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Abstract—Perceiving the surrounding environment is critical
to enable cooperative driving automation, which is regarded
as a transformative solution to improving our transportation
system. Cooperative perception, by cooperating information from
spatially separated nodes, can innately unlock the bottleneck
caused by physical occlusions and has become an important
research topic. Although cooperative perception aims to resolve
practical problems, most of the current research work is de-
signed based on the default assumption that the communication
capacities of collaborated perception entities are identical. In
this work, we introduce a fundamental approach — Dynamic
Feature Sharing (DFS) - for cooperative perception from a
more pragmatic context. Specifically, a DFS-based cooperative
perception framework is designed to dynamically reduce the
feature data required for sharing among the cooperating entities.
Convolution-based Priority Filtering (CPF) is proposed to enable
DFS under different communication constraints (e.g., bandwidth)
by filtering the feature data according to the designed priority
values. Zero-shot experiments demonstrate that the proposed
CPF method can improve cooperative perception performance by
approximately +22% under a dynamic communication-capacity
condition and up to +130% when the communication bandwidth
is reduced by 90%.

Index Terms—Cooperative Perception, Deature Sharing, Ob-
ject Detection, Point Clouds, Vehicle-Infrastructure Cooperation

I. INTRODUCTION

One of the central challenges in automated driving is to
enable vehicles to comprehend their surrounding environments
so that subsequent tasks (e.g., decision-making, planning,
control) can be performed appropriately [1]. This requires
vehicles to sense the environment with a wide field of view
(FOV) and under various environmental conditions, such as
lighting issues. To achieve this, current automated driving
technologies tend to equip vehicles with more sensors from
different modalities for enhancing the sensing ability around
the vehicle [2]. Concurrently, different types of datasets from
various sensor configurations have been collected and labeled
to train the increasingly complicated onboard perception sys-
tems [3].

However, no matter how many sensors are utilized on
the vehicle, its perception capability will still be limited by
occlusions, especially in a complex driving scenario (e.g., at
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Fig. 1: Conceptual Overview for Dynamic Feature Shar-
ing. Cooperative perception entities (e.g., vehicle nodes and
infrastructure nodes) have different communication capacities.
To be able to transmit the data based on their own available
bandwidths, a Dynamic Feature Sharing module is designed
to dynamically reduce the amount of shared data based on the
original features, without much compromising the perception
performance.

urban intersections surrounded by high-rise buildings). This
limitation is mainly caused by sensing the environment from
the sensor(s) on a single entity. Recent research has shown that
cooperation between sensing systems with multiple spatially-
separated locations can inherently overcome these limitations.
Cooperative perception has quickly become an emerging solu-
tion to unlock the bottleneck of environmental comprehension
for automated driving [4]-[8].

Data sharing is a fundamental component of cooperative
perception. For instance, in the real world, automated ve-
hicles can increase their perception ranges by receiving the
perception information from other sensing entities, such as
other connected and automated vehicles [9], or smart infras-
tructure [10] via vehicle-to-vehicle (V2V) communications or
vehicle-to-infrastructure (V2I) communications [11]. Different
types of data can be shared in the context of cooperative
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perception, including raw sensor data, intermediate feature
data, and object-list data [12]. Recent cooperative perception
methods demonstrated remarkable performance improvements
using intermediate feature-based fusion methods, and different
feature data were designed for sharing, such as encoder
features [6] and backbone features [5].

It is important to note that a commonly-used assumption
for those efforts is that the feature-sharing capabilities for
the perception nodes are typically identical — sharing the
features with the same spatial shape to allow them to be fused
together [4]-[7]. This requires all nodes to be able to transmit
the same amount of data, which will be problematic when
the actual perception nodes have different communication
capabilities.

To enable cooperative perception in a more realistic en-
vironment, we propose a novel methodology called Dynamic
Feature Sharing which aims to dynamically reduce the amount
of data transmitted to cooperative perception systems without
significantly compromising the perception performance. We
propose a dynamic feature-sharing framework that can be
applied to different types of shared data. Specifically, for
intermediate feature sharing, we propose a novel Convolution-
based Priority Filtering (CPF) method that outperforms other
baselines under different communication bandwidth limita-
tions. To evaluate the proposed framework and method, we
develop a data acquisition platform to collect training and
testing data which includes both vehicles and infrastructure.
The main contribution of this work can be summarized below:

e We propose a new fundamental module for the coop-
erative perception framework called Dynamic Feature
Sharing.

o We develop a novel feature filtering method called Con-
volution Priority Filtering to enable cooperative percep-
tion among multiple nodes with dynamic communication
capacities.

e We design a specific testing environment for model
training and evaluations.

o We investigate different methods by numerical analysis
and visualization interpretation.

The remainder of the paper is organized as follows. Related
work is briefly summarized in Section II. Section III presents
the methodology, followed by the simulation experiments in
Section IV. Section V concludes the paper and gives future
insights.

II. RELATED WORK
A. 3D Object Detection

Due to a significant amount of interest in automated ve-
hicle R&D over the past decade, onboard object perception
techniques have made considerable progress in recent years.
There have been various computer vision algorithms proposed
for various sensors used (such as monocular/stereo cameras,
LiDAR) or perception tasks (e.g., traffic sign recognition, lane
detection, road user detection) [13]. The use of convolutional
neural networks (CNNs) for camera-based solutions has been

widely investigated in recent years, and they also inspire the
design of perception pipelines for analyzing point cloud data
(PCD) from onboard LiDAR sensors [14].

To support more efficient automated driving in a mixed traf-
fic environment, infrastructure-based surveillance systems can
provide additional object-level information to target road users
beyond traditional data collection (e.g., volume, point speed)
based on loop detectors and radar [3]. Zhao et al. designed a
bottom-up pipeline for infrastructure-based object perception
using traditional model-based methods [15]. Utilizing data-
driven models, Bai et al. demonstrated the concept of Cyber
Mobility Mirror where a roadside LiDAR was used to enable
real-time 3D object perception at an intersection [10].

B. Cooperative Perception

By leveraging both onboard perception and infrastructure-
based perception, vehicle-to-everything (V2X) based coopera-
tive object perception is considered to be the most promising
pathway towards tapping the full potential of Cooperative
Driving Automation (CDA) [12]. Xu et al. [7] proposed a
V2X-based cooperative perception (CP) method considering
the heterogeneity of vehicle and infrastructure nodes and
multi-scale receptive fields. Lou et al. [16] conducted the
Proof-of-Concept of CP in the real world by applying V2X to
enable entities to share their sensing results and the program
demonstrated the CP system can significantly improve the
perception capability of the involved entities.

C. Feature Sharing for Cooperative Perception

Feature data shared in cooperative perception varies accord-
ing to the data fusion schemes, including early, intermediate,
and late fusion [12]. Considering the limited length and main
scope of this paper, only intermediate features are discussed
below. Feature data at the end of the backbone network,
comprised of convolutional layers [4], has attracted significant
interest as it contains highly extracted information to benefit
cooperation. Another strategy is to share the feature data after
simple feature encoders which usually have much smaller
neural network structures than the backbone [5], [17].

Since intermediate features usually hold large amounts of
information, data compression techniques are often applied
to reduce the amount of data to adapt to communication
capacities. Examples include CNN-based channel-wise com-
pression [7] or other dedicated Encoder-Decoder methods [5].
However, none of these data compression methods can be
utilized to enable cooperative perception for nodes with dif-
ferent communication capacities by sharing different amounts
of data for different perception nodes. For example, features
with different channels are not able to be fused directly, and
it is impractical to apply all different decoders to decompress
features from different encoders.

III. METHODOLOGY
A. DFS-based Cooperative Perception Framework

We formulate the cooperative perception into five key
components and a proposed DFS-based cooperative perception
framework is illustrated in Fig. 2. These components include:
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Fig. 2: Systematic diagram for the proposed DFS-based cooperative perception framework.

o Data Pre-Processing: This component aims to apply
proper transformation and geo-fencing to prepare the raw
sensor data for processing.

o Ego-Feature Encoding: This component aims to extract
the feature information from the pre-processed sensor
data, which will be used for multi-node feature fusion.

e Dynamic Feature Sharing: This component aims to
dynamically reduce the amount of data used for sharing.

o Feature Fusion Backbone: This component aims to fuse
the features retrieved from multiple perception nodes and
generate the final feature map for specific downstream
tasks, e.g., object detection.

¢ Object Perception Head: This component aims to gen-
erate detailed perception results based on specific tasks,
such as object detection, tracking, classification, motion
detection, etc.

In the following sections, we discuss these components in
more detail.

B. Data Pre-Processing

To align the spatial location of different nodes, a global
referencing coordinate (GRC) has been designed for raw
data preprocessing. There are two significant advantages of
applying a GRC for data transformation: 1) by aligning the
data in the early stages, the spatial mismatching problems [4]
are circumvented; and 2) in a holistic cooperative perception
system [17], every perception node will benefit from each
other, and there is no need to transform their data multiple
times for different cooperating nodes.

In this study, we consider point cloud data as an example.
It will be transformed into the GRC for spatial alignment for
all perception nodes, which is defined below.

-G _ |Rx 0| |Ry 0] [Rz 0| 5, +E-G
e B R A R U

where Ry, Ry, Rz, and TF~C represent the rotation matrix
along x—axis, y—axis, z—axis, and the translation matrix from
ego-coordinate to GRC, respectively. P and P~ represent
the raw data before and after the transformation.

C. Ego-Feature Encoding

For encoding the point cloud data, we voxelize it along the x
and y axis, which results in a 2D pillar map. Furthermore, we
apply the lightweight feature extractor [17] to extract hidden
features for every non-empty pillar from heterogeneous per-
ception nodes. Specifically, for each pillar, a D—dimensional
feature vector V), is generated as defined below:

P ()

where ., yc, z¢; Tp, Yp, N, and P represent the distance of
each point to the arithmetic center of all points in the p—th
pillar (the ¢ subscript) and the geometrical center of the pillar
(the p subscript), the number of points in the pillar and the
number of pillars, respectively. Then, hidden features of V),
are encoded by the following processes.

‘/p = {[x7y7ZaiamwycaZ07xpayp]i}£\[:1’p = 17 cety

(5 — (DY) 7 =
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where ’Héj ) presents the feature output from the encoder
which has the shape of (P;,C). Especially, e € [veh,inf]
represents the heterogeneous perception nodes of vehicles and
infrastructure. Two decoupled MLP networks are designed as
D(er)zsee() to extract V}, from D—dimension to C'—dimension.

J

node.

presents the feature data from j—th infrastructure/vehicle

D. Dynamic Feature Sharing

To adjust the difference in communication capabilities of
various perception nodes, a dynamic feature sharing (DFS)
methodology is proposed to filter the feature data based on
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certain criteria. As an example shown in Fig 1, if the encoded
feature data requires a 5.0 MBps for real-time transmission
while the actual communication capability of the node is
only 0.5 MBps, a natural way to reduce the bandwidth is to
select only 10% of the original data for sharing. However,
the method to select the shared features while maintaining
perception accuracy is still an open-challenging problem.
In this study, we propose a feature-filtering method named
Convolution-based Priority First (CPF) and several baselines
according to the heuristic inspirations which are discussed later
in Section IV-A4.

The core concept of CPF is to sift the features according
to the convolution values in each pillar feature. A diagram is
shown in Fig. 2 to illustrate the detailed process of CPF. There
are three main steps for the CPF method:

o Feature List: First, we index the pillar features in the
feature map generated from Section III-C. In the actual
implementation, a natural index is designed based on the
3D spatial location of the pillar. The spatial shape of the
Feature List is (IV, 3 + 64).

o Priority List: Next, we aggregate the convolution values
in each pillar feature by applying maxpooling operation —
getting the most magnificent convolutional representation,
which is named convolution-based priority in this paper.
The spatial shape of the Priority List is (N,3 + 1).

o DFS List: Lastly, we sort the priority list and then trun-
cate the list based on the threshold X which is generated
according to the specific communication capability. The
spatial shape of the DFS List is (KC, 3 + 64).

By following the DFS framework (not necessarily the
CPF method), it is noted that the threshold C can be any
unsigned integer value, which not only allows different nodes
to generate different amounts of feature data for sharing but
also enables the node to dynamically generate the feature
data at different time according to the varying communication
conditions.

E. Feature Fusion Backbone

To enable intermediate feature fusion under dynamic, scal-
able, and heterogeneous conditions, a two-stream neural net-
work is adopted to fuse pillar features from scalable perception
nodes of vehicles and infrastructure [17]. As shown in Fig 2,
the feature fusion backbone is composed of three parts: 1) the
infrastructure feature fusion stream which fuses the feature
data from infrastructure nodes by reprojecting the feature list
back to a 2D feature map with the shape of (n,C,H, W)
and then aggregating those features via maxpooling along
each spatial location ending up with a feature map with the
shape of (1,C, H,W); 2) the vehicle feature fusion stream
which acts similarly to the infrastructure one to generate a
(1,C, H,W) feature map representing the features aggregated
from all vehicle nodes; and 3) the vehicle-infrastructure feature
fusion module which applies the concatenation first to form
a (2C, H,W) feature map and then passes the feature into a
dense CNN network for further feature extraction.

F. Object Perception Head

In the scope of this study, an anchor-based 3D object detec-
tion head [14] is applied to generate 3D bounding boxes with
classification and heading direction information. Intersection
over Union (IoU) is executed to correspond the prior bounding
boxes with the ground truth.

IV. EXPERIMENTS
A. Experimental Setup

1) Dataset Acquisition: The “CARTI” (i.e., CARla-kiTtI)
platform [18] is applied for collecting the LiDAR sensor data
and ground truth labels for CP system model training and
testing. Specifically, two infrastructure nodes and three vehicle
nodes are deployed for data collection. A total of 9, 179 frames
of 3D point clouds are collected (45, 895 samples if counting
perception nodes in all frames), including 3,059 frames for
training, 3,060 frames for validation, and 3,060 frames for
testing.

TABLE I: Parameter Configuration in the CARTI Platform

Sensor Specification \ Setting [onboard/roadside]

LiDAR Channels 64
LiDAR Height 1.74/4.74m
LiDAR Sensing Range 100.0m
LiDAR Rotation Frequency 10.0Hz
Upper FOV +225/ 40
Lower FOV —22.5 /) —225
Noise for Points Per Beam 0.01m
Missing Reflection Rate 45%
Intensity Dropoff Range (0,0.8]

The specification of sensors applied is shown in Table I
and two different LiDAR settings are used based on our
previous work in real-world [10]. To make the simulated point
cloud data closer to the realistic conditions, we configure
the simulated LiDAR with certain noise settings including
standard deviation of the noise for points per beam, missing
reflection rate, and intensity dropoff range, which are also
specified in Table L.

2) Training Details: The training and testing platform
consists of an Intel® Core™ i7-10700K CPU and an NVIDIA
RTX 3090 GPU. The training pipeline is designed with
160 epochs with Batchsize of 2. The voxel size is set as
[0.23m, 0.23m, 6.00m] and the maximum number of voxels
per node P is set as 15,000. Specifically, during the training
stage, the threshold /C for the number of pillar features per
node is randomly varying from the range X € [1, 500, 15, 000]
(nodes in one frame are also assigned with different /C to
emulate a fully dynamic environment).

3) Evaluation Details: It is noticeable that the evaluations
under different communication bandwidth limitations (i.e.,
different combinations of K) are conducted WITHOUT any
further fine-tuning. This zero-shot setting allows us to evaluate
the model under more critical but more realistic conditions.

The detection performance is measured with Average Pre-
cision (AP) at Intersection-over-Union (IoU) thresholds of
0.7 for cars. Furthermore, based on the Minimum number of
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AP performance v.s. Bandwidth Reduction under BEV benchmark.
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Fig. 3: BEV AP improv. under heterogeneous data-
sharing conditions.

Points (MP) reflected by the ground target, each evaluation
class is further divided into three categories: Easy (MP>10),
Medium (MP>5), and Hard (MP>1), respectively, to inves-
tigate the performance of CP methods on different difficulty
levels.

For dynamic communication constraints, we evaluated the
performance under I € [15000, 7500, 3500, 2500, 1500] for
vehicle-based perception nodes and infrastructure-based per-
ception nodes representing bandwidth using 100%, 50%, 23%,
16%, and 10%, respectively. It is noted that the vehicle nodes
and infrastructure nodes can have different K to mimic the
dynamic real-world environment for communication. Further-
more, those thresholds are selected to balance the represen-
tation and complexity of the experiments, and the model is
trained for any bandwidth usage and its performance is NOT
fine-tuned by any of those thresholds designed above.

4) Comparing Baselines: We considered several heuristic
feature filtering methods including:

o K-Nearest Neighbor (K-NN): Sorting the features with
respect to (w.r.t.) the distance between the pillar feature
and the location of the sensor itself. We next select top-K
nearest features, since we might assume that the model
will have higher confidence in the feature closer to it.

o K-Farthest Neighbor (K-FN): A converse method w.r.t.
the K-NN.

o K-Random Sampling (K-RS): Randomly sampling out K
features.

Specifically, for calculating the distance between the spatial
location of the feature cell and the sensor, Manhattan Distance
is applied for calculating the priorities with better computa-
tional efficiency (when compared with Euclidean Distance),
which is defined as below:

®)

where D,, is the Manhattan distance between the feature
location (z,y,) and the sensor location (zs,ys).

Dm:|xp*x8|+‘yp*93‘

AP performance v.s. Bandwidth Reduction under 3D benchmark.
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Fig. 4: 3D AP improv. under heterogeneous data-sharing
conditions.

TABLE 1II: Average precision (AP) performance for DFS
methods under different benchmarks.

Conditions ‘ Methods ‘ ‘ BEV ‘ ‘ 3D
| || Easy Medium Hard || Easy Medium Hard
K-NN 61.87 61.17 57.14 52.52 52.34 52.21
100% K-FN 61.92 61.76 61.59 55.62 55.55 52.09
Sharing K-RS 70.31 69.17 66.57 60.67 60.47 60.23
CPF (Ours) 70.60 69.81 66.82 61.04 60.83 60.61
K-NN 41.28 37.92 37.89 34.09 33.89 33.76
50% K-FN 50.93 50.82 50.59 41.90 41.86 41.73
Sharing K-RS 61.10 60.91 60.72 54.14 50.67 50.50
CPF (Ours) 62.17 61.96 61.78 55.88 55.72 52.16
K-NN 23.82 20.49 18.94 16.40 16.29 16.22
23% K-FN 38.76 38.99 38.18 30.56 30.72 30.62
Sharing K-RS 47.82 46.50 44.72 35.94 34.33 34.15
CPF (Ours) 56.31 56.14 52.57 49.30 46.16 46.02
K-NN 16.92 16.87 16.83 14.92 14.78 14.69
17% K-FN 3241 32.66 32.65 23.63 23.85 23.85
Sharing K-RS 38.71 37.93 37.26 27.33 25.23 25.11
CPF (Ours) 51.90 5143 51.08 42.50 42.12 41.88
K-NN 15.89 15.75 15.64 9.96 9.96 9.96
10% K-FN 23.72 24.07 24.11 17.61 17.83 17.87
Sharing K-RS 24.37 24.13 22.33 15.38 14.24 14.16
CPF (Ours) 45.20 42.25 42.02 35.26 34.98 32.68
K-NN 34.94 34.74 34.57 28.85 27.69 27.62
Dynamic K-FN 46.03 46.10 43.26 38.89 36.98 36.55
Sharing K-RS 51.66 51.40 51.17 41.99 41.72 41.52
CPF (Ours) 60.46 59.23 56.84 51.26 50.78 50.36
Improv. (%) 17.03 15.23 11.08 22.08 21.72 21.29

B. Evaluation and Analysis

In this section, we evaluate dynamic feature-sharing ap-
proaches from two perspectives: 1) quantitative results and
analysis to show the numerical results of the methods; and
2) qualitative results and analysis to illustrate the visualized
performance and interpretations of the methods.

1) Quantitative Results and Analysis: Two different bench-
marks are applied based on the CARTI dataset — BEV bench-
mark and 3D benchmark representing the object detection
w.rt. 2D bird-eye-view ground truth and 3D ground truth,
respectively. Furthermore, three types of difficulty levels are
applied for both benchmarks w.r.t. the minimum points re-
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Fig. 5: BEV AP improv. under heterogeneous data-

sharing conditions.
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Fig. 6: 3D AP improv. under heterogeneous data-sharing
conditions.

Fig. 7: Visual interpretation for the feature data and object detection results (better w/ zoom in). The first two columns
show the visualization of the shared data from infrastructure nodes and vehicle nodes (combining nodes to visualize for space
saving). The last column shows the cooperative 3D object detection results from a top-down view.

flected by the ground truth objects (i.e., minimum 10 points,
5 points, 1 point for Easy, Medium and Hard, respectively.)
Table II shows the evaluation results of different DFS
methods under various data-sharing conditions. Specifically,
for homogeneous data-sharing conditions (i.e., vehicle nodes
and infrastructure nodes have the same sharing capabilities),
our method, CPF, achieves the best performance among all the
testing tracks. Furthermore, the CPF method, compared with
other baselines, is more resilient to conditions with reducing
sharing limitations, which is demonstrated in Fig. 3 and Fig. 4.
Under the conditions of reducing 0% to 50% sharing data,

CPF performs slightly better than K-RS while both of these
two methods outperform K-NN and K-FN with noticeable
margins. Nevertheless, when the available data for sharing
keeps shrinking, CPF will significantly outperform all other
methods, including K-RS.

For a more realistic scenario in which a different node has
its data-sharing capability, CPF can still overtake the best
baseline (K-RS) by improving 15.23% and 21.72% AP for
BEV and 3D object detection, respectively (under Medium
difficulty). Furthermore, Fig. 5 and Fig. 6 illustrate the AP
improvements of CPF under different data-sharing conditions,
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compared with the best baseline, K-RS. The relative improve-
ment increases while the amount of data used for sharing
decreases. Under the 90% bandwidth reduction condition, CPF
can outperform other methods in terms of the AP performance
by as much as 84.74% and 129.32%, respectively.

2) Qualitative Results and Analysis: To further investigate
the performance of DFS methods, we visualize the feature data
from different nodes and the cooperative 3D object detection
results, as shown in Fig. 7. To interpret the feature data for
sharing, we present the CNN-based priority values within each
pillar feature by applying a Heat Map in which the feature with
higher priority is shown in a brighter point.

Fig. 7 illustrates the patterns of the feature data after their
designed filtering methodologies. For the first row, the K-NN
method clearly keeps the feature data around each node, while
the K-FN method, shown in the second row of Fig. 7, remains
the features that are located far from the node. For the K-RS,
the feature map demonstrates its random sampling process and
the feature data for sharing looks like down-sampled point
cloud data.

For the last row in Fig. 7, we can find that the CPF
method can keep the feature data based on their significance
to the perception task, regardless of their spatial locations. For
instance, most of the feature data passed out from CPF comes
from the ground truth objects. By sharing the feature data that
essentially comes from ground truth objects, the CPF method
will naturally end up with a significant improvement in object
detection as shown in the last column in Fig. 7.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a fundamental module for coop-
erative perception which is dynamic feature sharing consider-
ing the variety of communication capabilities from different
perception nodes. A cooperative perception framework is pro-
posed by considering the dynamic feature sharing and a novel
method, convolution-based priority filtering (CPF) is proposed,
which can provide state-of-the-art performance for object
detection under dynamic data sharing conditions. Specifically,
with zero-shot testing, the CPF method can improve the
Average Precision for 3D object detection by 21.72% under a
fully dynamic feature-sharing condition and 129.32% under a
90% bandwidth-saving condition.

The main limitation of the current work is the lack of large-
scale, real-world evaluation, which is also missing in most of
the related cooperative perception work. Hence, benchmarking
on the real-world dataset, involving real-world communication
configurations, and resolving the challenge of spatiotemporal
synchronization issues will significantly stimulate research in
this field.
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