
Abstract— Freeway ramp merging is a challenging task for an 

individual vehicle (in particular a truck) and a critical aspect of 

traffic management that often leads to bottlenecks and accidents. 

While connected and automated vehicle (CAV) technology has 

yielded efficient merging strategies, most of them overlook the 

differentiation of vehicle types and assume uniform CAV 

presence. To address this gap, our study focuses on enhancing 

the merging efficiency of heavy-duty trucks in mixed traffic 

environments. We introduce a novel multi-human-in-the-loop 

(MHuiL) simulation framework, integrating the SUMO traffic 

simulator with two game engine-based driving simulators, 

enabling the investigation of interactions between human drivers 

in diverse traffic scenarios. Through a comprehensive case study 

analyzing eight scenarios, we assess the performance of a 

connectivity-based cooperative ramp merging system for heavy-

duty trucks, considering safety, comfort, and fuel consumption. 

Our results demonstrate that guided trucks exhibit 

advantageous characteristics, including an enhanced safety 

margin with larger gaps by 23.2%, a decreased speed deviation 

by 30.4% facilitating smoother speed patterns, and a reduction 

in fuel consumption by 3.4%, when compared with non-guided 

trucks. This research offers valuable insights for the 

development of innovative approaches to improve truck merging 

efficiency, enhancing overall traffic flow and safety. 

I. INTRODUCTION 

On-ramp merging and its associated research have 
attracted attention from both researchers and traffic operators, 
driven by the safety, mobility, and environmental 
considerations that arise from the chaotic nature of traffic 
within the merging zones. Frequent speed changes and 
weaving maneuvers can often provoke traffic congestion or 
shockwaves on both the mainline and on-ramps. These, in turn, 
can escalate energy consumption and mobile-source pollutant 
emissions. 

A common strategy to manage on-ramp merging is ramp 
metering, which employs traffic signals at highway on-ramps 
to regulate the rate of traffic inflow onto the mainline, 
corresponding to the prevailing mainline traffic conditions [1]. 
Existing ramp metering research is typically divided into rule-
based, control-based, and learning-based approaches [1]. 
However, such strategies can inadvertently create stop-and-go 
maneuvers for on-ramp vehicles, leading to an increase in both 
travel time and energy consumption. Furthermore, the 
coordination of merging maneuvers between on-ramp and 
mainline vehicles remains a challenge, potentially posing 
safety risks and disrupting the mainline traffic. In certain 
poorly designed locations, on-ramp vehicles, especially heavy-
duty trucks, might struggle to achieve a safe and efficient 
merging speed due to insufficient acceleration lanes. 

Emerging technologies such as connected and automated 
vehicles (CAVs) have catalyzed the development of various 
algorithms addressing these ramp merging issues [3, 4]. 
Nevertheless, most of these algorithms only considered 
homogeneous traffic flow where all vehicles are light-duty 
CAVs, even differentiating in powertrain types [5]. Many 
studies also implemented a centralized optimal control of 
vehicle strings, assuming a pre-determined merging sequence 
and perfect compliance with the given guidance and planned 
trajectories. Such assumptions significantly deviate from real-
world conditions, thereby curtailing the practicality and 
adaptability of these algorithms. 

To bridge these research gaps, we develop a vehicle-to-
everything (V2X) based cooperative ramp merging framework 
designed for a mixed and multimodal traffic environment, 
which encompasses both connected and non-connected 
vehicles (e.g., cars, trucks). This system is designed to enhance 
safety performance and enable smooth traffic flow at highway 
ramp merging areas. Our innovations are as follows:  

• Development of a Comprehensive Co-Simulation 
Platform: We have developed an information 
exchange center, the Edge Gateway, that serves as a 
common interface for multiple driving simulators and 
a microscopic traffic simulator, thereby enabling 
multi-human-in-the-loop simulation and enhancing 
system scalability. 

• Analysis of Realistic Human-human Interaction: Our 
developed platform facilitates the analysis, modeling, 
and simulation of multi-modal driving behaviors 
(including passenger cars and trucks), enabling a 
more accurate representation of interactions between 
human-operated vehicles in diverse traffic conditions. 

• Truck-oriented Ramp Merging: To our best 
knowledge, no existing literature has examined truck-
oriented ramp merging using dual driving simulators. 
Our study not only analyzes truck drivers’ reactions 
to suggested speeds but also investigates realistic 
interactions between trucks and trucks/passenger 
vehicles (both with and without advisory 
information). 

The remainder of this paper is arranged as follows: Section 
II elaborates on relevant background information. Section III 
presents the architecture of the connectivity-based cooperative 
ramp merging system and the development of a multi-human-
in-the-loop (MHuiL) co-simulation framework. Section IV 
conducts a simulation study and analyzes the merging 
interaction between a truck and a car using the MHuiL 
framework, evaluating system performance in terms of 
merging safety, driver comfort, and environmental impacts. 
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Section V concludes the paper and proposes future research 
directions. 

II. BACKGROUND 

In this section, we will review the state-of-the-art studies 
on both ramp merging algorithms based on vehicle-to-
everything (V2X) communications and emerging simulators 
that enable connected and automated vehicle (CAV) research. 

A. V2X-Based Ramp Merging Algorithms 

Recent studies have proposed various ramp merging 
strategies that leverage CAV technology to improve road 
safety and efficiency in a fully connected environment [6]. For 
example, Zhou et al. [7] formulated cooperative ramp merging 
as two optimal trajectory planning problems for a pair of ramp 
and mainline vehicles, and Rios-Torres et al. [8] presented an 
optimization framework for online coordination of CAVs at 
ramp merging zones. However, most of these studies assume 
a 100% CAV penetration rate and do not consider the impact 
of mixed traffic or truck involvement in ramp merging. To 
address these issues, Huang and Sun [11] proposed a dynamic 
programming-based approach for mixed traffic ramp merging, 
and Liao et al. [12] developed a game theory-based strategy 
for CAVs in mixed traffic. Studies on truck-involved scenarios 
have also become popular, with research focusing on the 
impacts of truck platooning on merging areas [13,14] and 
developing solutions for efficient and safe merging 
coordination between trucks and cars [15,16]. This study uses 
an algorithm to coordinate both passenger cars and trucks for 
smoother and safer merging at ramps. 

B. Advanced Simulators for CAV Research 

Advanced simulators have been developed in recent years 
to evaluate advanced driving assistance systems (ADAS) and 
cooperative automated driving systems (CADS). These 
simulators can be divided into two types: microscopic traffic 
simulators, such as SUMO [17], Aimsun [18], and VISSIM 
[19], which are capable of generating realistic traffic flows and 
simulating their behaviors with well-calibrated car-following 
and lane-changing models; and vehicle-level simulators such 
as SVL [20], CARLA [21], Gazebo [22], Carsim [23], and 
PreScan [24], which can model realistic vehicle dynamics and 
complex sensor characteristics. Some recent research has 
integrated multiple simulators, such as VISSIM with driving 
simulators to assess the influence of adverse weather on traffic 
flow characteristics [25], and SUMO with CommonRoad [26], 
a software framework that provides a benchmark for motion 
planning of automated vehicles, to evaluate motion planners 
under realistic traffic scenarios [27]. Additionally, other 
studies have integrated SUMO with Matlab/Simulink [28], 
Unity and SUMO [30], and CARLA and SUMO [31]. These 
integrated simulators are capable of assessing ADAS effects 
and efficiency, but they do not consider more realistic driving 
behavior via the human-in-the-loop (HuiL) approach. By 
taking advantage of 3D vehicle-level simulators, researchers 
can analyze human behaviors under CAV application 
environments using the HuiL approach, which is a prototype 
platform for quickly exploring novel in-the-loop applications 
that can enhance the interactions between human beings and 
the physical world [32]. This approach has been used in 
different research topics related to human interaction with 
control systems, such as rollover prevention for sport utility 

vehicles [33], and solving safety-critical interaction problems 
in SAE Level 3 automated vehicles [34]. To understand human 
behaviors in response to ADAS applications and the effects on 
traffic safety and environmental sustainability, many 
integrated simulators are not only capable of assessing ADAS 
effects and efficiency but also taking human factors into 
account. Hussein et al. proposed a 3D simulator for 
cooperative ADAS, and AVs called 3DCoAutoSim which is 
composed of SUMO, ROS, and Unity [35]. Gao et al. proposed 
a co-simulation by integrating ROS and Aimsun, which allows 
a user to drive an ego vehicle in the traffic flow to investigate 
driving behavior [36]. The integrated traffic-driving-
networking simulator (ITDNS) exploited PARAMICS, NS-2, 
and driving simulator to create a virtual environment, allowing 
a human driver to control a vehicle while communicating with 
other vehicles and infrastructure [37]. Zhao et al. developed a 
co-simulation platform incorporating SUMO, Unity, and 
AWS to collect driving data via HuiL and provide 
personalized data analysis and data storage [38]. Some multi-
driver simulation systems have been developed for 
investigating the dynamic interaction between human-driven 
vehicles and the interrelationship between individual drivers 
behavior [39,40,41]. However, none of them take advantage of 
microscopic traffic simulators for realistic traffic environment 
generation or consider potential problems caused by heavy-
duty vehicles involved in transportation. 

III. METHODOLOGY 

The methodology employed in this study leverages the 
nascent V2X technology for connected vehicles, 
encompassing both human-driven and automated vehicles. It 
considers vehicle types (e.g., passenger cars, heavy-duty 
trucks), their respective dynamics (e.g., maximum acceleration 
rate, braking distance), and the inherent imperfections of 
human behavior when formulating driving guidance or control 
strategies. 

A. Problem formulation 

 

Figure 1. Connectivity-based Cooperative Ramp Merging System 

The proposed system leverages V2X communications to 
coordinate the merging sequence, time, and speed in a mixed-
traffic environment. We use decentralized sequencing and 
speed guidance algorithms that account for the heterogeneous 
characteristics of different vehicles. The problem is formulated 
as either a cooperative or non-cooperative game, contingent on 
the vehicles' connectivity and sensor availability, as depicted 
in Fig 1. We apply Game Theory to determine the leader and 
follower roles, or the necessity of lane changes, to ensure safe 
and efficient merging. A decentralized multi-agent system 
(MAS) approach, such as a consensus-based algorithm [42], is 
developed for driving guidance or vehicle control. The 
decentralized algorithm we propose is more apt for multi-
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modal and mixed traffic scenarios and more adaptable for 
handling disturbances like lane changes. The next section will 
delve into more detail about this algorithm. 

B. Connectivity-based cooperative ramp merging  

Our strategy is based on a decentralized agent-based 
model, empowering vehicles to operate autonomously. The 
strategy's workflow, as shown in Fig 2, incorporates six 
modules: Conflict Prediction, Conflict Avoidance, Role 
Identification, Game Formation, Merging Sequence 
Determination, and Acceleration Control. The Conflict 
Prediction Module uses radar data and information from other 
CAVs to anticipate potential vehicle conflicts, considering 
speed and distance parameters. The Conflict Avoidance 
Module prioritizes lane change actions to evade conflicts, 
utilizing time-to-collision and inter-vehicle gap metrics as 
inputs. The Role Identification Module differentiates each 
vehicle as either a CAV or a legacy vehicle, thereby 
determining the game type for the Game Formation Module. 
Subsequently, the Game Formation Module organizes 
individual games between each conflicting vehicle, computing 
the anticipated acceleration and costs for each participant. The 
Merging Sequence Determination Module then outlines the 
merging sequence. The Acceleration Control Module ensures 
the vehicle maintains the desired speed, tracks the lane, and 
safely executes lane changes. The consensus control algorithm 
from previous research calculates acceleration and maintains 
an inter-vehicle gap and speed with the target vehicle. This 
algorithm's string stability is guaranteed in a purely CAV 
environment, ensuring error signals are not amplified upstream 
along the platoon.  

 

Figure 2. System Workflow of the Mixed Traffic Ramp Merging Strategy for 

CAVs 

C. Development of multi-human-in-the-loop (MHuiL) co-

simulation framework 

In this study, we strive to develop a multi-driver simulation 
framework that can assess the interactions between heavy-duty 
trucks and passenger vehicles within mixed-traffic scenarios 
via a MHuiL simulation framework. Fig 3 graphically presents 
the overall system architecture of this framework. For the 
software part, we chose Unity, a high-performance game 
engine, to model and visualize the ego vehicle's surroundings 
and provide high-resolution sensor information. Additionally, 
we employed SUMO, a microscopic simulator, to generate 
realistic traffic flow across varying degrees of congestion and 
differing penetration rates of connected and automated 
vehicles. On the hardware end, we outfitted the framework 
with a steering wheel, brake, and throttle, functioning as 

human-machine interfaces to gather human driving behavior 
data. 

1. Vehicle Modeling 
To create a realistic mixed traffic flow and design 

cooperative Advanced Driver Assistance Systems (ADAS) 
using the MHuiL simulation framework, we define three 
primary vehicle types involved in the simulation: legacy 
vehicles, CAVs, and HCVs. At the simulation level, these 
vehicles are divided into two categories based on the 
controlling engine - either Unity or SUMO. For the control of 
CAVs and HCVs, we rely on the Unity engine, whereas 
SUMO regulates the rest of the vehicles.  

Legacy vehicles on this framework are entirely SUMO-
controlled using car-following and lane-changing models, 
with their deployment and removal hinging on a predefined 
route file. CAVs are controlled by user-defined algorithms 
encoded in Unity, with our study employing a game theory-
based algorithm for their control. These vehicles also feature 
onboard sensors like cameras, radar, LiDAR, and GPS, 
delivering realistic data as point clouds and images. 

In the MHuiL simulation, we construct two HCV models 
in Unity: the human-controlled truck (HCT) model and the 
human-controlled passenger vehicle (HCPV) model, both 
depicted in Fig 3. The HCPV is a standard four-wheel vehicle, 
whereas the HCT is a heavy-duty truck with a truck head and 
trailer linked by a hinge. Notably, for the HCT, we employ a 
diesel engine with a 'flat-curve' torque design. This design 
ensures the engine generates the maximum torque at the 
'lower-to-middle-end' of its engine speed, i.e., in the range 
between 900 and 1300 rpm (revolutions per minute) [43]. Both 
HCV models incorporate two side mirrors and one rearview 
mirror for an immersive driving experience, as shown in Fig 
3, and ADAS suggestions are displayed on the HCV models' 
windshield.  

2. Hardware Setup 
As shown in Fig. 3, the multi-driver co-simulation 

framework supports two human-machine interface setups: 
HCPV simulator and HCT simulator. Each simulator has one 
cockpit and three screens (including two side mirrors), 
extending the driver's field of view about surrounding 
vehicles. Besides, it is necessary to have brake and throttle 
pedals allowing longitudinal control and a steering wheel 
allowing latitudinal control. Specifically, the HCPV simulator 
is composed of a Logitech gaming steering wheel and pedal 
set which is supported by a Unity joystick input interface. On 
the other hand, HCT hardware is connected to a USB4 encoder 
and outputs can be decoded into voltage values which can be 
conveniently converted to control signals of HCT. 

3. Simulation Environment Construction 
Using the game engine, we construct a high-quality 

simulation environment in Unity based on a real-world map, 
including the network, infrastructure, and buildings. We also 
create a set of waypoints for each lane in the network to 
facilitate the lateral and longitudinal control of CAVs. 

There are two approaches to constructing the simulation 
environment in both Unity and SUMO: 

• NETCONVERT tool can convert an OpenStreetMap 
(OSM) file into a 2D SUMO network file, which can 
then be used to build the 3D map in Unity*. 
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Figure 3. Overall Architecture of the Multi-driver Co-simulation Framework 

• A 3D network in Unity can be used to create the same 
2D map in SUMO, ensuring that both maps have the 
same reference point for position synchronization 
between the two simulators.  

The first approach is generally easier, but the quality of the 
OSM model may not always accurately reflect real-world 
network geometry and situations. As such, we chose the 
second approach for this study, using a real road network in 
Riverside, California, and creating the virtual environment 
from scratch. The network covers the stretch from the 
intersection of Chicago Avenue to the intersection of Iowa 
Avenue along Columbia Avenue. 

 
(a)                                                       (b) 

Figure 4. The Integrated Simulation based on a Real-world Ramp Merging 
Area in Riverside, CA: (a) View from Google Maps at the real-world ramp; 

(b) User interface of the Unity-SUMO co-simulation framework. 

IV. SIMULATION STUDY AND RESULTS 

In this project, we aim to study the merging interaction 
between the truck driver and the car driver. Using the MHuiL 
framework, we are able to provide immersive driving with 
mixed traffic environments and replay the merging scenario 
for a fair comparison, where the driving operations and vehicle 
states of both truck and car drivers can be captured every time 
step. 

A. Simulation Network Environment 

As previously described, a real-world traffic network is 
coded in the simulation, spanning from Chicago Avenue to 
Iowa Avenue along Columbia Avenue in Riverside, 
California. It consists of a single-lane on-ramp and a segment 
of multi-lane mainline (Google Maps view is shown in Fig 
4(a)). The integrated simulation environment is shown in Fig 
4(b), where the upper part with terrain details is the Unity 
environment, and the lower part is the corresponding SUMO 
network.  

TABLE 1. VEHICULAR PARAMETERS AND SIMULATION SETUP 

Vehicle type Car Truck 

Initial speed (adaptive to 

traffic) 

ramp: 15 m/s; mainline: 20 m/s 

Minimum inter-vehicle gap 2.5 m 5 m 

Acceleration range -5 ~ 3 m/s2 -4 ~ 1.3 m/s2 
Maximum RPM 6000 1900 

Desired speed (speed limit) 10 m/s 

Desired minimum time 

headway 
1 s 

1.5s 

Vehicle length 5 m 12 m 

Initial distance to the 

merging point 
ramp: 250 m; mainline: 440 m 

Congestion level (v/c ratio) 0.60 

Traffic demand (veh/hr) 2400 

Fuel Type Gasoline Diesel  

To generate a more realistic mixed traffic environment and 
carry out a fair evaluation, the parameters are carefully 
selected as shown in Table 1.  

B. Study Scenarios  

 We invite 7 subjects with real-world driving experience to 
participate in this MhuiL simulation framework. All 
participants involved in the study have received the necessary 
ethical approvals. To have a fair comparison, we assign the 
same person to drive the truck simulator for all runs, while the 
subjects only drive the car simulator. All subjects have the 
chance to drive both the mainline car scenarios and the ramp 
car scenarios, and for each role, they will experience non-
guided and speed-guided cases. For each scenario, every 
subject takes two runs.  

For the speed-guided case, the drivers are suggested to try 
their best to follow the speed guidance during the simulation, 
so that the ego vehicle can perform the cooperative merging 
maneuvers more smoothly compared to the scenario when no 
speed guidance is provided. The interface of speed guidance is 
shown Fig. 5.  

 
Figure 5. The interface of speed guidance.  

In the non-guided case, to make sure the truck and car 
encounter each other for creating merging conflicts, preceding 
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vehicles are set for both drivers, and the car following behavior 
will take the two drivers to the merging area nearly at a close 
time. 

At the very beginning, to make the user familiar with the 
driving simulator, each subject drives the vehicle on the 
simulator for two trial runs of non-guided and speed-guided 
cases, respectively. Note that the subject is randomly asked to 
drive either the ramp vehicle or the mainline vehicle. 
Additionally, only one subject at a time is allowed to enter the 
room of the simulator. Therefore, the subject will not have any 
prior knowledge regarding the traffic scenario. 

In this study, we explore different vehicle interactions of 
scenario combinations and conditions, considering the vehicle 
types, road types, and with/without speed guidance. As a 
result, each subject performs eight runs, as shown in Table 2. 

C. Results and Analyses 

To evaluate the capability of the MHuiL framework and to 
quantify the algorithm performance, we perform a cross-
comparison between trips with or without guidance on trucks 
and with or without guidance on cars, regarding merging 
safety, driver comfort, and environmental effects. Specifically, 
safety is evaluated by the average of minimum time-to-
collision to its preceding vehicle during the merging action, 

 𝑇𝑇𝐶𝑚𝑖𝑛(𝑠) =
∑ min⁡(𝑇𝑇𝐶𝑖)
𝑁𝑠
𝑖=0

𝑁𝑠
⁡ () 

where 𝑠 represents the investigated scenario, 𝑁𝑠 is the number 
of trips of the scenario, 𝑇𝑇𝐶𝑖  is the time-to-collision of a 
vehicle during the merging action. 

While the driver comfort is evaluated by the average of 
speed standard variance, during the merging process, 

 𝑉𝑠𝑡𝑑(𝑠) =
∑ min⁡(𝑉𝑠𝑡𝑑𝑖)
𝑁𝑠
𝑖=0

𝑁𝑠
⁡ () 

where, 𝑉𝑠𝑡𝑑  is the standard deviation of speed during the 
merging process. 

Regarding the environmental effect, we calculate the 
average fuel consumption factor using MOVESTAR, which is 
an open-source vehicle fuel and emission model based on 
USEPA MOVES [44]. 𝐹𝑢𝑒𝑙 represents the fuel consumption 
factor in the following equation: 

 𝐹𝑢𝑒𝑙(𝑠) =
∑ min⁡(𝐹𝑢𝑒𝑙𝑖)
𝑁𝑠
𝑖=0

𝑁𝑠
 () 

TABLE 2. EXPERIMENT SCENARIOS 

Scenario 

Mainline 

Vehicle Guidance 

Ramp 

Vehicle Guidance 

1a Truck* No Car No 

1b Truck Yes Car Yes 

1c Truck No Car Yes 

1d Truck Yes Car No 

2a Car No Truck No 

2b Car Yes Truck Yes 

2c Car No Truck Yes 

2d Car Yes Truck No 

* Truck simulator is always driven by the same person, and car simulator is handling by other 7 

subjects in turn. 

Table 3 illustrates the significant influence of truck 

guidance on various parameters. One noteworthy observation 

relates to fuel consumption. When the truck is operating on the 

mainline, the guided truck exhibits marginally lower fuel 

consumption values than its non-guided counterpart, with 

differences standing at -0.7% and -0.1% for the car with and 

without guidance respectively. When the truck maneuvers on 

the ramp, the guided variant exhibits a more pronounced 

reduction in fuel consumption, registering -3.4% and -2% 

respectively. 

TABLE 3. THE IMPACT OF TRUCK GUIDANCE ON THE TRUCK 

Performance Metrics 
Guided 

Truck 

Non-Guided 

Truck 
Difference 

Fuel Consumption 

Factor (g/mile) 

1b: 118.6 1c: 119.4 -0.7% 

1d: 121.3 1a: 121.4 -0.1% 

2b: 115.5 2d: 119.6 -3.4% 

2c: 122.5 2a: 125.0 -2% 

Minimum Time-to-

Collision (s) 

1b: 3.78 1c: 3.22 17.4% 

1d: 3.74 1a: 3.26 14.7% 

2b: 3.61 2d: 2.93 23.2% 

2c: 3.58 2a: 2.99 19.7% 

Speed Standard 

Deviation (m/s) 

1b: 0.58 1c: 0.79 -26.6% 

1d: 0.73  1a: 0.96 -24% 

2b: 0.64 2d: 0.92 -30.4% 

2c: 0.93 2a: 1.27 -26.8% 

Concerning safety performance, guided trucks maintain a 

larger TTC in all scenarios compared to non-guided trucks. 

The differences in TTC are 17.4% and 14.7% for scenarios 

1b/1c and 1d/1a, while for scenarios 2b/2d and 2c/2a, the gaps 

increase to 23.2% and 19.7% respectively. This underscores 

the ability of guided truck drivers to sustain larger safety gaps, 

thus mitigating potential collisions. The introduction of speed 

guidance helps mainline cars create sufficient space for ramp 

trucks, curtailing dangerous cut-ins. 

Examining speed variability, the non-guided truck 

displays higher speed standard deviation values across all 

scenarios, suggesting less consistent behavior compared to 

guided trucks. This indicates that non-guided trucks deviate 

much more significantly from the average speed, potentially 

resulting in more safety and mobility concerns. 

In summary, guided trucks outperform non-guided ones 

by allowing more time for the drivers to react before potential 

collisions, maintaining uniform speed profiles, and achieving 

better fuel efficiency. These results underline the crucial role 

of the guidance system in ensuring safer and more efficient 

truck operations. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we presented a connectivity-based truck 
ramp merging system in mixed traffic and evaluated its 
performance. We developed a MHuiL simulation framework 
that integrates SUMO traffic simulator with two game engine-
based driving simulators (in Unity) to study interaction 
between truck drivers and car drivers. We recruited 7 subjects 
in the experiment with 8 different scenarios, considering the 
vehicle type (i.e., truck vs. car), road type (i.e., mainline vs. 
on-ramp), and with/without speed guidance. The results of our 
study indicate that the use of cooperative ramp merging 
algorithm has the potential to improve safety, comfort, and fuel 
efficiency for the target trucks.  
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As a future step, we will extend the scope by collecting and 
analyzing more data samples under different traffic conditions 
and vehicle mixes (e.g., autonomous vehicles). We will also 
further evaluate the impacts of the proposed ramp merging 
system on the conflicting car and other surrounding traffic, and 
even investigate the personalized driving behaviors or 
interactions from the truck driver's perspective. 
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