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ABSTRACT In space division multiplexed elastic optical networks (SDM-EONs), parallel transmission of
lightpaths is enabled using multicore fibers (MCFs) in the network. However, the intercore crosstalk (XT)
between parallel transmissions degrades the quality of service and reduces the utilization of available capacity.
This impairment results in a tradeoff between spectrum utilization and XT accumulation. In this paper, we
discuss various approaches to solve the routing, modulation, core, and spectrum assignment (RMCSA) problem
while balancing the tradeoff, namely, Tridental Resource Assignment algorithm (TRA), and Spectrum Wastage
Avoidance-based Resource Allocation (SWARM) algorithm. We also propose offline optimizations such as
machine learning (ML)-aided threshold optimization, integer linear programming-based priority path selection
(PPS) for routing, and customized weights in the tridental coefficient (TC) to improve the performance of TRA.
The ML-aided optimizer and PPS improve the performance of “any” RMCSA algorithm. The customized weights
in TC and intelligent resource selection strategy improve TRA even further. Extensive simulation experiments
show significant reductions in bandwidth blocking probability, by several orders of magnitude for a variety of
scenarios.
Keywords: SDM-EON, intercore crosstalk, resource allocation, machine learning, TRA, SWARM

1. INTRODUCTION

The increasing demands for bandwidth driven by Internet-of-Things, 5G and 6G communications, cloud-based
services, and data center networks can be met by space division multiplexed elastic optical networks (SDM-
EONs) [1]. SDM-EONs enable parallel transmission of optical signals through multicore fibers (MCF) with
distance-adaptive multicarrier transmission. However, signal transmission through MCF is degraded by intercore
crosstalk (XT) between weakly coupled cores which is significant enough to affect the quality of transmission
(QoT), leading to dropping of connections and loss of data [1]. Routing, Modulation, Core, and Spectrum
Assignment (RMCSA) is a fundamental SDM-EON planning problem, which involves assigning lightpaths with
appropriate spectral bandwidth to traffic demands [2]. Ensuring the QoT of each prospective lightpath is within
bounds is crucial for determining the viability of an SDM-EON RMCSA solution prior to deployment.

In RMCSA problem, each combination of modulation, core and spectrum results in a distinct XT accumulation
and spectrum utilization. The higher modulations require less spectrum to carry the data but are highly XT-
sensitive, whereas lower modulations require more spectrum to carry the same data but are less sensitive to
XT. Similarly, parallel transmission over a core with more adjacent cores results in higher XT accumulation.
In addition, the selection of spectrum intensifies or decreases the XT accumulation in the dynamic environ-
ment based on the location of the spectrum. In this paper, we first present two online RMCSA algorithms,
Tridental Resource Assignment algorithm (TRA), and Spectrum Wastage Avoidance-based Resource Allocation
(SWARM) algorithm. TRA selects the best candidate modulation-core-spectrum triplet using the concept of
Tridental Coefficient (TC) [2]. SWARM on the other hand selects the best modulation-core-spectrum in a more
computationally efficient manner by balancing the spectrum-XT tradeoff. We also present two offline solutions
– mixed integer linear programming (MILP) for load balancing on paths, and machine learning (ML)-aided
optimization. Interestingly, these offline approaches guarantee improvement in the performance of any RMCSA
algorithm.

The paper is organized as follows. The problem statement is discussed in Section 2, and the proposed solutions
are presented in Section 3. Section 4 presents the simulation results and Section 5 concludes the work.

2. PROBLEM STATEMENT

In an MCF-based SDM-EON, the QoT of a connection degrades due to XT from other parallel transmissions on
adjacent cores. The level of degradation depends on the number of those parallel transmissions and the selected
modulation. More transmissions cause more degradation and higher modulations are more XT sensitive.

In RMCSA problem, the modulation, core, and spectrum are selected for assignment on the route between
source and destination nodes while satisfying the XT constraints. Every connection is established only when
three conditions are satisfied as given in Def V.1 in [3]. The conditions are: a) the spectrum must be free, i.e.,
not occupied by any other connection, b) the spectrum can accommodate the selected modulation as per its
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XT sensitivity, and c) establishment of the connection should not affect the ongoing connections based on the
XT sensitivity of their modulations. The level of XT experienced by a connection on a core depends on how
many adjacent cores have ongoing connections on overlapping spectrum. Thus, for a given modulation, the total
possible XT can be different. In addition, the XT tolerance of the modulation decides which core and spectrum
choice can be used. This is because higher modulations are more XT-sensitive whereas lower modulations can
tolerate more XT. The selection of modulation determines how much spectrum is required for a given datarate
- a higher modulation takes less spectrum. In RMCSA problem, the current selection of resources to carry
connection data, which is modulation-core-spectrum, affects the occupancy of resources in the future for other
connection requests. Thus the XT constraints to maintain the QoT of the current connection decide whether the
overlapping spectrum(s) on adjacent cores can be occupied by incoming connections and what modulations are
allowed to carry those connections. This shows that the selection of core and modulation results in the tradeoff
between XT accumulation and spectrum utilization.
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Figure 1: Tradeoff between XT tolerance and spectrum
utilization based on choice of core and modulation.

We explain the tradeoff with the help of an example.
Fig. 1 shows how modulation and core selection
affect a 7-core MCF link. There are two polar-
ization multiplexed (PM) modulations: PM-64QAM
and PM-8QAM. When PM-64QAM is selected 3
frequency slots (FSs) are required and the overlapping
spectrum on none of the adjacent cores is allowed to
be occupied due to its high XT sensitivity whereas
when PM-8QAM is selected the spectrum require-
ment is 6 FSs and the overlapping spectrum on four
of the adjacent cores is allowed to be occupied [2],
[4]. Here, the overlapping spectrum on adjacent cores
that is not allowed to be occupied is denoted as
affected/not available. As illustrated in Fig. 1a, when
PM-64QAM on core 7 is assigned, the overlapping

spectrum on any adjacent core cannot be filled as long as this connection remains in the network. Thus, the total
spectrum occupied is 3×7=21 FSs. Similarly, In Fig. 1b, PM-8QAM on core 7 requires 18 FSs (=6×3). Thus,
PM-8QAM is a better choice than PM-64QAM in this scenario despite its lower spectral efficiency. However,
instead of core 7, if core 1 is selected for PM-64QAM, the required spectrum is now 12 FSs (=3×4), as shown
in Fig. 1c. Thus the selection of modulation-core pair trades spectrum usage for lower XT levels and vice versa.

In this paper, we present the two RMCSA algorithms, TRA and SWARM, which balance this tradeoff in
different ways and assign resources to the connections. TRA calculates a tridental coefficient (TC) to each
combination of modulation-core-spectrum and then chooses the one with the lowest TC. The SWARM algorithm
quantifies the tradeoff and then tries to reduce it. Finally, we present two offline approaches to improve the
performance of any RMCSA algorithm including TRA and SWARM. We show a better routing by assigning
weights to the paths to achieve load balancing, and present a machine learning-aided optimization approach to
balance the tradeoff. We also present a third offline approach to optimize the weights of the TC.

3. PROPOSED SOLUTIONS
We first present the online RMCSA algorithms, TRA and SWARM, to select resources. We then present
the offline optimizations. The common aim in the use of these tools is to balance the tradeoff between XT
accumulation and spectrum utilization.

3.1 Dynamic/Online Methods
The RMCSA algorithm chooses route, modulation, core and spectrum for the incoming connection while making
sure that the XT constraints are met to maintain the QoT of the connection. TRA provides a heuristic solution
to solve the RMCSA problem with the help of TC. The word ”Tridental” refers to three parameters - capacity
loss, spectrum utilization, and location of the spectrum - which are normalized and added up to get the TC [2],
[3]. Capacity loss [3] of a candidate resource quantifies the decrease in the network’s capacity to accommodate
future connections because of the assignment of the candidate resource to the incoming connection. We also
found that TRA is versatile in capturing the network information to make a decision and so it also works well
for translucent networks [2]. TRA uses an offline component to choose the best route called path priority based
selection (PPS) which is explained in Section 3.2.

In addition to TRA, we present the SWARM algorithm. TRA explores all the resource choices to select the
best resource choice. This process is computationally intensive and time consuming. SWARM mitigates this in
two ways. First, it reduces the number of choices by grouping cores based on the number of the adjacent cores
and using the first fit policy in the selection of spectrum. Second, it uses SWARM coefficient instead of TC to
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calculate the quantified tradeoff and then makes the decision based on SWARM coefficient. Similar to TRA, it
balances the tradeoff and outperforms other algorithms while being faster than TRA.

3.2 Static/Offline Methods
The RMCSA algorithms run online, i.e., when connection requests arrive to the network. We present three offline
approaches two of which help improve the performance of any online RMCSA algorithm and the last helps
improve the performance of TRA. The first approach is to calculate path priorities for multiple candidate paths
for each source-destination (s-d) pair or route. These priorities are then used for online resource assignment for
the MCSA part. The path priorities are determined based on path probabilities that optimize the link load on the
precomputed K-shortest paths (KSPs) for each s-d pair. A Mixed Integer Linear Programming (MILP) problem
is solved offline to determine the path probabilities [2], [3]. The KSPs are prioritized based on higher to lower
path probabilities, and this approach is referred to as priority-based path selection (PPS). The objective of the
MILP is to minimize the sum of the average link load and the maximum link load.

The second approach is to use machine learning (ML) to get the litcore thresholds to control the selection
of modulation formats which in turn improves the tradeoff balancing [4], [5], [6]. Here, litcore refers to an
adjacent core on which the overlapping spectrum is occupied, and litcore threshold is the maximum number
of adjacent cores on which the spectrum can be occupied. The ML model learns the underlying relationship
between network features and corresponding output labels for better selection of core-modulation-spectrum. Here
the features are set of litcore threshold for each modulation and the label is corresponding bandwidth blocking.
This approach differs from others as it has faster convergence, can potentially improve the performance of any
RMCSA algorithm for any network model in MCF-based SDM-EONs and can improve the execution time of
decision making of any RMCSA algorithm.

The final approach is to optimize the weights in TC. The TC as shown in [2] is the sum of three terms -
capacity loss [3], spectrum utilization, and location of the spectrum [2]. We used two weights α and β such that
capacity loss is weighted by α, spectrum utilization by β and the location of the spectrum by (1 - α - β) and
set the range as 0≤ α, β, (1 - α - β) ≤ 1. Adjusting these weights changes the performance of TRA. We use a
two-step process where we first execute TRA for different values of α and β for only 10% of the connection
requests with extremely high load and finally get the set of α and β which offers the lowest bandwidth blocking.

4. SIMULATION RESULTS
We now present some simulation results for TRA and SWARM along with various baseline RMCSAs, and
also show the performance improvement due to the offline methods for a variety of scenarios. We use generic
German (DT) topology [3]. Each link has one MCF fiber with 7 cores deployed in both directions and each
core has 4 THz of C-band spectrum with a slice width of 12.5 GHz, i.e., 320 frequency slots (S = 320).
Connections arrive according to a Poisson process with exponential holding times of mean one time unit. In
every iteration, we simulate 110,000 requests and use the first 10,000 connections to let the network reach
steady state. 95% confidence intervals are obtained for each data point. The datarates are uniformly distributed
between 40 Gbps to 400 Gbps with the granularity of 40 Gbps. 3 SPs are used for each s-d pair. We assume five
modulations - PM-QPSK, PM-8QAM, PM-16QAM, PM-32QAM, and PM-64QAM. We consider average XT
between two adjacent cores after a single span of propagation, denoted as XTµ, of -40 dB. Transmission reach
is the maximum distance which can be traversed with the selected modulation and the status of the overlapping
spectrum on the adjacent cores. The transmission reach model corresponding to the XTµ when transceiver is
operating at 28 GBaud and span length is 50 km is used from [7] to get the litcore values.

We compare the performance of the proposed algorithms with the baseline XT-aware first fit algorithm (xtFF) ,
XT-aware first fit with exhaustive search over modulation algorithm (xtFM) and an algorithm from the literature
precise XT (P-XT) [8]. xtFM chooses highest modulation (i.e., most spectrally efficient) for which the core and
spectrum are available in first-fit fashion. P-XT does a XT-aware spectrum assignment with exhaustive search
on all the routes. The spectrum available on the lowest index among the ones available on all the path-core
pairs is selected. We also compare the performance of RMCSAs when offline optimizations are used. TRA uses
PPS by default, pSWARM uses PPS, while rest of the algorithms use KSP. TRA-KSP is TRA with KSP. The
RMCSA algorithms that are optimized using ML are denoted with ’-ML’. TRA with optimized TC weights is
denoted as oTRA.

Bandwidth blocking probability (BBP) performance is shown in Fig.2 and the corresponding distribution of
modulations used is shown in Fig. 3. The optimized weights in oTRA are α=0.95 and β=0.05. It is clear that
TRA and SWARM along with their variants outperform all the baseline algorithms. oTRA performs better than
TRA while SWARM-ML and pSWARM-ML perform than all except TRA. TRA performs better than TRA-KSP
which shows that the path priorities in PPS that are calculated offline help in load balancing, which in turn help
TRA to perform even better. Interestingly, the ML-optimized variants of the RMCSAs perform better than their
original versions indicating that ML helps with a judicious selection of modulations. From Fig.3, we can find
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that the better-performing RMCSAs have tend to use both higher and lower modulations. For all the algorithms
except pSWARM, xtFF, TRA and its variants chooses the highest modulation and the first (i.e., lowest index)
available slice window for assignment.
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The improvement in performance of P-XT with ML-aided optimization
is larger than that of SWARM and pSWARM. The improvement provided
by PPS in pSWARM is significant and is comparable to the performance
improvement that ML-aided optimization provides to other RMCSAs.
However, SWARM and pSWARM still show higher utilization of higher
modulations compared to other RMCSAs, even with ML-aided optimiza-
tion. This implies that SWARM and pSWARM are able to effectively
utilize higher modulations in the presence of longer path lengths and
litcore values, providing improved performance. The idea behind the
selection of both higher and lower modulations is to help balance the
tradeoff between XT sensitivity, which in turn results in various levels
of XT accumulations, and spectrum utilization.

We conclude that TRA and SWARM along with their variants succeed
in balancing this tradeoff than other RMCSA algorithms. Furthermore,
the three offline optimizations are found to improve all algorithms’
performance. The improvement in performance provided by PPS in
pSWARM is significant, comparable to the gains obtained from ML-
aided optimization in SWARM. The utilization of modulations is slightly
increased with ML-aided optimization, indicating better spectrum ef-
ficiency, but SWARM and pSWARM still show higher utilization of
higher modulations, implying effective utilization of resources in the
presence of longer path lengths and litcore values. Finally, the utilization
of various modulations show that with careful selection of modulations,
the performance of the RMCSA can be improved.

5. CONCLUSIONS
We address the route, modulation, core, and spectrum allocation (RM-
CSA) problem in MCF-based SDM-EONs, with a focus on inter-core
crosstalk. We present two RMCSA algorithms, Tridental Resource Al-
location (TRA) and Spectrum Wastage Avoided Resource Management

(SWARM). Three offline optimization tools, two of which are generic and can improve any RMCSA algorithm,
and one to optimize the performance of TRA are also presented. Extensive simulations show that these algorithms
outperform existing algorithms in the literature. The ML-aided optimization helps in selecting optimal thresholds
on the number of occupied adjacent cores, thus effectively controlling the selection of modulations. Overall,
our work contributes to the advancement of online RMCSA algorithms and showcases the potential of offline
optimizations in improving the performance of online RMCSA algorithms.
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