.
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2. Wreath-like products of groups

The main goal of this section is to prove Theorem 2.6, which is a more
general (and more precise) version of Theorem 1.4, and Corollary 1.7. We
begin by reviewing the necessary background.

2.1. Hyperbolic groups and their generalizations. We begin by recalling
the necessary definitions. A group G is hyperbolic if it is generated by a finite
set X and its Cayley graph Cay(G, X) is a hyperbolic metric space. This
definition is independent of the choice of a particular finite generating set X.
A hyperbolic group is called elementary if it contains a cyclic subgroup of finite
index.

An isometric action of a group G on a metric space S is acylindrical if for
every € > 0, there exist R, N > 0 such that for every two points z,y € S with
d(z,y) > R, there are at most N elements g € G satisfying

d(z,gz) <e and d(y,gy) <e.

Every group has an acylindrical action on a hyperbolic space, namely the
trivial action on the point. For this reason, we want to avoid elementary actions
in the definition below. Recall that an action of a group G on a hyperbolic
space S is non-elementary if the limit set of G on the Gromov boundary 0.5
has infinitely many points; for acylindrical actions, this condition is equivalent
to the requirement that G is not virtually cyclic and the action has infinite
orbits [Osil6, Th. 1.1].
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Definition 2.1. A group G is acylindrically hyperbolic if it admits a non-
elementary acylindrical action on a hyperbolic space.

Every proper action is acylindrical. Therefore, every non-elementary hy-
perbolic group G is acylindrically hyperbolic as witnessed by the proper action
of G on Cay(G, X) for any finite generating set X. The class of acylindrically
hyperbolic groups also includes many non-hyperbolic examples: mapping class
groups of closed surfaces of non-zero genus, Out(F,,) for n > 2, groups of defi-
ciency at least 2, most 3-manifold groups, and many other examples. For more
details, we refer to the survey [Osil8].

Every acylindrically hyperbolic group contains a unique maximal finite
normal subgroup [DGO17, Th. 2.24]). We denote it by K(G). We will need
the following result from [DGO17].

THEOREM 2.2 ([DGO17, Th. 2.35]). An acylindrically hyperbolic group G
is ICC if and only if K(G) = {1}.

Let H be a subgroup of a group G. We say that X C G is a relative
generating set of G (with respect to H) if G = (X U H). Associated to such a
relative generating set is the Cayley graph Cay(G, X U H), where the disjoint
union means that for any element a € X N H and any vertex g € G, there
are two edges in Cay(G, X U H) going from g to ga: one is labeled by a copy
of a from X and the other is labeled by a copy of a from H. We denote by
Cay(H, H) the Cayley graph of H with respect to the generating set H and
naturally think of it as a (complete) subgraph of Cay(G, X U H).

Definition 2.3. A subgroup H is hyperbolically embedded in a group G
if there exists a relative generating set X of G such that Cay(G,X U H) is
hyperbolic and for any n € N, there are only finitely many elements h € H
such that h can be connected to 1 in Cay(G, X U H) by a path of length at
most n avoiding edges of Cay(H, H).

For example, it is easy to see that H is hyperbolically embedded in the
free product H * Z, but not in the direct product G = H x Z. For details, we
refer to [DGO17].

Recall that an element g of a group G acting on a hyperbolic space S is
loxodromic if g acts as a translation along a bi-infinite quasi-geodesic in S. If
the action of G on S is acylindrical, this is equivalent to the requirement that
(g) has unbounded orbits (see [Osil6, Th. 1.1]). For example, if G is a hyper-
bolic group acting on its Cayley graph with respect to a finite generating set,
every infinite order element g € G is loxodromic. We will need the following.

THEOREM 2.4 ([DGO17, Th. 6.8]). Let G be an acylindrically hyperbolic
group. FEwvery loxodromic element g € G is contained in a unique mazximal
virtually cyclic subgroup E(g) such that E(g) < G.
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2.2. Wreath-like products associated to group theoretic Dehn filling. Let
F be a free group, and let R = ((r*)) for some k € N and r € F, where r is not
a proper power. The Cohen-Lyndon theorem on relation modules of 1-relator
groups proved in [CL63] implies that F//[R, R] € WR(Z,F/R ~ I), where the
action F'//R ~ I is transitive with stabilizers isomorphic to Z/kZ.

In this section, we show that this example has a natural analogue in the
context of group theoretic Dehn filling. We begin by briefly surveying the
relevant background. For more details, the reader is referred to [DGO17],
[0si07], [Sun20].

The classical Dehn surgery on a 3-dimensional manifold consists of cutting
off a solid torus, which may be thought of as “drilling” along an embedded knot,
and then gluing it back in a different way. The study of such transformations is
partially motivated by the Lickorish-Wallace theorem, which states that every
closed orientable connected 3-manifold can be obtained from the 3-dimensional
sphere by performing finitely many surgeries. The second part of the surgery,
called Dehn filling, can be formalized as follows.

Let M be a compact orientable 3-manifold with toric boundary. Topo-
logically distinct ways of attaching a solid torus to M are parametrized by
free homotopy classes of unoriented essential simple closed curves in OM, called
slopes. For a slope s, the corresponding Dehn filling M (s) of M is the manifold
obtained from M by attaching a solid torus to M so that the meridian of the
torus goes to a simple closed curve of the slope s. The fundamental theorem
due to Thurston [Thu82, Th. 1.6] asserts that if M\ dM admits a finite volume
hyperbolic structure, then M(s) is hyperbolic for all but finitely many slopes.
Note that, in the settings of Thurston’s theorem, we can think of s as an ele-
ment of m1(OM) < m1(M) and, by the Seifert—van Kampen theorem, we have

(2.1) m(M(s)) = mi(M)/(s)-

In group-theoretic settings, the role of the pair OM C M is played by a
pair of groups H < G and the existence of a finite volume hyperbolic structure
on M \ OM translates to the property that H is hyperbolically embedded
in G. Equation (2.1) suggests that the process of attaching a solid torus to M
must correspond to taking the quotient of G modulo the normal closure of an
element s € H. In fact, we can consider even more general quotients.

For a group G and a subset S C G, we denote by ((S)) the normal closure
of S in Gj; that is ((S)) is the smallest normal subgroup of G containing S.
The following result can be thought of as the algebraic analogue of Thurston’s
theorem.

THEOREM 2.5 (Dahmani—Guirardel-Osin). Let G be a group, and let H
be a hyperbolically embedded subgroup of G. There exists a finite subset F C
H \ {1} such that for any N <« H satisfying N N F = (), the natural map
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H/N — G/{N)) is injective and H/N <, G/{N)). (By abuse of notation, we
identify H/N with its image in G/{N)).)

For relatively hyperbolic groups, this theorem was obtained in [Osi07] (an
independent proof for torsion-free groups was given by Groves and Manning
in [GMO8]), and the general version was proved in [DGO17, Th. 2.27].

We now state the main result of this section. Recall that for a loxodromic
element g of an acylindrically hyperbolic group G, E(g) denotes the maximal
virtually cyclic subgroup of G containing g.

THEOREM 2.6. Let G be an acylindrically hyperbolic group, and let g € G
be a lorodromic element. Let d be a natural number such that (¢%) < E(g). For
every sufficiently large k € N divisible by d, the following hold:

(a) We have

(2.2) G/14g"), (9" )] € WR(Z,G/{g") ~ I),
where I is the set of cosets G/E(g){(g") and the action is by left multi-
plication. In particular, the action G/{g") ~ I is transitive.
(b) The stabilizers of the action G/{g*) ~ I are isomorphic to E(g)/{g").
(c) If G is ICC, then so is G/{g")).
(d) (Olshanskii [O1'93]) If G is hyperbolic, then so is G/{{g").

Note that Theorem 1.4 is a particular case of Theorem 2.6. Indeed, if G is
torsion-free, then so is E(g). Every torsion-free virtually cyclic group is cyclic
(see, for example, [JMNO8, Lemma 2.5]). Therefore, we can take d = 1 and
Theorem 1.4 follows.

For a group R, we denote by R® its abelianization; that is, R* =
R/[R,R]. The main ingredient of the proof of Theorem 2.6 is the follow-
ing result, which was stated and proved in [Sun20] using a slightly different
terminology.

THEOREM 2.7 (Sun [Sun20]). Let G be a group, and let H be a hyperbol-
ically embedded subgroup of G. There exists a finite subset F C H \ {1} such
that for any N <@ H satisfying N N F = (0, we have

(2.3) G/I{(N), (N)] € WR(N™,G/{(N) ~ I),
where I = G/H{N)), the action of G/{(N)) on I is by left multiplication, and
stabilizers of elements of I are isomorphic to H/N.

On the proof. Since our terminology is different from the one used by Sun,
we explain how to derive the theorem from the main result of [Sun20]. Consider
the short exact sequence

1— (N)™ — G/[(N), (N)] — G/{(N) — 1.
By [Sun20, Cor. 2.8], we have an isomorphism of G/{{N))-modules

ab ~v G a
(2.4) (N)* = gy NP,
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where the actions of G/{N) on (N)2® and H/N on N?" are induced by
conjugation. Note that we can assume H/N to be a subgroup of G/{N))
by Theorem 2.5. The standard description of the algebraic structure of the
induced module (see, for example, [Bro94, Ch. III, Prop. 5.1]) and (2.4) easily
imply (2.3). O

We are now ready to prove the main result of this section.

Proof of Theorem 2.6. By Theorem 2.4, we have E(g) <, G. Let F be a
finite subset of E(g) \ {1} such that the conclusions of Theorems 2.5 and 2.7
simultaneously hold true for H = E(g) and any N < H satisfying N N F = {).

Since k is divisible by d, we have (¢¥) <t E(g). Further, by taking k
sufficiently large, we can ensure the condition (g*)NF = (). By Theorem 2.7, we
have (2.2) where T is the set of cosets G/E(g){(¢*)) and the action G/{(gF) ~ T
is by left multiplication. In particular, the action G /{(g*)) ~ I is transitive and
the stabilizers are isomorphic to E(g){¢*))/{g*) = E(g)/({g*) by Theorem 2.5.
This gives parts (a) and (b) of the theorem.

The proof of (¢) makes use of a more general Dehn filling procedure with
multiple hyperbolically embedded subgroups and some other results about
acylindrically hyperbolic groups. Since these results are not used anywhere
else in our paper, we do not discuss them in detail. Instead, we refer the
reader to the appropriate places in the relevant papers.

Assume that G is ICC. By Theorem 2.2, we have K(G) = {1}. Let X be a
relative generating set of G with respect to H = E(g) satisfying the conditions
listed in Definition 2.3. Combining Proposition 5.14 and Corollary 3.12 from
[AMS16], we obtain an element h € G acting loxodromically on Cay(G, X L
H) such that E(h) = (h) and the collection of subgroups {E(g), E(h)} is
hyperbolically embedded in G (for the definition of a hyperbolically embedded
collection of subgroups, see [DGO17, Def. 4.25]).

By [DGO17, Th. 7.19], which is a more general version of Theorem 2.5, we
can choose a finite subset F' C E(g) \ {1} so that for any N < E(g) satisfying
NNF = (), the natural maps F(g)/N — G/{N)) and E(h) — G/{N)) are injec-
tive and the collection {E(g)/N, E(h)} is hyperbolically embedded in G/{N))
(by abuse of notation, we identify E(g)/N and E(h) with their isomorphic
images in G/{N)). In particular, this is true for N = (g*) for all sufficiently
large k divisible by d. By [DGO17, Prop. 2.10], torsion-free hyperbolically em-
bedded subgroups are malnormal; therefore, the infinite cyclic subgroup E(h)
is malnormal in G/{{g*). This easily implies that K (G/{{g*)) = {1}, which is
equivalent to G/{(g*) being ICC by Theorem 2.2.

Finally, part (d) was proved for all sufficiently large k divisible by d in
[01'93, Th. 3. O
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2.3. Regular wreath-like products. In this section, we use Theorem 2.6 to
construct (uncountably many) regular wreath-like products satisfying the as-
sumptions of Theorem 1.3. We begin with a lemma that allows us to obtain
regular wreath-like products from non-regular ones. We restrict ourselves to
transitive actions for notational simplicity; the generalization to arbitrary ac-
tions is straightforward.

LEMMA 2.8. Let A, B be arbitrary groups, B ~ I a transitive action of B
on a set I, and let W € WR(A, B ~ I). Further, let D < B, and let V <W
denote the full preimage of D under the canonical homomorphism W — B.
Suppose that the induced action D ~ I is free, and let O denote the set of
D-orbits in I. Then V.€ WR(C, D), where C is the direct sum of |O|-many
isomorphic copies of A.

Proof. Throughout the proof, we use the notation introduced in Defini-
tion 1.2. Fix some ig € I. Since the action B ~ [ is transitive, there exists
T C B such that for every orbit o € O, there is a unique ¢ € T such that
tig € o. For every d € D, we define

Ig={dtig [t €T} CT and Cq=( |4 ) <AD.

i€ly

Note that the equality dtig = d't'ip implies t = ¢ since otherwise dtig and
d't'iy belong to distinct D-orbits. Since the action of D on I is free, we obtain
d = d'. Therefore, |Iy| = |T| =|O| for all d € D and I;N Iy = (. The former
equality implies that Cy is the direct sum of |O]-many isomorphic copies of A
for every d. Further, the decomposition I = | |;cp Iq yields the decomposition
AD = @Pacp Ca- Finally, for every v € V, we have

’L)CdU_l = <U Adti0> U_l = <U UAdtiov_1> = <U Aa(v)dti0> = Ca(v)cb

teT teT teT
and the result follows. O

In the next result, we use the notation of Theorem 2.6.

COROLLARY 2.9. Let G, g, and k satisfy the assumptions of Theorem 2.6.
Suppose, in addition, that Gy is a normal subgroup of G such that GoNE(g) =
(g¥). We keep the notation ((gF) for the normal closure of g* in G. Then

(g") < Go and Go/[{g"), (¢*)] € WR(A, Go/ ("), where A is free abelian.
Moreover, if |G : Go| = oo, then A is of countably infinite rank.

Proof. Clearly, we have ((g*) < Gy since g* € Gy and Gy < G. Let W =
G/1{g"), (g*)], and let e: W — G/{g*) be the canonical homomorphism
associated with the wreath-like structure of W described in parts (a) and (b) of
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Theorem 2.6. Further, let V = Go/[{g*), (¢*)] denote the image of G in W.
Since Go N E(g) = {¢*) and Gy <1 G, the induced action of £(V) = Go/{(g*)
on the set I = G/E(g){(g") is free and Lemma 2.8 applies. It remains to note
that if |G : Gg| = oo, then the number of £(V')-orbits in [ is infinite since
le(W) :e(V)|=|W :V|=|G: G| and all stabilizers of the action (W) ~ I
are finite by Theorem 2.6(b). O

We will also need the following.

LEMMA 2.10 ([BOO08, Cor. 1.2]). For any finitely presented torsion-free
group @, there exists a short exact sequence 1 - N — G — Q — 1, where G
is torsion-free hyperbolic and N is a non-trivial group with property (T).

We are now ready to construct the first examples of regular wreath-like
products satisfying the assumptions of Theorem 1.3.

PROPOSITION 2.11. There exists a property (T) group V€ WR(Z*>, B),
where B is a non-trivial, ICC subgroup of a hyperbolic group, and Z*° denotes
the free abelian group of countably infinite rank.

Proof. Let S be any finitely presented, residually finite, torsion-free group
with property (T); e.g., we can take S = H, where H is the group constructed
in Example 1.6. By Lemma 2.10, there exists a short exact sequence

15N->GLHSxZ—1,

where G is torsion-free hyperbolic and N is a non-trivial normal subgroup of
G with property (T). Let g be an element of G such that y(g) € S\ {1}. It
is well known that every torsion-free virtually cyclic group is cyclic (see, for
example, [Sta68]). Thus, replacing g with a generator of E(g) if necessary, we
can assume that E(g) = (g).

By Theorem 2.6 (applied in the particular case d = 1), there is K € N
such that, for every k > K, we have

(2.5) W =G/[(g"). (g")] € WR(Z,G/{g") ~ I),
where G/{(g*)) acts on I = G/E(g){g*) by left multiplication, and conditions

(b)—(d) of the theorem hold. Since S is residually finite, we can find a finite
index normal subgroup Sy <1 S such that
(2.6) v(g') ¢ So x {1} forall 1 <i<K.
Let Gy <G be the full preimage of Sy x {1} < S x Z under 7. By the choice of
So (see (2.6)), we have GoN E(g) = (g*) for some k > K. Let W be the group
defined by (2.5), and let V' be the image of Go in W. Note that |G : Gy| =
|(SxZ) : (Spx{1})| = co. By Corollary 2.9, we have V€ WR(Z>, Go/{(g*)),
where ((g*)) is the normal closure of g¥ in G' (not in Gy).

Recall that the class of groups with property (T) is closed under extensions
and taking subgroups of finite index. Thus, the group Gy has property (T)
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being an extension of N by a finite index subgroup Sy of S. Hence, V' has prop-
erty (T). By part (d) of Theorem 2.6, the group B = G/{{g*) is hyperbolic
and ICC. To complete the proof, it remains to show that D = Go/{(g*)) is ICC.

To this end, we first note that D # {1} since otherwise V = Z>, which
contradicts the fact that V has property (T). Further, since D < B and B is
ICC, D must be infinite. Combining this with property (T), we conclude that
D cannot be virtually cyclic. Thus, D is a non-elementary subgroup of the
hyperbolic group B. By Theorem 2.2, it suffices to show that K (D) = {1}.
Note that K (D) is characteristic in D and, therefore, normal in B. Since B is
ICC, we have K (D) < K(B) = {1} and the desired result follows. O

To obtain an uncountable family of regular wreath-like products satisfying
the assumptions of Theorem 1.3, we will combine Proposition 2.11 with the
following.

LEMMA 2.12. Let A, B be any groups, W € WR(A, B). We identify A
with the subgroup Ai of the base Ppep Ay < W. For any N < A, we have
W/{N) € WR(A/N, B).

Proof. For every b € B, we define N, = uNu~!, where u is an element of

W such that
(2.7) e(u) = b.
Note that the subgroup NV, is independent of the choice of a particular element
u € W satisfying (2.7). Indeed, if v € W is another element such that e(v) = b,
then u—'v € AP). Obviously, N < AB). Therefore, (u~'v)N(u"1v)~' = N,
which implies uNu~! = vNv~L.

It is easy to see that (V) = @yep Np. Hence, W/{(NV)) splits as

1 — @D Ay/Ny — W/(NY) 25 B — 1,
beB
where ¢ is induced by the canonical homomorphism W — B. It remains to
note that we have w(Ay/Ny)w™' = Ags)p /Ny for all w € W/{N) and
be B. O

We are now ready to prove the result announced in the introduction.

Proof of Corollary 1.7. Let V. € WR(Z>, B) be the group provided by
Proposition 2.11. For every infinite set of primes P = {pi1,p2, ...}, the appli-
cation of Lemma 2.12 to the subgroup pi1Z & poZ & - - - <1 Z° yields a group
Vp € WR (@peP Z/pZ, B). The group Vp has property (T) being a quotient
of V. Proposition 2.11 guarantees that B is a non-trivial, ICC subgroup of a
hyperbolic group.

It remains to note that Vp 2% Vpr whenever P # P’. Indeed, B does not
contain any non-trivial, normal, abelian subgroups since it is hyperbolic and
ICC. Therefore, Vp has a unique maximal abelian normal subgroup isomorphic
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to a direct sum of copies of @,cp Z/pZ. Thus, the maximal abelian normal
subgroup of Vp contains an element of prime order p if and only if p € P and
the result follows. O

3. Preliminaries on von Neumann algebras

3.1. Tracial von Neumann algebras. We start by recalling some terminol-
ogy and constructions involving tracial von Neumann algebras; we refer the
reader to [AP] for more information.

A tracial von Neumann algebra is a pair (M, 1) consisting of a von Neu-
mann algebra M and a trace 7, i.e., a normal faithful tracial state 7: M — C.
For 2 € M, we denote by ||z the operator norm of 2 and by ||z||s = 7(z*z)/?
its (so-called) 2-norm. We denote by L2(M) the Hilbert space obtained as the
closure of M with respect to the 2-norm, by % (M) the group of unitaries of
M, and by (M) = {x € M | ||z|| < 1} the unit ball of M. We always assume
that M is separable, i.e., that L2(M) is a separable Hilbert space. We denote
by Aut(M) the group of 7-preserving automorphisms of M. For u € % (M),
the inner automorphism Ad(u) of M is given by Ad(u)(x) = uzu*. By von
Neumann’s bicommutant theorem, for any set X C M closed under adjoint,
X" € M is the smallest von Neumann subalgebra that contains X. For a
set I, we denote by (./\/ll ,7) the tensor product of tracial von Neumann alge-
bras ® ;er(M, 7). Given a subset J C I, we view M as a subalgebra of M/
by identifying it with (® jesM)® (®;ep s1).

An M-bimodule is a Hilbert space ‘H equipped with two normal *-homo-
morphisms 71 : M — B(#H) and mp: M°P — B(#H) whose images commute. We
write x&y = 1 (x)ma(y°P)& for £ € H and define a *-homomorphism 73, : M®a1e
MPOP — B(H) by letting my(x ® y°P) = m1(x)m2(y°P). Examples of bimodules
include the trivial M-bimodule L2(M) and the coarse M-bimodule L*(M) ®
L2(M). We say that H is weakly contained in another M-bimodule K and
write H Cweak IC if ||y (T)|| < ||7ic(T)|| for every T' € M ®a15 MOP.

Let @ C M be a von Neumann subalgebra, which we always assume to be
unital. We denote by @' "M = {x € M | zy = yx for all y € Q} the relative
commutant of Q in M, and by M (Q) = {u € % (M) | uQu* = Q} we denote
the normalizer of Q in M. The center of M is given by Z (M) = M’ N M.
We say that Q is regular in M if /M (Q)" = M. If Q@ C M is regular and
maximal abelian, we call it a Cartan subalgebra.

Jones’ basic construction (M, eg) is defined as the von Neumann subal-
gebra of B(LQ(M)) generated by M and the orthogonal projection eg from
L2(M) onto L2(Q). The basic construction (M, eg) has a faithful semi-
finite trace given by Tr(zegy) = 7(zy) for every z,y € M. We denote
by L2((M,eg)) the associated Hilbert space and endow it with the natu-
ral M-bimodule structure. We also denote by Fg: M — Q the unique
T-preserving conditional expectation onto O.
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The tracial von Neumann algebra (M, 1) is called amenable if there exists
a sequence &, € L2(M)®L2*(M) such that (z&,,&,) = 7(z) and ||z&, — &nzll2—0
for every z € M.

Let P C pMp be a von Neumann subalgebra. Following Ozawa and Popa
[OP10, §2.2] we say that P is amenable relative to Q inside M if there exists a
sequence &, € L2((M, eg)) such that (x&,,&,) — 7(z) for every x € pMp, and
ly&n — €nylla — 0 for every y € P. We say that P is strongly non-amenable
relative to Q inside M if there exist no non-zero projection p’ € P’ N pMp
such that Pp’ is amenable relative to Q inside M.

Remark 3.1. Assume that P is amenable relative to ) inside M. By
the proof of [OP10, Th. 2.1], in the definition of relative amenability we may
take & = G2 for positive ¢, € LY((M,eg)). Thus, (&ur, &) = Tr(Coz) =
(x&n,&n) — 7(x) for all x € M. Using a convexity argument (see the proof
of [AP, Lemma 13.3.11]), we find 7, € L2({M, eg))®> such that ||{-n,,n,) —
T =0, [y ) — 7()Il = 0 and [lynn — mnylla — 0 for ally € P

Following [Pop06a, Prop. 4.1], we say that @ C M has the relative property
(T) if for every € > 0, we can find a finite set ' C M and § > 0 such that if H
is an M-bimodule and § € H satisfies || (-£, &) —7(-)|| < 0, |[(¢-, &) —7(-)|| < § and
||x€ — Ex|| < § for every & € F, then there exists n € H such that |[n —¢|| < e
and yn = ny for every y € Q.

3.2. Intertwining-by-bimodules. We recall from [Pop06c, Th. 2.1, Cor. 2.3]
Popa’s intertwining-by-bimodules theory.

THEOREM 3.2 ([Pop06¢]). Let (M, T) be a tracial von Neumann algebra,
P C pMp,Q C qMq be von Neumann subalgebras, and ¢ C % (P) be any
subgroup that generates P as a von Neumann algebra. Consider the following
conditions:

(a) there exist projections pg € P,qo € Q, a x-homomorphism 0: pyPpy —
q0Qqo and a non-zero partial isometry v € qoMpo such that 0(z)v = vx
for all x € poPpo;

(b) there is no sequence u, €9 satisfying || Eo(x*uny)|l2—0 for all z,y € pM;

(c) there exists a non-zero element a € P' N p(M,eg)p such that a > 0 and
Tr(a) < oo.

Conditions (a) and (b) are equivalent in general, and (a), (b) and (c) are
equivalent if ¢ = 1.

If (a) or (b) hold true, we write P <y Q and say that a corner of P
embeds into Q inside M. If Pp' <x Q, then for any non-zero projection
p' € P'NpMp, we write P <5, Q.



WREATH-LIKE PRODUCTS OF GROUPS 1275

3.3. Cocycle superrigidity. In this subsection, we record a cocycle super-
rigidity result that will be needed to prove Theorem 1.3. Let G be a count-
able group. By a trace preserving action G ~? (P,7) we mean a homomor-
phism o: G — Aut(P), where (P,7) is a tracial von Neumann algebra. A
1-cocycle for o is a map w: G — % (P) such that wg, = wyos(wy) for every
g,h € G. Any character n: G — T gives a (trivial) 1-cocycle for 0. Two
cocycles w,w': G — % (P) are called cohomologous if there is u € % (P) such
that w; = uw*wyo,(u) for every g € G. Let p € P be a projection. A gener-
alized 1-cocycle for o with support projection p is a map w: G — P such that
wywy = p,wywg = a4(p) and wgp, = wgog(wy) for every g,h € G.

Ezample 3.3. We continue by recording several examples of trace preserv-
ing actions.

(a) Let G ~ I be an action on a countable set I and (P,7) be a tracial
von Neumann algebra. The generalized Bernoulli action G ~° (P! 71)
associated to G ~ I is given by oy(x) = ®ierr,-1,; for all g € G and
T = ®jerz; € P! with {i € I'| x; # 1} finite. If i € I, we let Stabg(i) be
the stabilizer of 7 in G and denote P} by Pt

(b) Let K < G be a subgroup and K ~? (P, 7) be a trace preserving action.
Let ¢: G/K — G such that ¢(h)K = h for every h € G/K. Define
c: G x G/K — K by c(g,h) = ¢(gh)"tgp(h) for g € G and h € G/K.
For h € G/K, let pp,: P — PE/K be the embedding given by identifying
P with P". The co-induced action G ~° PS/K is given by the formula
ag(pr()) = pgn(0e(gn(x)) for all g € G,h € G/K and x € P.

(¢c) Let G ~ I be an action on a countable set I and (P, 7) a tracial von
Neumann algebra. Following Krogager and Vaes [KV17, Def. 2.5], we
say that a trace preserving action G ~° (P, 7) is built over G ~ I
if it satisfies o4(P?) = P9* for every g € G and i € I. Let J C [
be a set that meets each G-orbit exactly once. For ¢ € J, note that
o4(P?) = P! for every g € Stabg(i). Thus, we have a trace preserving
action Stabg(i) ~ P* = P. We denote by G ~% PG/Staba(i) the co-
induced action. Then, as explained right after [KV17, Def. 2.5], o is
conjugate to the product of co-induced actions ®;cjo;.

The observation from [KV17] recalled in Example 3.3(c) implies the fol-
lowing.

LEMMA 3.4. Let A, B be countable groups and B ~ I be an action on a
countable set I. Let GEWR(A,B~I), e: G— B be the quotient homomor-
phism and (ug)geq the canonical generating unitaries of L(G). Let G ~ I and
G 7 L(AD) = L(A) be the action and the trace preserving action given by
g-i=c¢(g)i and o4 = Ad(ugy) for every g € G andi € I.
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Then o is built over G ~ I. Moreover, let J C I be a set that meets
each G-orbit exactly once. For i € J, consider the trace preserving action
Stabg(i) ~ L(A;) given by (pi)g(un) = ugng—1 for every g € Stabg(i) and
h € A;. Let o; be the action of G obtained by co-inducing p;. Then o is
conjugate to R;c jo;.

Proof. Since o4(L(A;)) = L(Ag.;) for every g € G and i € I, o is built over
G 1. Ifi e Jand g € Stabg(i), the restriction of o4 to L(A;) is (p:)g, and
the conclusion follows. O

For further reference, we record the following consequence of Lemma 3.4.

Remark 3.5. Assume that A is abelian. Then the conjugation action of
G on AU) gives rise to an action B = G/AD) ~* L(AWD). Explicitly, for
g € B, we have oy = 05, where g € G is any element such that (g) = g.
Lemma 3.4 implies that « is built over B ~ I. Moreover, « is conjugate to
®iega;, where «; is obtained by co-inducing the action Stabp(i) ~" L(A4;)
given by (7;)g = (p;)5 for every g € Stabpg(i). In particular, if I = B endowed
with the left multiplication action of B, then ¢ and « are conjugate to the
generalized Bernoulli actions G ~ L(A)? and B ~ L(A)B, respectively.

In the proof of Theorem 1.3, we will use Lemma 3.4 in combination with
the following extension of Popa’s cocycle superrigidity theorems.

THEOREM 3.6. Let G be a countable group with property (T), G ~ I be
an action on a countable set I with infinite orbits, and (P, 7) be a tracial von
Neumann algebra. Suppose that G ~7 (P!, 7) is a trace preserving action built
over G ~ I. Then the following hold:

(a) Any 1-cocycle for o is cohomologous to a character of G. More gener-
ally, given a trace preserving action G ~* (Q,7), any 1-cocycle w: G —
% (P''® Q) for the product action o @ X is cohomologous to a 1-cocycle
taking values into % (Q) C % (P'® Q).

(b) Any generalized 1-cocycle for o has support projection 1.

Theorem 3.6 extends results of Popa in [Pop06b], [Pop07a] that cover
Connes-Stgrmer and classical Bernoulli actions. If G ~ I has finitely many
orbits, part (a) is a consequence of [Dril8, Th. 3.1]. In general, Theorem 3.6
follows by adapting the proof of [VV15, Th. 7.1]. We explain this briefly below,
leaving the details to the reader.

Proof. Assume first that the action G ~ I has finitely many orbits. By
[KV17] (see Example 3.3(c)), o is a product of finitely many co-induced actions.
Since G has property (T) and G ~ I has infinite orbits, part (a) follows from
[Dri18, Th. 3.1].

In general, adapting the proof of [VV15, Th. 7.1] shows that Theorem 3.6
holds if o is the generalized Bernoulli action G' ~ (P!, 7) associated to the
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action G ~ I. To see this, assume the notation from [VV15, Th. 7.1]. Since G
has property (T), Step 2 in the proof of [VV15, Th. 7.1] holds for ¥ = G. Then
Steps 3—6 in that proof, which only use Step 2 and that G ~ [ has infinite
orbits, also hold for ¥ = G. This justifies our claim. Similarly to [KV17,
Th. 2.6], the above proof can be reproduced verbatim to get the conclusion
under the more general assumption that o is built over G ~ I. U

3.4. Cartan subalgebras and equivalence relations. In this subsection, we
first recall the connection between Cartan subalgebras and countable equiva-
lence relations and then record two conjugacy results for Cartan subalgebras.

If G ~ (X,p) is a p.m.p. (probability measure preserving) action of a
countable group G, then its orbit equivalence (OFE) relation Z(G ~ X) =
{(z1,79) € X? | G-21 = G - 2} is countable p.m.p. Conversely, every
countable p.m.p. equivalence relation Z on (X, u) arises this way [FM77a,
Th. 1]. The full group of %, denoted by [Z#], consists of all automorphisms
0 of (X, ) such that (0(x),z) € Z for almost every z € X. For a 2-cocycle
c € Z*(#,T), we denote by L.(Z) the tracial von Neumann algebra associated
to Z and ¢ [FM77b, §2]. It is generated by a copy of L*(X) and unitaries
(u6)gepn such that ugauy = a o @1 for every a € L™°(X) and 0 € [#Z]. When
¢ =1 is the trivial 2-cocycle, we use the notation L(Z).

Let M be a II; factor and A C M be a Cartan subalgebra. Identify A =
L*>(X) for a standard probability space (X, u). For u € A)(A), let 6, be a
measure space automorphism of (X, z1) such that uau* = aof, ! for every a € A.
The equivalence relation of the inclusion A C M, denoted Z := Z(A C M), is
the smallest countable p.m.p. equivalence relation on (X, 1) such that 6, € [Z]
for every u € A#((A). Then there is a 2-cocycle ¢ € Z*(%,T) such that the
inclusion (A C M) is isomorphic to (L*°(X) C L.(%Z)) [FM77b, Th. 1].

The following two lemmas are extracted from the proofs of Theorems 6.1
and 8.2 in [loall], respectively. However, for the reader’s convenience, we
include detailed proofs.

LEMMA 3.7 ([loall]). Let M be a I, factor, A C M be a Cartan subal-
gebra and D C M be an abelian von Neumann subalgebra. Let C = D'NM and
assume that C <5 A. Then there exists u € % (M) such that D C uAu* C C.

Proof. Let Cy C C be a maximal abelian von Neumann subalgebra. Then
Co contains Z(C) and hence D. Thus, ChN M C D'NM = C, and hence Cy is
maximal abelian in M.

Let p € Cp be a non-zero projection. Since C <% A, we get that Cop <m
A. Since Cy, A C M are maximal abelian, [Pop0O6a, Th. A.1] (see also [Vae07,
Lemma C.3]) provides non-zero projections p’ € Cop and ¢ € A such that
Cop' = v(Agq)v* for a partial isometry v € M satisfying vo* = p’ and v*v = ¢.
Moreover, since A C M is a Cartan subalgebra and M is a II; factor, the
same holds if ¢ is replaced by any projection ¢’ € A with 7(¢") = 7(q).
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By using this fact and a maximality argument, we can find projections
(pi)ier C Co, (¢i)icr C A and partial isometries (v;);e; C M such that we have
ShicrPi = >oi—1qi = 1 and Cop; = v;i(Agi)v},viv] = pi,vjv; = ¢; for every
i € I. It follows that u = Y ,c;v; is a unitary in M such that Cy = uAu®.
Thus, D C uAu* C C, which proves the conclusion. O

LEMMA 3.8 ([loall]). Let M be a II; factor, A C M a Cartan subalgebra,
D C M an abelian von Neumann subalgebra, and let C = D' N M. Assume
that C <54 A and D C A C C. Let (ag)gec be an action of a group G on C
such that oy = Ad(ug) for some ug € Np(D) for every g € G. Assume that
the restriction of the action (ag)geq to D is free.

Then there is an action (B¢)gec of G on C such that

(a) for every g € G, we have that B4 = a4 o Ad(wy) = Ad(ugwy) for some
wg € %(C); and

(b) A is (Bg)gec-invariant and the restriction of (8¢)gec to A is free.

Moreover, if the action (ag)gec on C is weakly mizing, then we can find

(Bg)gec-invariant projections p1, .. .,p, € A with Z?Zl p; =1 for some k € N,

such that the restriction of (By)gec to Apj is weakly mizing for every 1<j<k.

Remark 3.9. Assume the notation of Lemma 3.8. If (ug), .o C AMm(D)
are such that uj,ugu, € D for every g,h € G, then (Ad(ug))gec defines an
action of G on C.

For k € N, we denote by D;(C) C Mg(C) the subalgebra of diagonal
matrices.

Proof. Since C <5, A, C is a type I algebra. We can thus decompose
Z(C) = @i>1 Zi such that C = P;>1(Z @My, (C)) for a strictly increasing,
possibly finite, sequence (ki) C N. Since any two maximal abelian subalgebras
of a type I algebra are unitarily conjugate (see, e.g., [Vae07, Lemma C.2]) we
may assume that A = @, (Z; @Dy, (C)).

Since the action (Oég)_geg on C leaves % invariant, for every i, we can
define a new action (8y)gec on C by letting

By = @(aglz ® Idei(C)) for every g € G.
i>1
If g € G, then since the automorphisms o, and 3, of C are equal on its center,
%, by [KR86, Cor. 9.3.5] we can find wy € % (C) such that 8, = ag 0 Ad(wy),
which proves (a).

To prove (b), note first that (54)4ec leaves A invariant. Second, let g € G
such that f,(z) = x for every x € Ap for some non-zero projection p € A.
We may assume that p = z ® ¢, where z € Z; is a non-zero projection and
q € Dy, (C) is a minimal projection for some i. Then ay4(x) = x for every
x € Zz. If r € D denotes the support of Ep(z), then as D C 2 and
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ay(D) = D, by projecting onto D we get that ay(x) = z for every x € Dr.
Since 7 # 0 and the restriction of (ag)ger to D is free, we get that g = e. Thus,
the restriction of (8¢)geq to A is free.

To prove the moreover assertion, assume that the action (agy)4eq on C is
weakly mixing. Then C is of type I; for some k& € N, so we can write C =
Z @M(C) and A = Z®@Dg(C). Let q1,...,qr be the minimal projections
of D(C). Then p; =1®¢q; € A is (By)gec-invariant for every 1 < j < k.
Since the restriction of (ay)geq to Z is weakly mixing, so is the restriction of
(Bg)gec to Apj = Z ® q;. This finishes the proof. O

3.5. An intertwining result for property (T') subalgebras. We end this sec-
tion by using Popa and Vaes’ structure theorem for normalizers in crossed
products arising from actions of hyperbolic groups [PV14b] to establish the
following result.

THEOREM 3.10. Let G, H be countable groups and 6: G — H a homo-
morphism, where H is hyperbolic. Let G ~ (Q,T) be a trace preserving action
on a tracial von Neumann algebra (Q,7) and M = Q x G. Let P C pMp
be a von Neumann subalgebra that is amenable relative to Q x ker(d). Let
N = Mpmp(P)”, and assume there is a von Neumann subalgebra R C N with
the relative property (T) such that R Aap Q xker(6). Then P <5, Q xker(d).

Proof. Let (ug)gec C % (M) and (vp)nenw C % (L(H)) be the canoni-
cal unitaries. Following [CIK15, §3], define A: M — M®L(H) by letting
A(zug) = ruy @ vs(y) for every z € Q and g € G. Write MR L(H) = M x H,
where H acts trivially on M. Before proving the conclusion, we recall the
following fact proved in [CIK15, Prop. 3.4].

Fact 3.11. Assume that A(S) < v@L) MOL(E) for some von Neumann
subalgebra S C ¢Mgq and subgroup ¥ < H. Then S < Q@ x §~1(%).

Assume by contradiction that the conclusion is false. Then [DHI19, Lemma
2.4(2)] provides a mnon-zero projection z € N’ N pMp such that Pz £z
Q x ker(d). Since P is amenable relative to Q x ker(d), we get that A(P)
is amenable relative to A(Q x ker(d)) = Q® 1 and thus to M ®1. Since H is
hyperbolic, applying [PV14b, Th. 1.4] to A(Pz) C M Q@ L(H) gives that either
(1) A(P2) = pmsLm M@ 1Lor (2) A(Nz) is amenable relative to M @ 1 inside
MQL(H).

If (1) holds, then Fact 3.11 gives that Pz < Q x ker(d), which is a
contradiction. If (2) holds, then there is a sequence

Nn € L2(A(2)( MBL(H), MR1)A(2))®>

such that [|(-1n, 1) =7 ()| = 0, [0 ) =7 ()| = 0, and [lynn —nnyll2 — 0 for
every y € A(Nz) (see Remark 3.1). Since R CN has the relative property (T),
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by [Pop06a, Prop. 4.7], so does A(Rz) C A(Nz). Hence, there is a non-zero
n € L2 (AR)MBL(H), M®1)A(2)) such that yn = ny for every y € A(Rz).
Then ¢ = n*n € LY (A(2)(M @ L(H), M® 1)A(z)) is non-zero and satisfies ¢ >
0 and y¢ = Cy for every y € A(Rz). Let t > 0 such the spectral projection a =
1[t,5)(¢) of ¢ is non-zero. Then a € A(Rz)' N A(2)(MIL(H), M@1)A(z).
As ta < (, we get that Tr(a) < Tr({)/t < oo. Theorem 3.2 implies that
A(Rz) <menm) M®1. Applying Fact 3.11 again, we get that R <y Q %
ker(d), a contradiction. O

4. W*-superrigid groups with property (T)

The goal of this section is to prove Theorem 1.3. We begin with an
informal outline the proof of Theorem 1.3. For simplicity, let G € WR(A, B) be
a property (T) group, where A is non-trivial abelian and B is an ICC subgroup
of a hyperbolic group. Denote M = L(G) and assume that M = L(H) for
some arbitrary group H. We denote by (ug)gec C L(G) and (vh)pen C L(H)
the canonical generating unitaries.

The proof of Theorem 1.3 is based on a deformation/rigidity strategy,
which plays property (T) against two key properties of wreath-like product
groups that relate them to wreath product groups. Namely, letting P =
L(A®), we have

(i) the action G ~7 P = L(A)P given by o, = Ad(u,) is a generalized
Bernoulli action;

(ii) P € M is a Cartan subalgebra and R(P C M) is the orbit equivalence
(OE) relation of the Bernoulli action B AB where A is the dual of A.

Specifically, rather than (ii), we use the following “transfer principle”
plied by (ii). Let N =L(AwrB). f P®P C D C M®M is a subalgebra,
then R(P ® P C D) is a subequivalence relation of the OE relation of the prod-
uct action B x B ~ AB x AB. So, there is subalgebra PP C D C NN
such that the inclusions P&P C D and P®P C D have isomorphic equiva-
lence relations. In particular, if D is amenable, then D is amenable. The use
of this transfer principle is a main novelty of our approach.

Define the comultiplication A : M — M ® M by letting A(vy,) = vy @ vy,
h € H [PV10]. In the first part of the proof, following [loall], [[PV13], we ana-
lyze A and show that D := A(P)' N M ® M is essentially unitarily conjugated
to P®P. Since A(P) is amenable and has large normalizer, using Popa and
Vaes’ structure theorem [PV14b] for normalizers inside crossed products by hy-
perbolic groups as in [CIK15] allows us to essentially show that A(P) C P® P,
after unitary conjugacy. Next, as in [BV14], we use solidity results for general-
ized Bernoulli crossed products. Thus, applying the above transfer principle to
D and extending the solidity theorem of [CI10] (see Section 4.2), we derive that
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D is amenable. Another application of [PV14b] implies that D is essentially
unitarily conjugated to P @ P.

The second part of the proof is a “discretization argument.” By the first
part, we may assume that A(P)' N M@ M =P R P, after unitary conjugacy.
In particular, the group A(G) = (A(ug))gec normalizes P @ P. Moreover, the
resulting action of A(G) on P ® P descends to a free action of A(B). A second
application of our transfer principle gives a free action of A(B) = B on ABx AB
whose OE relation is contained in that of B x B ~ AB x AB. Since B has
property (T), a generalization of a theorem from [Pop06d] (see Section 4.1)
allows us to assume that A(B) C B x B, as groups of automorphisms of
AB x AB. Consequently, A(G) “discretizes” modulo % (P ® P): there are maps
01,02 : G — G and w : G — % (P ®P) such that A(uy) = wy(us, (g) @ Usy(g))
for every g € G.

In the last part of the proof, we first use the symmetry and associativity
properties of A to show that we may take §; and do to be the identity of G.
In other words, we have A(ug) = wy(uy @ ugy) for every g € G. So far we
have only used that B, but not G, has property (T). Another main novelty of
this paper is the way we use property (T) for G. We start by observing that
as G has property (T) and o is a generalized Bernoulli action by (i), Popa’s
cocycle superrgidity theorem [Pop07a] implies that any 1-cocycle for o ® o
is cohomologous to a character of G. Thus, since (wy)geq is a 1-cocycle for
o ® o, we can find a unitary w € P® P and a character p : G — T such that
wA(ug)w* = p(g)(ug ® ugy) for every g € G. But then a general result from
[IPV13] implies the conclusion of Theorem 1.3.

4.1. Strong rigidity for orbit equivalence embeddings. Popa’s deformation
rigidity /theory has been used to derive a number of powerful rigidity results for
von Neumann algebras associated to Bernoulli actions. To prove Theorem 1.3,
we need to extend two of such results from plain to generalized Bernoulli
actions.

Let B ~ (X, 1) = (YZ,v5) be a Bernoulli action of a countable group B.
In [Pop06¢], Popa discovered his malleable deformation of the crossed product
M = L*(X) x B. He used this in [Pop06¢c|, [Pop06d] to prove a series of
rigidity results under property (T) assumptions. In particular, in [Pop06d,
Th. 0.5], he obtained the following strong rigidity theorem for orbit equivalence
embeddings: if B is ICC and H ~ (X, i) is a free ergodic p.m.p. action of an
ICC group H admitting an infinite normal subgroup with the relative property
(T) such that H -z C B - x for almost every x € X, then § o H 0§~ C B for
some 0 € [Z(B ~ X)].

In [Pop08], Popa introduced his spectral gap rigidity principle and com-
bined it with the deformation/rigidity methods of [Pop06¢|, [Pop06d] to prove
solidity results for M. These methods were combined with those of [Ioa07] in
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[CT10] to prove the following relative solidity theorem: Q'N M is amenable for
any diffuse subalgebra Q C L*°(X).

In the proof of Theorem 1.3, we will need analogues of the above strong
rigidity for OE embeddings and relative solidity results for the product action
B x B~ (X x X, x p). To this end, we use results from [[PV13] to extend
these results to certain classes of generalized Bernoulli actions that include the
action B X B ~ (X x X, x p). More generally, we treat measure preserving
actions C' ~ (Z7, p”) that are built over an action C' ~ J, i.e., such that the
associated trace preserving action C' ~ L>(Z)”7 is built over C ~ J in the
sense of [KV17, Def. 2.5] (see Example 3.3(c)).

First, in this section, we extend [Pop06d, Th. 0.5] to a large class of gener-
alized Bernoulli actions. Although the next statement is ergodic-theoretic, as in
[Pop06d], its proof relies crucially on the framework of von Neumann algebras.

THEOREM 4.1. Let B be an ICC group and B ~® (X,u) = (Y1)
be a measure preserving action built over an action B ~ I, where (Y,v) is
a probability space. Let B = B x Z/nZ and ()?, p) = (X X Z/nZ,pu x c),
where n € N and c is the counting measure of Z/nZ. Consider the action
B A (XV, n) given by (g,a) - (x,b) = (g-z,a+0).

Let D be a countable group with a normal subgroup Dgy such that the pair
(D, Do) has the relative property (T). Let Xy C X be a measurable, non-
negligible set and D ~P (Xo, x,) be a weakly mizing free measure preserving

action such that D -x C B-x for almost every x € Xo. Assume that for every
i € 1, there is a sequence (hy,) C Do such that for every s,t € B, we have
w({x € Xo | hm - x € s(Stabp(i) X Z/nZ)t - x}) — 0, as m — 0.

Then there exist a subgroup By < B, a finite normal subgroup K <1 By,
an isomorphism 6: D — B1/K, a measurable set X1 C X = X x {0} and
0 € [%#(B ~ X)| such that

(a) X1 is a fundamental domain for ok, i.e., X = | Jpex a(k)(X1);

(b) 0(Xo) = X1 so, in particular, i(Xo) = p(X1) = |K|7! < 1; and

(c) 0o B(h) =~((h)) o0 for every h € D, where B1/K ~Y (X1, px,) is the
action given by {v(gK)z} = a(gK)x N X, for every g € By and x € X;.

Assume additionally that for every g€ B\{1}, there is a sequence (l,,) C D
such that p({z € Xo | Iy, - x € s(Cp(g) X Z/nZ)t - x}) — 0, as m — oo for all
s,t € B. Then K = {1}.

Remark 4.2. The action By /K ~7 (X1, pjx, ) is isomorphic to the natural

quotient action By/K ~ (X/K, i), where fi is the push-forward of p through
the quotient map X — X/K.

The proof of Theorem 4.1 relies on the following result, which is a direct
consequence of [IPV13].
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COROLLARY 4.3 ([IPV13]). Let B be an ICC group, B ~ I be an ac-
tion, (A,T) be a tracial von Neumann algebra and B ~ (A!,7) be a trace
preserving action built over B ~ I. Let M = Al x B and (N, 7) be a tracial
factor. Let @ C p(M &N )p be a von Neumann subalgebra with the relative
property (T) such that Q Ay za (A x Stabp(i))@N for all i € I. Let
P = Nyaimanp(Q)"

Then there exists v e M N such that v*v = p and vPv* C L(B)®N.

Proof. Assume that B ~ A is the generalized Bernoulli action associated
to B~ I. For F C I, let MF = (A" x Stabp(F))@N. Let 4y = L(B)QN.
Let po € Z°(P) be a non-zero projection. Since Q 4z (Al xStabg(i)) @ N
for all i € I, and Qpy C po(M @ N)pp has the relative property (T), the proof
of [IPV13, Th. 4.2] shows that Opy < g A -#F for a finite, possibly empty, set
F C I. We claim that F = (). Otherwise, if i € F, then Stabp(F) C Stabp(i)
and thus .#F C (A! x Stabp(i)) ® N, which would imply that Opy <z
(A xStabp(i)) ® N, contradicting our assumption. Thus, F = ) and therefore
Qpo <mgn Mp = L(B)®N. Further, IPV13, Lemma 4.1(1)] implies that
Ppo <man L(B)®@N. Since this holds for every non-zero projection py €
Z(P) and B is ICC, repeating the beginning of the proof of [IPV13, Cor. 4.3]
gives the conclusion.

In general, when B ~ A’ is built over B ~ I, the above proof and results
from [[PV13, §4] carry over verbatim to give the conclusion in this case. [

Proof of Theorem 4.1. Denote M = L>*(X) x B, M = L"o()?) x B and
N =L>*(Xy) x D. Denote by (ug)gep C M, (ﬂg)geg C M and (vp)pep C N
the canonical unitaries. For h € D and g € B, let Al ={zeXg|ht z=
g !-x}. Let pp = 1x,, and consider the x-homomorphism 7: N — po/qpo
given by 7(a) = a and 7(vp) = Z 5 Lagtg for every a € L>®(Xp) and h € D.
We view A as a subalgebra of M by identifying it with 7(A). We identify
M=MBM, (C) and endow M with the normalized trace 7 = 7 ® n L Tr.
We first claim that for every ¢ € I, we have
(4.1)
L(Do) # 7 (L¥(X) x Stabp(i)) ® M, (C) = L*®(X) x (Stabg(i) x Z/nZ).

Let i € I. Put By = Stabp(i) and By = By x Z/nZ. Let s,t € B and
a,b e L*(X) with ||a||, ||b]] < 1. If h € Dg, then

By o (%)% Bo (ausvh“tb)—a( Z &(5)(1Ag)ﬁsgt)b,
gEs—1Bot—1
thus

1By o oy, (@sontib)[3 < D~ (A7) = i{w € X | k™' @ € tBys-}).

gEs—1Bgt—1
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Using this fact, the hypothesis gives a sequence (h,,) C Dy such that

|’EL°°()?)x§0(

Since this holds for every s,¢ € B and a,b € Loo(f) with ||a||, ||b]| < 1, we con-
clude that ||EL°°(_3(V)>4§0 (cop,,d)||2 — 0 for every c,d € M, which proves (4.1).
Since (D, Dy) has the relative property (T), so does the inclusion L(Dg) C
L(D) by [Pop06a, Prop. 5.1]. As Dy < D is normal and B is ICC, using (4.1)
and Corollary 4.3 we find a partial isometry y € M such that yy* = po,
p: =y*y € L(B)®M,(C), and
(4.2) y"L(D)y € p(L(B) ® M, (C))p.
Thus, the group of unitaries (y*vpy)nep C % (p(L(B) @ M, (C))p) normal-
izes y*L>°(Xo)y C vap. Moreover, the action (Ad(y*vny))nep on y*L>(Xo)y
is isomorphic to § and so is weakly mixing. By applying [[PV13, Th. 6.1],

aﬂsvhmﬂtb) H2 — 0.

whose conclusion holds with d = 1 as y*L*°(Xy)y C pMp is a maximal abelian
subalgebra, we get that there exist

e a subgroup B; < B, a finite normal subgroup K <1 Bj, a character p: K — T
such that the associated projection px = |K|™1 3 1c i p(k)ur commutes with
{ug | g € Bi};

e an isomorphism §: D — B;/K;

e an «a(B)-invariant projection ¢ € L>(X); and

e a partial isometry v € L(B) @ M, 1 (C) with vo* =p

such that w = 7(q) ~'/?vq is a partial isometry satisfying ww* = p, w*w = pgq,

w* (y* L (Xo)y)w = (L*°(X)q)%px and we have that

(4.3) w* (Y upy)w = n(h)ug(h)p;(q for every h € D,

where 0: D — By and n: D — T are maps such that g(h)K = §(h) for every
h e D.

We next claim that «|p, is ergodic. Otherwise, we can find ¢ € I such
that By N By < Bj has finite index, where By = Stabp(i) for some i € I
(see [PVO08, Prop. 2.3]). By (4.1) there is a sequence (h,,) C D such that
| B (By) &M, (C) (@VR,, ) |2 — O for all a,b € M. Since By N By < By has finite
index, we get || Eyp,)zm, ) (aVh,0)[l2 — 0 for all a,b € M. On the other
hand, (4.3) implies that || Ey,p,) g, (c) (W (" ony)w)|l2=n"12|| By, (pca)|2
= 0 for every h € D. This gives a contradiction.

Since «p, is ergodic, we further derive that ¢ =1 and thus w=v. Let
z=yv. Then z is a partial isometry such that zz*=pg, 2*z=pg, 2*L°(X¢)z=
L®(X)Xpy and z*vhz:n(h)u(g(h)pK for every h € D.

Let X7 C X be a fundamental domain for i and put p; = 1x,. Thent =
|K|Y/2ppy is a partial isometry such that tt* = pg, t*t = p; and L=(X)Xpg =
tL>(X1)t*. Hence £ = zt is a partial isometry such that ££* = pg, £*¢ = p1
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and £*L°(X()¢ = L°(X1). Thus, we can find 6 € [Z(B ~ X)] such that
0(Xo) = X1 and £*a€ = a0 6~ for every a € L°(X). Moreover, t*u pxt =
> kek P(E)prugrpr for every g € By. This implies that

(4.4) & vp€ = n(h) Z p(k)p1u§(h)kp1 for every h € D.
keK

If h € D, then Ad(¢*vpé)(a) =aofo B(h)~Loh ! for every a € L(X1). On
the other hand, using (4.4) it is easy to see that Ad(¢*vp€)(a) = aoy(5(h))~!
for every a € L*(X;). We thus conclude that 6 o 5(h) = v(d(h)) o 6 for every
h € D, as claimed.

To prove the moreover assertion, assume that K # {1} and let g € K\ {1}.
Let (I,,) C D be a sequence such that

p{x € Xo |l -x € s(Cp(g) X Z/nZ)t-z}) =0

as m — oo for all s5,¢ € B. As in the proof of (4.1) it follows that L(D) A5
L(Cp(g)) ®M,,(C). Since the set {hgh™! | h € B} C K is finite, By N Cp(g)
< By has finite index, so L(D) A5 L(B1) ® M, (C). This contradicts the fact
that Z*L(D)Z C L(Bl)pK. O

We end this section by showing that the weakly mixing condition from
Theorem 4.1 is automatically satisfied after passing to an ergodic component
of a finite index subgroup.

LEMMA 4.4 ([Pop06d]). Assume the setting of Theorem 4.1. Then there
exist a finite index subgroup S < D and a [5(S)-invariant non-null measurable
set Y C Xo such that p(B(h)(Y)NY) = 0 for every h € D\ S, and the
restriction of Big to Y is weakly mizing.

The proof follows from an argument of Popa. (See the proofs of [Pop06d,
Lemma 4.5], [Vae07, Th. 9.1] and [Ioall, Th. 8.2].) For completeness, we
reproduce the argument here.

Proof. Assume the notation from the proof of Theorem 4.1. In particular,
we recall that y € M is a partial isometry such that yy* = po = 1x, and
y*y = p. Moreover, by (4.2), we have y*L(D)y C p(L(B)®M,(C))p. Let
Po C L*°(Xp) be the x-algebra of f € L°°(Xj) such that the linear span of
{B(h)(f) | f € D} is finite dimensional. Let P C L*>(Xy) be the von Neumann
algebra generated by Pg.

Let f € Py, and denote by H the linear span of {5(h)(f)|h € D}. Then,
vpf = B(h)(f)vn € Huy, for every h € D. This implies that L(D)f C HL(D)
and thus (y*L(D)y)(y* fy) C (v*Hy)(y*L(D)y). Since H is finite dimensional,
by using (4.1) and (4.2) and applying [PV08, Prop. s 6.14 and 6.15], we get
that y* fy € p(L(B) ® M,,(C))p. Thus, we get that y*Py C p(L(B) @ M, (C))p
and so P C L*=(Xy) Ny(L(B) @ M,,(C))y*.
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This easily implies that P is completely atomic. Let Y C X be a non-null
measurable set such that 1y is a minimal projection of P. Let S < D be the
subgroup of h € D such that 5(h)(Y) = Y. Then S has finite index in D
and g(B(h)(Y)NY) =0 for every h € D\ S. If f € L>(Y) is such that the
linear span of {S(h)(f) | h € S} is finite dimensional, then f € P and hence
J € Cly. This shows that the restriction of fg to Y is weakly mixing. O

4.2. Solidity results for generalized Bernoulli crossed products. The sec-
ond ingredient needed in the proof of Theorem 1.3 is the following relative
solidity result, which generalizes [CI10, Th. 2].

THEOREM 4.5. Letm € N. For1 < j <m, let B; ~ I be an action such
that Stabp, (i) is amenable for everyi € I;. Also let (A;, ) be an abelian tracial

von Neumann algebra, B; ~ (AJI.j,T) be a trace preserving action built over
B ~ I and put M; = AJI-j X Bj. Denote A = @TzlA]Ij and M = @7 M;.
Let @ C pAp be a von Neumann subalgebra. Assume that Q 4 4 ®#k¢4§-j for
every 1 <k <m.

Then Q' N pMp is amenable.

To prove Theorem 4.5 we rely on a corollary of [IPV13, Th. 4.2, Cor. 4.3]:

COROLLARY 4.6 ([IPV13]). Let B ~ I be an action such that Stabp(i)
is amenable for every i € I. Let (A,T) be an abelian tracial von Neumann
algebra and B ~° (Al,7) be a trace preserving action built over B ~ I.
Denote M = Al x B, and let (N',7) be a tracial von Neumann algebra. Let
Q C p(AT@N)p be a von Neumann subalgebra such that Q' N p(MRN)p is
strongly non-amenable relative to 1 @N inside M QN

Then Q '<AI®N 1@/\/

Proof. Let P = Ny maap(Q)”. As P contains Q" N p(M@N)p, it is
strongly non-amenable relative to 1®@ N. Let i € I. Since A is abelian and
Stabp(i) is amenable, A’ x Stabp(i) is amenable and thus (A’ xStabg(i)) @ N
is amenable relative to 1 @ N. By [OP10, Prop. 2.4] we derive that P is strongly
non-amenable relative to (A’ x Stabg(i)) ®N. In particular, using [DHI19,
Lemmas 2.4 and 2.6], we get that P £z (A’ x Stabp(i)) @N.

Assume that o is the generalized Bernoulli action associated to B ~ 1.
Then the proof of [IPV13, Cor. 4.3] shows that (x) 7(u*(6, ® id)(u)) > 6,
for all w € %(Q), for some p € (0,1) and § > 0, where (0)),c(0,1) i3 the
tensor length deformation of M. Using (x), the proof of [IPV13, Th. 4.2]
shows that (a) Q@ < gn (AF x Stabg(F))®N for a finite non-empty set
F CI, or(b) Q<yznx LIB)®N. Since Q@ C AL@N, (a) implies that (c)
Q < yizn AT @N for a finite non-empty set F C I, and (b) implies that (d)
Q < g1gn 1N If (d) holds, then we have the desired conclusion. Otherwise,
if (¢) holds but (d) fails, then arguing as in the proof of [IPV13, Th. 4.2] (first
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paragraph of page 250) shows that P <,z (Al x Stabp(i)) @ N for some
1 € I, which gives a contradiction.

In general, assume that o is built over B ~ I. Let A= Ax L(Z). Define
the action B ~% Al built over B ~ I whose restriction to Al is ¢ and whose
restriction to L(Z)! is the generalized Bernoulli action associated to B ~ I.
Let M = Al x B. We claim that the M-bimodule # = L2(M) © L(M) is
weakly contained in the coarse M-bimodule, L*(M) ® L*(M). Assuming the
claim, the proof of [IPV13, Cor. 4.3] shows that (%) holds. Then the above
proof extends verbatim from generalized Bernoulli actions to actions built over
B ~ I to give the conclusion.

To justify the claim, let u be the canonical generating unitary of L(Z). Let
V be the set of unit vectors £ € A of the form E=u"au™ - ap_1u™*, where
ni,...,np € Z\ {0} and ay,...,a5_1 € AS C1. Let U be the set of n € AT of

the form n = (®16F fl-) ® (@iel\p 1), where F' C I is finite non-empty and
(&)ier C V. Then for all a,b € AL, g, h € B, we have

(augnbup,n) = 7(04(Mn")7(E4nrF ystab 5 (1) (@ttg) bun).-
This implies that the M-bimodule MnM is a subbimodule of

(M, e anr stab g (7)) Om K,

where K is the M-bimodule associated to the unital completely positive map
on M given by auy — 7(04(n)n*)auy. Since A is abelian and Stabp(F) is
amenable, A'\F' x Stabg(F) is amenable and thus MnM is weakly contained
in the coarse M-bimodule. Since H is isomorphic to an M-subbimodule of
P,,ce MnM, the claim follows. O

Proof of Theorem 4.5. Assume that R = Q' N pMp is not amenable. For
1 <k <m,let Ak = ®J7ﬁk“4j and /\/lk = ® jxxM;. Then the algebras
(Mk)1<k<m are in a commuting square position and we have N} 1/\/11C = C1.
By [PV14a, Prop. 2.7], there is 1 < k < m such that R is not amenable
relative to M\k Using [DHI19, Lemma 2.6(2)] we find a non-zero projection
po € Z(R' NnpMp) C Z(R) such that Rpy = (Qpo)’ N poMpy is strongly
non—am(ir\lable relative to /T/l\k By applying Corollary 4.6 we deduce that
Q < m M. N

On the other hand, since Q A4 Ak, we can find a sequence of unitaries
un, € % (Q) such that ||E ; (a"un b)||l2 — 0 for all a,b € A. We claim that

(4.5) 1E 5 (:U upy)|l2 — 0 for all z,y € M.

To prove (4.5), we may assume that =,y € M, and moreover that * = augy,y =
buy, for some a,b € Aik and g, h € By. Then since u, € Q@ C A, for all n € N,
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we have
IE5, (@ uny)ll2 = g0l E 5z (" unb)ll2 = dgnllE 7 (a*unb)|2 — 0.
This proves (4.5), which contradicts that Q < M i and finishes the proof. [

In the proof of Theorem 1.3 we will in fact need the following corollary of
Theorem 4.5.

COROLLARY 4.7. Letm € N. For1 < j <m, letG; € WR(A;, Bj ~ 1),
where Aj is an abelian group and Bj ~ I; is an action such that Stabp, (i)
is amenable for every i € Ij and {i € I; | g-i # i} is infinite for every g €
Bj\{1}. Define G = &7,G; and A= &7 A" Let Q € p(L(G) EM,(C))p

be a von Neumann subalgebra such that Q "<i(G) L(A) @M, (C) and

@My (C)
Then Q' N p(L(G) @M, (C))p is amenable.

Corollary 4.7 is obtained by combining Theorem 4.5 with the following
“transfer” lemma.

LEMMA 4.8. Let A be a normal abelian subgroup of a countable group G.
Assume that {aga™ | a € A} is infinite for every g € G\ A. Consider the
action of G/A on A by conjugation: g-a = gag ' for everyg € G/A anda € A,
where e: G — G/A denotes the quotient homomorphism and g € G is any
element such that £(g) = g. Define the semidirect product group H = AxG/A.
Let Q@ C pL(A)p be a von Neumann subalgebra.

If @ NpL(H)p is amenable, then Q' N pL(G)p is amenable.

Proof. Denote M =L(G), N =L(H) and P=L(A). Identify P=L*(X, u),
and consider the associated measure preserving action G/A ~ (X, ), where X
denotes the dual of A endowed with its Haar measure p. Since {aga™! | a € A}
is infinite for every g € G \ A, we get that P is a Cartan subalgebra of M.
Moreover, Z(P C M) can be identified with Z = Z(G/A ~ X). Thus, we
get that M = L.(%) for a 2-cocycle ¢ € H?(#,T). We endow # with the
usual Borel measure i given by i(7) = [y {y € X | (z,y) € T}| du(z) for
every Borel subset 7 C Z.

We continue by repeating part of the proof of [CI10, Prop. 6]. Let Xy C X
be a measurable set such that p = 1x,. Endow Xy with the probability
measure M(XO)_1H| X,- Since Q@ C pPp is a von Neumann subalgebra, there
are a standard probability space (Z, p) and a measurable, measure preserving
onto map m: Xo — Z such that we have @ = {fon | f € L>(Z,p)}. Since
pPp C @ NpMp, [Dye63, Prop. 6.1] implies that pPp is a Cartan subalgebra
of @' NpMp. By [FM77a, Th. 1], we can find a subequivalence relation . of
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R|Xo := %N (Xo x Xo) such that @' NpMp = Ly(.), where d € H*(#, T)
denotes the restriction of ¢ to ..

We claim that . = {(x1,22) € Z| X0 | 7(x1) = 7w(x2)}, p-almost every-
where. To see this, let ¢ € [#Z|Xo]. Then ¢ € [.] if and only if u, € Ly(.¥),
that is, if and only if u, commutes with Q. The latter is equivalent to having
for every f € L>(Z, p) that f(n(e(z))) = f(n(x))) for almost every x € Xj.
Thus, ¢ € [] if and only if 7(¢(x)) = 7(z) for almost every z € X, which
proves our claim.

Finally, note that N' = L(#), and arguing as in the previous paragraph
shows that Q' N pNp = L(.). If L(¥) is amenable, by Connes-Feldman-
Weiss’ theorem [CFW81] we get that .# is an amenable and thus hyperfinite
equivalence relation. This gives that Q' N pMp = Ly() is a hyperfinite and
thus amenable von Neumann algebra. O

Proof of Corollary 4.7. Using a standard argument, whose proof we leave

to the reader, the conclusion reduces to the following claim: if @ C pL(A)p is a
von Neumann subalgebra such that Q Ap,4) L(EB#kAg-Ij ))
then Q' N pL(G)p is amenable.

Let @ C pL(A)p be a von Neumann subalgebra such that Q Apa)

L(EB#kAg.Ij)) for every 1 < k < m. Consider the conjugation action of

B = G/A on A, and define H = A x B. For 1 < j < m, consider the

(I3)
I ;-

ated trace preserving action B; L(Ag j)) is built over B; ~ I;. Since

forevery 1 < k < m,

conjugation action of B; = G /Aé-[j ) on A By Remark 3.5, the associ-

H =7, (A%" % B;) we have L(H) = @7, (L(A}")) % B;). Since Staby, (i)
is amenable for all ¢ € I; and 1 < j < k, by applying Theorem 4.5 we get that
Q' NpL(H)p is amenable.

Next, let ¢ = (g91,...,9m) € G\ A. Then g; € G;\ A§-Ij) for some
1 <j<m. Ife;: Gj — By is the quotient homomorphism, then €;(g;) # 1,
hence {i € I; | ¢j(gj) - # i} is infinite. This implies that {bg;b=1 | b € Aglj)}
is infinite. Thus, {aga™! | a € A} is infinite. Since this holds for every
g € G\ A, we can apply Lemma 4.8 to deduce that Q" N pL(G)p is amenable,
as claimed. O

4.3. Proof of Theorem 1.3. In preparation for the proof of Theorem 1.3,
we introduce some notation and record three useful facts. Let A be a non-
trivial abelian group, B be a non-trivial ICC subgroup of a hyperbolic group
and B ~ I be an action such that Stabp(i) is amenable for every i € I. Let
G € WR(A, B ~ I) be a property (T) group. Denote M = L(G), and assume
that M' = L(H) for a countable group H and ¢ > 0.

Let Ag: L(H) — L(H) ® L(H) be the comultiplication given by Ag(vy) =
vy ® vy, for every h € H. Let n be the smallest integer such that n > t.
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Denote # = M@ M &M, (C). Then Ag can be amplified to a unital *-homo-
morphism A: M — p.#p, where p € 4 is a projection with (T®7®Tr)(p) = t.

Remark 4.9. Assume that ¢t € N, so that n =¢, p=1and L(H) = M" =
M@M,,(C). For further reference, we make explicit the construction of A in
terms of Ag. To this end, let ¢: . #Z @M, (C) - MM, (C)® M &M, (C) =
L(H)® L(H) be the *-isomorphism given by ¥ (a @b ®@c®d) =a®@c®@b®d
for every a,b € M and ¢,d € M,(C). Let U € M @M, (C) @ MRM,(C) be
a unitary such that Ag(Iy @) = Uy(1 4 @x)U* for every x € M,,(C). Then
Yt o Ad(U*) 0 Ag: M @M, (C) — .4 @M,(C) is a unital x-homomorphism
that leaves 1 ® M, (C) fixed, so it can be written as A®Id, where A: M — .#
is the desired unital *-homomorphism that amplifies Ay. Thus, we conclude

(4.6) Ao = Ad(U) oo (A @ 1d).

In the proof of Theorem 1.3, we will combine (4.6) with the symmetry and
associativity properties of Ag: VoAy = Ap and (Ag®Id)oAg = (Id®Ag) oAy,
where V is the flip automorphism of L(H) @ L(H) given by V(z @ y) =y«
for every x,y € L(H).

LEMMA 4.10 ([IPV13]). Let A: M — p.#p be as defined above. Then
the following hold:

(a) A(Q) Ay MR1RM,(C) and A(Q) £y 1@ MM, (C) for any diffuse
von Neumann subalgebra Q C M;

(b) AM) A4 MBL(Go) BMu(C) and AMM) £ 4 L(Go) B MEM, (C) for
any infinite index subgroup Gy < G,

(c) if H C L2(p.#p) is a A(M)-sub-bimodule that is right finitely generated,
then we have H C L*(A(M)).

Proof. (a) This part is [IPV13, Prop. 7.2(1)].

(b) If AM) < 4 MRL(Gy) @M, (C) for a subgroup Gy < G, then
the proof of [IPV13, Prop. 7.2(2)] shows that M < L(Gp) and so Gy < G
has finite index. Similarly, A(M) <_ 4 L(Gy) ® M ®@M,,(C) also implies that
Gy < G has finite index.

(c) Since G is ICC, Cg(g9) < G has infinite index and thus M £
L(Cg(g)) for every g € G\ {e}. The conclusion then follows from [IPV13,
Prop. 7.2(3)]. O

In the proof of Theorem 1.3 we will also need the fact that the set {i €
I'|b-i# 1} is infinite for every b € B\ {1}. This holds more generally if B is
acylindrically hyperbolic:

LEMMA 4.11. Let B be an ICC group acting on a set I. Then the follow-
ing hold:
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(a) Assume that B is acylindrically hyperbolic and Stabp(i) is amenable for
every i € I. Then, for every non-trivial b € B, the set {i € [ | b-i # i} is
infinite.

(b) Assume that B - i is infinite for every € I. Let A be a group. Then every
G eWR(A,B~ ) is ICC.

Proof. (a) Suppose that the set {i € I | b-i # i} is finite for some
b € B. Let N denote the minimal normal subgroup of B containing b. The
subgroup N is generated by the set X = {t~!bt | t € B}. For every finite
subset F' C X, the subgroup (F') stabilizes all but finitely many elements of I.
Since acylindrically hyperbolic groups are non-amenable, I must be infinite.
In particular, the subgroup (F) stabilizes at least one element of I, and hence
it is amenable. This implies that N is amenable being the union of amenable
groups. By [Osil6, Cor. 8.1 (a)], the amenable radical of every acylindrically
hyperbolic group is finite. Since B is ICC, N must be trivial. Thus, b = 1.

(b) Let G € WR(A, B ~ I) for some group A, and denote by ¢ : G — B
the quotient homomorphism. Let g € G\ {1}. We treat two cases. First,
assume that £(g) # 1. Since B is ICC, we get that {e(hgh™!) | h € G} =
{be(g)b=t | b € B} is infinite, and thus the conjugacy class {hgh™! | h € G}
is infinite. Second, assume that e(g) = 1, i.e., g € AU\ {1}. If @ = (as)ies €
AU\ {1}, we denote by supp(a) = {i € I | a; # 1} the support of a. Let
i € supp(g). If j € B -1, then we can write j = ¢(h) - i for some h € G.
Since supp(hgh™') = e(h) - supp(g), we get that j € supp(hgh™!). Thus,
B-i C Upegsupp(hgh™1t). Since B-i is infinite, we conclude that the conjugacy
class {hgh~! | h € G} is infinite as well. This finishes the proof. O

Proof of Theorem 1.3. Let m: G — B be the quotient homomorphism.
For g € B, fix g € G with 7(g) = g. Let K be a hyperbolic group containing B,
and still denote by 7 the homomorphism 7: G — K. Let D, (C) C M, (C) be
the subalgebra of diagonal matrices. For 1 < i < n, let ¢; = 1y € D,(C).
Denote

P=LAY), Z=PIPID,(C) and Q= A(P) Np.p.
The proof is divided into six steps.
Step1. Q <%, 2.
Proof. We first prove that A(P) <®, Z. Write 4/ =(M®1@M,(C))xG,
using the trivial action of G. As ker(r) = AY), we have (M ®1®M,,(C)) %
ker(m) = M®P @M, (C). Since A(P) is amenable, A(M) C Ay, 1,(A(P))”

has property (T) and A(M) £, MP &M, (C) by Lemma 4.10(b), from
Theorem 3.10 we derive that A(P) <%, M® P ® M, (C). Similarly, A(P) <°,
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PRIMRM,(C). Combining these facts with [DHI19, Lemma 2.8(2)] gives
that A(P) <°, P ®P &M, (C), which proves our claim.

Next, we have A(P) 4 4P ®1QM,(C) and A(P) £ 4 1@ P @M, (C) by
Lemma 4.10(a). Since the action B ~ I has amenable stabilizers, {i € I |
b-1 # i} is infinite for every b € B\ {1}, by Lemma 4.11(a). Thus, using that
A(P) <%, &, Corollary 4.7 implies that Q is amenable.

Finally, since Q is amenable and A(M) C A, 4,(Q)”, repeating the first
paragraph of the proof with Q instead of A(P) completes the proof of this step.

(]

As & C A is a Cartan subalgebra, by combining Step 1 with Lemma 3.7,
after replacing A with Ad(u) o A for some u € % (.#), we may assume that
p e X and

(4.7) A(P)Cc PpcC Q.

If g€ B, then A(ug) normalizes A(P) and thus Q. Denote o, =Ad(A(ug))
€ Aut(Q). Since /g\ﬁ@h\) ' € ker(r) = AU we have A(ug)A(uE)A(uﬁl)* €
A(P) for every g,h € B. Since A(P) C Z(Q), 0 = (04)4ep defines an action
of B on Q that leaves A(P) invariant. Since the restriction of o to A(P) is
conjugate to an action B ~ L(A)! built over B ~ I (see Remark 3.5), it is
free and weakly mixing. This fact can be strengthened as follows.

Step 2. The action B n? Q is weakly mixing.

Proof. This claim is a consequence of Step 3 in the proof of [[PV13,
Th. 8.2], which we recall for completeness. Let # C L?(Q) be a finite-
dimensional o(B)-invariant subspace. Let K C L?(p.#p) be the || - ||2-closure
of the linear span of HA(M). Since H and A(P) commute, we get that
A(P)K = K. If g € B, then A(uz)H = HA(ugz) and so A(ug)C = K.
Since G = {ag | a € AD g € B}, K is a left A(M)-module. Thus, K is
a A(M)-bimodule that is right finitely generated as # is finite dimensional.
Lemma 4.10(c) gives that X C L2(A(M)), hence H C L?(A(M)). Since H
commutes with A(P), we have H C L2(A(P)). As the restriction of o to A(P)
is weakly mixing, we conclude that H C Cp, as claimed. O

Steps 1 and 2 imply that Q is a type I; algebra for some k € N. Using (4.7),
the beginning of the proof of Lemma 3.8 shows that there is a decomposition
Q = Z(Q)®@Mg(C) such that Zp = Z(Q)@Dk(C). Therefore, (Q); C
SF L (Pp)1x; for some z1,. .., 1, € Q. Moreover, by Lemma 3.8 there is an
action 8 = (fy)gen of B on Q such that

e for every g € B, we have that 3, = 04 0 Ad(wy) = Ad(A(ug)wy) for some
wy € U (Q);
e Ppis B(B)-invariant and the restriction of 8 to Pp is free; and
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e the minimal projections py,...,pr of 1 @ Dy (C) C Pp are 5(B)-invariant and
the restriction of 8 to p; is weakly mixing for every 1 <i < k.

Our next goal is to apply Theorem 4.1. Let (Y, v) be the dual of A with its
Haar measure. Let (X, ) = (Y x YT, v! xv!) and ()?, ) = (XXZ/nZ,puxc),
where ¢ is the counting measure of Z/nZ. Identify P = L®(Y!) and &2 =
Loo(f). Consider the action B ~® (Y! 1) given by ag(g) = Ad(ug) for
all g € B. By Remark 3.5, ag is conjugate to an action built over B ~ I.
Let B x B n* (X, u) be given by (g1,92) - (x1,22) = (g1 - x1, g2 - x2) for all
91,92 € Band z1,29 € Y. Let B x B x Z/nZ ~°® ()N(, ) be the action given
by (g,a) - (z,b) = (¢g-x,a+b). Let Xy C X be a measurable set such that
p = 1x,. Since Zp = L>=(Xy) is f(B)-invariant, we get a measure preserving
action B n? (Xo, fix,)-

Since the restriction of 8 to &p is implemented by unitaries in p.#p and
we have that Z(2 C M) = %(B x B x Z/nZ ~% X), we deduce that

(4.8) B(B) -z C a(B x B x Z/nZ) - x for almost every x € Xj.

In order to apply Theorem 4.1 to (4.8), we first establish the following
claim:

Step 3. Let By < B be an infinite index subgroup. Then there is a se-
quence (h,,) C B such that for every s,t € B we have p({z € Xo | B, () €
a(sBot x B x Z/nZ)(x)}) — 0 and p({z € Xo | Bn,,(z) € a(B x sBot x
Z/nZ)(x)}) — 0.

Proof. Let Go = m~1(Bp). Then Gy < G is an infinite index subgroup.
Since A(ug)geq is a group of unitaries generating A(M), using Lemma 4.10(b)
and Theorem 3.2 we can find a sequence (k,,) C G such that for every x,y € .#,
we have

©) (@A (uk,,)y)ll2 — 0,
1 EL(co) @ mam, ) (TA(ug,,)y)|l2 — 0.

We will show that h,, = w(k,,) € B satisfy the assertion of the claim.
Since k;}ﬂeA(I) and wp,, € % (Q), we get that A(uz—)wh,, € A(uy,, )% (Q).
Thus, A(uz—)wp,, € SF L A(ug,,)(Pp)1x; for every m € N. As 2 is regular
in .4 and contained in M ® L(Gp) @ M,,(C) and L(Gp) ® M ® M,,(C), (4.9)
implies that for every z,y € 4,
1 E Mm@ L) @M. (€) (@A (U =)wn,,y)l[2 = 0,
1EL(Go) & MaM, ©) (#A(uz—)wh,,y)[[2 = 0.

On the other hand, we have that 8, = Ad(A(u;~)ws,,) and a(gr, g2) =
Ad(u(g,g3)) for every (g1,92) € B x B. These facts imply that u({z € Xo |
Bh,, (x) € a(sBot x B x Z/nZ)(x)}) is equal to [|Ey ¢y zmzm, ) (uF @ 1

1Emz LG s

(4.9) Vi
M,

(4.10)
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®1)A(up=)wh,, (W ®1® 1))||3. Since by (4.10) the last term converges to 0, as
m — 00, this proves the first assertion of Step 3. The second assertion follows
similarly. O

Next, « is conjugate to an action B x B ~ (Y7, v7) built over B x B ~
J =1x{1,2} given by (g1,92) - (4,5) = (g9;-1,7). Thus, Stabpxp(j) is equal to
either By x B or B x By, where By = Stabp(i). Note that since By is amenable
and B is non-amenable, the inclusion By < B has infinite index. Since B is
ICC, for every g € (BxB)\{(1,1)}, there is an infinite index subgroup By < B
such that Cpxp(g) C B x By or Cpxp(g) C B; x B.

Fix 1 <i < k. Let X; C Xo be a f(B)-invariant measurable set such
that p; = 1x,. Since Bx, is free, weakly mixing and B has property (T),
equation (4.8), the previous paragraph and Step 3 show that the conditions
of the moreover assertion of Theorem 4.1 are satisfied by f§x, and «. Thus,
Theorem 4.1 implies that /i(X;) =1 and there are §; € [Z(Bx BxZ/nZ ~% X)]
and an injective homomorphism &; = (¢;,1,¢€;2): B— B x B such that 6;(X;) =
X x{i} = X and 0; o B(h)|x, = a(ei(h)) o b;x, for every h € B.

Let u; € A 4(2) such that wau = ao 9;1 for every a € &. Then
wipiu; =1 ® 1 ® e;, and the last relation implies that we can find ({; 4)ren C
% (P ®P) such that

(4.11) w;A(up )wppiu; = G pu ® e; for every h € B.

(0.1 (A €1,2(R))
Step 4: For every 1 <1i,j <k, ; is conjugate to ;.

Proof. We claim that By = ¢;1(B) has finite index in B. If this is false,
then Gy = 7~ !(Bp) has infinite index in G. On the other hand, (4.11) gives that
A(M) <z L(Gp) ® M @M, (C), which contradicts Lemma 4.10(b). Similarly,
we get that €; 2(B) < B has finite index.

Let 1 < i,j < k. Since p;,p; € Q are equivalent projections (as they
are minimal projections of 1®Dy(C) C Q = Z(Q) ®Mj(C)), then p; =
zpiz* for some z € %(Q). As A(ug)wyn € % (p#p) normalizes Q, we get
that 2, = Ad(A(uz)wn)(2) € Z(Q). Then A(ug)wnp; = A(ug)wpzpiz® =
2pA(uz)wppiz*. Using (4.11) we get that

U Ty ety © € = WA (g Jwnpjuj
= u;j(2nA(up )wnpiz”)uj
= uj(zn(u i(Ci,hU(Efl'(\h)ﬁ;(\h)) ® e;)ui)z" )u;.
ol ))®ez)u1)z Yu u;. For a sub-

set ' C B x B, denote by Pr the orthogonal projection from L?(.#) onto the
| - [|2-closure of the linear span of {(zuy)®y) |z € PRP,g € (mxm) " YF),y €
M., (C)}. Since z, € %#(Q) C ¢ ((P)1xi, P C PEPOM,(C) and ;. €

For h e B, denote Zh:u]-(zh( (Gipu i,
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% (P ®P), by using that P @ P C M ® M is a Cartan subalgebra and approxi-
mating uj, u;, z in ||-||2, we find a finite set ' C B x B such that PFsi(h)F(Zh) #0
for every h € B. Since (j € % (P ®P), the last displayed equation implies
that €;(h) € Fe;(h)F for every h € B. If g € B\ {e}, then as B is ICC and
£i1(B),e;2(B) have finite index in B, the sets {e;1(h)ge;1(h)~! | h € B} and
{ei2(h)gei2(h)~! | h € B} are infinite. Thus, the set {e;(h)ge;(h)™1 | h € B}
is infinite for every g € (B x B) \ {(e,e)}. By [BV14, Lemma 7.1] we derive
the existence of g € B x B such that ¢j(h) = ge;(h)g~" for every h € B. This
finishes the proof of Step 4. (]

Step 4 thus gives a homomorphism 6 = (d1,02): B — B x B such that
for every 1 < i < k, there is g; € B x B satisfying ¢;(h) = gié(h)g;1 for every
h € B. After replacing ; with a(g; 1) 0 6;, we may assume that ¢; = ¢ for any
1 < i < k. Hence, (4.11) can be rewritten as

(4.12) wiA(ug)wnpiu; ® e; for every 1 <4 <k and h € B.

= b (5 ) 52 h)

Let u = Zé‘;l u;p; and e = Zz’:l e;. Then u is a partial isometry with uu* =
1®1l®e, u'u=p uPpu* = P121@e). G =K 1 Groec%(P(1®
1®e)), then (4.12) gives

(4.13) uA (ug)wpu® = ® e) for every h € G.

Cn(u (81(h),82(h))

In particular, t = (T®7®Tr)(p) = Tr(e) = k,andson =t =k, e = 1 and
p=1®1® 1. Thus, after replacing A with Ad(u) o A, we have that (;, € &
and (4.13) rewrites as

(4.14) A(ug)wp = ® 1) for every h € B.

RS OTORAD)
Step 5. We have that Q C P ® P ® M, (C).

Proof. Since (A(uj)wh)hep C % () normalizes Q and ((p)nep C % (),
(4.14) implies that (u(m 5200) ® 1)pep normalizes Q. Since & C Q and

(Q)1 € SF1(P)1zi, to prove the claim it suffices to argue that for all
r,ye M@Mand z€ ( MM) o (PRP), we have

1Ep s p (U5 sy 2Y T 5T )Hz—>0-

To prove this, We may assume that © = u,,y = up, 2 = u4 for a,b,g €
G x G with g ¢ (AB) x AB)). Write (7 x 7)(a) = (a1,az), (x x 7)(b) =
(b1,b2), (m x ™)(g) = (gl,gg). Since (g1, 92) # (e, e), we have that g; # e or

g2 # e.
Suppose that g1 # e. For h € B, denote

Sh:HEP@’(m(@,g(h\)) (31(h),32 () )”2
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If s;, = 0 for every h € B, the assertion follows. Otherwise, if s, # 0 for h € B,
then a;01(h)g161(h)"'by = e. This is because Epgp(u( ky)) # 0 for some
(k1, ko) € G x G, if and only if (ki, k) € AP) x AB) and if and only if 7 (k) =
m(ke) = e. In particular, there is [ € B such that allgll_lbl = e. Moreover,
if s, # 0 for some m € N, then & (hp)g161(hy) ™! = al lbf = lg;I7" and
therefore 61 (hy,) € IBy, where By = Cp(g1). Let Gg = 7~ (Bo) In combina-
tion with (4.14), we get that A(uhf\)whm (u; ® 1 @ 1)(L(Go) ® M @M, (C))
for any such m € N. Since g1 # e and B is ICC, By < B and thus Gy < G has
infinite index. Thus, (4.10) implies that {m € N | s;,,, # 0} is finite, proving

that sp,, — 0. Similarly, assuming that gs # e also implies that s;, — 0. O

Next, Step 5 implies that wy, € PP @M, (C) for every h € B. Thus, if
we denote 1, = (,Ad(u UGN 50 ® 1)(wj), then n, € PR P @M, (C) and

(4.15) A(uz) = nu(u U5 @ sy ® 1) for every h € B.
Step 6. We may assume that 6; = 6o = Idp.

Proof. The proof is an adaptation of Step 5 in the proof of [IPV13,
Th. 8.2]. We first argue that we may assume that §; = d2. Using (4.6) and
(4.15), for every h € B, we get that
(4.16)

Ao(uj ® 1) = U(A(ug) @ DU = Ugh(im @ 1) (ugz5 © 1@ ups @ DU,

Since VoAg= Ay, writing V=U*V(U) and Vj,= (¢ (n,@1)*VV (¢ (np,®1)),
we have
(4.17)

Vi(u ®1l®u ®1) = (Uus7= ®1 Q@ us—s @ 1)V for every h € B.

52(h) 51(h) 51(h) 52 (h)
For F, F; C B finite, let Hp, p, be the | - ||2-closed linear span of

{ugl R T1 X Ugy, @ X2 ‘ g1 € 7T71(F1),gg € Wﬁl(Fg),xl,xg € MH(C)}

and P, 1, be the orthogonal projection from L?(M ® M, (C) ® M @ M,,(C))
onto Hp, p,. Let Fi, Fo C I be finite sets such that ||V — Pp 5, (V)2 < 1/2.
Since np, € P® P @M, (C), we get that

V(np @ 1), C(W(np ©1)) € PRM,(C)®P &M,(C)

for every h € B. Since Hp g, is a P @M, (C)® P @M, (C)-bimodule, we
further derive that ||V, — Pr, g, (V3)|l2 < 1/2 for every h € B. In combination
with (4.17), for every h € B, we get that

(Pry iy (Vi) (s gy @ 1@ s @ 1), (555 © 1@ s

61(h) Y5 (n) d2(h)
Note that (Uﬁ R1Qug ® )'5"[};!:1,1:’2 (u}; ®1® up ®1) = Hg, Fihi,gs Faho
for every g1, g2, h1,ha € B. Moreover, if F1 NGy = 0, then Pr, g, Pg,.c, = 0.

&® 1)PF1’F2(V)> > 0.
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Thus, we get that F1d2(h) No1(h)Fy # O for every h € B. Since B is ICC
and 61(B) < B has finite index, it follows that there exists g € B such that
S2(h) = gd1(h)g~! for every h € B (see [BV14, Lemma 7.1]). Thus, after
replacing A by Ad(1®u;®1)oA and ny, by Ad(1®u;@1)(ny) € P& P ® M, (C),
we may assume that §; = dy. Put § = §; = 4o.

To argue that § is inner, define X1, XJ, X2, X} € ®3_ (M ®M,,(C)) for
h € B, as follows: X1 = (U®1®1)*(A¢®1d)(U)*, X} = (Ag®1d)(Urh(n,®1))
(Up(nsy © 1)) @1®@1), X9 = (1@ 1@ U)*Id® A)(U)*, and X} = (Id®
Do) (Utp(m, ©1))(1 @ 1@ Utp(nsny © 1)).

Then for every h € B, we have that

_ vyl o
(Ag® Id)Ao(uﬁ ®1)= Xh(u&@h\)) 1R usﬁh\)) ®R1IR ué(h) ®1)X;
and

— Y2(y _ —
(Id ® Ag)Ao(uy; ® 1) = Xh(u(;(h) ®1® Ustsin) © 1® Ustsin) © 1) X5.

Since (Ag ® Id) o Ag = (Id ® Ag) o Ag, by adapting the above argument
we can find F' C B finite such that Fo(5(h)) N d(h)F # 0 for every g € B.
Since §(B) < B has finite index and B is ICC, this implies that there is g € B
such that §(h) = ghg~! for every h € B (see [BV14, Lemma 7.1]). Thus,
after replacing A by Ad(uy ® uy ® 1) o A and 7, by Ad(uy ® uy ® 1)(ns) €
PP @M, (C), we may assume that §; = do = Idp, that is

(4.18) A(uz) = nn(ug; @ upz ® 1) for every h € B.
This finishes the proof of Step 6. U

To finish the proof of Theorem 1.3, let ¢ € G. Let h = 7(g) € B and
a =gh™' € AD, Then Aug) = A(ua)A(u;) = Aug)n(ug @ uz @ 1) =
A(ug)nh (g @ uq ® 1)*(ug ® ug ® 1). Thus, if we denote wy = A(ug)np(uq ®
U ® 1)*, then wy € Z (PP @M, (C)) and

(4.19) A(ug) = wg(ug ® ug ® 1) for every g € G.

Consider the action G Y P& P given by v, = Ad(uy ® uy) for g € G.
Lemma 3.4 implies that 7 is conjugate to an action G ~ (Y7, v”) built over
G ~ J =1Ix{1,2} given by g-(i,7) = (m(g)-i,7) for every g € G and (i, j) € J.
Since the action G ~ J has infinite orbits, -y is weakly mixing. Moreover, (4.19)
gives that wg, = wy(yy ® Id)(wy) for every g,h € G. Therefore, (wy)4eq is a
1-cocycle for v ® Id, with Id the trivial action on M, (C).

Since G has property (T), Theorem 3.6 gives u € % (P ® P ® M,,(C)) and
a homomorphism &: G — %,(C) such that wy = u*(1® 1®&y)(vy ® Id)(u) for
every g € G. Thus, after replacing A by Ad(u) o A, (4.19) rewrites as

(4.20) Aug) = ug @ ug ® &, for every g € G.
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Let .4 be the von Neumann algebra generated by {uy ® ug @ x | g €
G,z € M,(C)}. Then A(M) Cc A& C AM)M,(C). By Lemma 4.10(c),
N = AM), so 1®1M,(C) € A(M). In combination with (4.20), this
implies that n = 1 and hence ¢t = 1. Also, £, € T and

(4.21) A(ug) = &4(ug ® ug) for every g € G.

Moreover, there is € Z (M & M) so that Ay = Ad(2) o A. By (4.21),
Qug @ ug)¥* € Ag(M) for every g € G. Since G is ICC, the unitary repre-
sentation (Ad(ug))geq of G on L%(M) © C1 is weakly mixing. By applying
[I[PV13, Lemma 3.4] we conclude that there are w € % (M) and an isomor-
phism p: G — H such that uy = ywv,,w* for every g € G. O
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