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Wreath-like products of groups and their
von Neumann algebras I: W∗-superrigidity

By Ionuţ Chifan, Adrian Ioana, Denis Osin, and Bin Sun

Abstract

We introduce a new class of groups called wreath-like products. These

groups are close relatives of the classical wreath products and arise natu-

rally in the context of group theoretic Dehn filling. Unlike ordinary wreath

products, many wreath-like products have Kazhdan’s property (T). In this

paper, we prove that any group G in a natural family of wreath-like prod-

ucts with property (T) is W∗-superrigid: the group von Neumann algebra

L(G) remembers the isomorphism class of G. This allows us to provide

the first examples (in fact, 2ℵ0 pairwise non-isomorphic examples) of W∗-

superrigid groups with property (T).

1. Introduction

The von Neumann algebra L(G) of a countable discrete group G is de-

fined as the weak operator closure of the complex group algebra CG acting

on the Hilbert space `2G by left convolution [MvN36]. If G is infinite abelian,

then L(G) is isomorphic (via the Fourier transform) to L∞([0, 1]). However,

understanding how the isomorphism class of L(G) depends on G for non-

commutative groups is a notoriously challenging problem, which has been at

the forefront of research in operator algebras since the creation of the field.

This problem is typically studied when L(G) is simple, i.e., a II1 factor, which

is equivalent to G having infinite conjugacy classes of non-trivial elements (ab-

breviated ICC).

The classification problem for group von Neumann algebras was first con-

sidered by Murray and von Neumann in [MvN43]. They proved that L(G) is

isomorphic to their hyperfinite II1 factor for any locally finite ICC group G,

but not for the free group G = F2. Three decades later, Connes’ celebrated

classification of injective factors [Con76] showed that, more generally, all II1
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factors arising from ICC amenable groups G are isomorphic to the hyperfinite

II1 factor. On the other hand, non-amenable groups were used to provide large

classes of non-isomorphic II1 factors in [Sch63], [McD69], [Con75].

The first instance of rigidity for von Neumann algebras was discovered

by Connes in 1980. He showed that L(G) has countable fundamental and

outer automorphism groups for any ICC group G with Kazhdan’s property

(T) [Con80]. Shortly after, Connes [Con82] proposed the following far-reaching

rigidity conjecture.

Conjecture 1.1 (Connes Rigidity Conjecture). If G and H are ICC

property (T ) groups such that L(G) ∼= L(H), then G ∼= H .

Supportive evidence for this conjecture was provided in the 1980s by re-

sults in [CJ85], [Pop86], [CH89]. In particular, Cowling and Haagerup [CH89]

proved that L(G) 6∼= L(H) for any lattices G < Sp(n, 1), H < Sp(m, 1) for

n 6= m. More recently, the existence of uncountably many non-isomorphic

property (T) group factors was proved in [Oza04]. In addition, Connes’ rigid-

ity conjecture was shown to hold up to countable classes in [Pop07b] (see

also [IPV13]).

In the past two decades, there has been striking progress in the classifica-

tion of group II1 factors due to Popa’s discovery of deformation/rigidity theory.

In [Pop06d], Popa proved that the class G of wreath product groups Zwr Γ with

Γ ICC property (T) satisfies the following version of Connes’ rigidity conjec-

ture: if L(G) ∼= L(H) for G,H ∈ G, then G ∼= H. Subsequently, several other

classes of groups satisfying this property were found, e.g., in [Pop08], [PV08],

[Ioa07], [IM22].

By a result in [CJ85], if an ICC group G has property (T), then so does

any other group H such that L(G) ∼= L(H). Thus, Connes’ rigidity conjecture

is equivalent to asking if every ICC property (T) group G is W∗-superrigid in

the sense that L(G) ∼= L(H) implies G ∼= H for any group H (see [Pop07b, §3]).

The first class of W∗-superrigid groups was discovered by Popa, Vaes and the

second author in [IPV13], where a large class of generalized wreath groups were

shown to have this property. Later on, additional examples of W∗-superrigid

groups were found in [BV14], [Ber15], [CI18], [CDAD23b], [CDAD23a].

Despite the remarkable breadth of Popa’s deformation/rigidity theory,

classifying von Neumann algebras of property (T) groups remained a long-

standing challenge. The reason is that the presence of deformations, which is

at the heart of Popa’s theory, typically excludes property (T). In particular,

the well-known problem of finding at least one W∗-superrigid ICC group with

property (T) remained open. This problem has circulated among the experts

since the reformulation of Connes’ rigidity conjecture as a superrigidity ques-

tion in [Pop07b, §3] (see also [IPV13, §1], [Ioa18, §6.2], [Pet, Prob. R.5], [Hou21,
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§5]). It was the main focus of a 2018 workshop at the American Institute of

Mathematics where it was explicitly posed by Vaes as [AIM18, Prob. 2.1].

In this paper, we obtain the first examples of W∗-superrigid groups with

property (T). To state our main results, we need an auxiliary definition.

Definition 1.2. Let A, B be arbitrary groups, I an abstract set, and B y I

a (left) action of B on I. We say that a group W is a wreath-like product of

groups A and B corresponding to the action B y I if W is an extension of

the form

(1.1) 1 −→
⊕
i∈I

Ai −→W
ε−→ B −→ 1,

where Ai ∼= A and the action of W on A(I) =
⊕

i∈I Ai by conjugation satisfies

the rule

(1.2) wAiw
−1 = Aε(w)·i

for all i ∈ I. The map ε : W → B is called the canonical homomorphism

associated with the wreath-like structure of W .

If the action B y I is regular (i.e., free and transitive), we say that W is

a regular wreath-like product of A and B. The set of all wreath-like products

of groups A and B corresponding to an action B y I (respectively, all regular

wreath-like products) is denoted byWR(A,B y I) (respectively,WR(A,B)).

The notion of a wreath-like product generalizes the ordinary (restricted)

wreath product of groups. Indeed, for any groups A and B, we obviously have

AwrB ∈ WR(A,B). Conversely, it is not difficult to show that W ∼= AwrB

whenever the extension (1.1) splits.

We are now ready to state the main result of our paper.

Theorem 1.3. Let A be a non-trivial abelian group, and let B be a non-

trivial ICC subgroup of a hyperbolic group. Let B y I be an action such that

for every i ∈ I , StabB(i) is amenable. Suppose that G ∈ WR(A,B y I) is a

group with property (T ).

If H is any countable group and θ : L(G)t → L(H) is a ∗-isomorphism

for some t > 0, then G ∼= H and t = 1. Moreover, there exist a group

isomorphism δ : G→ H , a character η : G→ T and a unitary w ∈ L(H) such

that θ(ug) = η(g)wvδ(g)w
∗ for every g ∈ G, where (ug)g∈G and (vh)h∈H denote

the canonical generating unitaries of L(G) and L(H), respectively.

If B is an ICC group and B y I is an action with infinite orbits, then

any group G belonging to WR(A,B y I), for some group A, is ICC (see

Lemma 4.11(b)). This implies that any G as in Theorem 1.3 is ICC.

In Section 2, we observe that examples of wreath-like products G ∈
WR(A,B y I) satisfying the assumptions of Theorem 1.3 naturally occur in
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the context of group theoretic Dehn filling. (While in this paper we focus on

wreath-like products G with abelian base A, in the companion paper [CIOS23]

we construct an abundance of wreath-like products with non-commutative

bases.) Here we mention just one particular case. For an element h of a

group H, we denote by 〈〈h〉〉 the minimal normal subgroup of H containing h.

Theorem 1.4. Let H be a torsion-free hyperbolic group, and let h ∈ H
be a non-trivial element. For any sufficiently large k ∈ N, the group H/〈〈hk〉〉
is hyperbolic, ICC, and we have

H/[〈〈hk〉〉, 〈〈hk〉〉] ∈ WR(Z, H/〈〈hk〉〉y I),

where the action H/〈〈hk〉〉y I is transitive with finite cyclic stabilizers.

In fact, we prove a more general result that also holds for hyperbolic

groups with torsion (see Theorem 2.6). Combining Theorem 1.4 with Theo-

rem 1.3, we obtain many examples of non-trivial, W∗-superrigid, ICC groups

with property (T).

Corollary 1.5. Let H be a torsion-free hyperbolic group with prop-

erty (T ), and let h ∈ H \ {1}. For any sufficiently large k ∈ N, the group

H/[〈〈hk〉〉, 〈〈hk〉〉] is ICC and W∗-superrigid.

Note that the groupH/[〈〈hk〉〉, 〈〈hk〉〉] also has property (T) being a quotient

of H. Torsion-free hyperbolic groups with property (T) are abound; in fact,

every property (T) group is a quotient of a torsion-free, hyperbolic, property

(T) group by a result of Cornulier [Cor05]. Moreover, such groups are generic

in the Gromov randomness model at density 1/3 < d < 1/2 [KK13], [Oll05].

Finally, we mention some concrete linear examples.

Example 1.6. Let L be a uniform lattice in Sp(n, 1). By Selberg’s lemma,

there exists a finite index torsion-free subgroup H ≤ L. Being a finite in-

dex subgroup of L, H is also a uniform lattice in Sp(n, 1) and, therefore, is

hyperbolic and has property (T).

Wreath-like products obtained via Theorem 1.4 are not, in general, reg-

ular. However, a little modification discussed in Section 2.3 allows us to con-

struct 2ℵ0 regular wreath-like products satisfying the assumptions of Theo-

rem 1.3. Thus, we obtain the following.

Corollary 1.7. There exist 2ℵ0 pairwise non-isomorphic, property (T ),

ICC groups that are W∗-superrigid.

The proof of Theorem 1.3 is given in Section 4.3 and relies on a se-

ries of techniques and ideas from deformation/rigidity theory (e.g., [Pop06a],

[Pop06c], [Pop06d], [Pop07a], [Pop08], [Ioa07], [OP10], [CI10], [PV10], [Ioa11],

[IPV13], [PV14b], [CIK15]). We refer the reader to the beginning of Section 4

for an outline of the proof of Theorem 1.3. This proof plays property (T)
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against properties of wreath-like product groups similar to properties of ordi-

nary wreath products.

Although wreath product groups AwrB are known to have remarkably

rigid von Neumann algebras (see, e.g., [Pop06c], [Pop06d], [Pop08], [Ioa07],

[Ioa11], [IPV13], [IM22]), no wreath product AwrB, with A non-trivial abelian

and B torsion free, is W∗-superrigid by [IPV13, Th. 1.2]. It is precisely the

presence of property (T) that allows us to prove a stronger rigidity statement

for wreath-like products G ∈ WR(A,B y I). Using property (T) for G, rather

than just for the quotient group B, is one of the main novelties of this paper.
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2. Wreath-like products of groups

The main goal of this section is to prove Theorem 2.6, which is a more

general (and more precise) version of Theorem 1.4, and Corollary 1.7. We

begin by reviewing the necessary background.

2.1. Hyperbolic groups and their generalizations. We begin by recalling

the necessary definitions. A group G is hyperbolic if it is generated by a finite

set X and its Cayley graph Cay(G,X) is a hyperbolic metric space. This

definition is independent of the choice of a particular finite generating set X.

A hyperbolic group is called elementary if it contains a cyclic subgroup of finite

index.

An isometric action of a group G on a metric space S is acylindrical if for

every ε > 0, there exist R,N > 0 such that for every two points x, y ∈ S with

d(x, y) ≥ R, there are at most N elements g ∈ G satisfying

d(x, gx) ≤ ε and d(y, gy) ≤ ε.

Every group has an acylindrical action on a hyperbolic space, namely the

trivial action on the point. For this reason, we want to avoid elementary actions

in the definition below. Recall that an action of a group G on a hyperbolic

space S is non-elementary if the limit set of G on the Gromov boundary ∂S

has infinitely many points; for acylindrical actions, this condition is equivalent

to the requirement that G is not virtually cyclic and the action has infinite

orbits [Osi16, Th. 1.1].



1266 IONUŢ CHIFAN, ADRIAN IOANA, DENIS OSIN, and BIN SUN

Definition 2.1. A group G is acylindrically hyperbolic if it admits a non-

elementary acylindrical action on a hyperbolic space.

Every proper action is acylindrical. Therefore, every non-elementary hy-

perbolic group G is acylindrically hyperbolic as witnessed by the proper action

of G on Cay(G,X) for any finite generating set X. The class of acylindrically

hyperbolic groups also includes many non-hyperbolic examples: mapping class

groups of closed surfaces of non-zero genus, Out(Fn) for n ≥ 2, groups of defi-

ciency at least 2, most 3-manifold groups, and many other examples. For more

details, we refer to the survey [Osi18].

Every acylindrically hyperbolic group contains a unique maximal finite

normal subgroup [DGO17, Th. 2.24]). We denote it by K(G). We will need

the following result from [DGO17].

Theorem 2.2 ([DGO17, Th. 2.35]). An acylindrically hyperbolic group G

is ICC if and only if K(G) = {1}.

Let H be a subgroup of a group G. We say that X ⊆ G is a relative

generating set of G (with respect to H) if G = 〈X ∪H〉. Associated to such a

relative generating set is the Cayley graph Cay(G,X tH), where the disjoint

union means that for any element a ∈ X ∩ H and any vertex g ∈ G, there

are two edges in Cay(G,X tH) going from g to ga: one is labeled by a copy

of a from X and the other is labeled by a copy of a from H. We denote by

Cay(H,H) the Cayley graph of H with respect to the generating set H and

naturally think of it as a (complete) subgraph of Cay(G,X tH).

Definition 2.3. A subgroup H is hyperbolically embedded in a group G

if there exists a relative generating set X of G such that Cay(G,X t H) is

hyperbolic and for any n ∈ N, there are only finitely many elements h ∈ H
such that h can be connected to 1 in Cay(G,X t H) by a path of length at

most n avoiding edges of Cay(H,H).

For example, it is easy to see that H is hyperbolically embedded in the

free product H ∗ Z, but not in the direct product G = H × Z. For details, we

refer to [DGO17].

Recall that an element g of a group G acting on a hyperbolic space S is

loxodromic if g acts as a translation along a bi-infinite quasi-geodesic in S. If

the action of G on S is acylindrical, this is equivalent to the requirement that

〈g〉 has unbounded orbits (see [Osi16, Th. 1.1]). For example, if G is a hyper-

bolic group acting on its Cayley graph with respect to a finite generating set,

every infinite order element g ∈ G is loxodromic. We will need the following.

Theorem 2.4 ([DGO17, Th. 6.8]). Let G be an acylindrically hyperbolic

group. Every loxodromic element g ∈ G is contained in a unique maximal

virtually cyclic subgroup E(g) such that E(g) ↪→h G.
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2.2. Wreath-like products associated to group theoretic Dehn filling. Let

F be a free group, and let R = 〈〈rk〉〉 for some k ∈ N and r ∈ F , where r is not

a proper power. The Cohen-Lyndon theorem on relation modules of 1-relator

groups proved in [CL63] implies that F/[R,R] ∈ WR(Z, F/Ry I), where the

action F/Ry I is transitive with stabilizers isomorphic to Z/kZ.

In this section, we show that this example has a natural analogue in the

context of group theoretic Dehn filling. We begin by briefly surveying the

relevant background. For more details, the reader is referred to [DGO17],

[Osi07], [Sun20].

The classical Dehn surgery on a 3-dimensional manifold consists of cutting

off a solid torus, which may be thought of as “drilling” along an embedded knot,

and then gluing it back in a different way. The study of such transformations is

partially motivated by the Lickorish-Wallace theorem, which states that every

closed orientable connected 3-manifold can be obtained from the 3-dimensional

sphere by performing finitely many surgeries. The second part of the surgery,

called Dehn filling, can be formalized as follows.

Let M be a compact orientable 3-manifold with toric boundary. Topo-

logically distinct ways of attaching a solid torus to ∂M are parametrized by

free homotopy classes of unoriented essential simple closed curves in ∂M , called

slopes. For a slope s, the corresponding Dehn filling M(s) of M is the manifold

obtained from M by attaching a solid torus to ∂M so that the meridian of the

torus goes to a simple closed curve of the slope s. The fundamental theorem

due to Thurston [Thu82, Th. 1.6] asserts that if M \∂M admits a finite volume

hyperbolic structure, then M(s) is hyperbolic for all but finitely many slopes.

Note that, in the settings of Thurston’s theorem, we can think of s as an ele-

ment of π1(∂M) ≤ π1(M) and, by the Seifert–van Kampen theorem, we have

(2.1) π1(M(s)) = π1(M)/〈〈s〉〉.

In group-theoretic settings, the role of the pair ∂M ⊂ M is played by a

pair of groups H ≤ G and the existence of a finite volume hyperbolic structure

on M \ ∂M translates to the property that H is hyperbolically embedded

in G. Equation (2.1) suggests that the process of attaching a solid torus to M

must correspond to taking the quotient of G modulo the normal closure of an

element s ∈ H. In fact, we can consider even more general quotients.

For a group G and a subset S ⊆ G, we denote by 〈〈S〉〉 the normal closure

of S in G; that is 〈〈S〉〉 is the smallest normal subgroup of G containing S.

The following result can be thought of as the algebraic analogue of Thurston’s

theorem.

Theorem 2.5 (Dahmani–Guirardel–Osin). Let G be a group, and let H

be a hyperbolically embedded subgroup of G. There exists a finite subset F ⊆
H \ {1} such that for any N C H satisfying N ∩ F = ∅, the natural map
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H/N → G/〈〈N〉〉 is injective and H/N ↪→h G/〈〈N〉〉. (By abuse of notation, we

identify H/N with its image in G/〈〈N〉〉.)
For relatively hyperbolic groups, this theorem was obtained in [Osi07] (an

independent proof for torsion-free groups was given by Groves and Manning

in [GM08]), and the general version was proved in [DGO17, Th. 2.27].

We now state the main result of this section. Recall that for a loxodromic

element g of an acylindrically hyperbolic group G, E(g) denotes the maximal

virtually cyclic subgroup of G containing g.

Theorem 2.6. Let G be an acylindrically hyperbolic group, and let g ∈ G
be a loxodromic element. Let d be a natural number such that 〈gd〉CE(g). For

every sufficiently large k ∈ N divisible by d, the following hold :

(a) We have

(2.2) G/[〈〈gk〉〉, 〈〈gk〉〉] ∈ WR(Z, G/〈〈gk〉〉y I),

where I is the set of cosets G/E(g)〈〈gk〉〉 and the action is by left multi-

plication. In particular, the action G/〈〈gk〉〉y I is transitive.

(b) The stabilizers of the action G/〈〈gk〉〉y I are isomorphic to E(g)/〈gk〉.
(c) If G is ICC, then so is G/〈〈gk〉〉.
(d) (Olshanskii [Ol′93]) If G is hyperbolic, then so is G/〈〈gk〉〉.

Note that Theorem 1.4 is a particular case of Theorem 2.6. Indeed, if G is

torsion-free, then so is E(g). Every torsion-free virtually cyclic group is cyclic

(see, for example, [JMN08, Lemma 2.5]). Therefore, we can take d = 1 and

Theorem 1.4 follows.

For a group R, we denote by Rab its abelianization; that is, Rab =

R/[R,R]. The main ingredient of the proof of Theorem 2.6 is the follow-

ing result, which was stated and proved in [Sun20] using a slightly different

terminology.

Theorem 2.7 (Sun [Sun20]). Let G be a group, and let H be a hyperbol-

ically embedded subgroup of G. There exists a finite subset F ⊆ H \ {1} such

that for any N CH satisfying N ∩ F = ∅, we have

(2.3) G/[〈〈N〉〉, 〈〈N〉〉] ∈ WR(Nab, G/〈〈N〉〉y I),

where I = G/H〈〈N〉〉, the action of G/〈〈N〉〉 on I is by left multiplication, and

stabilizers of elements of I are isomorphic to H/N .

On the proof. Since our terminology is different from the one used by Sun,

we explain how to derive the theorem from the main result of [Sun20]. Consider

the short exact sequence

1 −→ 〈〈N〉〉ab −→ G/[〈〈N〉〉, 〈〈N〉〉] −→ G/〈〈N〉〉 −→ 1.

By [Sun20, Cor. 2.8], we have an isomorphism of G/〈〈N〉〉-modules

(2.4) 〈〈N〉〉ab ∼= Ind
G/〈〈N〉〉
H/N Nab,
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where the actions of G/〈〈N〉〉 on 〈〈N〉〉ab and H/N on Nab are induced by

conjugation. Note that we can assume H/N to be a subgroup of G/〈〈N〉〉
by Theorem 2.5. The standard description of the algebraic structure of the

induced module (see, for example, [Bro94, Ch. III, Prop. 5.1]) and (2.4) easily

imply (2.3). �

We are now ready to prove the main result of this section.

Proof of Theorem 2.6. By Theorem 2.4, we have E(g) ↪→h G. Let F be a

finite subset of E(g) \ {1} such that the conclusions of Theorems 2.5 and 2.7

simultaneously hold true for H = E(g) and any N CH satisfying N ∩ F = ∅.
Since k is divisible by d, we have 〈gk〉 C E(g). Further, by taking k

sufficiently large, we can ensure the condition 〈gk〉∩F = ∅. By Theorem 2.7, we

have (2.2) where I is the set of cosets G/E(g)〈〈gk〉〉 and the action G/〈〈gk〉〉y I

is by left multiplication. In particular, the action G/〈〈gk〉〉y I is transitive and

the stabilizers are isomorphic to E(g)〈〈gk〉〉/〈〈gk〉〉 ∼= E(g)/〈gk〉 by Theorem 2.5.

This gives parts (a) and (b) of the theorem.

The proof of (c) makes use of a more general Dehn filling procedure with

multiple hyperbolically embedded subgroups and some other results about

acylindrically hyperbolic groups. Since these results are not used anywhere

else in our paper, we do not discuss them in detail. Instead, we refer the

reader to the appropriate places in the relevant papers.

Assume that G is ICC. By Theorem 2.2, we have K(G) = {1}. Let X be a

relative generating set of G with respect to H = E(g) satisfying the conditions

listed in Definition 2.3. Combining Proposition 5.14 and Corollary 3.12 from

[AMS16], we obtain an element h ∈ G acting loxodromically on Cay(G,X t
H) such that E(h) = 〈h〉 and the collection of subgroups {E(g), E(h)} is

hyperbolically embedded in G (for the definition of a hyperbolically embedded

collection of subgroups, see [DGO17, Def. 4.25]).

By [DGO17, Th. 7.19], which is a more general version of Theorem 2.5, we

can choose a finite subset F ⊆ E(g) \ {1} so that for any N C E(g) satisfying

N∩F = ∅, the natural maps E(g)/N → G/〈〈N〉〉 and E(h)→ G/〈〈N〉〉 are injec-

tive and the collection {E(g)/N,E(h)} is hyperbolically embedded in G/〈〈N〉〉
(by abuse of notation, we identify E(g)/N and E(h) with their isomorphic

images in G/〈〈N〉〉). In particular, this is true for N = 〈gk〉 for all sufficiently

large k divisible by d. By [DGO17, Prop. 2.10], torsion-free hyperbolically em-

bedded subgroups are malnormal; therefore, the infinite cyclic subgroup E(h)

is malnormal in G/〈〈gk〉〉. This easily implies that K(G/〈〈gk〉〉) = {1}, which is

equivalent to G/〈〈gk〉〉 being ICC by Theorem 2.2.

Finally, part (d) was proved for all sufficiently large k divisible by d in

[Ol′93, Th. 3]. �
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2.3. Regular wreath-like products. In this section, we use Theorem 2.6 to

construct (uncountably many) regular wreath-like products satisfying the as-

sumptions of Theorem 1.3. We begin with a lemma that allows us to obtain

regular wreath-like products from non-regular ones. We restrict ourselves to

transitive actions for notational simplicity; the generalization to arbitrary ac-

tions is straightforward.

Lemma 2.8. Let A, B be arbitrary groups, B y I a transitive action of B

on a set I , and let W ∈ WR(A,B y I). Further, let D ≤ B, and let V ≤ W

denote the full preimage of D under the canonical homomorphism W → B.

Suppose that the induced action D y I is free, and let O denote the set of

D-orbits in I . Then V ∈ WR(C,D), where C is the direct sum of |O|-many

isomorphic copies of A.

Proof. Throughout the proof, we use the notation introduced in Defini-

tion 1.2. Fix some i0 ∈ I. Since the action B y I is transitive, there exists

T ⊆ B such that for every orbit o ∈ O, there is a unique t ∈ T such that

ti0 ∈ o. For every d ∈ D, we define

Id = {dti0 | t ∈ T} ⊆ I and Cd =

∞⋃
i∈Id

Ai

∫
≤ A(I).

Note that the equality dti0 = d′t′i0 implies t = t′ since otherwise dti0 and

d′t′i0 belong to distinct D-orbits. Since the action of D on I is free, we obtain

d = d′. Therefore, |Id| = |T | = |O| for all d ∈ D and Id ∩ Id′ = ∅. The former

equality implies that Cd is the direct sum of |O|-many isomorphic copies of A

for every d. Further, the decomposition I =
⊔
d∈D Id yields the decomposition

A(I) =
⊕

d∈D Cd. Finally, for every v ∈ V , we have

vCdv
−1 = v

〈⋃
t∈T

Adti0

〉
v−1 =

〈⋃
t∈T

vAdti0v
−1

〉
=

〈⋃
t∈T

Aε(v)dti0

〉
= Cε(v)d,

and the result follows. �

In the next result, we use the notation of Theorem 2.6.

Corollary 2.9. Let G, g, and k satisfy the assumptions of Theorem 2.6.

Suppose, in addition, that G0 is a normal subgroup of G such that G0∩E(g) =

〈gk〉. We keep the notation 〈〈gk〉〉 for the normal closure of gk in G. Then

〈〈gk〉〉 ≤ G0 and G0/[〈〈gk〉〉, 〈〈gk〉〉] ∈ WR(A,G0/〈〈gk〉〉), where A is free abelian.

Moreover, if |G : G0| =∞, then A is of countably infinite rank.

Proof. Clearly, we have 〈〈gk〉〉 ≤ G0 since gk ∈ G0 and G0 CG. Let W =

G/[〈〈gk〉〉, 〈〈gk〉〉], and let ε : W → G/〈〈gk〉〉 be the canonical homomorphism

associated with the wreath-like structure of W described in parts (a) and (b) of
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Theorem 2.6. Further, let V = G0/[〈〈gk〉〉, 〈〈gk〉〉] denote the image of G0 in W .

Since G0 ∩ E(g) = 〈gk〉 and G0 C G, the induced action of ε(V ) = G0/〈〈gk〉〉
on the set I = G/E(g)〈〈gk〉〉 is free and Lemma 2.8 applies. It remains to note

that if |G : G0| = ∞, then the number of ε(V )-orbits in I is infinite since

|ε(W ) : ε(V )| = |W : V | = |G : G0| and all stabilizers of the action ε(W ) y I

are finite by Theorem 2.6(b). �

We will also need the following.

Lemma 2.10 ([BO08, Cor. 1.2]). For any finitely presented torsion-free

group Q, there exists a short exact sequence 1 → N → G → Q → 1, where G

is torsion-free hyperbolic and N is a non-trivial group with property (T ).

We are now ready to construct the first examples of regular wreath-like

products satisfying the assumptions of Theorem 1.3.

Proposition 2.11. There exists a property (T ) group V ∈ WR(Z∞, B),

where B is a non-trivial, ICC subgroup of a hyperbolic group, and Z∞ denotes

the free abelian group of countably infinite rank.

Proof. Let S be any finitely presented, residually finite, torsion-free group

with property (T); e.g., we can take S = H, where H is the group constructed

in Example 1.6. By Lemma 2.10, there exists a short exact sequence

1→ N → G
γ→ S × Z→ 1,

where G is torsion-free hyperbolic and N is a non-trivial normal subgroup of

G with property (T). Let g be an element of G such that γ(g) ∈ S \ {1}. It

is well known that every torsion-free virtually cyclic group is cyclic (see, for

example, [Sta68]). Thus, replacing g with a generator of E(g) if necessary, we

can assume that E(g) = 〈g〉.
By Theorem 2.6 (applied in the particular case d = 1), there is K ∈ N

such that, for every k ≥ K, we have

(2.5) W = G/[〈〈gk〉〉, 〈〈gk〉〉] ∈ WR(Z, G/〈〈gk〉〉y I),

where G/〈〈gk〉〉 acts on I = G/E(g)〈〈gk〉〉 by left multiplication, and conditions

(b)–(d) of the theorem hold. Since S is residually finite, we can find a finite

index normal subgroup S0 C S such that

(2.6) γ(gi) /∈ S0 × {1} for all 1 ≤ i ≤ K.
Let G0CG be the full preimage of S0×{1} ≤ S×Z under γ. By the choice of

S0 (see (2.6)), we have G0 ∩E(g) = 〈gk〉 for some k ≥ K. Let W be the group

defined by (2.5), and let V be the image of G0 in W . Note that |G : G0| =

|(S×Z) : (S0×{1})| =∞. By Corollary 2.9, we have V ∈ WR(Z∞, G0/〈〈gk〉〉),
where 〈〈gk〉〉 is the normal closure of gk in G (not in G0).

Recall that the class of groups with property (T) is closed under extensions

and taking subgroups of finite index. Thus, the group G0 has property (T)
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being an extension of N by a finite index subgroup S0 of S. Hence, V has prop-

erty (T). By part (d) of Theorem 2.6, the group B = G/〈〈gk〉〉 is hyperbolic

and ICC. To complete the proof, it remains to show that D = G0/〈〈gk〉〉 is ICC.

To this end, we first note that D 6= {1} since otherwise V = Z∞, which

contradicts the fact that V has property (T). Further, since D C B and B is

ICC, D must be infinite. Combining this with property (T), we conclude that

D cannot be virtually cyclic. Thus, D is a non-elementary subgroup of the

hyperbolic group B. By Theorem 2.2, it suffices to show that K(D) = {1}.
Note that K(D) is characteristic in D and, therefore, normal in B. Since B is

ICC, we have K(D) ≤ K(B) = {1} and the desired result follows. �

To obtain an uncountable family of regular wreath-like products satisfying

the assumptions of Theorem 1.3, we will combine Proposition 2.11 with the

following.

Lemma 2.12. Let A, B be any groups, W ∈ WR(A,B). We identify A

with the subgroup A1 of the base
⊕

b∈B Ab ≤ W . For any N C A, we have

W/〈〈N〉〉 ∈ WR(A/N,B).

Proof. For every b ∈ B, we define Nb = uNu−1, where u is an element of

W such that

(2.7) ε(u) = b.

Note that the subgroup Nb is independent of the choice of a particular element

u ∈W satisfying (2.7). Indeed, if v ∈W is another element such that ε(v) = b,

then u−1v ∈ A(B). Obviously, N C A(B). Therefore, (u−1v)N(u−1v)−1 = N ,

which implies uNu−1 = vNv−1.

It is easy to see that 〈〈N〉〉 =
⊕

b∈B Nb. Hence, W/〈〈N〉〉 splits as

1 −→
⊕
b∈B

Ab/Nb −→W/〈〈N〉〉 δ−→ B −→ 1,

where δ is induced by the canonical homomorphism W → B. It remains to

note that we have w(Ab/Nb)w
−1 = Aδ(w)b/Nδ(w)b for all w ∈ W/〈〈N〉〉 and

b ∈ B. �

We are now ready to prove the result announced in the introduction.

Proof of Corollary 1.7. Let V ∈ WR(Z∞, B) be the group provided by

Proposition 2.11. For every infinite set of primes P = {p1, p2, . . .}, the appli-

cation of Lemma 2.12 to the subgroup p1Z ⊕ p2Z ⊕ · · · C Z∞ yields a group

VP ∈ WR
(⊕

p∈P Z/pZ, B
)
. The group VP has property (T) being a quotient

of V . Proposition 2.11 guarantees that B is a non-trivial, ICC subgroup of a

hyperbolic group.

It remains to note that VP 6∼= VP ′ whenever P 6= P ′. Indeed, B does not

contain any non-trivial, normal, abelian subgroups since it is hyperbolic and

ICC. Therefore, VP has a unique maximal abelian normal subgroup isomorphic
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to a direct sum of copies of
⊕

p∈P Z/pZ. Thus, the maximal abelian normal

subgroup of VP contains an element of prime order p if and only if p ∈ P and

the result follows. �

3. Preliminaries on von Neumann algebras

3.1. Tracial von Neumann algebras. We start by recalling some terminol-

ogy and constructions involving tracial von Neumann algebras; we refer the

reader to [AP] for more information.

A tracial von Neumann algebra is a pair (M, τ) consisting of a von Neu-

mann algebraM and a trace τ , i.e., a normal faithful tracial state τ : M→ C.

For x ∈M, we denote by ‖x‖ the operator norm of x and by ‖x‖2 = τ(x∗x)1/2

its (so-called) 2-norm. We denote by L2(M) the Hilbert space obtained as the

closure of M with respect to the 2-norm, by U (M) the group of unitaries of

M, and by (M)1 = {x ∈M | ‖x‖ ≤ 1} the unit ball ofM. We always assume

that M is separable, i.e., that L2(M) is a separable Hilbert space. We denote

by Aut(M) the group of τ -preserving automorphisms of M. For u ∈ U (M),

the inner automorphism Ad(u) of M is given by Ad(u)(x) = uxu∗. By von

Neumann’s bicommutant theorem, for any set X ⊂ M closed under adjoint,

X ′′ ⊂ M is the smallest von Neumann subalgebra that contains X. For a

set I, we denote by (MI , τ) the tensor product of tracial von Neumann alge-

bras ⊗ i∈I(M, τ). Given a subset J ⊂ I, we view MJ as a subalgebra of MI

by identifying it with (⊗ i∈JM)⊗ (⊗ i∈I\J1).

An M-bimodule is a Hilbert space H equipped with two normal ∗-homo-

morphisms π1 : M→ B(H) and π2 : Mop → B(H) whose images commute. We

write xξy = π1(x)π2(yop)ξ for ξ ∈ H and define a ∗-homomorphism πH : M⊗alg

Mop → B(H) by letting πH(x⊗ yop) = π1(x)π2(yop). Examples of bimodules

include the trivial M-bimodule L2(M) and the coarse M-bimodule L2(M)⊗
L2(M). We say that H is weakly contained in another M-bimodule K and

write H ⊂weak K if ‖πH(T )‖ ≤ ‖πK(T )‖ for every T ∈M⊗algMop.

Let Q ⊂M be a von Neumann subalgebra, which we always assume to be

unital. We denote by Q′ ∩M = {x ∈M | xy = yx for all y ∈ Q} the relative

commutant of Q inM, and by NM(Q) = {u ∈ U (M) | uQu∗ = Q} we denote

the normalizer of Q in M. The center of M is given by Z (M) = M′ ∩M.

We say that Q is regular in M if NM(Q)′′ = M. If Q ⊂ M is regular and

maximal abelian, we call it a Cartan subalgebra.

Jones’ basic construction 〈M, eQ〉 is defined as the von Neumann subal-

gebra of B(L2(M)) generated by M and the orthogonal projection eQ from

L2(M) onto L2(Q). The basic construction 〈M, eQ〉 has a faithful semi-

finite trace given by Tr(xeQy) = τ(xy) for every x, y ∈ M. We denote

by L2(〈M, eQ〉) the associated Hilbert space and endow it with the natu-

ral M-bimodule structure. We also denote by EQ : M → Q the unique

τ -preserving conditional expectation onto Q.
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The tracial von Neumann algebra (M, τ) is called amenable if there exists

a sequence ξn∈L2(M)⊗L2(M) such that 〈xξn, ξn〉→τ(x) and ‖xξn−ξnx‖2→0

for every x∈M.

Let P ⊂ pMp be a von Neumann subalgebra. Following Ozawa and Popa

[OP10, §2.2] we say that P is amenable relative to Q inside M if there exists a

sequence ξn ∈ L2(〈M, eQ〉) such that 〈xξn, ξn〉 → τ(x) for every x ∈ pMp, and

‖yξn − ξny‖2 → 0 for every y ∈ P. We say that P is strongly non-amenable

relative to Q inside M if there exist no non-zero projection p′ ∈ P ′ ∩ pMp

such that Pp′ is amenable relative to Q inside M.

Remark 3.1. Assume that P is amenable relative to Q inside M . By

the proof of [OP10, Th. 2.1], in the definition of relative amenability we may

take ξn = ζ
1/2
n for positive ζn ∈ L1(〈M, eQ〉). Thus, 〈ξnx, ξn〉 = Tr(ζnx) =

〈xξn, ξn〉 → τ(x) for all x ∈ M. Using a convexity argument (see the proof

of [AP, Lemma 13.3.11]), we find ηn ∈ L2(〈M, eQ〉)⊕∞ such that ‖〈·ηn, ηn〉 −
τ(·)‖ → 0, ‖〈ηn·, ηn〉 − τ(·)‖ → 0 and ‖yηn − ηny‖2 → 0 for all y ∈ P .

Following [Pop06a, Prop. 4.1], we say thatQ ⊂M has the relative property

(T ) if for every ε > 0, we can find a finite set F ⊂M and δ > 0 such that if H
is anM-bimodule and ξ ∈ H satisfies ‖〈·ξ, ξ〉−τ(·)‖ ≤ δ, ‖〈ξ·, ξ〉−τ(·)‖ ≤ δ and

‖xξ − ξx‖ ≤ δ for every x ∈ F , then there exists η ∈ H such that ‖η − ξ‖ ≤ ε
and yη = ηy for every y ∈ Q.

3.2. Intertwining-by-bimodules. We recall from [Pop06c, Th. 2.1, Cor. 2.3]

Popa’s intertwining-by-bimodules theory.

Theorem 3.2 ([Pop06c]). Let (M, τ) be a tracial von Neumann algebra,

P ⊂ pMp,Q ⊂ qMq be von Neumann subalgebras, and G ⊆ U (P) be any

subgroup that generates P as a von Neumann algebra. Consider the following

conditions :

(a) there exist projections p0 ∈ P, q0 ∈ Q, a ∗-homomorphism θ : p0Pp0 →
q0Qq0 and a non-zero partial isometry v ∈ q0Mp0 such that θ(x)v = vx

for all x ∈ p0Pp0;

(b) there is no sequence un∈G satisfying ‖EQ(x∗uny)‖2→0 for all x, y∈pM;

(c) there exists a non-zero element a ∈ P ′ ∩ p〈M, eQ〉p such that a ≥ 0 and

Tr(a) <∞.

Conditions (a) and (b) are equivalent in general, and (a), (b) and (c) are

equivalent if q = 1.

If (a) or (b) hold true, we write P ≺M Q and say that a corner of P
embeds into Q inside M. If Pp′ ≺M Q, then for any non-zero projection

p′ ∈ P ′ ∩ pMp, we write P ≺s
M Q.
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3.3. Cocycle superrigidity. In this subsection, we record a cocycle super-

rigidity result that will be needed to prove Theorem 1.3. Let G be a count-

able group. By a trace preserving action G yσ (P, τ) we mean a homomor-

phism σ : G → Aut(P), where (P, τ) is a tracial von Neumann algebra. A

1-cocycle for σ is a map w : G → U (P) such that wgh = wgσg(wh) for every

g, h ∈ G. Any character η : G → T gives a (trivial) 1-cocycle for σ. Two

cocycles w,w′ : G→ U (P) are called cohomologous if there is u ∈ U (P) such

that w′g = u∗wgσg(u) for every g ∈ G. Let p ∈ P be a projection. A gener-

alized 1-cocycle for σ with support projection p is a map w : G→ P such that

wgw
∗
g = p, w∗gwg = σg(p) and wgh = wgσg(wh) for every g, h ∈ G.

Example 3.3. We continue by recording several examples of trace preserv-

ing actions.

(a) Let G y I be an action on a countable set I and (P, τ) be a tracial

von Neumann algebra. The generalized Bernoulli action G yσ (PI , τ)

associated to G y I is given by σg(x) = ⊗i∈Ixg−1·i for all g ∈ G and

x = ⊗i∈Ixi ∈ PI with {i ∈ I | xi 6= 1} finite. If i ∈ I, we let StabG(i) be

the stabilizer of i in G and denote P{i} by P i.
(b) Let K < G be a subgroup and K yσ (P, τ) be a trace preserving action.

Let ϕ : G/K → G such that ϕ(h)K = h for every h ∈ G/K. Define

c : G × G/K → K by c(g, h) = ϕ(gh)−1gϕ(h) for g ∈ G and h ∈ G/K.

For h ∈ G/K, let ρh : P → PG/K be the embedding given by identifying

P with Ph. The co-induced action G yσ̃ PG/K is given by the formula

σ̃g(ρh(x)) = ρgh(σc(g,h)(x)) for all g ∈ G, h ∈ G/K and x ∈ P.

(c) Let G y I be an action on a countable set I and (P, τ) a tracial von

Neumann algebra. Following Krogager and Vaes [KV17, Def. 2.5], we

say that a trace preserving action G yσ (PI , τ) is built over G y I

if it satisfies σg(P i) = Pg·i for every g ∈ G and i ∈ I. Let J ⊂ I

be a set that meets each G-orbit exactly once. For i ∈ J , note that

σg(P i) = P i for every g ∈ StabG(i). Thus, we have a trace preserving

action StabG(i) y P i ∼= P. We denote by G yσi PG/StabG(i) the co-

induced action. Then, as explained right after [KV17, Def. 2.5], σ is

conjugate to the product of co-induced actions ⊗i∈Jσi.
The observation from [KV17] recalled in Example 3.3(c) implies the fol-

lowing.

Lemma 3.4. Let A,B be countable groups and B y I be an action on a

countable set I . Let G∈WR(A,By I), ε : G→B be the quotient homomor-

phism and (ug)g∈G the canonical generating unitaries of L(G). Let Gy I and

G yσ L(A(I)) = L(A)I be the action and the trace preserving action given by

g · i = ε(g)i and σg = Ad(ug) for every g ∈ G and i ∈ I .
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Then σ is built over G y I . Moreover, let J ⊂ I be a set that meets

each G-orbit exactly once. For i ∈ J , consider the trace preserving action

StabG(i) yρi L(Ai) given by (ρi)g(uh) = ughg−1 for every g ∈ StabG(i) and

h ∈ Ai. Let σi be the action of G obtained by co-inducing ρi. Then σ is

conjugate to ⊗i∈Jσi.
Proof. Since σg(L(Ai)) = L(Ag·i) for every g ∈ G and i ∈ I, σ is built over

G y I. If i ∈ J and g ∈ StabG(i), the restriction of σg to L(Ai) is (ρi)g, and

the conclusion follows. �

For further reference, we record the following consequence of Lemma 3.4.

Remark 3.5. Assume that A is abelian. Then the conjugation action of

G on A(I) gives rise to an action B = G/A(I) yα L(A(I)). Explicitly, for

g ∈ B, we have αg = σĝ, where ĝ ∈ G is any element such that ε(ĝ) = g.

Lemma 3.4 implies that α is built over B y I. Moreover, α is conjugate to

⊗i∈Jαi, where αi is obtained by co-inducing the action StabB(i) yτi L(Ai)

given by (τi)g = (ρi)ĝ for every g ∈ StabB(i). In particular, if I = B endowed

with the left multiplication action of B, then σ and α are conjugate to the

generalized Bernoulli actions Gy L(A)B and B y L(A)B, respectively.

In the proof of Theorem 1.3, we will use Lemma 3.4 in combination with

the following extension of Popa’s cocycle superrigidity theorems.

Theorem 3.6. Let G be a countable group with property (T ), G y I be

an action on a countable set I with infinite orbits, and (P, τ) be a tracial von

Neumann algebra. Suppose that Gyσ (PI , τ) is a trace preserving action built

over Gy I . Then the following hold :

(a) Any 1-cocycle for σ is cohomologous to a character of G. More gener-

ally, given a trace preserving action Gyλ (Q, τ), any 1-cocycle w : G→
U (PI ⊗Q) for the product action σ ⊗ λ is cohomologous to a 1-cocycle

taking values into U (Q) ⊂ U (PI ⊗Q).

(b) Any generalized 1-cocycle for σ has support projection 1.

Theorem 3.6 extends results of Popa in [Pop06b], [Pop07a] that cover

Connes-Størmer and classical Bernoulli actions. If G y I has finitely many

orbits, part (a) is a consequence of [Dri18, Th. 3.1]. In general, Theorem 3.6

follows by adapting the proof of [VV15, Th. 7.1]. We explain this briefly below,

leaving the details to the reader.

Proof. Assume first that the action G y I has finitely many orbits. By

[KV17] (see Example 3.3(c)), σ is a product of finitely many co-induced actions.

Since G has property (T) and Gy I has infinite orbits, part (a) follows from

[Dri18, Th. 3.1].

In general, adapting the proof of [VV15, Th. 7.1] shows that Theorem 3.6

holds if σ is the generalized Bernoulli action G y (PI , τ) associated to the
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action Gy I. To see this, assume the notation from [VV15, Th. 7.1]. Since G

has property (T), Step 2 in the proof of [VV15, Th. 7.1] holds for Σ = G. Then

Steps 3–6 in that proof, which only use Step 2 and that G y I has infinite

orbits, also hold for Σ = G. This justifies our claim. Similarly to [KV17,

Th. 2.6], the above proof can be reproduced verbatim to get the conclusion

under the more general assumption that σ is built over Gy I. �

3.4. Cartan subalgebras and equivalence relations. In this subsection, we

first recall the connection between Cartan subalgebras and countable equiva-

lence relations and then record two conjugacy results for Cartan subalgebras.

If G y (X,µ) is a p.m.p. (probability measure preserving) action of a

countable group G, then its orbit equivalence (OE) relation R(G y X) =

{(x1, x2) ∈ X2 | G · x1 = G · x2} is countable p.m.p. Conversely, every

countable p.m.p. equivalence relation R on (X,µ) arises this way [FM77a,

Th. 1]. The full group of R, denoted by [R], consists of all automorphisms

θ of (X,µ) such that (θ(x), x) ∈ R for almost every x ∈ X. For a 2-cocycle

c ∈ Z2(R,T), we denote by Lc(R) the tracial von Neumann algebra associated

to R and c [FM77b, §2]. It is generated by a copy of L∞(X) and unitaries

(uθ)θ∈[R] such that uθau
∗
θ = a ◦ θ−1 for every a ∈ L∞(X) and θ ∈ [R]. When

c ≡ 1 is the trivial 2-cocycle, we use the notation L(R).

Let M be a II1 factor and A ⊂M be a Cartan subalgebra. Identify A =

L∞(X) for a standard probability space (X,µ). For u ∈ NM(A), let θu be a

measure space automorphism of (X,µ) such that uau∗ = a◦θ−1
u for every a ∈ A.

The equivalence relation of the inclusion A ⊂M, denoted R := R(A ⊂M), is

the smallest countable p.m.p. equivalence relation on (X,µ) such that θu ∈ [R]

for every u ∈ NM(A). Then there is a 2-cocycle c ∈ Z2(R,T) such that the

inclusion (A ⊂M) is isomorphic to (L∞(X) ⊂ Lc(R)) [FM77b, Th. 1].

The following two lemmas are extracted from the proofs of Theorems 6.1

and 8.2 in [Ioa11], respectively. However, for the reader’s convenience, we

include detailed proofs.

Lemma 3.7 ([Ioa11]). Let M be a II1 factor, A ⊂M be a Cartan subal-

gebra and D ⊂M be an abelian von Neumann subalgebra. Let C = D′∩M and

assume that C ≺sM A. Then there exists u ∈ U (M) such that D ⊂ uAu∗ ⊂ C.

Proof. Let C0 ⊂ C be a maximal abelian von Neumann subalgebra. Then

C0 contains Z (C) and hence D. Thus, C′0 ∩M ⊂ D′ ∩M = C, and hence C0 is

maximal abelian in M.

Let p ∈ C0 be a non-zero projection. Since C ≺s
M A, we get that C0p ≺M

A. Since C0,A ⊂M are maximal abelian, [Pop06a, Th. A.1] (see also [Vae07,

Lemma C.3]) provides non-zero projections p′ ∈ C0p and q ∈ A such that

C0p
′ = v(Aq)v∗ for a partial isometry v ∈ M satisfying vv∗ = p′ and v∗v = q.

Moreover, since A ⊂ M is a Cartan subalgebra and M is a II1 factor, the

same holds if q is replaced by any projection q′ ∈ A with τ(q′) = τ(q).
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By using this fact and a maximality argument, we can find projections

(pi)i∈I ⊂ C0, (qi)i∈I ⊂ A and partial isometries (vi)i∈I ⊂M such that we have∑
i∈I pi =

∑
i=I qi = 1 and C0pi = vi(Aqi)v∗i , viv∗i = pi, v

∗
i vi = qi for every

i ∈ I. It follows that u =
∑

i∈I vi is a unitary in M such that C0 = uAu∗.
Thus, D ⊂ uAu∗ ⊂ C, which proves the conclusion. �

Lemma 3.8 ([Ioa11]). LetM be a II1 factor, A ⊂M a Cartan subalgebra,

D ⊂ M an abelian von Neumann subalgebra, and let C = D′ ∩M. Assume

that C ≺s
M A and D ⊂ A ⊂ C. Let (αg)g∈G be an action of a group G on C

such that αg = Ad(ug) for some ug ∈ NM(D) for every g ∈ G. Assume that

the restriction of the action (αg)g∈G to D is free.

Then there is an action (βg)g∈G of G on C such that

(a) for every g ∈ G, we have that βg = αg ◦ Ad(ωg) = Ad(ugωg) for some

ωg ∈ U (C); and

(b) A is (βg)g∈G-invariant and the restriction of (βg)g∈G to A is free.

Moreover, if the action (αg)g∈G on C is weakly mixing, then we can find

(βg)g∈G-invariant projections p1, . . . , pk ∈ A with
∑k

j=1 pi = 1 for some k ∈ N,

such that the restriction of (βg)g∈G to Apj is weakly mixing for every 1≤j≤k.

Remark 3.9. Assume the notation of Lemma 3.8. If (ug)g∈G ⊂ NM(D)

are such that u∗ghuguh ∈ D for every g, h ∈ G, then (Ad(ug))g∈G defines an

action of G on C.
For k ∈ N, we denote by Dk(C) ⊂ Mk(C) the subalgebra of diagonal

matrices.

Proof. Since C ≺s
M A, C is a type I algebra. We can thus decompose

Z (C) =
⊕

i≥1 Zi such that C =
⊕

i≥1(Zi⊗Mki(C)) for a strictly increasing,

possibly finite, sequence (ki) ⊂ N. Since any two maximal abelian subalgebras

of a type I algebra are unitarily conjugate (see, e.g., [Vae07, Lemma C.2]) we

may assume that A =
⊕

i≥1(Zi⊗Dki(C)).

Since the action (αg)g∈G on C leaves Zi invariant, for every i, we can

define a new action (βg)g∈G on C by letting

βg =
⊕
i≥1

(αg |Zi
⊗ IdMki

(C)) for every g ∈ G.

If g ∈ G, then since the automorphisms αg and βg of C are equal on its center,

Z , by [KR86, Cor. 9.3.5] we can find ωg ∈ U (C) such that βg = αg ◦Ad(ωg),

which proves (a).

To prove (b), note first that (βg)g∈G leaves A invariant. Second, let g ∈ G
such that βg(x) = x for every x ∈ Ap for some non-zero projection p ∈ A.

We may assume that p = z ⊗ q, where z ∈ Zi is a non-zero projection and

q ∈ Dki(C) is a minimal projection for some i. Then αg(x) = x for every

x ∈ Ziz. If r ∈ D denotes the support of ED(z), then as D ⊂ Z and
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αg(D) = D, by projecting onto D we get that αg(x) = x for every x ∈ Dr.
Since r 6= 0 and the restriction of (αg)g∈Γ to D is free, we get that g = e. Thus,

the restriction of (βg)g∈G to A is free.

To prove the moreover assertion, assume that the action (αg)g∈G on C is

weakly mixing. Then C is of type Ik for some k ∈ N, so we can write C =

Z ⊗Mk(C) and A = Z ⊗Dk(C). Let q1, . . . , qk be the minimal projections

of Dk(C). Then pj = 1⊗ qj ∈ A is (βg)g∈G-invariant for every 1 ≤ j ≤ k.

Since the restriction of (αg)g∈G to Z is weakly mixing, so is the restriction of

(βg)g∈G to Apj = Z ⊗ qj . This finishes the proof. �

3.5. An intertwining result for property (T ) subalgebras. We end this sec-

tion by using Popa and Vaes’ structure theorem for normalizers in crossed

products arising from actions of hyperbolic groups [PV14b] to establish the

following result.

Theorem 3.10. Let G,H be countable groups and δ : G → H a homo-

morphism, where H is hyperbolic. Let Gy (Q, τ) be a trace preserving action

on a tracial von Neumann algebra (Q, τ) and M = Q o G. Let P ⊂ pMp

be a von Neumann subalgebra that is amenable relative to Q o ker(δ). Let

N = NpMp(P)′′, and assume there is a von Neumann subalgebra R ⊂ N with

the relative property (T ) such that R ⊀M Qoker(δ). Then P ≺s
M Qoker(δ).

Proof. Let (ug)g∈G ⊂ U (M) and (vh)h∈H ⊂ U (L(H)) be the canoni-

cal unitaries. Following [CIK15, §3], define ∆: M → M⊗L(H) by letting

∆(xug) = xug ⊗ vδ(g) for every x ∈ Q and g ∈ G. WriteM⊗L(H) =MoH,

where H acts trivially on M. Before proving the conclusion, we recall the

following fact proved in [CIK15, Prop. 3.4].

Fact 3.11. Assume that ∆(S) ≺M⊗L(H) M⊗L(Σ) for some von Neumann

subalgebra S ⊂ qMq and subgroup Σ < H. Then S ≺M Qo δ−1(Σ).

Assume by contradiction that the conclusion is false. Then [DHI19, Lemma

2.4(2)] provides a non-zero projection z ∈ N ′ ∩ pMp such that Pz ⊀M
Q o ker(δ). Since P is amenable relative to Q o ker(δ), we get that ∆(P)

is amenable relative to ∆(Qo ker(δ)) = Q⊗ 1 and thus to M⊗ 1. Since H is

hyperbolic, applying [PV14b, Th. 1.4] to ∆(Pz) ⊂M⊗L(H) gives that either

(1) ∆(Pz) ≺M⊗L(H) M⊗ 1 or (2) ∆(N z) is amenable relative toM⊗ 1 inside

M⊗L(H).

If (1) holds, then Fact 3.11 gives that Pz ≺M Q o ker(δ), which is a

contradiction. If (2) holds, then there is a sequence

ηn ∈ L2(∆(z)〈M⊗L(H),M⊗ 1〉∆(z))
⊕
∞

such that ‖〈·ηn, ηn〉−τ(·)‖ → 0, ‖〈ηn·, ηn〉−τ(·)‖ → 0, and ‖yηn−ηny‖2 → 0 for

every y∈∆(N z) (see Remark 3.1). Since R⊂N has the relative property (T),
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by [Pop06a, Prop. 4.7], so does ∆(Rz) ⊂ ∆(N z). Hence, there is a non-zero

η ∈ L2(∆(z)〈M⊗L(H),M⊗ 1〉∆(z)) such that yη = ηy for every y ∈ ∆(Rz).
Then ζ = η∗η ∈ L1(∆(z)〈M⊗L(H),M⊗ 1〉∆(z)) is non-zero and satisfies ζ ≥
0 and yζ = ζy for every y ∈ ∆(Rz). Let t > 0 such the spectral projection a =

1[t,∞)(ζ) of ζ is non-zero. Then a ∈ ∆(Rz)′ ∩ ∆(z)〈M⊗L(H),M⊗ 1〉∆(z).

As ta ≤ ζ, we get that Tr(a) ≤ Tr(ζ)/t < ∞. Theorem 3.2 implies that

∆(Rz) ≺M⊗L(H) M⊗ 1. Applying Fact 3.11 again, we get that R ≺M Q o
ker(δ), a contradiction. �

4. W ∗-superrigid groups with property (T)

The goal of this section is to prove Theorem 1.3. We begin with an

informal outline the proof of Theorem 1.3. For simplicity, letG ∈ WR(A,B) be

a property (T) group, where A is non-trivial abelian and B is an ICC subgroup

of a hyperbolic group. Denote M = L(G) and assume that M = L(H) for

some arbitrary group H. We denote by (ug)g∈G ⊂ L(G) and (vh)h∈H ⊂ L(H)

the canonical generating unitaries.

The proof of Theorem 1.3 is based on a deformation/rigidity strategy,

which plays property (T) against two key properties of wreath-like product

groups that relate them to wreath product groups. Namely, letting P =

L(A(B)), we have

(i) the action G yσ P = L(A)B given by σg = Ad(ug) is a generalized

Bernoulli action;

(ii) P ⊂ M is a Cartan subalgebra and R(P ⊂ M) is the orbit equivalence

(OE) relation of the Bernoulli action B y ÂB, where Â is the dual of A.

Specifically, rather than (ii), we use the following “transfer principle” im-

plied by (ii). Let N = L(AwrB). If P ⊗P ⊂ D ⊂ M⊗M is a subalgebra,

then R(P ⊗P ⊂ D) is a subequivalence relation of the OE relation of the prod-

uct action B × B y ÂB × ÂB. So, there is subalgebra P ⊗P ⊂ ‹D ⊂ N ⊗N
such that the inclusions P ⊗P ⊂ D and P ⊗P ⊂ ‹D have isomorphic equiva-

lence relations. In particular, if ‹D is amenable, then D is amenable. The use

of this transfer principle is a main novelty of our approach.

Define the comultiplication ∆ :M→M⊗M by letting ∆(vh) = vh⊗vh,

h ∈ H [PV10]. In the first part of the proof, following [Ioa11], [IPV13], we ana-

lyze ∆ and show that D := ∆(P)′∩M⊗M is essentially unitarily conjugated

to P ⊗P. Since ∆(P) is amenable and has large normalizer, using Popa and

Vaes’ structure theorem [PV14b] for normalizers inside crossed products by hy-

perbolic groups as in [CIK15] allows us to essentially show that ∆(P) ⊂ P ⊗P,

after unitary conjugacy. Next, as in [BV14], we use solidity results for general-

ized Bernoulli crossed products. Thus, applying the above transfer principle to

D and extending the solidity theorem of [CI10] (see Section 4.2), we derive that
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D is amenable. Another application of [PV14b] implies that D is essentially

unitarily conjugated to P ⊗P.

The second part of the proof is a “discretization argument.” By the first

part, we may assume that ∆(P)′ ∩M⊗M = P ⊗P, after unitary conjugacy.

In particular, the group ∆(G) = (∆(ug))g∈G normalizes P ⊗P. Moreover, the

resulting action of ∆(G) on P ⊗P descends to a free action of ∆(B). A second

application of our transfer principle gives a free action of ∆(B) ∼= B on ÂB×ÂB
whose OE relation is contained in that of B × B y ÂB × ÂB. Since B has

property (T), a generalization of a theorem from [Pop06d] (see Section 4.1)

allows us to assume that ∆(B) ⊂ B × B, as groups of automorphisms of

ÂB×ÂB. Consequently, ∆(G) “discretizes” modulo U (P ⊗P): there are maps

δ1, δ2 : G → G and ω : G → U (P ⊗P) such that ∆(ug) = ωg(uδ1(g) ⊗ uδ2(g))

for every g ∈ G.

In the last part of the proof, we first use the symmetry and associativity

properties of ∆ to show that we may take δ1 and δ2 to be the identity of G.

In other words, we have ∆(ug) = ωg(ug ⊗ ug) for every g ∈ G. So far we

have only used that B, but not G, has property (T). Another main novelty of

this paper is the way we use property (T) for G. We start by observing that

as G has property (T) and σ is a generalized Bernoulli action by (i), Popa’s

cocycle superrgidity theorem [Pop07a] implies that any 1-cocycle for σ ⊗ σ

is cohomologous to a character of G. Thus, since (ωg)g∈G is a 1-cocycle for

σ ⊗ σ, we can find a unitary w ∈ P ⊗P and a character ρ : G → T such that

w∆(ug)w
∗ = ρ(g)(ug ⊗ ug) for every g ∈ G. But then a general result from

[IPV13] implies the conclusion of Theorem 1.3.

4.1. Strong rigidity for orbit equivalence embeddings. Popa’s deformation

rigidity/theory has been used to derive a number of powerful rigidity results for

von Neumann algebras associated to Bernoulli actions. To prove Theorem 1.3,

we need to extend two of such results from plain to generalized Bernoulli

actions.

Let B y (X,µ) = (Y B, νB) be a Bernoulli action of a countable group B.

In [Pop06c], Popa discovered his malleable deformation of the crossed product

M = L∞(X) o B. He used this in [Pop06c], [Pop06d] to prove a series of

rigidity results under property (T) assumptions. In particular, in [Pop06d,

Th. 0.5], he obtained the following strong rigidity theorem for orbit equivalence

embeddings: if B is ICC and H y (X,µ) is a free ergodic p.m.p. action of an

ICC group H admitting an infinite normal subgroup with the relative property

(T) such that H · x ⊂ B · x for almost every x ∈ X, then θ ◦H ◦ θ−1 ⊂ B for

some θ ∈ [R(B y X)].

In [Pop08], Popa introduced his spectral gap rigidity principle and com-

bined it with the deformation/rigidity methods of [Pop06c], [Pop06d] to prove

solidity results for M . These methods were combined with those of [Ioa07] in
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[CI10] to prove the following relative solidity theorem: Q′∩M is amenable for

any diffuse subalgebra Q ⊂ L∞(X).

In the proof of Theorem 1.3, we will need analogues of the above strong

rigidity for OE embeddings and relative solidity results for the product action

B ×B y (X ×X,µ× µ). To this end, we use results from [IPV13] to extend

these results to certain classes of generalized Bernoulli actions that include the

action B ×B y (X ×X,µ× µ). More generally, we treat measure preserving

actions C y (ZJ , ρJ) that are built over an action C y J , i.e., such that the

associated trace preserving action C y L∞(Z)J is built over C y J in the

sense of [KV17, Def. 2.5] (see Example 3.3(c)).

First, in this section, we extend [Pop06d, Th. 0.5] to a large class of gener-

alized Bernoulli actions. Although the next statement is ergodic-theoretic, as in

[Pop06d], its proof relies crucially on the framework of von Neumann algebras.

Theorem 4.1. Let B be an ICC group and B yα (X,µ) = (Y I , νI)

be a measure preserving action built over an action B y I , where (Y, ν) is

a probability space. Let ‹B = B × Z/nZ and (‹X, µ̃) = (X × Z/nZ, µ × c),

where n ∈ N and c is the counting measure of Z/nZ. Consider the action‹B yα̃ (‹X, µ̃) given by (g, a) · (x, b) = (g · x, a+ b).

Let D be a countable group with a normal subgroup D0 such that the pair

(D,D0) has the relative property (T ). Let X0 ⊂ ‹X be a measurable, non-

negligible set and D yβ (X0, µ̃|X0
) be a weakly mixing free measure preserving

action such that D · x ⊂ ‹B · x for almost every x ∈ X0. Assume that for every

i ∈ I , there is a sequence (hm) ⊂ D0 such that for every s, t ∈ ‹B, we have

µ̃({x ∈ X0 | hm · x ∈ s(StabB(i)× Z/nZ)t · x})→ 0, as m→∞.

Then there exist a subgroup B1 < B, a finite normal subgroup K C B1,

an isomorphism δ : D → B1/K , a measurable set X1 ⊂ X ≡ X × {0} and

θ ∈ [R(‹B y ‹X)] such that

(a) X1 is a fundamental domain for α|K , i.e., X =
⊔
k∈K α(k)(X1);

(b) θ(X0) = X1 so, in particular, µ̃(X0) = µ(X1) = |K|−1 ≤ 1; and

(c) θ ◦ β(h) = γ(δ(h)) ◦ θ for every h ∈ D, where B1/K yγ (X1, µ|X1
) is the

action given by {γ(gK)x} = α(gK)x ∩X1 for every g ∈ B1 and x ∈ X1.

Assume additionally that for every g∈B\{1}, there is a sequence (lm)⊂D
such that µ̃({x ∈ X0 | lm · x ∈ s(CB(g)× Z/nZ)t · x})→ 0, as m→∞ for all

s, t ∈ ‹B. Then K = {1}.
Remark 4.2. The action B1/K yγ (X1, µ|X1

) is isomorphic to the natural

quotient action B1/K y (X/K, µ̄), where µ̄ is the push-forward of µ through

the quotient map X → X/K.

The proof of Theorem 4.1 relies on the following result, which is a direct

consequence of [IPV13].
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Corollary 4.3 ([IPV13]). Let B be an ICC group, B y I be an ac-

tion, (A, τ) be a tracial von Neumann algebra and B y (AI , τ) be a trace

preserving action built over B y I . Let M = AI o B and (N , τ) be a tracial

factor. Let Q ⊂ p(M⊗N )p be a von Neumann subalgebra with the relative

property (T ) such that Q ⊀M⊗N (AI o StabB(i))⊗N for all i ∈ I . Let

P = Np(M⊗N )p(Q)′′.

Then there exists v ∈M⊗N such that v∗v = p and vPv∗ ⊂ L(B)⊗N .

Proof. Assume that B y AI is the generalized Bernoulli action associated

to B y I. For F ⊂ I, let MF = (AF o StabB(F))⊗N . Let M∅ = L(B)⊗N .

Let p0 ∈ Z (P) be a non-zero projection. Since Q ⊀M⊗N (AIoStabB(i))⊗N
for all i ∈ I, and Qp0 ⊂ p0(M⊗N )p0 has the relative property (T), the proof

of [IPV13, Th. 4.2] shows that Qp0 ≺M⊗N MF for a finite, possibly empty, set

F ⊂ I. We claim that F = ∅. Otherwise, if i ∈ F , then StabB(F) ⊂ StabB(i)

and thus MF ⊂ (AI o StabB(i))⊗N , which would imply that Qp0 ≺M⊗N
(AIoStabB(i))⊗N , contradicting our assumption. Thus, F = ∅ and therefore

Qp0 ≺M⊗N M∅ = L(B)⊗N . Further, [IPV13, Lemma 4.1(1)] implies that

Pp0 ≺M⊗N L(B)⊗N . Since this holds for every non-zero projection p0 ∈
Z (P) and B is ICC, repeating the beginning of the proof of [IPV13, Cor. 4.3]

gives the conclusion.

In general, when B y AI is built over B y I, the above proof and results

from [IPV13, §4] carry over verbatim to give the conclusion in this case. �

Proof of Theorem 4.1. Denote M = L∞(X) o B, M̃ = L∞(‹X) o ‹B and

N = L∞(X0)oD. Denote by (ug)g∈B ⊂M, (ũg)g∈‹B ⊂ M̃ and (vh)h∈D ⊂ N
the canonical unitaries. For h ∈ D and g ∈ ‹B, let Agh = {x ∈ X0 | h−1 · x =

g−1 · x}. Let p0 = 1X0 , and consider the ∗-homomorphism π : N → p0M̃p0

given by π(a) = a and π(vh) =
∑

g∈‹B 1Ag
h
ũg for every a ∈ L∞(X0) and h ∈ D.

We view N as a subalgebra of M̃ by identifying it with π(N ). We identify

M̃ =M⊗Mn(C) and endow M̃ with the normalized trace τ̃ = τ ⊗ n−1Tr.

We first claim that for every i ∈ I, we have

(4.1)

L(D0) ⊀›M (L∞(X)o StabB(i))⊗Mn(C) = L∞(‹X)o (StabB(i)× Z/nZ).

Let i ∈ I. Put B0 = StabB(i) and ‹B0 = B0 × Z/nZ. Let s, t ∈ ‹B and

a, b ∈ L∞(‹X) with ‖a‖, ‖b‖ ≤ 1. If h ∈ D0, then

E
L∞(‹X)o‹B0

(aũsvhũtb) = a
( ∑
g∈s−1‹B0t−1

α̃(s)(1Ag
h
)ũsgt

)
b,

thus

‖E
L∞(‹X)o‹B0

(aũsvhũtb)‖22 ≤
∑

g∈s−1‹B0t−1

µ̃(Agh) = µ̃({x ∈ ‹X | h−1 ·x ∈ t‹B0s ·x}).
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Using this fact, the hypothesis gives a sequence (hm) ⊂ D0 such that

‖E
L∞(‹X)o‹B0

(aũsvhm ũtb)‖2 → 0.

Since this holds for every s, t ∈ ‹B and a, b ∈ L∞(‹X) with ‖a‖, ‖b‖ ≤ 1, we con-

clude that ‖E
L∞(‹X)o‹B0

(cvhmd)‖2 → 0 for every c, d ∈ M̃, which proves (4.1).

Since (D,D0) has the relative property (T), so does the inclusion L(D0) ⊂
L(D) by [Pop06a, Prop. 5.1]. As D0 CD is normal and B is ICC, using (4.1)

and Corollary 4.3 we find a partial isometry y ∈ M̃ such that yy∗ = p0,

p : = y∗y ∈ L(B)⊗Mn(C), and

(4.2) y∗L(D)y ⊂ p(L(B)⊗Mn(C))p.

Thus, the group of unitaries (y∗vhy)h∈D ⊂ U (p(L(B)⊗Mn(C))p) normal-

izes y∗L∞(X0)y ⊂ pM̃p. Moreover, the action (Ad(y∗vhy))h∈D on y∗L∞(X0)y

is isomorphic to β and so is weakly mixing. By applying [IPV13, Th. 6.1],

whose conclusion holds with d = 1 as y∗L∞(X0)y ⊂ pM̃p is a maximal abelian

subalgebra, we get that there exist

• a subgroup B1 < B, a finite normal subgroup KCB1, a character ρ : K → T
such that the associated projection pK = |K|−1∑

k∈K ρ(k)uk commutes with

{ug | g ∈ B1};
• an isomorphism δ : D → B1/K;

• an α(B1)-invariant projection q ∈ L∞(X); and

• a partial isometry v ∈ L(B)⊗Mn,1(C) with vv∗ = p

such that w = τ(q)−1/2vq is a partial isometry satisfying ww∗ = p, w∗w = pKq,

w∗(y∗L∞(X0)y)w = (L∞(X)q)KpK and we have that

(4.3) w∗(y∗vhy)w = η(h)u
δ̂(h)

pKq for every h ∈ D,

where δ̂ : D → B1 and η : D → T are maps such that δ̂(h)K = δ(h) for every

h ∈ D.

We next claim that α|B1
is ergodic. Otherwise, we can find i ∈ I such

that B1 ∩ B0 < B1 has finite index, where B0 = StabB(i) for some i ∈ I

(see [PV08, Prop. 2.3]). By (4.1) there is a sequence (hm) ⊂ D such that

‖EL(B0)⊗Mn(C)(avhmb)‖2 → 0 for all a, b ∈ M̃. Since B1 ∩ B0 < B1 has finite

index, we get ‖EL(B1)⊗Mn(C)(avhmb)‖2 → 0 for all a, b ∈ M̃. On the other

hand, (4.3) implies that ‖EL(B1)⊗Mn(C)(w
∗(y∗vhy)w)‖2 =n−1/2‖EL(B1)(pKq)‖2

6= 0 for every h ∈ D. This gives a contradiction.

Since α|B1
is ergodic, we further derive that q = 1 and thus w = v. Let

z=yv. Then z is a partial isometry such that zz∗=p0, z
∗z=pK , z

∗L∞(X0)z=

L∞(X)KpK and z∗vhz=η(h)u
δ̂(h)

pK for every h ∈ D.

Let X1 ⊂ X be a fundamental domain for α|K and put p1 = 1X1 . Then t =

|K|1/2pKp1 is a partial isometry such that tt∗ = pK , t
∗t = p1 and L∞(X)KpK =

tL∞(X1)t∗. Hence ξ = zt is a partial isometry such that ξξ∗ = p0, ξ∗ξ = p1
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and ξ∗L∞(X0)ξ = L∞(X1). Thus, we can find θ ∈ [R(‹B y ‹X)] such that

θ(X0) = X1 and ξ∗aξ = a ◦ θ−1 for every a ∈ L∞(X0). Moreover, t∗ugpKt =∑
k∈K ρ(k)p1ugkp1 for every g ∈ B1. This implies that

(4.4) ξ∗vhξ = η(h)
∑
k∈K

ρ(k)p1uδ̂(h)k
p1 for every h ∈ D.

If h ∈ D, then Ad(ξ∗vhξ)(a) = a ◦ θ ◦ β(h)−1 ◦ θ−1 for every a ∈ L∞(X1). On

the other hand, using (4.4) it is easy to see that Ad(ξ∗vhξ)(a) = a ◦ γ(δ(h))−1

for every a ∈ L∞(X1). We thus conclude that θ ◦ β(h) = γ(δ(h)) ◦ θ for every

h ∈ D, as claimed.

To prove the moreover assertion, assume that K 6= {1} and let g ∈ K\{1}.
Let (lm) ⊂ D be a sequence such that

µ̃({x ∈ X0 | lm · x ∈ s(CB(g)× Z/nZ)t · x})→ 0

as m → ∞ for all s, t ∈ ‹B. As in the proof of (4.1) it follows that L(D) ⊀›M
L(CB(g))⊗Mn(C). Since the set {hgh−1 | h ∈ B1} ⊂ K is finite, B1 ∩ CB(g)

< B1 has finite index, so L(D) ⊀›M L(B1)⊗Mn(C). This contradicts the fact

that z∗L(D)z ⊂ L(B1)pK . �

We end this section by showing that the weakly mixing condition from

Theorem 4.1 is automatically satisfied after passing to an ergodic component

of a finite index subgroup.

Lemma 4.4 ([Pop06d]). Assume the setting of Theorem 4.1. Then there

exist a finite index subgroup S < D and a β(S)-invariant non-null measurable

set Y ⊂ X0 such that µ̃(β(h)(Y ) ∩ Y ) = 0 for every h ∈ D \ S, and the

restriction of β|S to Y is weakly mixing.

The proof follows from an argument of Popa. (See the proofs of [Pop06d,

Lemma 4.5], [Vae07, Th. 9.1] and [Ioa11, Th. 8.2].) For completeness, we

reproduce the argument here.

Proof. Assume the notation from the proof of Theorem 4.1. In particular,

we recall that y ∈ M̃ is a partial isometry such that yy∗ = p0 = 1X0 and

y∗y = p. Moreover, by (4.2), we have y∗L(D)y ⊂ p(L(B)⊗Mn(C))p. Let

P0 ⊂ L∞(X0) be the ∗-algebra of f ∈ L∞(X0) such that the linear span of

{β(h)(f) | f ∈ D} is finite dimensional. Let P ⊂ L∞(X0) be the von Neumann

algebra generated by P0.

Let f ∈ P0, and denote by H the linear span of {β(h)(f) |h ∈ D}. Then,

vhf = β(h)(f)vh ∈ Hvh for every h ∈ D. This implies that L(D)f ⊂ HL(D)

and thus (y∗L(D)y)(y∗fy) ⊂ (y∗Hy)(y∗L(D)y). Since H is finite dimensional,

by using (4.1) and (4.2) and applying [PV08, Prop. s 6.14 and 6.15], we get

that y∗fy ∈ p(L(B)⊗Mn(C))p. Thus, we get that y∗Py ⊂ p(L(B)⊗Mn(C))p

and so P ⊂ L∞(X0) ∩ y(L(B)⊗Mn(C))y∗.
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This easily implies that P is completely atomic. Let Y ⊂ X0 be a non-null

measurable set such that 1Y is a minimal projection of P . Let S < D be the

subgroup of h ∈ D such that β(h)(Y ) = Y . Then S has finite index in D

and µ̃(β(h)(Y ) ∩ Y ) = 0 for every h ∈ D \ S. If f ∈ L∞(Y ) is such that the

linear span of {β(h)(f) | h ∈ S} is finite dimensional, then f ∈ P and hence

f ∈ C1Y . This shows that the restriction of β|S to Y is weakly mixing. �

4.2. Solidity results for generalized Bernoulli crossed products. The sec-

ond ingredient needed in the proof of Theorem 1.3 is the following relative

solidity result, which generalizes [CI10, Th. 2].

Theorem 4.5. Let m ∈ N. For 1 ≤ j ≤ m, let Bj y Ij be an action such

that StabBj (i) is amenable for every i ∈ Ij . Also let (Aj , τ) be an abelian tracial

von Neumann algebra, Bj y (AIjj , τ) be a trace preserving action built over

Bj y Ij and put Mj = AIjj oBj . Denote A = ⊗m
j=1A

Ij
j and M = ⊗m

j=1Mj .

Let Q ⊂ pAp be a von Neumann subalgebra. Assume that Q ⊀A ⊗ j 6=kA
Ij
j for

every 1 ≤ k ≤ m.

Then Q′ ∩ pMp is amenable.

To prove Theorem 4.5 we rely on a corollary of [IPV13, Th. 4.2, Cor. 4.3]:

Corollary 4.6 ([IPV13]). Let B y I be an action such that StabB(i)

is amenable for every i ∈ I . Let (A, τ) be an abelian tracial von Neumann

algebra and B yσ (AI , τ) be a trace preserving action built over B y I .

Denote M = AI o B, and let (N , τ) be a tracial von Neumann algebra. Let

Q ⊂ p(AI ⊗N )p be a von Neumann subalgebra such that Q′ ∩ p(M⊗N )p is

strongly non-amenable relative to 1⊗N inside M⊗N .

Then Q ≺AI ⊗N 1⊗N .

Proof. Let P = Np(M⊗N )p(Q)′′. As P contains Q′ ∩ p(M⊗N )p, it is

strongly non-amenable relative to 1⊗N . Let i ∈ I. Since A is abelian and

StabB(i) is amenable, AIoStabB(i) is amenable and thus (AIoStabB(i))⊗N
is amenable relative to 1⊗N . By [OP10, Prop. 2.4] we derive that P is strongly

non-amenable relative to (AI o StabB(i))⊗N . In particular, using [DHI19,

Lemmas 2.4 and 2.6], we get that P ⊀M⊗N (AI o StabB(i))⊗N .

Assume that σ is the generalized Bernoulli action associated to B y I.

Then the proof of [IPV13, Cor. 4.3] shows that (?) τ(u∗(θρ ⊗ id)(u)) ≥ δ,

for all u ∈ U (Q), for some ρ ∈ (0, 1) and δ > 0, where (θρ)ρ∈(0,1) is the

tensor length deformation of M. Using (?), the proof of [IPV13, Th. 4.2]

shows that (a) Q ≺M⊗N (AF o StabB(F))⊗N for a finite non-empty set

F ⊂ I, or (b) Q ≺M⊗N L(B)⊗N . Since Q ⊂ AI ⊗N , (a) implies that (c)

Q ≺AI ⊗N AF ⊗N for a finite non-empty set F ⊂ I, and (b) implies that (d)

Q ≺AI ⊗N 1⊗N . If (d) holds, then we have the desired conclusion. Otherwise,

if (c) holds but (d) fails, then arguing as in the proof of [IPV13, Th. 4.2] (first
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paragraph of page 250) shows that P ≺M⊗N (AI o StabB(i))⊗N for some

i ∈ I, which gives a contradiction.

In general, assume that σ is built over B y I. Let ‹A = A ∗ L(Z). Define

the action B yσ̃ ‹AI built over B y I whose restriction to AI is σ and whose

restriction to L(Z)I is the generalized Bernoulli action associated to B y I.

Let M̃ = ‹AI o B. We claim that the M-bimodule H = L2(M̃) 	 L2(M) is

weakly contained in the coarse M-bimodule, L2(M)⊗ L2(M). Assuming the

claim, the proof of [IPV13, Cor. 4.3] shows that (?) holds. Then the above

proof extends verbatim from generalized Bernoulli actions to actions built over

B y I to give the conclusion.

To justify the claim, let u be the canonical generating unitary of L(Z). Let

V be the set of unit vectors ξ ∈ ‹A of the form ξ = un1a1u
n2 · · · ak−1u

nk , where

n1, . . . , nk ∈ Z \ {0} and a1, . . . , ak−1 ∈ A	C1. Let U be the set of η ∈ ‹AI of

the form η =
(⊗

i∈F ξi

)
⊗
(⊗

i∈I\F 1
)

, where F ⊂ I is finite non-empty and

(ξi)i∈F ⊂ V. Then for all a, b ∈ AI , g, h ∈ B, we have

〈augηbuh, η〉 = τ(σ̃g(η)η∗)τ(EAI\FoStabB(F )(aug)buh).

This implies that the M-bimodule MηM is a subbimodule of

〈M, eAI\FoStabB(F )〉 ⊗M K,

where K is the M-bimodule associated to the unital completely positive map

on M given by aug 7→ τ(σ̃g(η)η∗)aug. Since A is abelian and StabB(F ) is

amenable, AI\F o StabB(F ) is amenable and thus MηM is weakly contained

in the coarse M-bimodule. Since H is isomorphic to an M-subbimodule of⊕
η∈UMηM, the claim follows. �

Proof of Theorem 4.5. Assume that R = Q′ ∩ pMp is not amenable. For

1 ≤ k ≤ m, let “Ak = ⊗ j 6=kA
Ij
j and M̂k = ⊗ j 6=kMj . Then the algebras

(M̂k)1≤k≤m are in a commuting square position and we have ∩mk=1M̂k = C1.

By [PV14a, Prop. 2.7], there is 1 ≤ k ≤ m such that R is not amenable

relative to M̂k. Using [DHI19, Lemma 2.6(2)] we find a non-zero projection

p0 ∈ Z (R′ ∩ pMp) ⊂ Z (R) such that Rp0 = (Qp0)′ ∩ p0Mp0 is strongly

non-amenable relative to M̂k. By applying Corollary 4.6 we deduce that

Q ≺M M̂k.

On the other hand, since Q ⊀A “Ak, we can find a sequence of unitaries

un ∈ U (Q) such that ‖E “Ak
(a∗unb)‖2 → 0 for all a, b ∈ A. We claim that

(4.5) ‖E”Mk
(x∗uny)‖2 → 0 for all x, y ∈M.

To prove (4.5), we may assume that x, y ∈Mk and moreover that x = aug, y =

buh for some a, b ∈ AIkk and g, h ∈ Bk. Then since un ∈ Q ⊂ A, for all n ∈ N,
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we have

‖E”Mk
(x∗uny)‖2 = δg,h‖E”Mk

(a∗unb)‖2 = δg,h‖E “Ak
(a∗unb)‖2 → 0.

This proves (4.5), which contradicts thatQ ≺M M̂k and finishes the proof. �

In the proof of Theorem 1.3 we will in fact need the following corollary of

Theorem 4.5.

Corollary 4.7. Let m ∈ N. For 1 ≤ j ≤ m, let Gj ∈ WR(Aj , Bj y Ij),

where Aj is an abelian group and Bj y Ij is an action such that StabBj (i)

is amenable for every i ∈ Ij and {i ∈ Ij | g · i 6= i} is infinite for every g ∈
Bj \{1}. Define G = ⊕mj=1Gj and A = ⊕mj=1A

(Ij)
j . Let Q ⊂ p(L(G)⊗Mn(C))p

be a von Neumann subalgebra such that Q ≺s
L(G)⊗Mn(C)

L(A)⊗Mn(C) and

Q ⊀L(G)⊗Mn(C) L(⊕j 6=kA
(Ij)
j )⊗Mn(C) for all 1 ≤ k ≤ m.

Then Q′ ∩ p(L(G)⊗Mn(C))p is amenable.

Corollary 4.7 is obtained by combining Theorem 4.5 with the following

“transfer” lemma.

Lemma 4.8. Let A be a normal abelian subgroup of a countable group G.

Assume that {aga−1 | a ∈ A} is infinite for every g ∈ G \ A. Consider the

action of G/A on A by conjugation : g·a = ĝaĝ−1 for every g ∈ G/A and a ∈ A,

where ε : G → G/A denotes the quotient homomorphism and ĝ ∈ G is any

element such that ε(ĝ) = g. Define the semidirect product group H = AoG/A.

Let Q ⊂ pL(A)p be a von Neumann subalgebra.

If Q′ ∩ pL(H)p is amenable, then Q′ ∩ pL(G)p is amenable.

Proof. DenoteM=L(G), N =L(H) and P=L(A). Identify P=L∞(X,µ),

and consider the associated measure preserving action G/Ay (X,µ), where X

denotes the dual of A endowed with its Haar measure µ. Since {aga−1 | a ∈ A}
is infinite for every g ∈ G \ A, we get that P is a Cartan subalgebra of M.

Moreover, R(P ⊂ M) can be identified with R = R(G/A y X). Thus, we

get that M = Lc(R) for a 2-cocycle c ∈ H2(R,T). We endow R with the

usual Borel measure µ̃ given by µ̃(T ) =
∫
X |{y ∈ X | (x, y) ∈ T }| dµ(x) for

every Borel subset T ⊂ R.

We continue by repeating part of the proof of [CI10, Prop. 6]. Let X0 ⊂ X
be a measurable set such that p = 1X0 . Endow X0 with the probability

measure µ(X0)−1µ|X0
. Since Q ⊂ pPp is a von Neumann subalgebra, there

are a standard probability space (Z, ρ) and a measurable, measure preserving

onto map π : X0 → Z such that we have Q = {f ◦ π | f ∈ L∞(Z, ρ)}. Since

pPp ⊂ Q′ ∩ pMp, [Dye63, Prop. 6.1] implies that pPp is a Cartan subalgebra

of Q′ ∩ pMp. By [FM77a, Th. 1], we can find a subequivalence relation S of
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R|X0 := R ∩ (X0 ×X0) such that Q′ ∩ pMp = Ld(S ), where d ∈ H2(S ,T)

denotes the restriction of c to S .

We claim that S = {(x1, x2) ∈ R|X0 | π(x1) = π(x2)}, µ̃-almost every-

where. To see this, let ϕ ∈ [R|X0]. Then ϕ ∈ [S ] if and only if uϕ ∈ Ld(S ),

that is, if and only if uϕ commutes with Q. The latter is equivalent to having

for every f ∈ L∞(Z, ρ) that f(π(ϕ(x))) = f(π(x))) for almost every x ∈ X0.

Thus, ϕ ∈ [S ] if and only if π(ϕ(x)) = π(x) for almost every x ∈ X0, which

proves our claim.

Finally, note that N = L(R), and arguing as in the previous paragraph

shows that Q′ ∩ pNp = L(S ). If L(S ) is amenable, by Connes-Feldman-

Weiss’ theorem [CFW81] we get that S is an amenable and thus hyperfinite

equivalence relation. This gives that Q′ ∩ pMp = Ld(S ) is a hyperfinite and

thus amenable von Neumann algebra. �

Proof of Corollary 4.7. Using a standard argument, whose proof we leave

to the reader, the conclusion reduces to the following claim: if Q ⊂ pL(A)p is a

von Neumann subalgebra such thatQ ⊀L(A) L(⊕j 6=kA
(Ij)
j ) for every 1 ≤ k ≤ m,

then Q′ ∩ pL(G)p is amenable.

Let Q ⊂ pL(A)p be a von Neumann subalgebra such that Q ⊀L(A)

L(⊕j 6=kA
(Ij)
j ) for every 1 ≤ k ≤ m. Consider the conjugation action of

B = G/A on A, and define H = A o B. For 1 ≤ j ≤ m, consider the

conjugation action of Bj = Gj/A
(Ij)
j on A

(Ij)
j . By Remark 3.5, the associ-

ated trace preserving action Bj y L(A
(Ij)
j ) is built over Bj y Ij . Since

H = ⊕mj=1(A
(Ij)
j oBj) we have L(H) = ⊗m

j=1

(
L(A

(Ij)
j )oBj

)
. Since StabBj (i)

is amenable for all i ∈ Ij and 1 ≤ j ≤ k, by applying Theorem 4.5 we get that

Q′ ∩ pL(H)p is amenable.

Next, let g = (g1, . . . , gm) ∈ G \ A. Then gj ∈ Gj \ A
(Ij)
j for some

1 ≤ j ≤ m. If εj : Gj → Bj is the quotient homomorphism, then εj(gj) 6= 1,

hence {i ∈ Ij | εj(gj) · i 6= i} is infinite. This implies that {bgjb−1 | b ∈ A(Ij)
j }

is infinite. Thus, {aga−1 | a ∈ A} is infinite. Since this holds for every

g ∈ G \ A, we can apply Lemma 4.8 to deduce that Q′ ∩ pL(G)p is amenable,

as claimed. �

4.3. Proof of Theorem 1.3. In preparation for the proof of Theorem 1.3,

we introduce some notation and record three useful facts. Let A be a non-

trivial abelian group, B be a non-trivial ICC subgroup of a hyperbolic group

and B y I be an action such that StabB(i) is amenable for every i ∈ I. Let

G ∈ WR(A,B y I) be a property (T) group. DenoteM = L(G), and assume

that Mt = L(H) for a countable group H and t > 0.

Let ∆0 : L(H)→ L(H)⊗L(H) be the comultiplication given by ∆0(vh) =

vh ⊗ vh for every h ∈ H. Let n be the smallest integer such that n ≥ t.
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Denote M =M⊗M⊗Mn(C). Then ∆0 can be amplified to a unital ∗-homo-

morphism ∆: M→ pM p, where p ∈M is a projection with (τ⊗τ⊗Tr)(p) = t.

Remark 4.9. Assume that t ∈ N, so that n = t, p = 1 and L(H) =Mn =

M⊗Mn(C). For further reference, we make explicit the construction of ∆ in

terms of ∆0. To this end, let ψ : M ⊗Mn(C)→M⊗Mn(C)⊗M⊗Mn(C) =

L(H)⊗L(H) be the ∗-isomorphism given by ψ(a⊗ b⊗ c⊗ d) = a⊗ c⊗ b⊗ d
for every a, b ∈ M and c, d ∈ Mn(C). Let U ∈ M⊗Mn(C)⊗M⊗Mn(C) be

a unitary such that ∆0(1M⊗x) = Uψ(1M ⊗x)U∗ for every x ∈Mn(C). Then

ψ−1 ◦ Ad(U∗) ◦∆0 : M⊗Mn(C) → M ⊗Mn(C) is a unital ∗-homomorphism

that leaves 1⊗Mn(C) fixed, so it can be written as ∆⊗ Id, where ∆: M→M
is the desired unital ∗-homomorphism that amplifies ∆0. Thus, we conclude

(4.6) ∆0 = Ad(U) ◦ ψ ◦ (∆⊗ Id).

In the proof of Theorem 1.3, we will combine (4.6) with the symmetry and

associativity properties of ∆0: ∇◦∆0 = ∆0 and (∆0⊗Id)◦∆0 = (Id⊗∆0)◦∆0,

where ∇ is the flip automorphism of L(H)⊗L(H) given by ∇(x⊗ y) = y ⊗ x
for every x, y ∈ L(H).

Lemma 4.10 ([IPV13]). Let ∆: M → pM p be as defined above. Then

the following hold :

(a) ∆(Q) ⊀M M⊗ 1⊗Mn(C) and ∆(Q) ⊀M 1⊗M⊗Mn(C) for any diffuse

von Neumann subalgebra Q ⊂M;

(b) ∆(M) ⊀M M⊗L(G0)⊗Mn(C) and ∆(M) ⊀M L(G0)⊗M⊗Mn(C) for

any infinite index subgroup G0 < G;

(c) if H ⊂ L2(pM p) is a ∆(M)-sub-bimodule that is right finitely generated,

then we have H ⊂ L2(∆(M)).

Proof. (a) This part is [IPV13, Prop. 7.2(1)].

(b) If ∆(M) ≺M M⊗L(G0)⊗Mn(C) for a subgroup G0 < G, then

the proof of [IPV13, Prop. 7.2(2)] shows that M ≺M L(G0) and so G0 < G

has finite index. Similarly, ∆(M) ≺M L(G0)⊗M⊗Mn(C) also implies that

G0 < G has finite index.

(c) Since G is ICC, CG(g) < G has infinite index and thus M ⊀M
L(CG(g)) for every g ∈ G \ {e}. The conclusion then follows from [IPV13,

Prop. 7.2(3)]. �

In the proof of Theorem 1.3 we will also need the fact that the set {i ∈
I | b · i 6= i} is infinite for every b ∈ B \ {1}. This holds more generally if B is

acylindrically hyperbolic:

Lemma 4.11. Let B be an ICC group acting on a set I . Then the follow-

ing hold :



WREATH-LIKE PRODUCTS OF GROUPS 1291

(a) Assume that B is acylindrically hyperbolic and StabB(i) is amenable for

every i ∈ I . Then, for every non-trivial b ∈ B, the set {i ∈ I | b · i 6= i} is

infinite.

(b) Assume that B · i is infinite for every ∈ I . Let A be a group. Then every

G ∈ WR(A,B y I) is ICC.

Proof. (a) Suppose that the set {i ∈ I | b · i 6= i} is finite for some

b ∈ B. Let N denote the minimal normal subgroup of B containing b. The

subgroup N is generated by the set X = {t−1bt | t ∈ B}. For every finite

subset F ⊆ X, the subgroup 〈F 〉 stabilizes all but finitely many elements of I.

Since acylindrically hyperbolic groups are non-amenable, I must be infinite.

In particular, the subgroup 〈F 〉 stabilizes at least one element of I, and hence

it is amenable. This implies that N is amenable being the union of amenable

groups. By [Osi16, Cor. 8.1 (a)], the amenable radical of every acylindrically

hyperbolic group is finite. Since B is ICC, N must be trivial. Thus, b = 1.

(b) Let G ∈ WR(A,B y I) for some group A, and denote by ε : G→ B

the quotient homomorphism. Let g ∈ G \ {1}. We treat two cases. First,

assume that ε(g) 6= 1. Since B is ICC, we get that {ε(hgh−1) | h ∈ G} =

{bε(g)b−1 | b ∈ B} is infinite, and thus the conjugacy class {hgh−1 | h ∈ G}
is infinite. Second, assume that ε(g) = 1, i.e., g ∈ A(I) \ {1}. If a = (ai)i∈I ∈
A(I) \ {1}, we denote by supp(a) = {i ∈ I | ai 6= 1} the support of a. Let

i ∈ supp(g). If j ∈ B · i, then we can write j = ε(h) · i for some h ∈ G.

Since supp(hgh−1) = ε(h) · supp(g), we get that j ∈ supp(hgh−1). Thus,

B ·i ⊂ ∪h∈Gsupp(hgh−1). Since B ·i is infinite, we conclude that the conjugacy

class {hgh−1 | h ∈ G} is infinite as well. This finishes the proof. �

Proof of Theorem 1.3. Let π : G → B be the quotient homomorphism.

For g ∈ B, fix ĝ ∈ G with π(ĝ) = g. Let K be a hyperbolic group containing B,

and still denote by π the homomorphism π : G→ K. Let Dn(C) ⊂ Mn(C) be

the subalgebra of diagonal matrices. For 1 ≤ i ≤ n, let ei = 1{i} ∈ Dn(C).

Denote

P = L(A(I)), P = P ⊗P ⊗Dn(C) and Q = ∆(P)′ ∩ pM p.

The proof is divided into six steps.

Step 1. Q ≺s
M P.

Proof. We first prove that ∆(P)≺s
M P. Write M =(M⊗ 1⊗Mn(C))oG,

using the trivial action of G. As ker(π) = A(I), we have (M⊗ 1⊗Mn(C)) o
ker(π) = M⊗P ⊗Mn(C). Since ∆(P) is amenable, ∆(M) ⊂ NpMp(∆(P))′′

has property (T) and ∆(M) ⊀M M⊗P ⊗Mn(C) by Lemma 4.10(b), from

Theorem 3.10 we derive that ∆(P) ≺s
M M⊗P ⊗Mn(C). Similarly, ∆(P) ≺s

M
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P ⊗M⊗Mn(C). Combining these facts with [DHI19, Lemma 2.8(2)] gives

that ∆(P) ≺s
M P ⊗P ⊗Mn(C), which proves our claim.

Next, we have ∆(P)⊀M P ⊗ 1⊗Mn(C) and ∆(P) ⊀M 1⊗P ⊗Mn(C) by

Lemma 4.10(a). Since the action B y I has amenable stabilizers, {i ∈ I |
b · i 6= i} is infinite for every b ∈ B \ {1}, by Lemma 4.11(a). Thus, using that

∆(P) ≺s
M P, Corollary 4.7 implies that Q is amenable.

Finally, since Q is amenable and ∆(M) ⊂ NpMp(Q)′′, repeating the first

paragraph of the proof with Q instead of ∆(P) completes the proof of this step.

�

As P ⊂M is a Cartan subalgebra, by combining Step 1 with Lemma 3.7,

after replacing ∆ with Ad(u) ◦ ∆ for some u ∈ U (M ), we may assume that

p ∈P and

(4.7) ∆(P) ⊂Pp ⊂ Q.

If g∈B, then ∆(uĝ) normalizes ∆(P) and thus Q. Denote σg=Ad(∆(uĝ))

∈ Aut(Q). Since ĝĥ‘(gh)
−1
∈ ker(π) = A(I), we have ∆(uĝ)∆(u

ĥ
)∆(u

ĝh
)∗ ∈

∆(P) for every g, h ∈ B. Since ∆(P) ⊂ Z (Q), σ = (σg)g∈B defines an action

of B on Q that leaves ∆(P) invariant. Since the restriction of σ to ∆(P) is

conjugate to an action B y L(A)I built over B y I (see Remark 3.5), it is

free and weakly mixing. This fact can be strengthened as follows.

Step 2. The action B yσ Q is weakly mixing.

Proof. This claim is a consequence of Step 3 in the proof of [IPV13,

Th. 8.2], which we recall for completeness. Let H ⊂ L2(Q) be a finite-

dimensional σ(B)-invariant subspace. Let K ⊂ L2(pM p) be the ‖ · ‖2-closure

of the linear span of H∆(M). Since H and ∆(P) commute, we get that

∆(P)K = K. If g ∈ B, then ∆(uĝ)H = H∆(uĝ) and so ∆(uĝ)K = K.

Since G = {aĝ | a ∈ A(I), g ∈ B}, K is a left ∆(M)-module. Thus, K is

a ∆(M)-bimodule that is right finitely generated as H is finite dimensional.

Lemma 4.10(c) gives that K ⊂ L2(∆(M)), hence H ⊂ L2(∆(M)). Since H
commutes with ∆(P), we have H ⊂ L2(∆(P)). As the restriction of σ to ∆(P)

is weakly mixing, we conclude that H ⊂ Cp, as claimed. �

Steps 1 and 2 imply thatQ is a type Ik algebra for some k ∈ N. Using (4.7),

the beginning of the proof of Lemma 3.8 shows that there is a decomposition

Q = Z (Q)⊗Mk(C) such that Pp = Z (Q)⊗Dk(C). Therefore, (Q)1 ⊂∑k
i=1(Pp)1xi for some x1, . . . , xk ∈ Q. Moreover, by Lemma 3.8 there is an

action β = (βg)g∈B of B on Q such that

• for every g ∈ B, we have that βg = σg ◦ Ad(ωg) = Ad(∆(uĝ)ωg) for some

ωg ∈ U (Q);

• Pp is β(B)-invariant and the restriction of β to Pp is free; and
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• the minimal projections p1, . . . , pk of 1⊗Dk(C) ⊂ Pp are β(B)-invariant and

the restriction of β to Ppi is weakly mixing for every 1 ≤ i ≤ k.

Our next goal is to apply Theorem 4.1. Let (Y, ν) be the dual of A with its

Haar measure. Let (X,µ) = (Y I×Y I , νI×νI) and (‹X, µ̃) = (X×Z/nZ, µ×c),
where c is the counting measure of Z/nZ. Identify P = L∞(Y I) and P =

L∞(‹X). Consider the action B yα0 (Y I , νI) given by α0(g) = Ad(uĝ) for

all g ∈ B. By Remark 3.5, α0 is conjugate to an action built over B y I.

Let B × B yα (X,µ) be given by (g1, g2) · (x1, x2) = (g1 · x1, g2 · x2) for all

g1, g2 ∈ B and x1, x2 ∈ Y I . Let B ×B × Z/nZ yα̃ (‹X, µ̃) be the action given

by (g, a) · (x, b) = (g · x, a + b). Let X0 ⊂ ‹X be a measurable set such that

p = 1X0 . Since Pp = L∞(X0) is β(B)-invariant, we get a measure preserving

action B yβ (X0, µ̃|X0
).

Since the restriction of β to Pp is implemented by unitaries in pM p and

we have that R(P ⊂M ) = R(B ×B × Z/nZ yα̃ ‹X), we deduce that

(4.8) β(B) · x ⊂ α̃(B ×B × Z/nZ) · x for almost every x ∈ X0.

In order to apply Theorem 4.1 to (4.8), we first establish the following

claim:

Step 3. Let B0 < B be an infinite index subgroup. Then there is a se-

quence (hm) ⊂ B such that for every s, t ∈ B we have µ̃({x ∈ X0 | βhm(x) ∈
α̃(sB0t × B × Z/nZ)(x)}) → 0 and µ̃({x ∈ X0 | βhm(x) ∈ α̃(B × sB0t ×
Z/nZ)(x)})→ 0.

Proof. Let G0 = π−1(B0). Then G0 < G is an infinite index subgroup.

Since ∆(ug)g∈G is a group of unitaries generating ∆(M), using Lemma 4.10(b)

and Theorem 3.2 we can find a sequence (km)⊂G such that for every x, y∈M ,

we have

‖EM⊗L(G0)⊗Mn(C)(x∆(ukm)y)‖2 → 0,

‖EL(G0)⊗M⊗Mn(C)(x∆(ukm)y)‖2 → 0.
(4.9)

We will show that hm = π(km) ∈ B satisfy the assertion of the claim.

Since k−1
m
”hm∈A(I) and ωhm ∈U (Q), we get that ∆(u

ĥm
)ωhm ∈ ∆(ukm)U (Q).

Thus, ∆(u
ĥm

)ωhm ∈
∑k

i=1 ∆(ukm)(Pp)1xi for every m ∈ N. As P is regular

in M and contained in M⊗L(G0)⊗Mn(C) and L(G0)⊗M⊗Mn(C), (4.9)

implies that for every x, y ∈M ,

‖EM⊗L(G0)⊗Mn(C)(x∆(u
ĥm

)ωhmy)‖2 → 0,

‖EL(G0)⊗M⊗Mn(C)(x∆(u
ĥm

)ωhmy)‖2 → 0.
(4.10)

On the other hand, we have that βhm = Ad(∆(u
ĥm

)ωhm) and α(g1, g2) =

Ad(u(ĝ1,ĝ2)) for every (g1, g2) ∈ B × B. These facts imply that µ̃({x ∈ X0 |
βhm(x) ∈ α̃(sB0t × B × Z/nZ)(x)}) is equal to ‖EL(G0)⊗M⊗Mn(C)((u

∗
ŝ ⊗ 1
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⊗1)∆(u
ĥm

)ωhm(u∗
t̂
⊗1⊗1))‖22. Since by (4.10) the last term converges to 0, as

m→∞, this proves the first assertion of Step 3. The second assertion follows

similarly. �

Next, α is conjugate to an action B ×B y (Y J , νJ) built over B ×B y
J = I×{1, 2} given by (g1, g2) · (i, j) = (gj · i, j). Thus, StabB×B(j) is equal to

either B0×B or B×B0, where B0 = StabB(i). Note that since B0 is amenable

and B is non-amenable, the inclusion B0 < B has infinite index. Since B is

ICC, for every g ∈ (B×B)\{(1, 1)}, there is an infinite index subgroup B1 < B

such that CB×B(g) ⊂ B ×B1 or CB×B(g) ⊂ B1 ×B.

Fix 1 ≤ i ≤ k. Let Xi ⊂ X0 be a β(B)-invariant measurable set such

that pi = 1Xi . Since β|Xi
is free, weakly mixing and B has property (T),

equation (4.8), the previous paragraph and Step 3 show that the conditions

of the moreover assertion of Theorem 4.1 are satisfied by β|Xi
and α. Thus,

Theorem 4.1 implies that µ̃(Xi)=1 and there are θi ∈ [R(B×B×Z/nZ yα̃ ‹X)]

and an injective homomorphism εi = (εi,1, εi,2):B→B×B such that θi(Xi) =

X × {i} ≡ X and θi ◦ β(h)|Xi
= α(εi(h)) ◦ θi|Xi

for every h ∈ B.

Let ui ∈ NM (P) such that uiau
∗
i = a ◦ θ−1

i for every a ∈ P. Then

uipiu
∗
i = 1⊗ 1⊗ ei, and the last relation implies that we can find (ζi,h)h∈B ⊂

U (P ⊗P) such that

(4.11) ui∆(u
ĥ
)ωhpiu

∗
i = ζi,hu(ε̂i,1(h),ε̂i,2(h))

⊗ ei for every h ∈ B.

Step 4: For every 1 ≤ i, j ≤ k, εi is conjugate to εj .

Proof. We claim that B0 = εi,1(B) has finite index in B. If this is false,

thenG0 = π−1(B0) has infinite index inG. On the other hand, (4.11) gives that

∆(M) ≺M L(G0)⊗M⊗Mn(C), which contradicts Lemma 4.10(b). Similarly,

we get that εi,2(B) < B has finite index.

Let 1 ≤ i, j ≤ k. Since pi, pj ∈ Q are equivalent projections (as they

are minimal projections of 1⊗Dk(C) ⊂ Q = Z (Q)⊗Mk(C)), then pj =

zpiz
∗ for some z ∈ U (Q). As ∆(u

ĥ
)ωh ∈ U (pM p) normalizes Q, we get

that zh = Ad(∆(u
ĥ
)ωh)(z) ∈ U (Q). Then ∆(u

ĥ
)ωhpj = ∆(u

ĥ
)ωhzpiz

∗ =

zh∆(u
ĥ
)ωhpiz

∗. Using (4.11) we get that

ζj,hu(ε̂j,1(h),ε̂j,2(h))
⊗ ej = uj∆(u

ĥ
)ωhpju

∗
j

= uj(zh∆(u
ĥ
)ωhpiz

∗)u∗j

= uj(zh(u∗i (ζi,hu(ε̂i,1(h),ε̂i,2(h))
⊗ ei)ui)z∗)u∗j .

For h∈B, denote ζ̃h=uj(zh(u∗i (ζi,hu(ε̂i,1(h),ε̂i,2(h))
⊗ei)ui)z∗)u∗j . For a sub-

set F ⊂ B ×B, denote by PF the orthogonal projection from L2(M ) onto the

‖·‖2-closure of the linear span of {(xug)⊗y) | x ∈ P ⊗P, g ∈ (π×π)−1(F ), y ∈
Mn(C)}. Since zh ∈ U (Q) ⊂

∑k
i=1(P)1xi, P ⊂ P ⊗P ⊗Mn(C) and ζi,h ∈
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U (P ⊗P), by using that P ⊗P ⊂M⊗M is a Cartan subalgebra and approxi-

mating uj , ui, z in ‖·‖2, we find a finite set F ⊂ B×B such that PFεi(h)F (ζ̃h) 6= 0

for every h ∈ B. Since ζj,h ∈ U (P ⊗P), the last displayed equation implies

that εj(h) ∈ Fεi(h)F for every h ∈ B. If g ∈ B \ {e}, then as B is ICC and

εi,1(B), εi,2(B) have finite index in B, the sets {εi,1(h)gεi,1(h)−1 | h ∈ B} and

{εi,2(h)gεi,2(h)−1 | h ∈ B} are infinite. Thus, the set {εi(h)gεi(h)−1 | h ∈ B}
is infinite for every g ∈ (B × B) \ {(e, e)}. By [BV14, Lemma 7.1] we derive

the existence of g ∈ B ×B such that εj(h) = gεi(h)g−1 for every h ∈ B. This

finishes the proof of Step 4. �

Step 4 thus gives a homomorphism δ = (δ1, δ2) : B → B × B such that

for every 1 ≤ i ≤ k, there is gi ∈ B ×B satisfying εi(h) = giδ(h)g−1
i for every

h ∈ B. After replacing θi with α(g−1
i ) ◦ θi, we may assume that εi = δ for any

1 ≤ i ≤ k. Hence, (4.11) can be rewritten as

(4.12) ui∆(u
ĥ
)ωhpiu

∗
i = ζi,hu(δ̂1(h),δ̂2(h))

⊗ ei for every 1 ≤ i ≤ k and h ∈ B.

Let u =
∑k

i=1 uipi and e =
∑k

i=1 ei. Then u is a partial isometry with uu∗ =

1⊗ 1⊗ e, u∗u = p, uPpu∗ = P(1⊗ 1⊗ e). If ζh =
∑k

i=1 ζi,h⊗ ei ∈ U (P(1⊗
1⊗ e)), then (4.12) gives

(4.13) u∆(u
ĥ
)ωhu

∗ = ζh(u
(δ̂1(h),δ̂2(h))

⊗ e) for every h ∈ G.

In particular, t = (τ⊗τ⊗Tr)(p) = Tr(e) = k, and so n = t = k, e = 1 and

p = 1⊗ 1⊗ 1. Thus, after replacing ∆ with Ad(u) ◦∆, we have that ζh ∈P
and (4.13) rewrites as

(4.14) ∆(u
ĥ
)ωh = ζh(u

(δ̂1(h),δ̂2(h))
⊗ 1) for every h ∈ B.

Step 5. We have that Q ⊂ P ⊗P ⊗Mn(C).

Proof. Since (∆(u
ĥ
)ωh)h∈B ⊂ U (M ) normalizesQ and (ζh)h∈B ⊂ U (P),

(4.14) implies that (u
(δ̂1(h),δ̂2(h))

⊗ 1)h∈B normalizes Q. Since P ⊂ Q and

(Q)1 ⊂
∑k

i=1(P)1xi, to prove the claim it suffices to argue that for all

x, y ∈M⊗M and z ∈ (M⊗M)	 (P ⊗P), we have

‖EP ⊗P(xu
( ̂δ1(hm), ̂δ2(hm))

zu∗
( ̂δ1(hm), ̂δ2(hm))

y)‖2 → 0.

To prove this, we may assume that x = ua, y = ub, z = ug for a, b, g ∈
G × G with g /∈ (A(B) × A(B)). Write (π × π)(a) = (a1, a2), (π × π)(b) =

(b1, b2), (π × π)(g) = (g1, g2). Since (g1, g2) 6= (e, e), we have that g1 6= e or

g2 6= e.

Suppose that g1 6= e. For h ∈ B, denote

sh = ‖EP ⊗P(xu
(δ̂1(h),δ̂2(h))

zu∗
(δ̂1(h),δ̂2(h))

y)‖2.
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If sh = 0 for every h ∈ B, the assertion follows. Otherwise, if sh 6= 0 for h ∈ B,

then a1δ1(h)g1δ1(h)−1b1 = e. This is because EP ⊗P(u(k1,k2)) 6= 0 for some

(k1, k2) ∈ G×G, if and only if (k1, k2) ∈ A(B)×A(B) and if and only if π(k1) =

π(k2) = e. In particular, there is l ∈ B such that a1lg1l
−1b1 = e. Moreover,

if shm 6= 0 for some m ∈ N, then δ1(hm)g1δ1(hm)−1 = a−1
1 b−1

1 = lg1l
−1 and

therefore δ1(hm) ∈ lB0, where B0 = CB(g1). Let G0 = π−1(B0). In combina-

tion with (4.14), we get that ∆(u
ĥm

)ωhm ∈ (u
l̂
⊗ 1⊗ 1)(L(G0)⊗M⊗Mn(C))

for any such m ∈ N. Since g1 6= e and B is ICC, B0 < B and thus G0 < G has

infinite index. Thus, (4.10) implies that {m ∈ N | shm 6= 0} is finite, proving

that shm → 0. Similarly, assuming that g2 6= e also implies that shm → 0. �

Next, Step 5 implies that ωh ∈ P ⊗P ⊗Mn(C) for every h ∈ B. Thus, if

we denote ηh = ζhAd(u
(δ̂1(h),δ̂2(h))

⊗ 1)(ω∗h), then ηh ∈ P ⊗P ⊗Mn(C) and

(4.15) ∆(u
ĥ
) = ηh(u

δ̂1(h)
⊗ u

δ̂2(h)
⊗ 1) for every h ∈ B.

Step 6. We may assume that δ1 = δ2 = IdB.

Proof. The proof is an adaptation of Step 5 in the proof of [IPV13,

Th. 8.2]. We first argue that we may assume that δ1 = δ2. Using (4.6) and

(4.15), for every h ∈ B, we get that

(4.16)

∆0(u
ĥ
⊗ 1) = Uψ(∆(u

ĥ
)⊗ 1)U∗ = Uψ(ηh ⊗ 1)(u

δ̂1(h)
⊗ 1⊗ u

δ̂2(h)
⊗ 1)U∗.

Since∇◦∆0 =∆0, writing V =U∗∇(U) and Vh=(ψ(ηh⊗1)∗V∇(ψ(ηh⊗1)),

we have

(4.17)

Vh(u
δ̂2(h)

⊗ 1⊗ u
δ̂1(h)

⊗ 1) = (u
δ̂1(h)

⊗ 1⊗ u
δ̂2(h)

⊗ 1)V for every h ∈ B.

For F1, F2 ⊂ B finite, let HF1,F2 be the ‖ · ‖2-closed linear span of

{ug1 ⊗ x1 ⊗ ug2 ⊗ x2 | g1 ∈ π−1(F1), g2 ∈ π−1(F2), x1, x2 ∈Mn(C)}

and PF1,F2 be the orthogonal projection from L2(M⊗Mn(C)⊗M⊗Mn(C))

onto HF1,F2 . Let F1, F2 ⊂ Γ be finite sets such that ‖V − PF1,F2(V )‖2 < 1/2.

Since ηh ∈ P ⊗P ⊗Mn(C), we get that

ψ(ηh ⊗ 1), ζ(ψ(ηh ⊗ 1)) ∈ P ⊗Mn(C)⊗P ⊗Mn(C)

for every h ∈ B. Since HF1,F2 is a P ⊗Mn(C)⊗P ⊗Mn(C)-bimodule, we

further derive that ‖Vh − PF1,F2(Vh)‖2 < 1/2 for every h ∈ B. In combination

with (4.17), for every h ∈ B, we get that

〈PF1,F2(Vh)(u
δ̂2(h)

⊗ 1⊗ u
δ̂1(h)

⊗ 1), (u
δ̂1(h)

⊗ 1⊗ u
δ̂2(h)

⊗ 1)PF1,F2(V )〉 > 0.

Note that (uĝ1 ⊗ 1 ⊗ uĝ2 ⊗ 1)HF1,F2(u
ĥ1
⊗ 1 ⊗ u

ĥ2
⊗ 1) = Hg1F1h1,g2F2h2

for every g1, g2, h1, h2 ∈ B. Moreover, if F1 ∩ G1 = ∅, then PF1,F2PG1,G2 = 0.
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Thus, we get that F1δ2(h) ∩ δ1(h)F1 6= ∅ for every h ∈ B. Since B is ICC

and δ1(B) < B has finite index, it follows that there exists g ∈ B such that

δ2(h) = gδ1(h)g−1 for every h ∈ B (see [BV14, Lemma 7.1]). Thus, after

replacing ∆ by Ad(1⊗u∗g⊗1)◦∆ and ηh by Ad(1⊗u∗g⊗1)(ηh) ∈ P ⊗P ⊗Mn(C),

we may assume that δ1 = δ2. Put δ = δ1 = δ2.

To argue that δ is inner, define X1, X
h
1 , X2, X

h
2 ∈ ⊗ 3

k=1(M⊗Mn(C)) for

h ∈ B, as follows: X1 = (U⊗1⊗1)∗(∆0⊗Id)(U)∗, Xh
1 = (∆0⊗Id)(Uψ(ηh⊗1))

(Uψ(ηδ(h) ⊗ 1)) ⊗ 1 ⊗ 1), X2 = (1 ⊗ 1 ⊗ U)∗(Id ⊗ ∆0)(U)∗, and Xh
2 = (Id ⊗

∆0)(Uψ(ηh ⊗ 1))(1⊗ 1⊗ Uψ(ηδ(h) ⊗ 1)).

Then for every h ∈ B, we have that

(∆0 ⊗ Id)∆0(u
ĥ
⊗ 1) = X1

h(u ̂δ(δ(h))
⊗ 1⊗ u ̂δ(δ(h))

⊗ 1⊗ u‘δ(h)
⊗ 1)X1

and

(Id⊗∆0)∆0(u
ĥ
⊗ 1) = X2

h(u‘δ(h)
⊗ 1⊗ u ̂δ(δ(h))

⊗ 1⊗ u ̂δ(δ(h))
⊗ 1)X2.

Since (∆0 ⊗ Id) ◦∆0 = (Id ⊗∆0) ◦∆0, by adapting the above argument

we can find F ⊂ B finite such that Fδ(δ(h)) ∩ δ(h)F 6= ∅ for every g ∈ B.

Since δ(B) < B has finite index and B is ICC, this implies that there is g ∈ B
such that δ(h) = ghg−1 for every h ∈ B (see [BV14, Lemma 7.1]). Thus,

after replacing ∆ by Ad(u∗g ⊗ u∗g ⊗ 1) ◦ ∆ and ηh by Ad(u∗g ⊗ u∗g ⊗ 1)(ηh) ∈
P ⊗P ⊗Mn(C), we may assume that δ1 = δ2 = IdB, that is

(4.18) ∆(u
ĥ
) = ηh(u

ĥ
⊗ u

ĥ
⊗ 1) for every h ∈ B.

This finishes the proof of Step 6. �

To finish the proof of Theorem 1.3, let g ∈ G. Let h = π(g) ∈ B and

a = gĥ−1 ∈ A(I). Then ∆(ug) = ∆(ua)∆(u
ĥ
) = ∆(ua)ηh(u

ĥ
⊗ u

ĥ
⊗ 1) =

∆(ua)ηh(ua ⊗ ua ⊗ 1)∗(ug ⊗ ug ⊗ 1). Thus, if we denote wg = ∆(ua)ηh(ua ⊗
ua ⊗ 1)∗, then wg ∈ U (P ⊗P ⊗Mn(C)) and

(4.19) ∆(ug) = wg(ug ⊗ ug ⊗ 1) for every g ∈ G.

Consider the action G yγ P ⊗P given by γg = Ad(ug ⊗ ug) for g ∈ G.

Lemma 3.4 implies that γ is conjugate to an action G y (Y J , νJ) built over

Gy J = I×{1, 2} given by g ·(i, j) = (π(g)·i, j) for every g ∈ G and (i, j) ∈ J .

Since the actionGy J has infinite orbits, γ is weakly mixing. Moreover, (4.19)

gives that wgh = wg(γg ⊗ Id)(wh) for every g, h ∈ G. Therefore, (wg)g∈G is a

1-cocycle for γ ⊗ Id, with Id the trivial action on Mn(C).

Since G has property (T), Theorem 3.6 gives u ∈ U (P ⊗P ⊗Mn(C)) and

a homomorphism ξ : G→ Un(C) such that wg = u∗(1⊗ 1⊗ ξg)(γg ⊗ Id)(u) for

every g ∈ G. Thus, after replacing ∆ by Ad(u) ◦∆, (4.19) rewrites as

(4.20) ∆(ug) = ug ⊗ ug ⊗ ξg for every g ∈ G.
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Let N be the von Neumann algebra generated by {ug ⊗ ug ⊗ x | g ∈
G, x ∈ Mn(C)}. Then ∆(M) ⊂ N ⊂ ∆(M)Mn(C). By Lemma 4.10(c),

N = ∆(M), so 1⊗ 1⊗Mn(C) ⊂ ∆(M). In combination with (4.20), this

implies that n = 1 and hence t = 1. Also, ξg ∈ T and

(4.21) ∆(ug) = ξg(ug ⊗ ug) for every g ∈ G.

Moreover, there is Ω ∈ U (M⊗M) so that ∆0 = Ad(Ω) ◦ ∆. By (4.21),

Ω(ug ⊗ ug)Ω∗ ∈ ∆0(M) for every g ∈ G. Since G is ICC, the unitary repre-

sentation (Ad(ug))g∈G of G on L2(M) 	 C1 is weakly mixing. By applying

[IPV13, Lemma 3.4] we conclude that there are w ∈ U (M) and an isomor-

phism ρ : G→ H such that ug = ξgwvρ(g)w
∗ for every g ∈ G. �
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[AMS16] Y. Antoĺın, A. Minasyan, and A. Sisto, Commensurating endo-

morphisms of acylindrically hyperbolic groups and applications, Groups

Geom. Dyn. 10 no. 4 (2016), 1149–1210. MR 3605030. Zbl 1395.20027.

https://doi.org/10.4171/GGD/379.

[BO08] I. Belegradek and D. Osin, Rips construction and Kazhdan property

(T), Groups Geom. Dyn. 2 no. 1 (2008), 1–12. MR 2367206. Zbl 1152.

20039. https://doi.org/10.4171/GGD/29.

[Ber15] M. Berbec, W∗-superrigidity for wreath products with groups hav-

ing positive first `2-Betti number, Internat. J. Math. 26 no. 1 (2015),

1550003, 27. MR 3313649. Zbl 1329.46054. https://doi.org/10.1142/

S0129167X15500032.

[BV14] M. Berbec and S. Vaes, W∗-superrigidity for group von Neumann alge-

bras of left-right wreath products, Proc. Lond. Math. Soc. (3) 108 no. 5

(2014), 1116–1152. MR 3214676. Zbl 1304.46054. https://doi.org/10.

1112/plms/pdt050.

[Bro94] K. S. Brown, Cohomology of Groups, Grad. Texts in Math. 87,

Springer-Verlag, New York, 1994. MR 1324339. Zbl 0584.20036.

[CDAD23a] I. Chifan, A. Diaz-Arias, and D. Drimbe, W∗ and C∗-superrigidity

results for coinduced groups, J. Funct. Anal. 284 no. 1 (2023), Paper

No. 109730, 48. MR 4500243. Zbl 07616880. https://doi.org/10.1016/j.

jfa.2022.109730.

[CDAD23b] I. Chifan, A. Diaz-Arias, and D. Drimbe, New examples of W∗ and

C∗-superrigid groups, Adv. Math. 412 (2023), Paper No. 108797, 57.

MR 4517346. Zbl 07637368. https://doi.org/10.1016/j.aim.2022.108797.

[CI10] I. Chifan and A. Ioana, Ergodic subequivalence relations in-

duced by a Bernoulli action, Geom. Funct. Anal. 20 no. 1

http://aimpl.org/groupvonneumann/2/
http://aimpl.org/groupvonneumann/2/
http://www.ams.org/mathscinet-getitem?mr=3605030
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1395.20027
https://doi.org/10.4171/GGD/379
http://www.ams.org/mathscinet-getitem?mr=2367206
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1152.20039
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1152.20039
https://doi.org/10.4171/GGD/29
http://www.ams.org/mathscinet-getitem?mr=3313649
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1329.46054
https://doi.org/10.1142/S0129167X15500032
https://doi.org/10.1142/S0129167X15500032
http://www.ams.org/mathscinet-getitem?mr=3214676
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1304.46054
https://doi.org/10.1112/plms/pdt050
https://doi.org/10.1112/plms/pdt050
http://www.ams.org/mathscinet-getitem?mr=1324339
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0584.20036
http://www.ams.org/mathscinet-getitem?mr=4500243
http://www.zentralblatt-math.org/zmath/en/search/?q=an:07616880
https://doi.org/10.1016/j.jfa.2022.109730
https://doi.org/10.1016/j.jfa.2022.109730
http://www.ams.org/mathscinet-getitem?mr=4517346
http://www.zentralblatt-math.org/zmath/en/search/?q=an:07637368
https://doi.org/10.1016/j.aim.2022.108797


WREATH-LIKE PRODUCTS OF GROUPS 1299

(2010), 53–67. MR 2647134. Zbl 1211.37006. https://doi.org/10.1007/

s00039-010-0058-7.

[CI18] I. Chifan and A. Ioana, Amalgamated free product rigidity for group

von Neumann algebras, Adv. Math. 329 (2018), 819–850. MR 3783429.

Zbl 1390.46053. https://doi.org/10.1016/j.aim.2018.02.025.

[CIK15] I. Chifan, A. Ioana, and Y. Kida, W ∗-superrigidity for arbitrary

actions of central quotients of braid groups, Math. Ann. 361 no. 3-4

(2015), 563–582. MR 3319541. Zbl 1367.20033. https://doi.org/10.1007/

s00208-014-1077-8.

[CIOS23] I. Chifan, A. Ioana, D. Osin, and B. Sun, Wreath-like products of

groups and their von Neumann algebras II: Outer automorphisms, 2023.

arXiv 2304.07457.

[CL63] D. E. Cohen and R. C. Lyndon, Free bases for normal subgroups of

free groups, Trans. Amer. Math. Soc. 108 (1963), 526–537. MR 0170930.

Zbl 0115.25103. https://doi.org/10.2307/1993597.

[Con75] A. Connes, Sur la classification des facteurs de type II, C. R. Acad. Sci.

Paris Sér. A-B 281 no. 1 (1975), Aii, A13–A15. MR 0377534. Zbl 0304.

46042.

[Con76] A. Connes, Classification of injective factors. Cases II1, II∞, IIIλ, λ 6=
1, Ann. of Math. (2) 104 no. 1 (1976), 73–115. MR 0454659. Zbl 0343.

46042. https://doi.org/10.2307/1971057.

[Con80] A. Connes, A factor of type II1 with countable fundamental group, J.

Operator Theory 4 no. 1 (1980), 151–153. MR 0587372. Zbl 0455.46056.

[Con82] A. Connes, Classification des facteurs, in Operator Algebras and Appli-

cations, Part 2 (Kingston, Ont., 1980), Proc. Sympos. Pure Math. 38,

Amer. Math. Soc., Providence, R.I., 1982, pp. 43–109. MR 0679497.

Zbl 0503.46043. https://doi.org/10.1090/pspum/038.2/679497.

[CFW81] A. Connes, J. Feldman, and B. Weiss, An amenable equivalence

relation is generated by a single transformation, Ergodic Theory Dynam.

Systems 1 no. 4 (1981), 431–450 (1982). MR 0662736. Zbl 0491.28018.

https://doi.org/10.1017/s014338570000136x.

[CJ85] A. Connes and V. Jones, Property t for von Neumann algebras, Bull.

London Math. Soc. 17 no. 1 (1985), 57–62. MR 0766450. Zbl 1190.46047.

https://doi.org/10.1112/blms/17.1.57.

[Cor05] Y. Cornulier, A note on quotients of word hyperbolic groups with

property (T), 2005. arXiv math/0504193.

[CH89] M. Cowling and U. Haagerup, Completely bounded multipliers of the

Fourier algebra of a simple Lie group of real rank one, Invent. Math. 96

no. 3 (1989), 507–549. MR 0996553. Zbl 0681.43012. https://doi.org/

10.1007/BF01393695.

[DGO17] F. Dahmani, V. Guirardel, and D. Osin, Hyperbolically embedded

subgroups and rotating families in groups acting on hyperbolic spaces,

Mem. Amer. Math. Soc. 245 no. 1156 (2017), v+152. MR 3589159.

Zbl 1396.20041. https://doi.org/10.1090/memo/1156.

http://www.ams.org/mathscinet-getitem?mr=2647134
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1211.37006
https://doi.org/10.1007/s00039-010-0058-7
https://doi.org/10.1007/s00039-010-0058-7
http://www.ams.org/mathscinet-getitem?mr=3783429
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1390.46053
https://doi.org/10.1016/j.aim.2018.02.025
http://www.ams.org/mathscinet-getitem?mr=3319541
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1367.20033
https://doi.org/10.1007/s00208-014-1077-8
https://doi.org/10.1007/s00208-014-1077-8
http://www.arxiv.org/abs/2304.07457
http://www.ams.org/mathscinet-getitem?mr=0170930
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0115.25103
https://doi.org/10.2307/1993597
http://www.ams.org/mathscinet-getitem?mr=0377534
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0304.46042
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0304.46042
http://www.ams.org/mathscinet-getitem?mr=0454659
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0343.46042
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0343.46042
https://doi.org/10.2307/1971057
http://www.ams.org/mathscinet-getitem?mr=0587372
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0455.46056
http://www.ams.org/mathscinet-getitem?mr=0679497
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0503.46043
https://doi.org/10.1090/pspum/038.2/679497
http://www.ams.org/mathscinet-getitem?mr=0662736
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0491.28018
https://doi.org/10.1017/s014338570000136x
http://www.ams.org/mathscinet-getitem?mr=0766450
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1190.46047
https://doi.org/10.1112/blms/17.1.57
http://www.arxiv.org/abs/math/0504193
http://www.ams.org/mathscinet-getitem?mr=0996553
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0681.43012
https://doi.org/10.1007/BF01393695
https://doi.org/10.1007/BF01393695
http://www.ams.org/mathscinet-getitem?mr=3589159
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1396.20041
https://doi.org/10.1090/memo/1156
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