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Abstract—Object detection plays a pivotal in autonomous
driving by enabling the vehicles to perceive and comprehend
their environment, thereby making informed decisions for safe
navigation. Camera data provides rich visual context and object
recognition, while LIDAR data offers precise distance measure-
ments and 3D mapping. Multi-modal object detection models
are gaining prominence in incorporating these data types, which
is essential for the comprehensive perception and situational
awareness needed in autonomous vehicles. Although graphics
processing units (GPUs) and field-programmable gate arrays
(FPGAs) are promising hardware options for this application,
the complex knowledge required to efficiently adapt and optimize
multi-modal detection models for FPGAs presents a significant
barrier to their utilization on this versatile and efficient platform.
In this work, we evaluate the performance of camera and LiDAR-
based detection models on GPU and FPGA hardware, aiming to
provide a specialized understanding for translating multi-modal
detection models to suit the unique architecture of heterogeneous
hardware platforms in autonomous driving systems. We focus on
critical metrics from both system and model performance aspects.
Based on our quantitative implications, we propose foundational
insights and guidance for the design of camera and LiDAR-based
multi-modal detection models on diverse hardware platforms.

Index Terms—autonomous driving, multi-modality, heteroge-
neous hardware, object detection, GPU, FPGA

I. INTRODUCTION

As autonomous driving technology continues to evolve, the
complexity of its perception systems is steadily increasing.
As a fundamental and critical task in autonomous driving,
object detection has seen rapid progress. Initially focusing on
2D object detection, the applications of detection models have
now expanded to 3D object detection. This evolution has not
only enhanced the capabilities of autonomous driving but also
broadened their potential applications.

In object detection for autonomous driving, models are typ-
ically categorized based on the modality of input data into two
types: camera-based and LiDAR-based models. Camera-based
models, primarily using multi-view images as input, estimate
depth information through specific algorithms, combining it
with image features to achieve 3D object detection. These
models are rich in image information but may need more
accuracy in depth estimation. On the other hand, LiDAR-based
models address these depth estimation shortcomings, as point
clouds inherently contain depth information. These models
extract point cloud features to facilitate 3D object detection
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by employing specialized feature extraction networks for point
clouds. However, the sparsity of object feature information in
point clouds can impact the performance of these models.

To provide a more comprehensive and robust understand-
ing of the environment, multi-modal object detection models
have been proposed to integrate the rich visual context from
cameras and the precise depth information from LiDAR.
Multi-modal models show significant advantages over single-
modal models in performance, efficiency, and energy con-
sumption [1]. To integrate camera and LiDAR data for multi-
modal models, there are three fusion methods that can be
classified into early, mid-term, and late fusion. Early fusion,
also known as data fusion (Figure la), refers to the fusion
of data from different sensors in the early stage of a multi-
modal model to facilitate subsequent feature extraction and
task completion. In mid-term fusion, also known as feature
fusion (Figure 1b), data from different sensors are processed
by different encoders to form features, which are then fused to
complete various tasks. Late fusion, also known as decision-
level fusion (Figure lc), is to synthesize these decisions
through a fusion mechanism after different task networks
obtain results or make decisions.

In the perception systems of autonomous driving, mid-term
fusion methods, particularly the construction of Bird’s Eye
View (BEV) feature maps, are widely adopted. The construc-
tion of BEV feature maps, which is a typical example of
mid-term or feature fusion, is the inspiration for this work. In
this method, features from LiDAR and cameras are combined
into a BEV feature map for enhanced object detection. Before
integration, each modality undergoes an independent feature
extraction process. To understand and analyze these multi-
modal models with improved accuracy and granularity, we
divide the processing into camera and LiDAR streams. Further,
we deconstruct and evaluate two specific object detection
models, one camera-based and the other LiDAR-based, to
investigate the various modules within these two streams.

Graphics processing units (GPUs) are currently the domi-
nant hardware used to process object detection for autonomous
driving due to their high parallel processing power. Mean-
while, the demands for high performance, low latency, re-
source utilization, and low energy consumption in autonomous
driving make field-programmable gate arrays (FPGAs) flexible
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Fig. 1: Three fusion methods for camera and LiDAR data.

and efficient alternatives. However, the specialized and com-
plex nature of FPGA technology presents a significant barrier
to the utilization of FPGAs in autonomous driving for the
following reasons. Firstly, providing tailored design to accel-
erate specific tasks on FPGAs requires in-depth knowledge of
hardware description languages, which is a significant shift
from the high-level programming languages used in AI model
(such as detection models) development. Secondly, optimizing
an Al model on FPGAs requires a deep understanding of both
the model’s computational needs and the FPGA’s architecture.
Thirdly, Al models are typically resource-intensive, while
FPGAs have limited resources (e.g., logic blocks, memory). It
is challenging to plan and utilize the limited resources for Al
tasks carefully. Last but not least, the development tools and
community support for FPGA applications are not as well as
other hardware platforms like GPUs. This makes the utilization
of FPGA in autonomous driving more complex and less
accessible to those without specialized training. To overcome
this barrier and achieve the optimal collaboration between
diverse hardware platforms, it is essential to understand the
performance characteristics of different modules of detection
models on various platforms.

In this work, we deeply explore two perception models:
camera-based BEVDet [2] and LiDAR-based PointPillars [3].
We focus on evaluating the performance of key components
of these models, including image encoder, BEV encoder with
head, LiDAR encoder, and detection head, across both GPU
and FPGA platforms. Specifically, we focus on resource uti-
lization, latency, power, and energy consumption to investigate
the unique advantages of each platform and ensure optimal
hardware allocation. The goal is to understand the strengths
of two promising autonomous driving hardware, guide the
integration of software and hardware in multi-modal object
detection models, and enhance the performance and efficiency

of autonomous driving systems.
The main contributions of this work can be summarized as
the following three points:

o We analyze prevalent detection models and deconstruct
them into several key modules as the primary focus of
our evaluation across platforms. Specifically, we identify
an image encoder and a BEV encoder with a detection
head from the camera-based model. We identify a LiDAR
encoder and a detection head from the LiDAR-based
model. Such deconstruction can be applied to general
detection models.

« We perform a comprehensive evaluation of the identified
modules from detection models on both GPU and FPGA
platforms, aiming to understand the strengths and limi-
tations of each hardware. This analysis covers a range
of system-specific metrics, including resource utilization,
latency, power, and energy consumption.

« We present insights into the efficiency of different hard-
ware platforms in processing multi-modality data for de-
tection models in autonomous driving systems. Addition-
ally, we discuss the potential of software and hardware
co-design and explore the implications for the devel-
opment of future heterogenous multi-modal perception
models.

II. RELATED WORK

The perception system is an essential part of autonomous
driving. It determines whether the autonomous vehicle fully
understands the surrounding environment and can support
subsequent system modules. Object detection is a critical task
of the perception system. With the rise of machine learning,
more and more object detection networks based on deep neural
networks (DNN) are constantly being proposed.



A. Object Detection Models

R-CNN [4], YOLO [5], and CenterNet [6], a series of
single-modal models that take images as input, mainly focus-
ing on solving 2D object detection tasks. Image encoders exist
in these networks to obtain rich image features, but different
networks have different processing methods. For example, R-
CNN utilizes the Region Proposal Network (RPN) to generate
region proposals and extract features for classification and
regression. YOLO completes object classification and local-
ization in one step, using predefined anchor boxes to generate
bounding boxes. CenterNet uses keypoint detection to locate
an object’s center point and predict the object’s size and offset.

More complex 3D object detection models can be divided
into three types based on input data, namely based on LiDAR
point cloud, based on multi-view image, and the fusion of
the two, which is a multi-modal model. Models such as
PointPillars [3] and CenterPoint [7] use LiDAR as a sensor
to solve 3D object detection. Since the point cloud can
provide depth information, this type of network can obtain
point cloud features through the LiDAR backbone and then
locate and classify the object. However, due to the sparsity of
point cloud features, rich image information is often lacking.
The model that uses multi-view images as input estimates
depth information through multiple visions of the vehicle
itself. A standard method is LSS [8], which estimates depth
information for image features and fuses depth features and
image features to build BEV features. BEVDet [2] uses such
a method, but in the process of building BEV features, it
optimizes the generation of BEV feature maps to improve
efficiency. Although the model of multi-view images can
estimate depth information, there is often geometric loss. The
multi-modal perception model uses both cameras and LiDAR
as sensors, which seamlessly integrates these two different data
sources: LiDAR for depth and spatial information and RGB
images for texture, color, and finer object details. This fusion
mode ensures robust and comprehensive 3D object detection.
BEVFusion [1] is a typical multi-modal perception model.
The network takes multi-view images and LiDAR point cloud
as input and sets different encoders for these two types of
data. In the camera stream, BEVFusion uses a processing
method similar to BEVDet for image feature extraction, depth
information estimation, and BEV feature transformer. For
the LiDAR stream, BEVFusion mainly extracts the LiDAR
feature from the LiDAR encoder and flattens it so that it can
be converted into a BEV feature and fused with the BEV
feature of the camera. Moreover, BEVFusion can not only
support 3D object detection but also solve BEV Segmentation.
Investigating the architecture implications of these networks
provides insights into the model deconstruction and analysis
of different modules.

B. Heterogeneous Hardware Design

The collaboration of heterogeneous hardware platforms is a
trend that leverages the unique advantages of each platform
to alleviate the limitations inherent in relying on a single
type of hardware to perform complex computing tasks. For

example, GPU is good at parallel processing of a large number
of basic operations based on deep learning to accelerate
calculations. Still, it comes with high energy consumption and
a lack of flexibility. FPGAs offer flexibility and low energy
consumption for data processing but do not perform as well
as GPUs at low latency. The integration of FPGA and GPU
in autonomous driving systems has attracted attention due to
their complementary advantages. There are many examples
of heterogeneous hardware platform computation. Murad Qa-
saimeh et al. [9] examined the energy efficiency of central
processing units (CPUs), GPUs, and FPGAs in vision kernel
implementations and explored the performance of hardware
accelerators for embedded vision applications, specifically
comparing multi-core CPUs, GPUs, and FPGA performance.
Lin et al. [10] tried different combinations of CPUs, GPUs,
FPGAs, and application-specific integrated circuits (ASICs) to
perform tasks such as autonomous driving detection, tracking,
and localization to observe the performance of different com-
binations in terms of energy consumption and latency. Hao
et al. [11] utilized FPGA as a backup system, enabling it to
temporarily assume control and manage various tasks when the
primary computing platforms for autonomous driving, such
as GPU and CPU, fail, thereby prevent potential hazardous
incidents from happening. Another study [12] proposed a
hardware/software co-design architecture for autonomous driv-
ing systems, where different hardware platforms are respon-
sible for different task modules within the entire autonomous
driving system. However, further details were not elaborated
upon. These researches on heterogeneous platform computing
offer valuable insights that inform our subsequent analysis and
deployment of hardware platforms.

III. DESIGN CONSTRAINTS

Deconstructing the neural network models into modules
for analysis in heterogeneous platforms yields multiple de-
sign constraints. In particular, constraints(e.g., latency, power,
thermal) must be dealt with in the autonomous driving in-
dustry to get an accurate and safe driving experience. These
constraints can significantly influence the deployed solution’s
performance, efficiency, and overall feasibility.

A. Latency constraint

Latency is critical in designing and deploying deep learning
models, especially on heterogeneous computing platforms.
Real-time applications such as autonomous driving and aug-
mented reality systems demand low-latency implementations.
At the inference level, latency depends on the model’s com-
plexity and the computational capacity of the hardware. Higher
degrees of complexity in neural networks with deep layers gen-
erally correspond to high latency experienced during inference
tasks. Furthermore, there is potential for high latency in het-
erogeneous platforms where data transmission occurs between
different types of processors (such as GPU or FPGA) [13].
Moreover, fetching data from memory also contributes to
latency, especially if the data is not readily available in the
cache or RAM [14]. In the context of BEV perception, the



swift and precise identification of objects, such as vehicles
and pedestrians, from sensor inputs like LiDAR and cameras
is crucial for safe autonomous navigation with low latency.
So, It is essential to consider the latency efficiency during
the deconstruction of the models and analyze the latency of
respective modules in respective platforms.

B. Power constraint

Power consumption is another significant constraint when
deploying deep learning models on heterogeneous comput-
ing platforms. High power consumption has a broader en-
vironmental impact, making energy efficiency a priority for
sustainable computing practices. Generally, GPUs consume
more power than FPGAs, especially in applications where the
computational workload can be optimized to take benefit of the
FPGA'’s reconfigurable architecture. The required power gener-
ally increased due to frequent data sharing between processor
and memory [14]. Additionally, higher power consumption in
GPUs translates to more heat generation, which causes more
thermal issues compared to FPGA. These thermal issues can
have overall effects on the autonomous driving experience.
In a nutshell, offloading the modules into FPGA can reduce
significant power usage. So, power is a significant constraint
but a complex procedure to ensure minimum power consump-
tion with maximum accuracy during the deconstruction of the
modules in heterogeneous platforms.

C. Memory constraint

Each processor type has its memory limitations. For in-
stance, FPGAs typically have less onboard memory com-
pared to GPUs. The memory affects how large a model is
or how much data can be processed simultaneously. The
different memory sizes in different hardware are the biggest
challenge to fitting the models without losing accuracy. For
example, FPGAs typically have limited on-chip memory (such
as Block RAM or BRAM). This memory is fast and efficient
but needs to be more significant to store large models or
datasets. So, maximizing the use of on-chip memory for
critical data and using memory swapping can significantly
enhance performance. There is some ongoing research focused
on memory issues during the heterogeneous platforms. One of
the recent studies by Miao and Lin [15] proposed a framework
where they utilized memory-swapping techniques to avoid
memory overhead issues. In the BEV perception, datasets like
nuScenes, Kitti, and Waymo need memory to process in the
heterogeneous platforms. Power consumption is also rational,
along with the excess use of memory. So, it is challenging to
design the hardware to optimize memory usage, especially in
the FPGA, where memory is limited.

D. Development tools constraint

Software and tooling constraints in deploying deep learning
models on heterogeneous platforms surround various issues,
from development tool availability and compatibility to frame-
work and library support challenges across different proces-
sors. Tools are needed to keep the diverse architectures in
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a heterogeneous system, including compilers and develop-
ment environments. The lack of a unified IDE that supports
all components of a heterogeneous system can complicate
the development process. Developers need multiple tools for
different system parts, increasing complexity. For instance,
we need to use VITIS-AI 3.0 [16] as a software platform
to perform model compression and xmodel generation for
FPGA deployment, which requires multiple platforms and
knowledge. Additionally, different FPGA providers have dif-
ferent hardware platform software (e.g., Quartus for Intel-
designed FPGA [17], whereas Vivado for AMD Xilinx-
designed FPGA [18]). Profiling tools must provide insights
into the performance of each system component, but there are
voids in FPGA compared to GPU. The need for sophisticated
debugging and profiling tools for specific processors, like
FPGAs, can restrict development. For example, customizing
the modules individually in the complex models in devices
like FPGA requires knowledge of both hardware and software
for each provider. So, knowledge about software and hardware
tools for individual providers usually restricts the successful
analysis of the complex models into FPGA.

IV. MODEL DECONSTRUCTION AND DEPLOYMENT

In this section, we first deconstruct the object detection
models into discrete modules and then systematically allocate
these modules across diverse hardware platforms, focusing on
FPGA and GPU in this work.

A. Model Deconstruction

In the construction of multi-modal object detection net-
works, we refer to the typical model BEVFusion to obtain
the architecture in Figure 3. This architecture acquires and
processes data from two sensors, a camera and LiDAR. Cam-
era features and LiDAR features are fused in the BEV space
to obtain BEV features, which are then connected to different
task head modules to complete the perception task. We analyze
the execution time of the image module, LiDAR module,
fusion module, and detection head through the evaluation of
BEVFusion. The evaluation results in Figure 2 show that the
computational bottleneck of the multi-modal model is actually
the image module, LiDAR module, and detection head, while



Multimodality Features Encoders Task-Specific Heads

Camera
Encoder

Image Camera BEV
Features Features

nodules A

Fused BEV
Features

Camera = ‘

3D object detection
Fusion
modules

LIDAR modules ’

BEV segmentation

Fig. 3: The architecture of BEVFusion [1].

the impact of fusion modules is minimal. Overall, we can
divide the model into two processing streams: the camera
and LiDAR streams. This division makes our analysis and
evaluation more specific.

In order to analyze the camera stream, we select the
BEVDet model for discussion. It is similar to the BEVFusion
model in processing the camera stream. When processing RGB
image data, the pre-processing link is indispensable. Typical
pre-processing steps, such as image normalization, play a
key role in improving the model’s training efficiency, per-
formance, and stability. Regarding feature extraction, popular
CNN architectures include ResNet [19], EfficientNet [20] ,
and VGG16 [21], while Transformer-based models such as
ViT [22] and Swin-transformer [23] are also receiving increas-
ing attention. BEVDet emphasizes the feature extraction capa-
bilities of ResNet and Swin-Transformer models. ResNet [19]
has been used as the backbone to meet the deployment
requirements of FPGA. Additionally, FPN [24] as the neck
is crucial in effectively enhancing the image features. In the
conversion of camera features to BEV features, it is essential to
obtain the depth information. Both BEVDet and BEVFusion
use the LSS [8] method to convert depth prediction from a
regression problem to a classification problem and predict the
depth of each image feature. It is noticeable that these two
models have optimized the efficiency of LSS by introducing
the bevpooling technology and significantly accelerating the
speed of depth prediction. When generating BEV features,
image and depth features are fused and mapped onto the BEV
feature map using both intrinsic and extrinsic of the camera.

The architecture of BEVDet, as shown in Figure 4, divides
the entire model into two spaces, which are image space and
BEV space. Image-space includes the image backbone, neck,
and view transformer; BEV space includes the BEV encoder
and detection head. According to this architecture, in order to
be consistent with the model structure of FPGA, we use the
image backbone and neck as one module and the remaining
view transformer, BEV encoder, and head as another module.
When working with LiDAR streams, PointNet [25], Voxel-
Net [26], and PointPillars [3] are the most commonly used
networks to extract point cloud features. This study focuses on
the PointPillars network as it is specifically optimized for 3D
object detection, and its architecture is represented in Figure 5.
We adopt the PointPillars configuration in openmmlab [27],
which uses hard VFE and PointPillarsScatter as voxel encoders,
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with SECOND [28] as the backbone. FPN is also used as the
neck structure to enhance features. It uses a 3D object detec-
tion method based on two-stage anchors for detection heads.
Since point cloud data has 3D information, it does not require
depth prediction processing, thus making the processing of
LiDAR data streams more straightforward. We deconstruct
these components into two main modules: the LiDAR encoder
module integrating the pillar or voxel encoder, backbone, and
neck, and the subsequent detection head module. This helps
us better understand and analyze LiDAR stream processing in
multi-modal detection networks.

In this study, we explore BEVFusion [1], a typical multi-
modal perception model in autonomous driving, and divide
the camera flow and LiDAR flow according to its architecture.
Next, for these two data streams, we select two representative
models, BEVDet and PointPillars, as research objects to evalu-
ate the multi-modal model’s critical modules in detail. Through
this analysis, we identify four core modules as the focus of
evaluation: image encoder, BEV encoder with detection head,
LiDAR encoder, and LiDAR-based detection head. These
modules are comprehensively evaluated on heterogeneous
hardware platforms to better understand their performance and
optimization space in multi-modal perception systems.

B. Deployment of Deconstruction Modules

1) GPU Implementation: For the GPU implementation, we
leverage optimized machine-learning software libraries. We
implement BEVDet and PointPillars, both using the Pytorch
library. In this implementation, we only focus on pre-trained
models provided by BEVDet official GitHub [2] for BEVDet
and use pre-trained models from openmmlab detection li-
brary [27] for our inference tasks. We deconstruct all the
modules for both models and calculate the power usage
using NVML [29] libraries. Additionally, we calculate each
module’s latency and memory usage for the nuScenes mini
dataset [30], which is elaborately discussed in the section V.

2) FPGA Implementation: Implementing a neural network
on an FPGA involves steps and considerations to ensure



TABLE I: Specification of accelerating platforms.

Specification

Zynq UltraScale+ MPSoC ZCU104

Nvidia GeForce RTX 3080

CPU/GPU Cores

Quad-core ARM Cortex-A53
& Dual-core ARM Cortex-R5

8,704 CUDA Cores

Frequency

Cortex-A53: Up to 1.5 GHz
Cortex-R5: Up to 600 MHz

1.44 GHz Base,
1.71 GHz Boost Clock

Memory

4 GB DDR4 SDRAM

10 GB GDDR6X

Memory Bandwidth

Depends on DDR4
configuration tens of GB/s

760 GB/s

FPGA Fabric (if any)

Integrated FPGA fabric for
custom hardware acceleration

Not applicable

Additional Features

Flexible 1/0, RF-ADC/DAC
support, FPGA programmability

Ray Tracing Cores, Tensor
Cores, DLSS, PClIe 4.0

efficient and effective deployment. Neural networks typically
use floating-point arithmetic, which is resource-intensive on
FPGAs. Quantization involves converting these floating-point
numbers into fixed-point numbers, which are more FPGA-
friendly. We utilize the Vitis-Al 3.0 [16] to apply the model
compression and set up the environment. We use the pre-
built data processing units (DPU) image downloaded from
the official Xilnix website [31] and Petalinux version 22.2 as
the operating system in FPGA. As our goal is to analyze the
module’s performance in heterogeneous platforms, we divide
both models into two subgraphs to document the experiment
result in the FPGA. Subgraphs in FPGA deployment mean
deconstructing specific modules to run on the DPU. To import
the algorithmic components to FPGA, we focus on the image
encoder and BEV Encoder with detection head modules for
BEVDet, LiDAR encoder, and LiDAR-based detection head
for PointPillars. As a result, in our FPGA deployment, we
need to divide the graph into two subgraphs, where each
subgraph utilizes one DPU to perform the inference task. We
transfer the compressed model into FPGA and use the existing
hardware design provided by Xilinx to deploy the model. The
deployment Later, we utilize the Vaitrace library [32] from
Vitis-Al to document the results in section V. To calculate the
power consumption, we impose a delay of 10ms at the start of
every module so that FPGA can cool down to the idle state.

V. EVALUATION

In this section, we delve into the implementation specifics
and provide an extensive result analysis of the four core
modules of BEVDet and PointPillars, focusing on hard-
ware analysis. To investigate the architectural implications of
BEVDet and PointPillars, the result analysis section considers
resource utilization, latency, and power/energy consumption to
substantiate the excellent trade-off between FPGA and GPU.

A. Implementation

In this evaluation, we use two heterogeneous hardware plat-
forms: Nvidia RTX 3080 GPU and Xilinx Zynq UltraScale+
MPSoC ZCU104 FPGA. Their detailed configurations are
shown in Table I. Although the GPU runs cooperatively with
the CPU, the CPU only undertakes the work of reading and
writing data and does not directly participate in the runtime of
the four modules, so the performance of the CPU is not con-
sidered in this study. We select nuScenes [30] and the KITTI

dataset [33], famous datasets for multi-modal perception tasks
in autonomous driving. The nuScenes dataset has 1000 scenes
and can provide image data from 6 different perspectives
and corresponding LiDAR and Radar data. We use the mini
nuScenes dataset, which contains only one percent of the
scenes of the full dataset but is sufficient for our evaluation.
The KITTI dataset provides front-view images consisting of
7481 samples, split into 7481 training data and 7518 test
images, as well as the corresponding point clouds. We use
3769 samples from the test samples to evaluate the model. The
original model is deployed on the GPU, but only the quantized
model can be deployed on FPGA due to resource limitations.
In order to achieve fair evaluation, the same quantized (INTS)
model is also deployed on GPU.

TABLE II: Performance metrics for BEVDet and PointPillars
models on GPU With and Without Quantization. The table
presents the mAP and NDS metrics for BEVDet on the
nuScenes dataset, along with mAP (BEV) and mAP (3D) for
PointPillars on the KITTI dataset. Performance degradation is
observed for both models when quantization is applied.

BEVDet PointPillars
mAP | NDS | mAP (BEV) | mAP (3D)
GPL.I . 0.34 0.34 70.90 65.25
(w/o quantization)
GPI.J . 0.31 0.31 66.58 57.94
(w/ quantization)

B. Results Analysis

We evaluate critical metrics on GPU and FPGA, including
resource utilization, latency, and power/energy consumption
of the four modules of the two 3D object detection models
(BEVDet and PointPillars). Although our primary interest lies
in the efficiency of these multi-modal perception models, we
measure the mean Average Precision (mAP) and nuScenes
detection score (NDS) for BEVDet on nuScenes datasets and
mAP for PointPillars on KITTI datasets. Table II illustrates
the accuracy for quantized and without quantized models for
both models on GPU. The mAP and NDS of the quantized
BEVDet on the nuScenes dataset have both decreased, and
the mAP of the quantized PointPillars on the KITTI dataset
has also significantly decreased on BEV detection and 3D
detection. Later, we deploy the quantized model to analyze
latency, resource utilization, and power usage on FPGA.
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1) Resource Utilization: For GPUs, we measure how much
memory each module of BEVDet and PointPillars uses. The
GPU we use has a max of 10 GB (10240 MB) memory (see
details in Table I) and is utilized to calculate the memory usage
percentage for each of the four modules. In BEVDet on GPU,
the image encoder utilizes 192.19 MB memory, and the BEV
Encoder with detection head requires 204.67 MB memory to
execute the operations. The LiDAR encoder is less memory-
intensive, using 18.75 MB, with the LiDAR-based detection
head needing 186.41 MB memory.

However, to calculate the FPGA performance, we document
the resource utilization parameters such as Look-Up Tables
(LUT), Digital Signal Processors (DSP), Registers, and Ultra
RAM (URAM) for BEVDet and PointPillars. Both models
utilize approximately 93% of the available resources for the
Xilinx ultrascale+ ZCU104 mpsoc device (details in Table III).
Table III also illustrates performance and memory bandwidth
consumption for BEVDet and PointPillars. As we set out
the DPU core for FPGA board sets to 2, we call it DPU1
and DPU2. The image encoder runs on DPUI1, and the BEV
encoder with detection head runs on DPU2 for BEVDet,
whereas the LiDAR encoder runs on DPU1, and the LiDAR-
based detection head runs on DPU2 in PointPillars. The reason
for consuming high memory bandwidth in BEVDet is that the
image encoder often requires substantial memory bandwidth
due to the need to transfer immense amounts of image data and
intermediate results between memory and the processing units.
From PointPillar’s point of view, LiDAR data processing is
inherently computation-heavy. The encoding process typically
involves transforming sparse 3D point clouds into a structured
2D grid, which is dense and demands significant memory
bandwidth to manage the high volume of data. However, the
Giga operations per second (GOP/s) measure indicates the
computational operations performed per second. The higher
GOP/s of DPU2 in both models indicates that the detection
head tasks are computationally intensive, involving more arith-
metic operations (e.g., multiplications, additions) within the
neural network layers than the encoding tasks on DPUI.

2) Latency: In evaluating latency on GPUs, we set timers
before and after different modules of BEVDet and PointPillars
to complete the measurement. However, for the quantized
BEVDet, because the timer cannot be set inside the TensorRT
engine, we use the Nvidia Nsight Systems [34] to analyze
the latency of the image encoder and BEV encoder with
detection head modules. For latency assessment on FPGAs, we
analyze two corresponding subgraphs representing these two
modules to determine their latencies. The results, as shown
in Figure 6, indicate that the GPU achieves lower latency
across all modules, which aligns with expectations given the
superior computational power of the RTX 3080 compared to
the ZCU104 device. Specifically, the image encoder on the
GPU is accelerated by about 1.3 times compared to the FPGA,
and the latency of the BEV encoder with detection head on
the GPU is accelerated by about 20.6 times. Furthermore, the
application of quantization and TensorRT accelerates BEVDet.
The processing speed for the image encoder and the BEV
encoder with detection head on the GPU is approximately
70.5 and 39.5 times faster than on the FPGA, respectively. It is
worth noting that the detection results here are post-processed.
In the quantized BEVDet, post-processing is not included in
the TensorRT engine, so most of the time is spent in post-
processing, which is about 4.8ms. The latency for PointPillars
aligns with this trend. The quantized model on the GPU has
the lowest latency. Compared to the FPGA, the latency for the
LiDAR encoder and the detection head on the GPU is reduced
by factors of 3.4 and 2.6, respectively.

3) Power Usage: In the assessment of power usage, we
measure the maximum and average power utilization of each
module during operation, excluding idle power usage. To
obtain stable power readings on the GPU platform for both
quantized and non-quantized models, we extend the runtime by
executing each module 5000 times. Running multiple times is
necessary to ensure the accuracy of our power measurements.
In contrast, the Vaitrace library on FPGA allows for capturing
power usage over a specific period. However, we need to adjust
the Vaitrace library to capture the power for each module,
eliminating the need for multiple runs. We set a 5 ms waiting
time between the two modules for the FPGA, while on the
GPU, we set the same waiting time as the interval for the same
module to start again. This approach is more in line with the
operating rules of different modules in the model and ensures
the accurate measurement of the power of each module.

Table IV illustrates the average and maximum power usage
for GPU (w/ & w/o quantization) and FPGA on all modules.
After quantization, we observe that the average power usage
on GPU drops for all modules except the BEV encoder with
detection head. The high power usage for the BEV encoder
with detection head may be because of the estimated power
usage. Due to the limitation of registering custom operator dur-
ing onnx inference, the two modules in the quantized BEVDet
model are not able to be disassembled completely. Therefore,
instead of obtaining accurate power usage, the estimated power
usage of the image encoder module is calculated from the
whole model power usage, and the estimated power usage of



TABLE III: Resource utilization for BEVDet and PointPillars on ZCU104 mpsoc.

Resource utilization Performance Memory Bandwidth
(GOP/s) (MB/s)
LUT | Register | DSP | URAM | DPU1 | DPU2 DPU1 DPU2
Available resource on board | 52161 98249 710 68 - - - -
BEVDet 50951 97923 710 46 74.169 92.76 3413.031 | 1692.983
PointPillars 49281 97100 690 46 1.903 92.156 | 3890.906 | 1785.417
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Fig. 7: Power-Delay-Product (PDP). It is the product of
average power and latency.
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Fig. 8: Energy-Delay-Product (EDP). It is the product of
average power and the square of latency. Due to the large
difference in values, the logarithmic scale is used here. The
data labels represent actual value without logarithmic scale.

the BEV encoder with detection head is calculated from the
post-processing power usage.

Additionally, we observe that the maximum power usage
of the quantized model on GPU is significantly higher than
FPGA. It is indicated in Table IV that the power usage
of both modules in BEVDet on GPU is approximately 14
times higher than the FPGA. Moreover, the FPGA’s maximum
power consumption for the LiDAR encoder in PonitPillars
is approximately 12 times lower than that of its quantized
model on GPU. Similarly, when focusing on the LiDAR-based
detection head, the data reveals a reduction in power usage —
approximately 3.5 times less on the FPGA compared to the
GPU. Overall, we can conclude that the FPGA has a significant
advantage in terms of power, with the power usage of each
module being approximately one-tenth of the GPU.

4) PDP and EDP: To comprehensively evaluate efficiency,
we incorporate latency and power into our analysis us-
ing Product-Delay-Product (PDP) and Energy-Delay-Product

(EDP) metrics. Lower PDP values indicate a system’s ability
to operate quickly while using less power, and lower EDP
values show efficient operation with minimal energy use. Our
findings, illustrated in Figure 7, reveal that the quantized
BEVDet on the GPU demonstrates superior PDP performance,
particularly for the image encoder and BEV encoder with
detection head, which exhibit the lower PDP. For the LiDAR
encoder and detection head, the lower PDP is achieved when
these components are deployed on the FPGA. The results
of the EDP analysis are displayed in Figure 8. The analysis
shows that the quantized image encoder and BEV encoder
with detection head perform better on the GPU. On the other
hand, the quantized LiDAR encoder and detection head have
similar efficiencies on both the GPU and FPGA platforms.
Thus, our results suggest that quantization and deployment
on the GPU enhance the efficiency of the image encoder and
BEV encoder with detection head. For the LiDAR encoder and
detection head, FPGA deployment after quantization is more
efficient. PDP and EDP are two methods that consider both
latency and power consumption, and their use often requires
adjustments based on specific requirements and constraints
in different real-world scenarios. When the system prioritizes
low latency and has no strict power or energy consumption
constraints, deploying all four quantized modules on the GPU
is better. On the other hand, if the system requires minimal
energy consumption and can tolerate higher latency, placing
LiDAR-related modules on an FPGA will be a more efficient
choice.

VI. DISCUSSION

In this study, we aim to explore the performance of different
modules of multi-modal detection models on heterogeneous
hardware platforms, thereby providing guidance and insights
for the cooperative design of hardware and software in multi-
modal object detection systems. Initially, we select a typical
multi-modal perception model, the BEVFusion, as our bench-
mark for analysis and evaluation. However, we soon realize
that deploying BEVFusion on FPGAs posed numerous chal-
lenges. FPGAs’ unique architecture and resource constraints
mean that deploying complex models requires thorough op-
timization and adjustment. One of the main challenges is
that bridging the hardware design and software design in
the FPGA for large models requires detailed knowledge of
both sectors. Because of the characteristics of FPGA, the
hardware design is different from provider to provider and
model to model, which shrinks the unified concept of FPGA
architecture for neural networks. Considering these challenges,
we decide to deconstruct BEVFusion into two specific mod-



TABLE IV: Comparison of average and maximum power consumption (in WATTS) for BevDet and PointPillars across GPU
and FPGA, including GPUs with and without quantization and FPGAs with quantization. The asterisks (*) denote the power
of the image encoder, which is estimated by the power of the overall model, while the power of the BEV encoder with D.

head is estimated by the power of post-processing.

BEVDet PointPillars
Image Encoder BEV Encoder with Lidar Encoder D. Head
D. Head
Avg. Power | Max Power | Avg. Power | Max Power | Avg. Power | Avg. Power | Avg. Power | Max Power
W) W) W) W) W) (W) W) (W)
GP[.I . 257.2 267.3 87.5 88.2 248.1 251.6 122.3 126.5
(w/o quantization)
GPI.j . 224.5% 228.8% 107.0* 111.0%* 2229 244.2 63.1 66.4
(w/ quantization)
FPG.A . 18.0 21.2 18.9 214 18.0 20.5 16.5 19.5
(w/ quantization)

els, corresponding to the camera stream and LiDAR stream.
This approach simplifies the deployment process and enables
effective analysis of each module within multi-modal models.
The BEVDet and PointPillar models we select use methods
similar to BEVFusion for processing data from the camera
and LiDAR, allowing us to evaluate the respective modules
efficiently.

A. Fusion Module

Even though the fusion module has a very small impact on
latency as shown in Figure 2, it is still a very important module
in the multi-modal model because features from different
sensors are fused here. For example, in BEVFusion, as shown
in Figure 3, the BEV features from the camera and LiDAR
will be fused in the fusion module. Although in BEVDet,
the camera features are transformed into BEV features for
3D object detection, PointPillar does not undergo such a
transformation with LiDAR features, so we lack the analysis
of LiDAR BEV features. However, obtaining BEV features
from LiDAR is relatively straightforward in reality. Since point
cloud data inherently contains depth information, there is no
need for depth estimation as with camera data. All that is
needed is to flatten the point cloud data along the Z-axis.

Nevertheless, analyzing the fusion module on an FPGA
remains a complex task. This is not only because the inputs
and outputs of the fusion module are not merely simple image
or point cloud data, but it also requires handling BEV features
from two different types of sensors. In future work, we plan
to comprehensively explore how to deploy and evaluate the
fusion module on FPGAs.

B. Multi-task Model

BEVFusion is not just a multi-modal model but also a
multi-task model. Apart from performing object detection
tasks, it can also handle BEV segmentation. Since multi-task
models typically share a backbone and neck, it makes sense to
consider the segmentation head as another module for analysis.
However, we must acknowledge the difficulty in deploying
and evaluating this module separately on FPGAs. Therefore,
in our current research, our primary focus is limited to the
detection head. Considering the trend of multi-modal multi-
task perception models, we plan to continue our research

and analysis into these complex models’ performance and
potential.

C. Heterogeneous Hardware

Communication between heterogeneous hardware is a crit-
ical factor to consider. Data transfer inevitably affects the
model’s inference speed and contributes to energy consump-
tion. Therefore, achieving low-latency and low-power commu-
nication between heterogeneous platforms is key. As our study
only analyzed the performance of different modules of a multi-
modal perception system on GPUs and FPGAs, the design
of hardware communication becomes an essential part when
researchers design a software-hardware collaborative multi-
modal model based on our evaluation results.

D. Model Quantization

In this study, we realize it is unfair to directly compare
original models on GPU with quantized models deployed on
FPGA. Therefore, we also deploy quantized models on GPUs
for evaluation. The quantized PointPillars is obtained from the
official Vitis AI repository [31], while the quantized model
of BEVDet, according to the Vitis AI documentation, came
from BEVDet’s official repository [2]. We successfully deploy
and evaluate the quantized PointPillars on the GPU. However,
for BEVDet, we can only obtain a full ONNX model from
BEVDet’s official repository. The BEVDet requires custom
registration of the bevpoolv2 [35] operator in the kernel during
onnx runtime inference. Unfortunately, this custom registration
creates a limitation that prevents the quantized BEVDet from
being disassembled on GPU. As a result, we have to use
external tools to evaluate the model’s runtime performance.
We analyzed its latency using the Nvidia Nsight Systems,
but this tool does not include power analysis capabilities.
Therefore, we can not accurately analyze the power of each
module within the quantized BEVDet. In this research, we
use the power of the overall model to estimate the power
usage of the image encoder module, while the power of the
BEV encoder with detection head is obtained by measuring
the post-process. However, a better solution to this problem
involves obtaining two independent ONNX models for the
image encoder and BEV encoder with detection head during
the quantization of BEVDet. These can then be deployed



on GPU and FPGA for evaluation. This approach requires a
broader understanding of quantization and a solid foundation
in hardware design for deployment on FPGA. In this process, it
is also necessary to optimize the model to improve accuracy.
Some approaches such as quantization-awared training will
help to avoid sacrificing the model accuracy.

VII. CONCLUSION

Developing a multi-modal perception model is crucial in
the evolving landscape of autonomous driving technology.
Our work aims to explore the performance of multi-modal
object detection model modules on heterogeneous hardware
platforms, especially on GPU and FPGA. For this purpose,
we conduct an in-depth analysis of the image-based BEVDet
model (including image encoder, BEV encoder with detection
head) and the PointPillars model based on LiDAR (including
LiDAR encoder and detection head). The evaluation metrics
cover resource utilization, latency, power, and energy con-
sumption. In FPGA, the resource utilization is approximately
93% of the available resources, which is much better than that
of GPU. Evaluation results also indicate that the latency for
all four modules is markedly lower for GPU implementation
compared to FPGA. However, FPGA outperforms in PDP
and EDP in LiDAR-related processing. Moving forward, this
research needs to be expanded to a broader range of models to
provide insights that are crucial for designing multi-modal per-
ception models with optimal hardware configurations, and for
balancing resource utilization, latency, and power efficiency in
panoptic perception tasks.
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