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Abstract—Data augmentations have been shown to improve
predictive performance of machine learning models in many
domains. Augmentations are typically used to improve classifica-
tion performance, but augmentations can distort the intrinsic
properties of the original data, thus reducing the utility of
a model for real-world applications. Because augmentations
directly affect the training data, and thus also affect the machine
learning models trained with said data, intelligent selection of
augmentations is as critical as the selection of input features and
other options in the machine learning pipeline. Such an approach
will enable greater transferability of trained models from the
research lab to products and services.

This paper presents two metrics to evaluate the potential and
realized impact of data augmentations. The first metric, eff-score,
assesses the relative efficacy of prospective data augmentations
before model training. To observe augmentation effects on the
intrinsic properties of the training data, the second metric,
nirvana distance, measures the effect of data augmentations
beyond overall predictive performance after model training.
These metrics are tested with a well known multi-purpose audio
data set and augmentations from the domain of environmental
sound scene analysis. The relative eff-scores correlate with classi-
fication results from predictive models trained on the augmented
data sets, and the distance components of the nirvana distance
explain results observed but not previously understood from
output confusion matrices. These results demonstrate promise
for data-driven, efficient selection of data augmentations whilst
exposing previously hidden impacts on machine learning models.
Furthermore, since eff-score and nirvana distance are domain-
independent, these metrics have widespread applicability.

Index Terms—data augmentation, augmentation evaluation,
eff-score, nirvana distance, visualization, audio

I. INTRODUCTION

Data augmentations are frequently used to increase predic-
tive performance of trained machine learning (ML) models
[1]-[3]. Training on augmented data is often “low-hanging
fruit” in the quest to develop a model that out-performs other
models [4]. This singular focus, though, potentially limits the
utility of developed models beyond the research lab. A model
that performs well on a single test set, or indeed with some
cross-validation, is not guaranteed to perform similarly on
samples from a larger, more diverse real-world environment
[5] — especially if the training data does not reflect all inherent
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qualities of real-world data [6]. Thus, in reality, researchers
have a hierarchy of three objectives:

1) to build predictive models which accurately recognize
all classes equitably;

2) to ensure models continue to predict fairly in an open
environment;

3) to ensure that any data processing at inference is mini-
mal to reduce latency when models are served.

During training, a predictive model learns a function with
which it transforms data observations (either pre- or post-
augmentation) into something toward a perfect classifier of
target classes. Fig. 1 represents this transformation as a four-
stage simple pipeline. The intrinsic properties of the real-
world data should be preserved when (the optional) stage two,
augmentation, is performed, lest the data be distorted such that
the model loses equitable treatment of all target classes.

Augmentations are primarily evaluated after stage three
in Fig. 1 (e.g., [7]), and such an approach to determining
appropriate augmentations is costly and time-consuming [8].
If augmentations could be evaluated prior to stage three, much
development could be optimised by cost and time reduction
[9]. Thus, pre-determining the best augmentation strategy is
preferable to simply “using them all” [8], and simply adding
more data is less beneficial than adding relevant data to
a training corpus. The first contribution of this paper is a
novel approach to understand and predict the efficacy of data
augmentations (Section IV-A). The second contribution of this
paper addresses equal recognition of all classes, with a metric
and a visualization process for evaluating the degree to which
augmentations alter per-class performance (Section IV-B).
Since the validity of machine learning predictions depends
upon the degree to which augmented data retains the properties
of real data [6], augmentations should not skew the data in a
way that gives “preferential treatment” to one or more classes
at the expense of others. Preserving fair performance of a

1. Raw Data > 2. Augmentation > 3.ModelTraining % 4. Prediction

Fig. 1. Machine learning classifier pipeline.
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Fig. 2. (a) VAT image of original data from [10]; (b) & (c) confusion matrices from [11] for city and scene classification, respectively.

model on all classes is just as important as obtaining high
overall classification accuracy when seeking models that are
useful to society.

Section II provides background on sound scene analysis
(the application test domain), summarizing pertinent literature
before describing the data set used in this work. Section III
describes the preparation of data and overall approach to
experimentation (in the context of the machine learning de-
velopment pipeline). Section IV details the novel metrics,
and Section V analyses the results of applying these metrics
to a case study. The paper concludes with a summary of
contributions and observations. A link to code for metrics and
visualizations used is provided to encourage and assist others
interested in investigating and evaluating data augmentations.

II. BACKGROUND

This work was initially inspired by observations from lit-
erature in the domain of sound scene analysis. In particular,
the authors observed from papers and conferences (e.g., [12])
that often researchers only state that standard augmentations
were applied before training, or simply name the augmenta-
tions used, without justification or rationale for augmentation
choices made. Such papers focus on detailing model design
parameters, but the model parameters may matter less than
the data processing applied [8] (in the same way that feature
selection is critical).

A. Case study domain: Sound scene analysis

Sound scenes are recordings of any environment, such
as an office or a street. Understanding these scenes is the
task of environmental sound analysis, which contains many
possible challenges: audio description (captioning) [13], scene
classification [14], event detection and/or classification [15],
bioacoustic recognition [16], geotagging [11], and synthetic
generation [17], to name a few. For practical use, real-world
data is desired to ensure a training corpus is representative
of real-world conditions. This data is often multi-faceted and
frequently contains noise (where noise is any component not
pertinent to a model’s primary task or purpose). The multi-
facetedness of real-world data can be exploited by multi-task
models, which infer higher-order features that contribute to

improve predictions on each task [18]. In the sound scene
analysis domain (and others), data collections of recordings
can be used for more than one task [10]. Even so, multi-
purpose data sets are not always of the size needed to
train predictive models; consequently, many researchers and
developers take advantage of data augmentation.

City classification is also known as audio geotagging [19].
The seminal audio geotagging study [11] provides a baseline
for city classification from audio; confusion matrices of their
best model are shown in Figs. 2(b)-(c). That work demon-
strated minor variation in the predictions over all target classes
without data augmentation and a robust predictive accuracy
with a multi-task CNN for both scene and city classification.

An investigation [10] into understanding the data space
of this multi-purpose audio data (a requirement for multi-
task models) used an unsupervised data-driven visualization
technique, the Visual Assessment of cluster Tendency (VAT)
[20]. [10] revealed some structure relating to different target
classifications. With multi-purpose audio data, VAT clusters
corresponding to scene labels appeared more obvious than
for city labels. The authors speculated the emergent clusters
explained common misclassifications seen in prior predictive
work. Fig. 2 shows a VAT image from [10] with ground
truth labels for separate scene/city classification tasks shown
as colored stacked bars on the left, along with the confusion
matrices from models trained on the same data (from [11]).

City classification rates reported in [11] were improved
in [7] through the use of data augmentations. Significant
improvement in accuracy was achieved, though limited evalua-
tion suggested that augmentation performance was not uniform
over all possible target classes. When broken down by target
classes, accuracy varied from 47% in a park to 91% on a bus.
Thus, the impact of an augmentation depends on the particular
task, model, and class at hand.

B. Augmentation methods for audio classification

[22] and [23] provide excellent reviews of many augmenta-
tions used in the audio domain. The augmentations described
here were chosen for this study due to the minimal number
of required parameters, their preservation of original target
labels (versus, for instance, mixup, which creates augmented
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Fig. 3. Visualization of selected stages to compute eff-score for the cyclic augmentation on data from [21]: (a) VAT dissimilarity image; (b) diversity values
(1...n) of neighborhoods along the diagonal of (a); and (c) histogram of d1.. .. z-axes for (a) and (b) represent sample numbers after VAT reordering.

samples with soft target labels [24]), and their use in prior
related work. A time stretch augmentation changes the tempo
and length of the original sample without changing its pitch.
Experimentation to discover a data appropriate stretch parame-
ter v is needed, or a random value from a uniform distribution
works. Frequency stretch is analogous to time stretch in the
frequency dimension; here a random value between 10 and 100
is appropriate for . Stretch can be a third option where both
time and frequency is stretched on the same sample to generate
one new training sample. If a waveform is considered a loop, a
cyclic augmentation alters the start and end point of a sample
such that, to maintain the sample length, the original start of
the sample is appended to the end of the new sample. No
values are needed to be experimentally found as new starting
points can be random. Finally, drop is a method where random
frames are cut from the original sample.

C. Data

This work uses the same multi-purpose public evaluation
data as [11] which has predefined training, validation, and test
subsets [21]. Data were recorded from ten different scenes
(airport, bus, metro, metro_station, park, public_square,
shopping_mall, street_pedestrian, street_traffic, and tram)
in six different cities (Barcelona, Helsinki, London, Paris,
Stockholm, and Vienna). Each acoustic scene has 864 ten-
second segments (giving 8640 segments across ten scenes).
These were recorded using a binaural Soundman OKM II
Klassik/studio A3 electret in-ear microphone and a Zoom F8
audio recorder using 24-bit resolution.

IITI. EXPERIMENTAL DESIGN AND DATA PREPARATION

This experiment addresses evaluation of data augmentations
with respect to two stages in the end-to-end machine learning
pipeline (Fig. 1). First, to estimate how well a data augmenta-
tion may improve classification performance, an unsupervised
data-driven metric is presented for use pre-training, at stage
two (augmentation). Second, a metric to evaluate how an
augmentation impacts the per-class prediction performance
of a model is presented for use post-training, in stage four

(prediction). These metrics are applied to a case study that
builds upon the work of [7].

To prepare the data for evaluating both new metrics, the
librosa [25] python library is used to extract log mel spec-
trogram features with parameters: 128 mel bands, 2048-point
STFT, input sampling rate = 22050 Hz, and hop length
= 512. Feature-wise normalization is completed separately
after applying each augmentation. Log mel spectrograms are
commonly used for sound scene analysis.

Three data augmentations — cyclic, stretch, and drop —
are separately applied to produce three augmented data sets.
For cyclic, each sample is shifted in time by 25%, 50%
and 75% of its length; for drop, the dropped frames are
random; and for stretch, a random number of columns and
rows at a random position are resized by bi-linear interpolation
four times on each audio sample each with different random
number of columns and rows to stretch. Augmentations are
applied to each channel separately and then averaged into
a single-channel feature matrix. These augmentation choices
were based upon their common use in the audio domain [22]
and in relevant prior work [7].

IV. METRICS FOR AUGMENTATION EVALUATION

In Section IV-A, an efficacy score, eff-score, is defined to
assess the potential efficacy of an augmentation on a given data
set, designed to be used pre-model training. In Section IV-B,
the nirvana distance, ND, is defined as a means of assessing
how far from ideal a particular augmentation performs on a
given data set, on a particular model (post-training).

A. Efficacy score

Selected stages to assess augmentation efficacy are shown in
Fig. 3. Broadly, this process includes: augmenting the original
data, reordering and visualizing the (augmented) data using
VAT [Fig. 3(a)], computing the diversity of pixel neighbor-
hoods along the diagonal [Fig. 3(b)], charting a histogram of
the computed diversities [Fig. 3(c)], and computing a score
to quantify the effectiveness of the augmentation. Before



detailing eff-score, VAT is described as it forms the foundation
of our method.

1) Visual assessment of cluster tendency: VAT [20] is an
unsupervised method to visualize the degree to which data
points may cluster. A key feature of VAT is that the target
number of clusters (denoted as k in other methods) need
not be specified; VAT can be used to predict the number
of data clusters. Variations of VAT exist for different data
contexts [26], though VAT has been rarely applied to audio
data (and within audio, mostly on speech utterances) [10].
Visualization of data at different stages of processing can assist
with understanding changes to the data at each stage [27].

VAT calculates the distance between all pairs of data points
prior to reordering them to produce a dissimilarity matrix
[rendered as a grayscale image, e.g., Fig. 3(a)]. The two
furthest data points are used as the start and end points, and
the resulting path between them after reordering is equivalent
to a minimal spanning tree of the complete graph per Prim’s
algorithm [28]. In typical use, dark blocks visible on the
diagonal suggest the number of clusters in the data. Here,
each audio sample was transformed into a single vector by
taking the feature-wise mean over all time frames before VAT
is applied. Euclidean distance was used to measure the distance
between feature vectors, but other measures are possible since
VAT is distance-measure independent. Patterns observed along
the diagonal of VAT dissimilarity images produced from
augmented data motivated eff-score.

2) eff-score: The eff-score, or efficacy score, is intended as
a relative value for comparative analysis of likely augmenta-
tion benefit. As a relative score, augmented data sets are from
the same source data. Once created, the following is evaluated
for each augmentation £ in the set of augmentations =:

1) Generate a VAT dissimilarity matrix D for the data set

(i.e., the augmented data) of dimensions n X n, where
n is the number of samples. D is rendered as an image,
so the matrix elements are referred to as pixels.

2) Extract the x X xk neighborhood N of pixels (x must be
>= 3 and odd) surrounding each of the n pixels on the
diagonal of D. For instance, if x = 9, each resulting
neighborhood N is given by:

P(i—4,i—4) P(i—4,i—3)
N; = P(i—3,i—4) P(i—3,i—3)

P(i—4,i+4)
P(i—3,i+4) (1)
P(i+4,i—4) P(i+4,i—3) Pit4,i+4)
where p is a pixel from D and i is the index along the
diagonal, beginning with the upper left. [Note that for
i < (k/2) and i > (n—(r/2)), N; will have dimensions
less than k X k due to the limits of D.]

3) Compute the diversity ¢ for each neighborhood N, with
0; = max(N;) — min(N;). max() and min() return the
maximum and minimum values, respectively, within the
specified neighborhood of pixels.

4) Group the diversity values 67 ., into b class intervals (or
bins) for creating a histogram to visualize the distribu-
tion. Here, b = 20 was empirically found to effectively

span the range of 4., computed for all neighborhoods
Nj. 5. To facilitate comparison, class intervals should
be consistent for every augmentation ¢ and span the
maximum range of d;_,, for any £ in =.

5) Count the number of elements 77 grouped within each
class interval ¢.

6) Compute the efficacy score, eff-score, for a given aug-
mentation £ by:

b
eff-score = 1/ Z . (2
=1

B. Nirvana distance

The nirvana distance (ND) evaluates the performance of
different augmentations beyond overall classification accuracy
after model training. Data in feature space is not always
uniformly distributed, and some confusions between classes
can be explained through nearness of feature vectors [10].
Therefore, this metric combines the classification performance
of a given augmentation (by class) with information known
from the initial data.

Let F represent a matrix of distances in feature space
between classes, where f; ; represents the distance between
class 7 and class j. F should be inferred from the original
(non-augmented) data and may be computed prior to training
of classification models. For a model trained on £-augmented
data, let FN¢(g,p) represent the number of samples with
ground-truth label g that are misclassified as class p. Let C
represent a cardinality vector, where C'y gives the number of
samples from class (label) A for the data set under evaluation.

A distance component dc is defined for a given augmenta-
tion £ and class A as follows:

Fa,*xFNe(A e
degp = s ) b 3)
LEA

where A is the set of all classes within the data set under
evaluation. The nirvana distance ND for augmentation & is
thus computed:
ND& = Z ng’)\. (4)
AEA

The term nirvana distance is coined because ND¢ may be
thought of as the distance of ¢ from the “ideal” augmentation.
That is, finding an augmentation that yields (near) perfect clas-
sification performance such that ND ~ 0, whilst distributing
any misclassifications in a way that reflects the original feature
space, would be akin to reaching “nirvana”.

The method here is motivated by the Earth Mover’s Distance
(EMD) [29]. EMD is posed as a problem of moving a mass
of earth from some number of sources to fill some number of
holes. In this construction, Z represents a set of suppliers, J a
set of consumers, and ¢; ; the cost to ship a unit of earth from
i1€Ztoje J. Aflow f;; represents the number of units of
earth shipped from supplier ¢ to consumer j. A key constraint
in EMD is that the amount of earth moved from suppliers must
be the same as the amount given to consumers.
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Fig. 4. Histograms of diversity values (1., ) for: (a) no augmentations; (b) strefch augmentation; and (c) drop augmentation.

Many elements of EMD translate to ND. Here, the analog of
cost c is distance F, and flow f is represented by the number
of misclassified samples FN to be “moved” to correct classifi-
cation. A key difference between ND and EMD is that, unlike
with EMD, with ND there is only one valid “destination”
for each misclassified sample, and each misclassified sample
must go to that destination. Thus, the “flows” f; ; are already
defined by the classification failures and need not be computed
via an optimization problem. An additional difference is the
normalization factor C. With EMD, the normalization factor
is the total flow from all sources ¢« € Z to all destinations
7 € J; for ND, the focus is on characterizing the performance
of an augmentation &, so each dcg » is normalized by the total
number of samples within each \; a greater number of correct
classifications by a model trained with £-augmented data will
yield a smaller numerator with same denominator (compared
to other augmentations) for dc.

V. CASE STUDY RESULTS

A. Applying eff-score

Table I shows scene and city classification accuracy re-
lated to the computed eff-score for each data augmentation,
calculated from a complete set of models. The single-task
scene models were trained for this paper consistent with the
method from [7], and other scores are duplicated from [7]
with the authors’ consent. Evaluation of eff-score included
empirical testing of different neighborhood sizes, and whilst
results were not significantly different, x = 3 (i.e., 3 x 3, the
minimum-sized neighborhood) and x = 9 were selected to
show the relative effects. For single-task models trained for
city classification, the eff-score has strong positive correlation
with model performance (r = 0.82 and » = 0.99 for k = 3 and

TABLE I
RESULTS SHOWING THE eff-score FOR EACH DATA AUGMENTATION
COMPARED WITH CLASSIFICATION ACCURACY (%) FROM CNN MODELS

single-task multi-task eff-score
Augment | city | scene | city | scene | k=3 | k=9
None 56 59 56 57 | 0.540 0.235
Drop 69 26 47 19 | 0.619 0.551
Stretch 71 72 75 63 | 0.633 0.578
Cyclic 75 77 79 70 0.829 0.739

Kk = 9, respectively). The multi-task city models have lower
but still positive (r = 0.69 and 0.59, respectively) correlation
due to drop negatively impacting scene classification, which in
turn impacted city accuracy. This illustrates the need to find
the appropriate augmentations for the task, or tasks (in the
case of multi-task predictors).

Figs. 4(a)-(c) show histograms for no augmentations,
stretch, and drop, respectively [cyclic is already presented in
Fig. 3(c)]. The ratio of the counts in the first bin to the total
number of samples is a useful metric because with augmented
data, more uniform neighborhoods are sought along a VAT
diagonal; [30] discusses the value of variance reduction with
respect to data augmentations. A higher eff-score indicates
greater uniformity.

As noted above, drop negatively impacts scene classifica-
tion, suggesting that the results include an “exception” with
respect to likely performance of evaluated augmentations. This
is to be expected. Data augmentations do not perform equally
well on all models, as seen by the confusion matrices in
Fig. 5. Further, data augmentations are not the sole factor
responsible for a model’s performance; its design, size, pa-
rameters, training strategy, etc. all have a significant impact
[7]. Nevertheless, eff-score can predict the potential efficacy
of an augmentation, as supported by the data in Table 1. As
will be explored in Section V-B, augmentations do not always
equally improve predictions for all classes within a target
schema, demonstrating that: a) the “best” augmentation is not
absolute and depends on the objective task, and b) an increase
in prediction accuracy can mask an augmented-induced bias
that has skewed the intrinsic properties of the original data.

B. Measuring nirvana distance

A set of trained CNN models from [7], [11] were used to
generate predicted labels for augmented and non-augmented
data. The results are presented in Fig. 5 as a series of confusion
matrices in order to: a) compare predictions of multi-task
models to single-task models, and b) discover and compare
changes in predictive behavior from different augmentations.
Confusion matrices serve as a primary tool for evaluating
model performance, but they are limited in conveying nuance.
To address this, data are plotted as bar charts (as illustrated
by Fig. 6 for single-task model, no augmentation).
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Fig. 5. Confusion matrices for trained models, city schema. Row 1: single-task models. Row 2: multi-task models. Column 1: no augmentation. Column 2:
drop augmentation. Column 3: stretch augmentation. Column 4: cyclic augmentation.

Table II contains class-wise city classification accuracy for
each model, per augmentation, separated between single-task
and multi-task models. Although it is desirable all target
classes are equally affected by an augmentation, this is not
the case, as evidenced by the wide-ranging scores between
classes in each model type and augmentation pair.

The values of ND are presented in Table III for each model
by augmentation used, with class-wise distance components
representing how much each class contributed to the overall

500
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[ Vienna
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Helsinki London Paris Stockholm

ground truth label [TP|FN]

Barcelona

Fig. 6. Predictions by target class for single-task, no augmentation model.
For each ground truth group, left bar indicates true positives (TP), right stack
indicates false negatives (FN).

TABLE 11
CLASSIFICATION ACCURACY (%), BY CITY, FOR MODELS TRAINED ON
DATA USING SPECIFIED AUGMENTATION

City\Aug— | none | drop | stretch | cyclic
Single-task models

Barcelona 40.0 65.1 62.2 58.9
Helsinki 50.0 66.9 71.3 73.6
London 76.5 81.0 79.6 69.8
Paris 324 56.2 83.8 77.9
Stockholm 80.8 82.2 64.3 58.5
Vienna 7.6 72.1 80.3 66.8
Multi-task models
Barcelona 55.1 119 72.2 78.1
Helsinki 53.7 74.3 81.5 85.4
London 14.8 19.6 78.1 79.6
Paris 87.2 28.8 78.5 79.7
Stockholm 73.1 55.3 72.0 76.7
Vienna 54.4 5.9 69.0 71.3

distance. To assess the degree to which the properties are
maintained and classes are treated fairly, the variance of the
distance components that comprise each ND are given in
Table IV. Here, a smaller value indicates more uniformity
across target classes. Without augmentations, a single-task
classifier has significantly greater between-class variation. This
is noticeably reduced with each augmentation, indicating that
the augmentations have improved the ease with which the
classes can be discriminated. This observation further suggests
that these models depend upon the augmentations to transform
the original data in order for the models to score accurately.
With the exception of the model trained with drop-augmented
data, multi-task models outperformed single-task models for
city classification, and Table IV multi-task values show that the



DISTANCE COMPONENT COMPUTED FOR EACH CITY AND AUGMENTATION
WITH OVERALL NIRVANA DISTANCE (ND) FOR EACH MODEL

TABLE III

simultaneously increasing the utility of developed models for
real-world use. The effectiveness of an augmentation is data,
task, model, and class dependent, so the validation presented
here should be extended to try different machine learning
model architectures, test in other domains, and expand the
set of augmentations under analysis. Nevertheless, this work
represents an important step forward in the evaluation of

augmentations, which — despite their influence on model
performance (on par with the impact of feature selection
or model parameters) — has heretofore been understudied.

MATLAB code for the presented metrics and visualizations are
publicly available [31]; it is hoped that others will experiment
with these methods and build upon this work for the benefit of
the machine learning community and to improve the products

City\Aug— | none | drop | stretch | cyclic
Single-task models
Barcelona 1.594 1.109 1.292 1.375
Helsinki 1.737 0.932 0.555 0.567
London 0.471 0.343 0.182 0.233
Paris 0.855 0.576 0.179 0.250
Stockholm 0.917 0.960 1.757 1.932
Vienna 4.868 1.094 0.511 1.072
ND [ 10.443 [ 5.015 [ 4.476 5.430
Multi-task models
Barcelona 1.561 2.640 0.949 0.731
Helsinki 1.158 0.995 0.470 0.345
London 1.137 1.344 0.202 0.172
Paris 0.310 1.739 0.292 0.248
Stockholm 1.407 1.897 1.389 1.070
Vienna 2.055 2.447 1.014 0.932
ND [ 7.627 [ 11.062 [ 4.316 [ 3.497
TABLE IV
VARIANCE IN COMPONENTS OF NIRVANA DISTANCE (ND) FOR EACH
MODEL/AUGMENTATION
Model type | none | drop | stretch | cyclic
Single-task 2.58 0.10 0.41 0.46
Multi-task ‘ 0.33 ‘ 0.40 ‘ 0.22 ‘ 0.14

tested augmentations have much less effect on the uniformity
of per-class performance. In these instances, class uniformity
remaining consistent and predictive performance increasing
represents the most desirable outcome for models designed
for real-world use.

Fig. 7 visualizes the individual distance components of ND
for each augmentation. The left plot reflects that the single-
task model using no augmentation classifies Vienna poorly (as
confirmed by Fig. 6). The right plot shows that cyclic is best
for multi-task models (confirmed by Table III) given that it has
the smallest and most uniform dc values. This illustrates that,
for this model, cyclic appears to retain the intrinsic properties
of the raw data that contribute to inter-class separation, doing
so from an original data space where the class centroids
are not equidistant from each other. For reference, Fig. 8
maps the original data space (i.e., f to compute ND) using
Euclidean distance between class centroids (from [11]) as
the edge weights of the graph. In this figure, London and
Paris are the acoustically closest cities in the non-augmented
data, explaining their confusions in the corresponding non-
augmented confusion matrices (Fig. 5, column 1) and bar chart
(Fig. 6).

VI. CONCLUSIONS AND FUTURE WORK

This work is a foundation for evaluating the potential
and realized impact of augmentations on the performance of
machine learning models. This paper presents metrics and
visualizations to efficiently and intelligently select and evaluate
augmentations, both pre- and post-model training. This repre-
sents an innovation for machine learning model development,
with the potential to save development time and cost while

of their efforts.
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