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Abstract— Advanced Driver Assistance Systems (ADAS) are
increasingly important in improving driving safety and comfort,
with Adaptive Cruise Control (ACC) being one of the most
widely used. However, pre-defined ACC settings may not always
align with driver’s preferences and habits, leading to discomfort
and potential safety issues. Personalized ACC (P-ACC) has been
proposed to address this problem, but most existing research
uses historical driving data to imitate behaviors that conform
to driver preferences, neglecting real-time driver feedback. To
bridge this gap, we propose a cloud-vehicle collaborative P-
ACC framework that incorporates driver feedback adaptation
in real time. The framework is divided into offline and online
parts. The offline component records the driver’s naturalistic
car-following trajectory and uses inverse reinforcement learning
(IRL) to train the model on the cloud. In the online component,
driver feedback is used to update the driving gap preference
in real time. The model is then retrained on the cloud with
driver’s takeover trajectories, achieving incremental learning
to better match driver’s preference. Human-in-the-loop (HuiL)
simulation experiments demonstrate that our proposed method
significantly reduces driver intervention in automatic control
systems by up to 62.8%. By incorporating real-time driver
feedback, our approach enhances the comfort and safety
of P-ACC, providing a personalized and adaptable driving
experience.

I. INTRODUCTION

The last decade has witnessed the rapid emergence and
booming development of vehicle automation and Advanced
Driver Assistance Systems. As technology continues to ad-
vance, vehicles are becoming more intelligent, with the
ability to perform tasks that were once solely the respon-
sibility of the driver. ADAS systems are becoming more
sophisticated, providing drivers with a range of features that
improve safety and convenience, such as adaptive cruise con-
trol (ACC), lane departure warning (LDW), and automated
emergency braking (AEB) [1]–[3]. In addition to enhancing
the driving experience, these technologies also have the
potential to reduce accidents, injuries, and fatalities on the
road [4].
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While Advanced Driver Assistance Systems (ADAS) and
vehicle automation have the potential to improve road safety
and driving comfort, a lack of personalization can lead
to various issues. Without personalized settings, drivers
may experience discomfort, reduced trust in the automation
system, decreased usage, and increased risk of accidents
due to unintended operations. Additionally, individuals have
different driving habits and preferences, so a one-size-fits-
all approach may not work for everyone [5]. Personalization
of ADAS and vehicle automation can help to address these
issues, tailoring the system’s settings to meet the specific
needs and preferences of each driver. This can not only
improve driving comfort and trust in the automation system
but also increase usage and reduce the likelihood of accidents
caused by user error.

In this work, we propose a Personalized Adaptive Cruise
Control (P-ACC) system that learns both from the natu-
ralistic car-following behaviors of individual drivers (e.g.,
offline learning) and from the drivers’ real-time feedback
(i.e., online learning). The offline personalization is achieved
by the Inverse Reinforcement Learning (IRL) algorithm,
which infers the reward function of a target agent given the
demonstration trajectories. The recovered reward function is
a representation of the driver’s driving style, which is then
transferred into a driving gap preference table (DGPT) and
sent to the controller as the reference. This DGPT is utilized
to control the vehicle while ACC is engaged. Instead of
simply cloning the driver’s behavior from data, the recovered
reward function helps explain the observed demonstrations
and the driver’s task-specific preferences. The online person-
alization is achieved by a heuristic algorithm that adaptively
adjusts the control reference DGPT in real-time based on
the driver’s feedback as expressed through ACC overrides,
such as applying the accelerator or brake pedals. Compared
to the naturalistic car-following data that is used for training
the IRL model, the online feedback data usually has a very
short time period and distribute sparsely in the time domain.
Therefore, additional processes are required to use this data
to maintain the DGPT. Additionally, the driver’s feedback
data is used to update the offline personalization module as
an incremental learning scheme after completing a trip. By
combining both offline and online learning, our proposed P-
ACC system can provide a personalized driving experience
for each driver, resulting in enhanced driving comfort and
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safety.
Compared to the existing literature that studied the per-

sonalization of ACC systems, we make the following con-
tributions in this work:

• We propose a novel Cloud-Vehicle P-ACC framework.
This framework enables the P-ACC system to learn
from a large number of drivers’ data and adapt to
their unique driving styles. By leveraging cloud-based
computation and communication, our framework is able
to process a large amount of driving data, allowing for
more accurate personalization of the P-ACC system.

• We introduce an offline-online scheme for driving
personalization. The offline scheme uses the Inverse
Reinforcement Learning (IRL) algorithm to recover
the personalized driving style of each driver based on
demonstration trajectories. The online scheme utilizes
a heuristic algorithm to adaptively adjust the P-ACC
system’s behavior in real-time based on the driver’s
feedback. The combination of the offline IRL algorithm
and the online heuristic algorithm ensures that the P-
ACC system provides a personalized driving experience
that aligns with the driver’s preferences.

• We conduct a simulation experiment using the HuiL
driving simulator to evaluate the effectiveness of our
proposed P-ACC system. The experiment involves mul-
tiple drivers, and the results demonstrate the superior
performance of our P-ACC system compared to existing
ACC systems.

The remainder of this work is organized as follows: Sec-
tion II reviews the latest literature in the related field. Section
III introduces the problem formulation. Section IV elaborates
on the proposed system. In Section V, we conduct numerical
experiments on the naturalistic driving data and human-
driving experiments on a game engine-based simulator to
test the validity of the model. Finally, the study is concluded
with some future directions in section VI.

II. RELATED WORK

A. Car-following Model

The foundation of the ACC system is based on the
car-following model, which aims to replicate or optimize
the behavior of a human driver in maintaining a safe and
comfortable distance from the vehicle in front of them while
driving. Existing literature on car-following modeling can
be broadly classified into several categories, including Ordi-
nary Differential Equation (ODE), Model Predictive Control
(MPC), Inverse Reinforcement Learning (IRL), Gaussian
Process Regression, and Sequential models.

ODE-based policies aim to enable the ego vehicle to
follow the movement of the preceding vehicle based on a set
of predefined parameters. However, designing corresponding
algorithms requires prior knowledge of the car-following
system (e.g. vehicle dynamics), making them generic and
difficult to personalize. Moreover, ODE and MPC policies

lack expressivity, which makes it hard to capture the nuances
of naturalistic human driving. Studies like [6], [7], and [8]
fall under this category. MPC, on the other hand, uses Model
Predictive Control to optimize predefined objectives like
safety, comfort, and fuel efficiency in a receding-horizon
fashion [9]. Similar to ODE-based policies, designing MPC
policies also requires prior knowledge of the car-following
system, making them generic and difficult to personalize.
IRL is another popular approach to learn personalized car-
following behaviors. Researchers in [10] and [11] use IRL to
learn the reward of car-following demonstration trajectories
and implement the recovered reward using controllers. The
IRL algorithms used in these studies can recover personal-
ized car-following gap preferences based on different vehicle
speed values, which can be used to design the downstream
control logic for P-ACC systems. Gaussian Process Re-
gression is a direct approach that looks into the data and
learns from demonstration trajectories. Researchers in [12]
propose a Gaussian Process Regression algorithm for P-
ACC, where both numerical and human-in-the-loop exper-
iments verify the effectiveness of the proposed algorithm in
reducing the interference frequency by the driver. Finally,
since the decision-making process of human drivers depends
on sequential state inputs, Recurrent Neural Network (RNN)
and Long Short Term Memory (LSTM) have also been used
to model car-following behaviors. Studies like [13] and [14]
fall under this category.

B. Personalized Driving Behavior Modeling

While driving behavior and preferences can be diverse
among drivers, there is a growing demand to explore per-
sonalized driving behavior to enhance the safety and user
experience of the current ACC system.

Driving style is widely adopted to modeling the person-
alized behavior in a high-level, namely the emotional and
intentional level, as it can provide valuable insights into
a driver’s habits, preferences, and tendencies. Considering
the driving style divergence among drivers, [15] proposed a
P-ACC with driving style identification and corresponding
personalized speed-distance control. The driving style is
characterized by fitting driving data of each individual driver
into a Gaussian mixture model (GMM) and clustered by
Kullback–Leibler (KL) divergence. Instead of only consid-
ering ego driver, personalized driving style is also depend
on the environment. [16] employed Conditional Variational
Auto-Encoder to model a probabilistic distribution of the
individual’s driving style considering surrounding vehicles,
to facilitate the prediction for a driver’s longitudinal accel-
eration and speed.

Besides modeling a high-level driving style, Imitation
Learning is another popular approach to model personal-
ized driving behavior from demonstration. By observing the
demonstration of the studied individual, IRL was imple-
mented to recover the cost function [17] [18] for representing
a driver’s preference or a reward [10] for optimal policy.
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Fig. 1. System architecture: Offline learning (blue blocks), Online learning (orange blocks), Personalized controller (green blocks).

Similarly, Generative Adversarial Imitation Learning (GAIL)
was used to learn the personalized car-following strategy
only based on drivers’ demonstrations but without specifying
the reward [19].

Moreover, researchers developed end-to-end approaches
with integrating personalized behavior implicitly. To model
the uncertainty of human behavior, a Gaussian Process
Regression [12] was adopted to learn the personalized lon-
gitudinal driving behavior model, which is a joint Gaussian
distribution mapping from the driver’s perceived states to
control outputs. [20] utilized constraint Delaunay triangula-
tion to identify a safe area and the fuzzy linguistic preference
relation (FLPR) method to determine drivers’ driving pref-
erences. With taking the user’s personalized objectives as
input, this method achieved personalized trajectory planning
and lane-change control, meeting users’ diverse preferences
while ensuring vehicle safety.

However, the mentioned driving behavior modeling can be
affected by many factors, such as weather, road conditions,
and the emotional state of the driver [21]. Existing literature
only relies on historical data for personalized driving behav-
ior modeling, which may not account for changes in external
factors. Thus, to improve the flexibility and effectiveness of
P-ACC, it is crucial to incorporate real-time data and driver
feedback to dynamically adjust the car-following policy.

III. PROBLEM FORMULATION

A. System Architecture

As an extension of our previous study, this paper proposes
a system architecture that is based on the vehicle-cloud
framework [10], called “Digital Twin”. This framework

uploads drivers’ naturalistic driving trajectory data and ACC
feedback data to the cloud, where personalized models for
different drivers are maintained. In this way, the cloud
can effectively share the high computational demand of
the training process. For similar driving behaviors, remote
models can be reused to reduce the number of models.
Correspondingly, data from similar driving behaviors can
be used to fine-tune the same model for federated learning.
Additionally, for the same or similar types of drivers facing
different driving scenarios, such as different weather condi-
tions, traffic conditions, or road conditions, the cloud can
maintain different models for each scenario to achieve more
precise personalization. For more detailed descriptions and
implementations of Digital Twin, please refer to our previous
article.

The proposed P-ACC system architecture, illustrated in
Fig. 1, is distinct from our previous study in which we
only relied on modeling the demonstration car-following
trajectory (blue blocks in Fig. 1). In contrast, this paper
introduces a novel approach to incorporate the driver’s real-
time feedback on the ACC system as a dynamic input to
adjust the model (orange blocks in Fig. 1). Based on our
literature review, such an approach has not been explored
in prior research. The physical layer of the framework is
divided into the real world (vehicle) and the digital twin
world (cloud), while the implementation process is divided
into two phases: ACC OFF and ACC ON.

During the ACC OFF phase, when the driver manually
follows the lead vehicle, the system considers the trajectory
as an expert demonstration and transmits it to the cloud along
with environmental factors that could potentially impact
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driving behavior. On the cloud, the IRL algorithm assumes
that the collected expert demonstration is near-optimal in
terms of the Markov Decision Process (MDP) and infers the
reward function that drives the driver’s behavior. This reward
function is then transferred to the DGPT as the control
reference.

During the ACC ON phase, when the driver turns on the
automatic following mode, the personalized driving model
(i.e., DGPT) is downloaded locally. The DGPT is designed to
describe the driver’s preferred following distance at different
speeds. The controller (green blocks in Fig. 1) maintains
the distance to the lead vehicle. However, due to differences
between the scenario of demonstration trajectories and the
current driving scenario, as well as changes in the driver’s
driving habits or mood, the driver may not always be
satisfied with the current automated control. Therefore, the
driver can provide feedback to the system by pushing the
accelerator to shorten the car-following gap or brake pedals
to lengthen the gap, leading to a takeover of the vehicle.
These takeover segments are used to adjust the DGPT in real-
time, responding to the driver’s behavior. When the current
ACC ON trip is completed, these takeover segments are sent
back to the cloud to fine-tune the IRL model, improving the
personalization of the system.

B. Assumptions and Specifications

In this paper, we focus on modeling and controlling
personalized car-following maneuvers based on states of
the ego vehicle and its preceding vehicle. Although the
real-world ACC needs to manage both car-following stage
and free-flow stage, the ACC discussed in this paper only
includes the car-following stage, i.e., we assume the leader of
the ego vehicle is always present. Also, only the longitudinal
movement is observed and controlled. The goal of this work
is to design speed control strategy for the ego vehicle to
satisfy the driver’s preference.

We assume that the personalized car-following behavior of
a driver can be described using DGPT, which corresponds to
the preferred following distance of drivers at different speeds.
Therefore, we also describe the car-following dynamic model
in a 2D space spanned by the speed v and the distance g to
the preceding vehicle. We use a second-order approximation
and discretize the space and speed, using the following
equation:

v[t+ 1] = v[t] + a[t] ·∆t+ σv (1)

g[t+1] = g[t] + (vf [t]− v[t]) ·∆t+
1

2
· a[t] ·∆t2 +σg (2)

As shown in Equation (1) and (2), we add Gaussian noises,
σv and σg , denoting imperfectness of the driver’s observation
and control.

We presume the driver’s decision-making process is a
MDP defined by a five-tuple {S,U, T, r, γ}, where S is the
state space spanned by v and g; U is the one-dimensional
action space of all possible acceleration of the ego vehicle; T

Fig. 2. Personalized driving preference from IRL modeling: (a) recovered
reward function from naturalistic driving data using IRL, (b) smoothed
speed-gdesired table.

is the transition probability determined based on Equation (1)
and (2); r is the reward function that represents the driver’s
personalized car-following style; and γ is the discount factor
weighting the importance of the historical rewards; At each
time step, the process in certain state v and g, and the driver
may choose any action a. The process responds at the next
time step by moving into a new state s′ based on T . Notably,
although the speed of the preceding vehicle, vf , is considered
in MDP, it can be observed while driving. It should be
noted that we also assume the human driver is rational and
his/her actions are optimizing a cumulative reward function
formulated as follows:

v(ξ) =
N∑
t=0

γt · rt(s) =
N∑
t=0

γt ·αT ·Φ(s) (3)

where N denotes the time horizon, and ξ denotes the
trajectory of the ego vehicle. As seen in Equation (3), the
instantaneous reward rt(s) is assumed to be expressed in
a span of the reward basis Φ, whose dimension equals the
total number of features, and α stands for a vector of weight
defining the linear combination. Additionally, it is assumed
that the collected trajectory can reflect the drivers’ driving
style and that drivers are comfortable with their own driving
style.

IV. METHODOLOGY

In this section, we present a detailed description of the
proposed system, which includes modeling the driver’s pref-
erence using the IRL algorithm, the online adaptation algo-
rithm of DGPT based on drivers’ feedback, and controller
design for following the preceding vehicle.

A. IRL-based offline personalized DGPT learning

The input of the IRL algorithm is from either the demon-
stration trajectories when ACC is deactivated (for modeling)
or the takeover trajectories while ACC is activated (for fine
tuning). Similar to the existing ACC systems in the market,
when the ACC is activated and the driver steps on the ac-
celerator or brake pedal, the vehicle’s controller will transfer
control to the driver. This transfer of control is referred to as
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a takeover. As we assume that the demonstration trajectory
we collected represents the optimal policy π∗(s, a) for the
equation (3), the goal of the IRL algorithm is to recover the
linear coefficients α. The reward basis Φ is predefined with
sufficient descriptive ability in the space of v and g. By using
IRL, we can recover the reward function, as shown in Fig.
2 (a). The detailed process for the algorithm can be found
in our previous work [10].

The DGPT (i.e., the preferred gap at different speeds)
is calculated using Equation (4) from the recovered reward
function r, as shown in Fig. 2 (b). Also, a low pass filter is
applied afterward to ensure smoothness.

DGPT (v) = gdesired (v) = argmax
g

r(v) (4)

B. Online DGPT Adaptation

Compared to the naturalistic car-following data that is used
for training the IRL model, the online feedback data usually
has a very short time period and distribute sparsely in the
time domain. Therefore, additional processes are required to
use this data to maintain the DGPT, as illustrated in Fig. 3.

First, a behavior filter is needed to ensure that only
necessary updates are made to the DGPT since drivers’
takeover behaviors can be very noisy and may only last
for a short duration or have small inputs. Second, we need
to infer the preferred steady state that the driver wishes
to achieve through a short period of takeover trajectory.
Intuitively, this steady state should correspond to the state
when the driver stops the takeover. However, based on
extensive experiments and observations, we found that this
assumption is not accurate. Drivers may anticipate or pro-
long takeover behavior based on the speed difference with
the preceding vehicle, or they may achieve a steady state
through multiple takeovers. Therefore, a robust prediction
mechanism is needed to determine the steady state that
needs to be updated. Then, as the predicted steady states are
always in scattered forms, we want to smooth updates over
sufficiently large regions of the DGPT through an update
and smooth module. Finally, even after the update with
the aforementioned steps, the DGPT may still fall into an
unreasonable range due to emergency situations or driver’s
mistakes, leading to potential safety hazards. Therefore, a
safety space is defined for the DGPT, and a safety filter is
applied to ensure that the DGPT remains bounded within
this safe space. The updated DGPT then controls the ACC
system if there’s no drivers’ takeover command.

As demonstrated, the Online DGPT Adaptation module
has the potential to be a highly intricate system. In this study,
we propose a simplified heuristic algorithm that adheres
to the aforementioned framework in order to validate its
effectiveness. The algorithm is shown in Algorithm 1.
DGPT is the real-time personalized control reference; v
and g are the current speed and gap, v f is the current
speed of the preceding vehicle; p is the takeover status; p t
is the takeover time; PT is minimum takeover time; KT

is the coast-down coefficient; VD is the maximum speed
difference; window size is the size of the smooth window;
Safe TG max and Safe TG min are the safety time gap
bounds. The safety time gap is a predefined value based on
the minimum reaction time of drivers and the experience of
car manufacturers.

Algorithm 1: Online DGPT Adaptation
Data: Input: DGPT , v, vf , g, p, pt
Parameters: PT , KT , VD , window size, Safe TG max,
Safe TG min
Function: moving average(), max(), min()
Result: DGPT

1 for each iteration do
2 if not p then
3 update flag = (vf − v) ≥ VD or pt ≤ PT

4 if update flag then
5 if vf ≥ v then
6 gdesire = g
7 end
8 else
9 gdesire = g(KT · (v − v f))

10 end
11 DGPT (v) = gdesire
12 moving average(DGPT , window size)
13 for v i in all possible speed do
14 DGPT (v i) =

max(DGPT (v i), Safe TG min)
15 DGPT (v i) =

min(DGPT (v i), Safe TG max)
16 end
17 end
18 end
19 end

C. Controller Design

In this study, we used a PID controller to control the
acceleration of the ego vehicle and ensure that it follows
the preceding vehicle with a desired space gap. The error
between the current gap and the desired gap in the DGPT,
as defined in Equation 5, is used as the control input. The
PID controller continuously calculates the acceleration of the
vehicle based on Equation 6, which takes into account the
proportional, integral, and derivative components of the error.
The controller aims to minimize the error and maintain a
stable and safe distance between the ego vehicle and the
preceding vehicle. This approach has been widely used in
car-following models and has shown good performance in
various scenarios.

e(t) = DGPT (v(t))− g(t) (5)

a(t) = Kp · e(t) +Ki ·
∫

e(t)dt+Kp ·
de(t)

dt
(6)

V. EXPERIMENTS AND RESULTS

This section presents the experimental setup using the
HuiL simulation platform, the metrics used to evaluate
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Fig. 3. Flowchart of online DGPT adaptation algorithm.

Fig. 4. Human-in-the-loop simulator at the University of California,
Riverside.

the proposed algorithm’s performance, and the results and
analysis of the experiments.

A. Experiment Setup using HuiL Simulation

Validation of autonomous driving algorithms often re-
quires consideration of safety factors, making real-world ex-
periments difficult to conduct. Therefore, a good alternative
is to use game engine-based simulations with a human-in-
the-loop setup. These simulations provide testers with an
immersive visual and auditory experience and can collect
relatively reliable driving data. Game engines are commonly
used by software developers to create video games, which
typically include a physics engine, rendering engine, and
scene graph for managing multiple game elements. In this
study, we conducted human-in-the-loop simulations using
the game engine-based driving simulator developed in our
previous work [22]. The platform is built with the Unity
game engine and a Logitech G27 Racing Wheel (see Fig.
4). The simulation environment features a three-lane freeway
scenario with varying weather conditions. During the test,
the driver could choose to drive the ego vehicle manually
or use P-ACC by monitoring the automation and pressing
the accelerator or brake pedal when feeling uncomfortable.
We describe the experimental setup in detail in the following
subsections.

In order to test either manual driving or automatic control,
the scenarios are determined by the speed profile of the
leading vehicle. There are four requirements for generating
the speed profile, including avoiding test driver fatigue,
collecting demonstration trajectories covering a wide range
of speeds for IRL model training, making the speed profile
realistic, and ensuring that the scenario is unpredictable.
To meet these requirements, we developed a stochastic

scenario generation approach. This approach first samples
short trajectory segments from naturalistic driving data, then
generates a high-level random speed sequence, where each
element of the sequence defines an average speed for a
period of time. Next, based on the random speed sequence,
the trajectory segments with corresponding average speed
are randomly selected and concatenated together. Finally, a
filter is applied to ensure the acceleration/deceleration of the
synthesized speed profile is within the required bounds. As
each driving cycle is only 300 seconds long, and a drastic
change in speed may lead to abnormal driving behavior, test
drivers need to take multiple driving cycles, each covering a
different speed range.

We generate five different scenarios covering a range of
average speeds from slow (5m/s) to fast (30m/s) using the
above speed profile synthesis method. Among them, we use
four speed profiles as manual driving scenarios (ACC OFF)
to collect naturalistic car-following trajectories from test
drivers for training the IRL-based offline personalized DGPT.
A total of five test drivers participated in the experiments. A
total of five test drivers participated in the experiments, each
with varying driving experience ranging from 2 to 10 years,
and different driving tendencies, as indicated by preliminary
surveys. After obtaining the personalized DGPT for each
driver, we conducted automatic control tests to validate the
proposed algorithm. The driving scenarios for the automatic
control tests (ACC ON) are divided into two parts: Scenario
A involves the speed profile observed by drivers during
manual driving tests, where the profile starts at a high speed
of 30 m/s and gradually slows down to 5 m/s. On the other
hand, Scenario B is a completely new scenario synthesized
from naturalistic driving samples. Each scenario lasts 300
seconds.

We test four different combinations of controllers: Pre-
defined, Predefined + Online Adaptation, IRL, and IRL
+ Online Adaptation. The Predefined ACC controller
involves the driver choosing a constant time headway from
high (4s), medium (3s), and low (1s) levels as the control
reference, which is similar to the ACCs currently equipped
on commercial vehicles. The Predefined + Online Adap-
tation setup involves the driver choosing a constant time
headway as the control reference, but incorporating an online
adaptation algorithm to update the control reference table
based on real-time feedback, achieving a certain degree
of personalization. IRL involves using the DGPT trained
through offline IRL to control the vehicle, which has been
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shown in our previous studies to significantly improve
drivers’ comfort and trust in the system compared to ACC
without personalization. Finally, IRL + Online Adaptation
is the complete proposed framework, which uses the DGPT
obtained through offline IRL as the initial control reference
to control the vehicle and incorporates an online adaptation
algorithm to continuously refine personalization based on
real-time feedback.

B. Results and Analysis

In this section, we present the results of the experiments
and analyze the data. We use Percentage of Interruption
(PoI) and Number of Interruption-per-Minute (NIM) to quan-
titatively measure the driver’s comfort and trust in the P-
ACC system. PoI denotes the time percentage when the
driver steps onto the acceleration pedal or brake pedal, and
NIM denotes the number of times the driver steps onto
the pedals. The best performance is marked in bold for
each scenario. As shown in TABLE I, both the PoI and
NIM have been greatly reduced when the complete proposed
system is applied and compared with the baseline controller.
Experiments show that the average PoI reduction was 62.8%
and the average NIM decreased by 62.2% compared to the
predefined ACC settings. In some cases, the PoI and NIM de-
creased up to 91.5% and 82.2%, respectively. This indicates
the drivers are more satisfied with automatic car-following
based on the proposed P-ACC. This advantage is observed
in both seen and unseen driving scenarios, indicating the
robustness of both offline and online modules in adapting
to new situations. Notably, the IRL + Online Adaptation
controller outperforms other automation control methods
in the NIM metric significantly. However, in some cases,
the Predefined + Online Adaptation controller performs
better. This indicates that online adaptation can quickly
adapt to the drivers’ preferences when the selected default
settings match their driving style. Comparing the Predefined
+ Online Adaptation controller and the IRL controller,
the Predefined + Online Adaptation controller performs
better in most cases. This suggests that online adaptation
is better suited to real-time driving preferences than offline
learning. Particularly, offline learning may fail when there
are significant changes in driving scenarios or driver mood.
In such cases, online adaptation is essential.

VI. CONCLUSION AND FUTURE WORK

In summary, vehicle automation and Advanced Driver
Assistance Systems (ADAS) are playing an increasingly
important role in enhancing driving safety and comfort.
However, pre-defined settings may not always align with
individual driver preferences and styles. The emergence of
personalized ADAS (P-ACC) aims to solve this problem.
While previous research has primarily focused on using
historical driving data to create personalized controllers, this
study proposes a novel cloud-vehicle collaborative P-ACC
framework that includes both offline and online components.

By recording the driver’s naturalistic car-following trajecto-
ries and utilizing IRL in the cloud to train the personalized
model (e.g., DGPT), the offline component can obtain the
driver’s preference before the trip. Then, while the ACC
is activated en-route, the online component updates the
corresponding DGPT in real time by adapting to the driver’s
feedback (i.e., takeover of the control). Additionally, with
the help of incremental learning achieved through retraining
the model based on driver’s takeover trajectories, the model
gradually becomes more consistent with the driver’s driving
preferences. Human-in-the-loop (HuiL) simulation experi-
ments demonstrate that this method can significantly reduce
driver interventions in the automatic control system, where
average PoI has decreased by up to 62.8%, and average
NIM has decreased by up to 62.2% for each scenario. This
personalized approach can help to ensure a more comfortable
experience while also increasing driver trust and usage of this
type of ADAS.

In the future, we plan to develop more sophisticated
online adaptation methods that can better estimate whether
the driver has reached a satisfactory state and can more
accurately estimate the preferred state’s value. Additionally,
improving the global update of the entire Driving Gap
Preference Table (DGPT) based on these discrete values will
help further gear the system towards each driver’s needs.
Furthermore, conducting real-world tests with actual drivers
would provide valuable insights into the effectiveness of the
proposed framework. Finally, incorporating additional sensor
data and considering more complex driving scenarios, such
as intersections and merging lanes, will help enhance the
performance and adaptability of the P-ACC system.
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