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T
he car-following (CF) model is an essential compo-
nent of traffic flow simulation for the human-driven 
vehicle (HV) and connected and automated vehicle 
(CAV). Some CF models have been widely used in 

mixed traffic flow modeling [1], virtual testing of CAV [2], 
[3], [4], [5], [6], [7], [8], and the trajectory planning of CAV 
[9], [10], [11], [12], [13], [14]. 

Introduction
Currently, even though the existing CF models [16], [17] can 
simulate the free flow well, they suffer from the following 
two issues. First, existing CF models may not perform well 
when simulating traffic oscillation, also known as stop-and-
go waves [17], [18], [19]. Because traffic oscillation exhibits 
frequent acceleration and deceleration behavior, existing CF 
models cannot accurately simulate the change in CF behav-
ior at each time step. In addition, there may be significant 
errors when using the CF model to replicate traffic capacity, 
vehicle energy consumption, and the formation and dissipa-
tion of stop-and-go waves in the traffic oscillation region. 
The second issue is that the existing data-driven CF models 
may necessitate costly computational resources and consid-
erable computation time when generating large-scale traffic 
flow [20]. They both severely restrict the applicability of the 
CF models. 

To resolve the issues mentioned previously, this article 
investigates in depth the reasons why the model-driven 
CF model and data-driven model cannot simulate the traf-
fic oscillation more accurately and uses the space headway 
of multiple steps to classify the traffic oscillation into four 
phases: coasting, deceleration, acceleration, and stationery. 
A novel data-driven dynamic transformation CF model con-
sisting of the long-time prediction submodel based on the 
modified sequence-to-sequence (Seq2seq) model and the 

short-time prediction submodel based on the Transformer 
[21] is then proposed to achieve a balance between accu-
racy and efficiency for the simulation of traffic oscillation 
between multiple HVs. Among them, the long-time predic-
tion submodel is responsible for the coasting and stationary 
phases simulation, and the short-time prediction submodel 
is responsible for the acceleration and deceleration phases 
simulation. To validate the proposed dynamic transforma-
tion CF model, CF pairs are extracted from the Next Gen-
eration Simulation (NGSIM) dataset to compare the ability 
of different data-driven CF models to extract the features of 
CF behavior at past multiple time steps and to comprehen-
sively and objectively evaluate the dynamic transformation 
CF model and three other representative CF models from 
micro, meso, and macro perspectives. In addition, the run-
time required to generate large-scale traffic flow for each of 
the CF models is compared.

In summary, the contributions of this article are as follows:
1)	 This article provides an in-depth analysis of the error 

variation in the IDM simulation of traffic oscillations. By 
simplifying the expression of the IDM in the deceleration 
phase, it is shown that the derivative function of the ki-
nematic acceleration is a monotonically decreasing trend, 
i.e., the simulated vehicle position is greater than the ac-
tual position. The error accumulation and inequality prop-
erty then prove that the trajectory error increases when 
IDM simulates the vehicle acceleration behavior.

2)	 A transformation strategy that dynamically divides realis-
tic traffic oscillation into four phases, including coasting, 
deceleration, acceleration, and stationary, is designed. 
Analyzing the NGSIM dataset, the space headway of mul-
tiple steps as the more direct traffic parameter is selected 
as the phase judgment condition of the traffic oscillation. 
To the best of our knowledge, no previous studies have 

Abstract—Car-following (CF) behavior is a fundamental of traffic flow modeling; it can be used for the virtual test-
ing of connected and automated vehicles and the simulation of various types of traffic flow, such as free flow and 
traffic oscillation. Although existing CF models can replicate the free flow well, they are incapable of simulating 
complicated traffic oscillation, and it is difficult to strike a balance between accuracy and efficiency. This article 
investigates the error variation when the traffic oscillation is simulated by the intelligent driver model (IDM). Then, 
it divides the traffic oscillation into four phases (coasting, deceleration, acceleration, and stationary) by using the 
space headway of multiple steps. To simulate traffic oscillation between multiple human-driven vehicles, a dynamic 
transformation CF model is proposed, which includes the long-time prediction submodel [modified sequence-to-
sequence (Seq2seq)] model, short-time prediction submodel (Transformer), and their dynamic transformation strat-
egy]. The first submodel is utilized to simulate the coasting and stationary phases, while the second submodel is 
utilized to simulate the acceleration and deceleration phases. The results of experiments indicated that compared 
to K-nearest neighbors, IDM, and Seq2seq CF models, the dynamic transformation CF model reduces the trajectory 
error by 60.79–66.69% in microscopic traffic flow simulations, 7.71–29.91% in mesoscopic traffic flow simulations, 
and 1.59–18.26% in macroscopic traffic flow simulations. Moreover, the runtime of the dynamic transformation CF 
model (Inference) decreased by 14.43–66.17% when simulating the large-scale traffic flow.
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decomposed traffic oscillations into different phases us-
ing micro vehicle dynamic parameters.

3)	 A dynamic transformation CF model consisting of two 
submodels is proposed. The long-time prediction sub-
model based on the modified Seq2seq architecture is 
utilized for the simulation of the coasting or stationary 
phases, whereas the short-time prediction submodel 
based on the Transformer model is utilized for the simu-
lation of the acceleration or deceleration phases. Our 
proposed model is the first model that attempts to simu-
late traffic oscillation using multiple submodels as op-
posed to existing models.
The rest of the article is organized as follows. The “Re-

lated Work” section briefly reviews two different types of 
CF models (data-driven and model-driven modeling) and 
related research on traffic oscillation. The “Problem De-
scription” section describes two issues with existing CF 
models; the IDM CF model is unable to accurately simulate 
traffic oscillation, and the deep learning (DL) CF model  
does not account for the inherent correlation between dif-
ferent vehicle dynamic parameters at the same time step. In 
the “Methodology” section, the proposed dynamic transfor-
mation CF model is introduced in depth, and the dynamic 
transformation strategy for the two submodels of the dy-
namic transformation CF model is designed. The dynamic 
transformation CF model is validated and tested in the 

“Experiments” section. The “Conclusion” section con-
cludes the article.

Related Work
Before delving into analysis, the notations used are defined 
as shown in Table 1. 

Model-Driven CF Models
The model-driven CF models reveal the mapping relation-
ships between the microscopic parameters of vehicle dy-
namics with the functional expressions. The well-known 
model-driven CF models are the full velocity difference 
CF model, the Newell CF model, and the intelligent driver 
model (IDM) CF model [22], [23], [24]. They have been used 
for traffic oscillation analysis because each parameter of 
the model-driven model has an explicit physical meaning. 
The Newell CF model was used on traffic oscillation mea-
surements in the frequency domain of the trajectory [25]. 
Then, with the help of the describing-function approach, 
it was enhanced to mitigate the traffic oscillation and de-
crease the fuel consumption of vehicles [26]. Furthermore, 
the time domain of the trajectory was considered to cali-
brate the parameters of the Newell CF model [27]. To alle-
viate the traffic oscillation, the IDM CF model was used as 
the stability criterion to develop the oscillation criterion to 
identify different categories of traffic oscillation [28].

Data-Driven CF Models
The data-driven CF model is primarily constructed using 
machine learning (ML), reinforcement learning (RL), and 
DL. K-nearest neighbors (KNN), fixed-radius NN (FRNN), 
and deep deterministic policy gradient (DDPG), three 
representative ML and RL algorithms, have been widely 
used in CF behavior modeling [20], [29], [30], [31], [33], 
[34], [35], [36], [37]. Compared to the CF models based on 
ML and RL, DL-based CF model research has been used 
longer and produced more results. Some of the represen-
tative data-driven CF models are summarized in Table 2. 
Literature [38], [39], [40], [41], [42] used the artificial neu-
ral network (ANN) to simulate CF behavior. The major dif-
ferences between them are that the input and output of 
each model differ due to the different influences consid-
ered by the model, such as instantaneous reaction delay 
[41]. In addition, due to limitations imposed by the devel-
opment of DL, different models employed distinct optimiz-
ers. In the literature [42], for instance, the particle swarm 
optimization algorithm and backpropagation were used to 
train the model [38], [39], [40], [41]. 

As the cutting-edge architecture of the DL model, 
the recurrent NN (RNN) has been widely implemented  
in numerous research fields. Due to the internal state (or 
memory) flow mechanism within the RNN, it processes 
time-series data more efficiently. Zhou et al. [18] proposed 
a CF model based on the RNN to simulate traffic oscillation 

Parameters Definition

t Current time step

Tt Time step of two adjacent data points

Tp Time steps of historical data 

Tf Time steps of prediction data

ap Acceleration of the preceding vehicle

af Acceleration of the FV

vp Velocity of the preceding vehicle

vf Velocity of the FV

pp Position of the preceding vehicle

pf Position of the FV

Tp Space headway

Tv Velocity difference

amax Max acceleration of the FV

dcom Comfortable deceleration of the FV

s0 Space headway at stationary

T Desired time headway

sd Desired space headway

vd Desired velocity

ad Desired acceleration

Table 1. Major notations.
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more precisely. To overcome the gradient vanishing and 
explosion problem of the vanilla RNN model, the gated re-
current unit (GRU) and long short-term memory (LSTM) 
were utilized to simulate CF behavior, and asymmetric 
driving behavior was also considered [43], [44]. However, 
the RNN cannot process the input-output sequences of 
unequal length. Therefore, Ma and Qu [19] applied the  
Seq2seq architecture to predict the multi-time steps of 
the CF. Considering the inefficiency of the conventional 
CF model in generating vehicle platoon trajectory gener-
ation, Lin et al. [45] built a unidirectional interconnected 
LSTM CF model to simulate CF behavior. Additionally, 
Mo et al. [17] proposed a CF model that incorporated 
model-driven modeling and DL and validated the model’s 
performance under the condition of insufficient training 
data samples. Several popular DL architectures, such as 
graph attention networks, generative adversarial net-
works, and Transformer, are [16], [46], [47] are also used 
for CF behavior modeling. Specifically, Zhou et al. [48] 
proposed a data-driven framework that was composed of 

a signal processing method and short-time Fourier trans-
formation and can be applied to analyze the disturbance 
amplification in CF behavior.

The aforementioned CF models can be summarized as 
follows. On the one hand, traffic oscillation studies based 
on model-driven models may not always be applicable to 
complicated environments, and more realistic or flexible 
CF models should be employed to investigate the traffic os-
cillation. On the other hand, because the traffic oscillation 
contains many acceleration and deceleration behaviors, 
even though the existing data-driven CF models can simu-
late a more complex environment than the model-driven 
CF models, the accuracy of simulating the traffic oscillation  
with them still cannot be guaranteed. It can also be seen 
from Table 2 that some proposed data-driven methods 
have not been evaluated on the traffic oscillation. In ad-
dition, it is concluded that simulating the whole process of 
traffic oscillation formation and dissipation with a single 
CF model is difficult, as indicated by [49] that different CF 
models should be used to simulate the different states of 

Models Inputs Outputs Time Steps Tested on Traffic Oscillation

ML KNN [28] Tp, MD of PV MD of FV Single step Yes

Gipps + Random Forest [29] Tp, Tv, vf, af vf Single step Yes

FRNN [30] Tp, MD of PV MD of FV Single step No

RL DDPG [31] Tp, Tv, vf af Single step No

Improved DDPG [32] Tp, Tv, vf vf Single step No

DDPG [33] Tp, Tv, vf af Single step Yes

DDPG [34] Tp, Tv, vf af Single step Yes

DDPG [35] Tp, Tv, vf af Multistep No

DL ANN [36] Tp, Tv, vf, vd af Single step No

ANN [37] Tp, vp vf Single step Yes

ANN [38] Tp, Tv, vf, RD af Single step No

ANN [39] Tp, Tv, vf af Single step No

ANN [40] Tp, Tv af Single step No

GRU [41] Tp, Tv, vf vf Single step No

LSTM [42] Tp, Tv, vf vf Single step Yes

Seq2seq [17] Tp, Tv, vf af Multistep Yes

LSTM [43] State of FV/PV State of FV Single step Yes

Graph attention network [14] vf, af, vp, ap, sd, ad, vd, Tp af Single step No

IDM + ANN (or LSTM)/OVM + 
ANN (or LSTM) [14]

Tp, Tv, vf af Single step No

RNN [16] MD of PV MD of FV Single step Yes

Transformer [44] Tp, Tv, vf vf Multistep No

The last column represents whether the model is tested on the traffic oscillation region. State includes the acceleration, velocity, and trajectory. GRU: gated recurrent unit; LSTM: long short-term 
memory; MD: moving distance; RD, reaction delay; PV, preceding vehicle; FV, following vehicle; OVM: optimal velocity model. 

Table 2. A summary of existing data-driven CF models.
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a realistic traffic oscillation. However, to the best of our 
knowledge, few studies have considered how to decom-
pose the traffic oscillation and select the appropriate CF 
model for each stage.

Problem Description

Analysis of IDM Simulated the Traffic Oscillation

Deceleration
The representative model-driven CF model, IDM, which is 
formulated as the following equation, is used to simulate the 
CF behavior of the following vehicle (FV):

	 a a v
v

p
s1maxf

d

f d
2

T
= - -

d` cj m; E � (1)

where the sd  is defined as follows:

	 , .maxs s v T
a d
v v0
max

d f
f

0
com

T
= + +

2
c m � (2)

Typically, the FV first needs to decelerate and then ac-
celerate when passing through a traffic oscillation. When 
traffic becomes more congested, the FV may come to a 
complete stop. The deceleration phase occurs when the 
velocity of the FV is gradually reduced to zero, and the sta-
tionary phase occurs when the velocity of the FV remains 
at zero. The acceleration phase occurs when the velocity 
of the FV accelerates to the desired velocity, i.e., acceler-
ates until the preceding vehicle and the FV are relatively 
stationary. In addition, because the vehicle stopping posi-
tion is related to the vehicle deceleration phase, the errors 
in the deceleration and acceleration phases are the focus 
of this article.

Model-Driven Modeling Methods
When the vehicle is in the deceleration phase, the term 

/a v t v1max f d- d^ ^ ^ h h h describing the free-flow CF behavior 
in the IDM can be ignored. Then, (1) can be simplified to

	 .a a v
v

p
s1maxf

d

f d
2

T
= - -

d

c cm m= G � (3)

According to the definition of the optimal space headway 
,sd  there are two functional expressions for acceleration

	
s v T+ +

.a

a p
s

p
a d
v v
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max
max

f
f

f

0
2

0

2

com

T

T
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2a-
f

c m

p

Z

[

\

]
]
]
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� (4)

For the nonemergency braking deceleration phase, the 
inequality /v T v v a d2 0maxf f comT 2+ ` j  is constant, and 
the steady-state term s v Tf0 +  can be ignored [50]. Then, 
(4) can be further simplified to

	 .a a
a d
v v

d p
v v

4max
max

f
f f

2

2

2 2

com com

T
T
T

=- =-
p2T

e ^
^o h

h � (5)

When the FV is under traffic disturbance and the pre-
ceding vehicle is stationary, ,v v fT =  and then (5) is trans-
formed into the following equation:

	 .a d
a

f

2

com
=- � (6)

In (6), /a v p2f
2 T= ^ h  is the kinematic deceleration, 

which indicates that the braking distance is equal to the 
space headway .pT  For the nonemergency braking decel-
eration phase, the absolute value of the actual deceleration 
a f  is less than the kinematic deceleration .a  Thus, we can 

get the following inequality: / ;a d a2
com1  simplifying the 

inequality yields .a dcom1  It indicates that the actual decel-
eration of the FV simulated by IDM is less than the comfort-
able deceleration at the beginning of the deceleration phase. 
Furthermore, the partial derivative of a  with respect to t  is

	 .dt
da

pd
va d a

com
comT

= -^ h  � (7)

Equation (7) and a dcom1  represent that the derivative 
function of the kinematic acceleration is a monotonically 
decreasing trend and indicate that the actual deceleration 
gradually approaches the comfortable deceleration with 
time. In contrast, human drivers usually adopt the larger de-
celeration rather than the comfortable deceleration during 
the deceleration phase because they cannot accurately as-
sess the risk of collision with the FV.

According to the conclusion obtained from the analysis of 
the deceleration phase, note that the simulated trajectory 
of the FV by the IDM CF model is ,s1  and the real trajectory 
of the FV is .s2  Then, the following equation holds:

	 .s s1 22 � (8)

Acceleration
In addition, according to the property that the direction of an 
inequality does not change when both sides are multiplied 
by a positive number but changes when multiplied by a neg-
ative number, the following holds:

	 a p
s a p

s
max max

d d

1

2

2

2

T
1

T
- -e eo o � (9)

where the p1T  is the space headway simulated by the IDM 
when the preceding vehicle and FV are stationary, and the 

p2T  is the actual space headway when the preceding vehicle 
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and FV are stationary. Thus, the vehicle position simulated 
by IDM obtained by numerical integration is lower than the 
ground-truth data.

Analysis of Existing DL CF Models
The existing DL CF models can be expressed by the follow-
ing function equation:

	 O IF= ^ h� (10)

where the function F  is the abstract function expression, 
and the set I  is the input of CF models, which generally 
consists of several vehicle dynamic parameters, such as ac-
celeration, velocity difference, space headway, etc. O  is the 
output of CF models, usually the velocity or acceleration. I  
and O  can be defined as follows:

	 , ,I s t i s t in1 f= - -^ ^ ^h hh" ,� (11)

	 ( , , .O s t i s t im1 f= + +^ ^h h" , � (12)

For the short-time prediction submodel based on 
the DL, the index parameter i  of sets I  and O  are 

, , ,t T t T t 0p p fT- - +" , and ,t tT+  respectively, which 
indicates that it takes the historical Tp  time-step vehicle 
dynamic parameters to predict the vehicle dynamic param-
eter of the FV at the next time step. s is the different vehicle 
dynamic parameters. n  and m  are the number of vehicle 
dynamic parameters. One typical short-time prediction sub-
model consisting of the two-layer RNN is shown in Fig-
ure 1(a), and its formulation is as follows:

	 , , , .O It t F t t t t TpfT T+ = - -^ ^ ^h hh � (13)

For the long-time prediction submodel, the index param-
eters i  of sets I  and O  are , , ,t T t T t tp p fT- - +" , and 

, , , ,t t t t t T2 ffT T+ + +" ,  respectively, which means that 
it takes the Tp  historical time-step vehicle dynamic param-
eters to predict the acceleration or velocity of the FV at the 
Tf  time steps. One typical long-time prediction submodel 
based on the Seq2seq with the RNN as the computing unit is 
shown in Figure 1(b), and its formulation is as follows:

, , , , , , .O It t t t t T F t t t t T2 f pf fT T T+ + + = - -^ ^ ^h hh �(14)

It is concluded that the existing DL CF models may not 
consider the inherent correlation between the output (accel-
eration) and the inputs (velocity, space headway, and veloc-
ity difference) at the same time step.

Methodology
The overall framework diagram of this article is given in 
Figure 2. Based on the analysis of the two issues mentioned 
previously, it is necessary to divide the traffic oscillation into 

distinct phases and simulate them using distinct CF mod-
els. Therefore, the data-driven dynamic transformation CF 
model is proposed, which consists of two major submodels. 
The first submodel is the long-time prediction submodel, 
which is based on the modified Seq2seq architecture and 
is used to predict the coasting and stationary phases. The 
long-time prediction submodel is the multistep prediction 
model. The second submodel is the short-time prediction 
submodel, which is derived from the Transformer model 
and is used to predict the acceleration and deceleration 
phases. The short-time prediction submodel is the single-
step prediction model.

In terms of input and output selection for the model, 
Table 2 reveals that most studies used velocity, space 
headway, and velocity difference as model inputs and 
acceleration as the model output. Consequently, the in-
puts and outputs of the long-time prediction submodel in 
the dynamic transformation CF model proposed in this 
article are the same as in most studies. In addition, the 
inputs of the short-time prediction submodel include the 
acceleration of the FV for the reasons explained in the 
following sections.

A Dynamic Transformation Strategy for  
the Traffic Oscillation Simulation
According to [51], the division of four phases of traffic oscil-
lation depends on the asymmetric traffic theory. However, 
it remains unclear how micro vehicle dynamic parameters 

RNN-CU

RNN-CU

I (t – Tp) I (t)

O (t + ∆t )

O (t + ∆t ) O (t + Tf)O (t + 2∆t )

I (t – Tp + ∆t )

I (t – Tp) I (t)I (t – Tp + ∆t )

RNN-CU

RNN-CU

RNN-CU

RNN-CU

RNN-CU RNN-CU RNN-CU

RNN-CU RNN-CU RNN-CU

Decoder

Encoder

c

(a)

(b)

FIG 1 An illustration of the short/long-time prediction CF model. (a) The 
short-time prediction CF model (b) The long-time prediction CF model. 
RNN-CU: recurrent neural network-computation unit.
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can be used for four-phase identification. The space head-
way of multi-time steps Thdwy^ h is used to try to distinguish 
four phases of the traffic oscillation because it is more stable 
in a time segment than velocity difference and acceleration. 
As shown in Figure 3, by analyzing the distribution of the 
space headway at the stationary phase in the NGSIM dataset, 
the approximately normal distribution function of the space 
headway of the stationary phase is . , . .X N 24 72 627 0016+ ^ h  
As a determination condition for the stationary state in the 
traffic oscillation, the 90% probability value of the approxi-
mately normal distribution is calculated, i.e., 31.23 ft, to im-
prove the generalization capability of the model.

Figure 4 is a schematic diagram illustrating the traffic 
oscillation in relation to the .Thdwy  The distinction between 
the stationary state and the other states is based on whether 
the space headway at each time step in Thdwy  is fewer than 
31.23 ft. The vehicle is in the deceleration phase when the 
space headway at each time step in Thdwy  is greater than 
31.23 ft and Thdwy  is monotonically decreasing. The vehicle 
is in the acceleration phase when the space headway at each 
time step in Thdwy  is greater than 31.23 ft and Thdwy  is mono-
tonically increasing. A vehicle is determined to be in a stable 
state if the space headway at each time in Thdwy  is greater 
than 31.23 ft and there is no monotonicity in .Thdwy

The dynamic transformation mechanism is described 
in Algorithm 1 with reference to the definitions of the four 
phases of traffic oscillation.

The Long-Time Prediction Submodel Based  
on the Modified Seq2seq
In this section, a novel framework based on the conventional 
Seq2seq is designed, and then the conventional Seq2seq is 
improved to obtain the long-time prediction submodel in the 
dynamic transformation CF model.

Novel Long-Time Prediction Submodel Framework
As illustrated in Figure 5, the proposed long-time prediction 
submodel framework comprises two modules, with the com-
putation layer (CL) being the conventional Seq2seq.

The first module predicts the velocity, space headway, and 
velocity difference at Tf  time steps using the velocity, space 
headway, and velocity difference at Tp  time steps, respective-
ly. It can be formulated as follows:

 , , , ,O Iv t t v t T F v t v t Tf f f f f pf fT+ + = -^ ^ ^ ^ ^ ^ ^h hh h hhh
� (15)

, , , ,O Ip t t p t T F p t p t Tf pf fT T T T T+ + = -^ ^ ^ ^ ^ ^ ^h hh h hhh
� (16)

   ., , , ,O Iv t t v t T F v t v t Tf pf fT T T T T+ + = -^ ^ ^ ^ ^ ^ ^h hh h hhh
� (17)
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FIG 3 The approximately normal distribution of the space headway at the 
stationary phase. Normal Dist.: normal distribution.
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FIG 4 The schematic diagram of the traffic oscillation division according to the .Thdwy
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The second module predicts the acceleration at Tf  time 
steps with the velocity, space headway, and velocity differ-
ence at Tf  time steps obtained from the prediction of the first 
module. It can be formulated as follows:

.

, , , , ,
, , ,
, ,

O O
O
O

a t t a t T F v t t a t T
p t t p t T
v t t v t T

f f f f f f

f

f

f f

f

f

T

T T

T T

T T T

+ + = + +

+ +

+ +

^ ^ ^ ^ ^
^
^

^

^
^

^

^
^

h

h hh h

h
h

h

h

h
h
h
h

� (18)

The most critical issue in the proposed long-time pre-
diction submodel framework is how to construct a CL as a 
CL can be constructed from various DL modules, such as 
the backpropagation NN (BP-NN), RNN, and Seq2seq. Five 
representative DL models [BP-NN, RNN, LSTM, Seq2seq, 
and Seq2seq with attention mechanism (Seq2seq-Att)] are 
used as the CL to build the long-time prediction submodel  
to objectively evaluate their performance. The NGSIM 
dataset, US101, lane 2 subset (the ID of the preceding  
vehicle is 1989, and the ID of the FV is 2035) is extracted 
for testing. In addition, the input data length and output data 
length are both set as 10. The CF data preprocessing and 
noise filtering processes can be seen in [52].

The min-max normalization that is expressed as follows 
is used to speed up model convergence:

	 x x x
x x
max min

min=
-

-l � (19)

where x  represents the ground-truth data, xl denotes the 
normalized data, and the xmin  and xmax  are the min value 
and max value of ,x  respectively. In addition, the root mean 

Input: Velocity of the FV ,vf  space headway ,pT  velocity difference ,vT  total 
time steps of the trajectory of the preceding vehicle Lpv

Output: Acceleration of the FV af  velocity of the FV ,vf  the position of the 
preceding vehicle pf

i  is the current time step, which is initially set to 0.
for :i Lpv1

  �  Picking the history of 20 time steps of pT  that is denoted as Thdwy  from 
the current time step t

  �  if .T 31 23hdwy $^ h  and Thdwy 3^ h
   �    , ,STPa t t v p vf fT T T+ =^ ^h h
  �  else if .T 31 23hdwy $^ h  and Thdwy 4^ h
   �    , ,STPa t t v p vf fT T T+ =^ ^h h
  �  else if .T 31 23hdwy $^ h  and Thdwy  has no monotonicity
   �    , ,LTPa t t v p vf fT T T+ =^ ^h h
  �  else if .T 31 23hdwy 1^ h
   �    , ,LTPa t t v p vf fT T T+ =^ ^h h
    end if
  �  Update vf  and pf  with af

end for

Algorithm 1: The dynamic transformation strategy. 

Testing Data (t, t + Tf)

Training Data (t, t + Tf)

Computation Layer

Computation Layer Computation Layer Computation Layer

Predicted Data (t, t + Tf)

Testing Velocity (t, t + Tf)
Testing Space

Headway (t, t – Tf)

Predicted Space
Headway (t, t + Tf)

Training Velocity (t – Tp, t ) Training Space
Headway (t – Tp, t )

Testing Velocity
Difference (t, t + Tf)

Predicted Velocity
Difference (t, t + Tf)

Training Velocity
Difference (t – Tp, t )

Predicted Velocity
(t, t – Tf)

The Second Module

The First Module

FIG 5 The framework of the long-time prediction submodel.
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square error of trajectory (RMSET) is selected to compare 
the performance of the different CLs. The formulation of the 
MSET is as follows:

	 y y1RMSET
i

N

i i
1

2= -
=

/N
t^ h  � (20)

where N  represents the number of samples, and yi  and yit  
are the ith  ground-truth trajectory, and prediction trajec-
tory, respectively.

MSET and time-space diagrams for different models or 
CLs are given in Table 3 and Figure 6, respectively. The trajec-
tories of BP-NN CF and RNN CF are not provided due to their 
excessive MSET and distorted simulated trajectories. Com-
pared to other data-driven CF models, the long-time predic-
tion submodel framework performed better. Specifically, the 
MSET of the long-time prediction submodel, which is based 
on the BP, outperformed the Seq2seq CF model and yielded 
results similar to the Seq2seq-Att CF model. It demonstrated 
the performance of the long-time prediction submodel.

On the other hand, Figure 6(a) demonstrates that even 
the long-time prediction submodel, which is based on the 
Seq2seq-Att, is incapable of simulating the trajectory accu-
rately when the stop-and-go wave emerged, and the MSET is 
still relatively high. Here are two explanations.
1)	 The conventional attention mechanism (i.e., the dot prod-

uct) does not consider the inherent correlation between the 
vehicle dynamic parameters at the same time steps. 

2)	 The conventional Seq2seq simply repeats the hidden state 
as the Decoder’s inputs, so the Decoder receives the same 
input at each time step.

A New CL Based on the Seq2seq-Att
Figure 7 shows a new CL designed for the long-time pre-
diction submodel. The proposed CL utilizes the 1D convo-
lutional operation to extract the coupled temporal features 
of the Encoder’s and the Decoder’s hidden state, and the 
LSTM is used as the computation unit. Then, instead of the 
dot-product attention mechanism, bilinear transformation-
based attention is used [15]. It can be described as follows:

	 X d e1Conv out= ^ h� (21)

	 Y d d1Conv out= ^ h� (22)

	 ( )W X W Ysoftmax T
1= � (23)

	 ,tanh Y W W battention oncatc 2 1out = +^ ^ h h � (24)

where eout  and dout  are the output of the Encoder and  
Decoder. The W1  and W2  are the parameter matrix.

In addition, the proposed CL employs a “step-by-step” 
methodology as opposed to simply repeating the hidden 
state. This means that the first input of the Decoder is the 
same as the last output of the Encoder, and the remaining  
inputs are the outputs of the computation unit from the pre-
vious time step.

The Short-Time Prediction Submodel Based  
on the Transformer
Compared to the coasting and stationary states, the accel-
eration changes during the deceleration and acceleration 
phases are more drastic. If only the long-time prediction sub-
model is utilized, it may result in significant errors. There-
fore, one of the most advanced frameworks, Transformer, is 
used to predict the acceleration and deceleration of the FV in 
a single time step.

The Transformer model, like the Seq2seq model, con-
sists of two components: the Encoder and the Decoder. 

Name of CL/
Model

Structure of LTP: 
(Number of Neurons)

RMSET of 
Model (m)

RMSET of 
CL (m)

BP-NN 3-8-8-1 Nan 31.91

RNN 32-8-1 408.82 14.84

LSTM 32-8-1 92.53 14.39

Seq2seq 32-10-1 47.58 11.61

Seq2seq-Att 32-10-10-1 28.36 10.9

Table 3. An MSET comparison of the different CL/model.
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FIG 6 A time-space diagram comparison of different CLs/models.  
(a) A time-space diagram of different CLs. (b) A time-space diagram of 
different models. Tra: trajectory.
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When processing time-series data, the Transformer 
model does not store the temporal information of each 
time step’s data. It requires position encoding to encode 
the input data of the Encoder and Decoder. The architec-
ture of the Transformer is shown in Figure 8. The Encoder 
can be seen to consist of three layers: the input layer, the 
position encoding layer, and the Encoder layer. The En-
coder layer is the core of the Encoder, and it is built of a 
multihead attention block and a residual block. Multihead 
attention focus improves the Transformer model’s ability 
to handle multidimensional data, while residual blocks in-
crease the model’s depth. The Encoder and the Decoder 
are fundamentally similar in construction, with two ex-
ceptions. The first distinction is that the query and value 
of multihead attention in the Decoder are derived from 
the semantic vector output by the Encoder. The fully con-
nected (FC) layers are added after the Decoder layer in the 

Decoder, which is the second distinction. The core part of 
the Transformer can be formulated as follows:

	 , ,Q W x K W x V W xq k v= = = � (25)

	 VA
k

QK
softmax

T

= e o � (26)

	 L x Ax b W b1LayerNorm ReLU 1 2out1 = + + +^ ^ h h� (27)

	 (L LL WLayerNorm ReLU 2out2 out1 out1= + ^ h� (28)

where x  represents the output of the position layer. ,Wq  ,Wk  
and Wv  are the number of columns of the weight of the K 
value, and ReLU is the rectified linear unit. 

Furthermore, as with [46], the inputs of the Encoder are 
the acceleration, space headway, and velocity difference of 
the FV over the previous 10 time steps, and the inputs of the 
Decoder are the velocity of the preceding vehicle over the 
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1D CNN Layer

LSTM-CU LSTM-CU LSTM-CU
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Decoder Layer
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FIG 7 A new CL based on the Seq2Seq-Att.
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FIG 8 The architecture of the Transformer. ReLU: rectified linear unit.
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previous 10 time steps. Therefore, the output of the Decoder 
of our model is the acceleration of the FV over the subse-
quent time step.

Experiments
To comprehensively and objectively evaluate the perfor-
mance of the dynamic transformation CF model, the experi-
mental system framework depicted in Figure 9 is developed 
in this article. The framework consists of two major com-
ponents: DL model testing and traffic flow simulation. The 
“DL Model Test” section conducts hypermeter tuning for 
the long-time prediction submodel and short-time predic-
tion submodel and chooses the optimal input-output length 
for the long-time prediction submodel and short-time pre-
diction submodel. Referring to the classification of traffic 
flow studies by Li et al. [32], the results of four different CF 
models (dynamic transformation CF model, KNN, IDM, and 
Seq2seq) are tested for a single CF pair (microscopic level), 
multiple CF pairs (mesoscopic level), and all CF pairs in 
one lane within 15 minutes (macroscopic level), and vari-
ous traffic metrics are used to evaluate the four CF models. 
In addition, the runtime for generating large-scale traffic 
flows using four CF models is compared.

DL Model Test
The model is calibrated using the 1,528 CF pairs extracted 
from the NGSIM dataset in the subset of lane 1 at 8:05 a.m. 
In the training process, 80% of the data are used for training 
and 20% for validation. In addition, prior to training, all data 
are normalized. The entire simulation experiment ran on an 

ASUS computer (RAM: 24 GB; processor: Intel Core I7-8700K; 
operating frequency: 3.70 GHz). Pytorch 1.10 on Windows 10 
is deployed to build and test the proposed model.

The Hyperparameter Tuning of the Dynamic Transformation  
CF Model and the Optimal Input-Output Length for the  
Long-Time Prediction Submodel
Due to the variable length of the Seq2seq model’s input and 
output variables, the candidate input and output lengths es-
tablished in this study with reference to the parameter set-
tings of other articles are as follows: input time steps (T = 
10, 20, 30, 40) and output time steps (T = 20, 30, 40, 50). The 
input time step is observed to be shorter than the output time 
step. For example, if the input time step is 30, the output time 
step may be 40 or 50. Therefore, 10 different input-output 
time-step pairs are tested. Adam is selected as the optimiza-
tion algorithm to control the gradient descent rule during the 
calibration process.

The predefined default settings for parameters in Pytorch 
are adopted ,e1 3(learning rate= -  . ,0 91b =  . ,0 9991b =  

,e1 8epsilon = -  ) .0decay =  The activation of an FC layer 
is a ReLU for the Encoder and Decoder. The performance of 
the Seq2seq model is affected by two factors: the number of 
neurons in the LSTM unit and model depth. Since these two 
influencing factors are coupled, it is challenging to determine 
the theoretically optimal combination of model parameters. 
Therefore, the optimal values for parameters other than the 
model depth and optimal input-output length are obtained 
using the one-layer stacked long-time prediction submodel. 
Then, the two-layer stacked long-time prediction submodel, 
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three-layer stacked long-time prediction submodel, and bidi-
rectional long-time prediction submodel are tested. Table 4 
contains the results of parameter tuning.

Table 5 provides the results for a long-time prediction 
submodel with different layers stacked and different input 
and output lengths. From Table 5, the following conclusions 
can be drawn: 
1)	 The mean values of MSE for the one-layer stacked/

two-layer stacked/three-layer stacked/bidirectional 
long-time prediction submodels are 0.02323, 0.02118,  
0.02081, and 0.02131, respectively. This indicates that 
the MSE of the model further decreases with the in-
crease of the number of model layers, and the more 
layers, the lower the model MSE. However, the mean 
MSE at convergence (MSETC) of the three-layer stacked 
long-time prediction submodel was 1.7% lower than that 
of the two-layer stacked long-time prediction submodel, 
whereas the mean one-epoch training time (OETT) in-
creased by 54.8%. Therefore, considering both the al-
gorithm and the accuracy and computation efficiency, 
a two-layer stacked long-time prediction submodel is 
chosen as the optimal structure. 

2)	 For each layer-stacked architecture, the MSE of the model 
increased gradually as the length of the input-output pair 
increased gradually. This is reasonable because a longer 
output length requires that the model predicts the long-
time variation in acceleration. The optimal structure for 
long-time prediction is 10–20 input-output pairs in which 
the last 1 s of velocity, space headway, and velocity differ-
ence is used to predict the next 2 s of acceleration based on 
the aforementioned experimental results.
Two key parameters of the short-time prediction submod-

el based on the Transformer need to be calibrated in com-
parison to the long-time prediction submodel: the number of 
the Encoder and Decoder layers and the number of attention 
heads for multihead attention, respectively. For the short-
time prediction submodel, the input of the model is the last 
10 time steps, and the output of the model is the next time 
step. In addition, the remaining parameters are identical to 
those of the long-term prediction model.

The results of the short-time prediction submodel of vari-
ous layers and the number of attention heads are presented 
in Table 6. These results indicate that the optimal number of 
attention heads and layers for the short-time prediction sub-
model is six and four, respectively.

The Seq2seq-Att model (dot product) is chosen for 
comparison with the long-time prediction submodel to 
assess the ability of different models to capture the inter-
action between multiple time steps of the same vehicle 
dynamic parameter. Figures 10 and 11 depict a visual-
ization result of the attention weights for the long-time 
prediction submodel and the Seq2seq-Att when predict-
ing velocity, space headway, and velocity difference. The 
darker red color of the smaller squares indicates that 
the vehicle dynamics parameters between the two time 

Parameters Value

The number of neurons in each LSTM unit 32

Hidden neurons of the FC layer (two FC layers) 32.8

Data batch 512

Loss function MSE

Table 4. The parameter settings of the long-time  
prediction submodel.

DTPI (0.1 s)

One Stacked Layer Two Stacked Layers Three Stacked Layers Bidirectional

MSETC OETT CE MSETC OETT CE MSETC OETT CE MSETC OETT CE

10–20 0.0166 3.7 20 0.0164 5.25 23 0.0162 6.76 27 0.0163 4.87 23

10–30 0.0182 3.93 29 0.0179 5.82 14 0.018 9.93 35 0.0182 5.29 17

10–40 0.0218 4.31 25 0.0209 6.57 22 0.0215 11.77 14 0.0213 5.87 17

10–50 0.0226 4.35 28 0.0233 9.30 29 0.0213 11.99 27 0.0229 6.12 22

20–30 0.0199 4.21 24 0.0194 8.65 29 0.0211 11.05 11 0.0183 5.52 19

20–40 0.0386 4.11 24 0.0203 6.54 33 0.0204 11.43 35 0.0194 6.12 23

20–50 0.0235 5.01 31 0.0226 7.02 24 0.0213 12.26 19 0.0228 6.4 23

30–40 0.0214 4.7 40 0.021 6.75 29 0.0206 11.87 20 0.0202 6.13 28

30–50 0.0234 4.55 35 0.0234 7.18 26 0.0221 10.99 20 0.0223 6.58 54

40–50 0.0263 1.29 43 0.0266 2.08 22 0.0256 2.85 20 0.0314 1.74 49

Mean value 0.02323 4.016 29.9 0.02118 6.516 25.1 0.02081 10.09 22.8 0.02131 5.464 27.5
DTPI: different time-step pairs of input-output; MSETC: MSE at Convergence; OETT: one epoch training time (unit: seconds); CE: convergence epoch.

Table 5. The performance of the results for the different length input and output.
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steps corresponding to the small square are more closely 
linked. It can be seen that both the Seq2seq-Att model 
and the long-time prediction submodel are able to de-
scribe the correlation of the same vehicle dynamic pa-
rameter at multiple time steps. However, the Seq2seq-Att 
model pays attention to the few recent historical inputs, 
whereas the long-time prediction submodel can pay at-
tention to many more historical inputs. Figure 11(b) 
demonstrates, using the space headway as an example, 
that the future space headway was influenced by the past 
eight time steps’ space headway and that the influence 
gradually increases with time. In contrast, the Seq2seq-
Att model identified only the effect of the past space 
headway on the future space headway for the three most 
recent time steps.

The Comparison of Different Levels of Traffic Flow
In this study, typical micro, meso, and macro traffic flow 
evaluation indicators are selected to evaluate the perfor-
mance of the proposed dynamic transformation CF model.

Microscopic Traffic Flow Simulation
Two CF pairs (the IDs of the FVs are 442 and 1989) are ex-
tracted from the dataset to evaluate the performance of the 
dynamic transformation CF model. Figure 12 illustrates the 
trajectories generated by the dynamic transformation CF 
model for vehicles 442 and 1989. It can be seen that the tra-
jectory of the FV is composed of the segmented trajectory 
generated by the long-time prediction submodel and short-
time prediction submodel. When the FV state satisfies the 
stability condition, the dynamic transformation CF model 
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FIG 10 (a)–(c) The attention weights visualization of the Seq2seq with the attention model.

Number of Attention 
Heads Two Layers Four Layers Six Layers

2 0.0059 0.0063 0.0052

4 0.0049 0.0048 0.0048

6 0.0067 0.0046 0.0057

Table 6. The results of the different layers and the number of 
attention heads for the short-time prediction submodel. 
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uses the long-time prediction submodel to simulate the tra-
jectory of the FV; when the FV state satisfies the acceleration 
or deceleration judgment condition, the dynamic transfor-
mation CF model uses the short-time prediction submodel 
model to simulate the trajectory of the FV.

Due to the complexity of the actual traffic flow, it should 
be noted that the traffic oscillation is not strictly divided 
into four phases. However, we can use the dynamic trans-
formation strategy to switch between the different phases 
flexibly. In addition, the RMSEs of the trajectory simulated 
by the dynamic transformation CF model are 4.78 m and 3.96 m, 
respectively, indicating that the dynamic transformation CF 
model can simulate CF behavior with great accuracy.

To comprehensively evaluate the performance of the dy-
namic transformation CF model, the ground-truth data of 
vehicle 1989 are used as the test benchmark, and several 
performance evaluation indexes, such as velocity and space 
headway, are chosen to test multiple models. Figure  13 (a) 
and (b) shows the velocity and velocity difference com-
parison of vehicle 1989. The RMSE of the velocity of IDM is 

1.60 m/s, the RMSE of the velocity of KNN is 2.07 m/s, the 
RMSE of the velocity of Seq2seq is 2.08 m/s, and the RMSE 
of the velocity of dynamic transformation CF is 1.18  m/s. 
The results indicated that the dynamic transformation CF 
model has a lower RMSE and better fitting performance 
compared to the other three models. In addition, all models 
are able to simulate the velocity of the FV accurately for the 
first 30 s, but all models become unstable in the second 30 s.  
Only the dynamic transformation CF model can consistently 
and accurately simulate the velocity of the FV. 

It can also be seen from Figure 13(a) that the Seq2seq 
model showed a negative velocity. It is abnormal that the 
Seq2seq model shows a negative velocity. The reason is that 
the Seq2seq model is a long-time prediction model, and the 
model outputs the acceleration for 10 time steps per run. 
Therefore, the accuracy of the Seq2seq model in simulat-
ing CF behavior when the vehicle is in the region of traffic 
oscillations cannot be guaranteed. This also proves that the 
Seq2seq model is deficient and needs to be improved. On 
the contrary, the dynamic transformation CF model outputs 
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FIG 11 (a)–(c) The attention weights visualization of the long-time prediction submodel.
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only the acceleration for one time step per run in simulating 
CF behavior when it is in the region of traffic oscillations, 
which can increase the accuracy in simulating CF behavior.

Figure 13 (c) and (d) compares the trajectory and space 
headway of vehicle 1989. Figure 13(c) demonstrates that 
while all models are able to simulate the trajectory of the 

FV, the IDM and Seq2seq CF models are unable to accurately  
simulate the vehicle’s reacceleration when it encounters 
traffic oscillation. Compared to KNN, IDM, and Seq2seq, the 
dynamic transformation CF model reduces the trajectory er-
ror by 60.79–66.95%. Figure 13(d) also reveals that the space 
headway errors of the IDM and Seq2seq CF models were 

FIG 14 Time-space diagram and hysteresis loop of first vehicle platoon (Lead vehicle 442). (a) Vehicle platoon (Dynamic transformation CF model).  
(b) Vehicle platoon heatmap (Dynamic transformation CF model). (c) Hysteresis loop (Dynamic transformation CF model). (d) Vehicle platoon (KNN).  
(e) Vehicle platoon heatmap (KNN). (f) Hysteresis loop (KNN). (g) Vehicle platoon (IDM). (h) Vehicle platoon heatmap (IDM) (i) Hysteresis loop (IDM).  
(j) Vehicle platoon (Seq2seq). (k) Vehicle platoon heatmap (Seq2seq). (l) Hysteresis loop (Seq2seq).
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significantly greater than those of the KNN and dynamic 
transformation CF model during the 35–60-s time periods. 
Moreover, although the KNN CF model performed well in 
trajectory simulation, its space headway error was still 
greater than that of the dynamic transformation CF model. 
Figure 13(e) compares the cumulative trajectory RMSE with 
other models. The cumulative RMSE of the dynamic trans-
formation CF model is approximately 2,000, whereas the 
range for the other three models is between 4,000 and 5,000, 
indicating that the dynamic transformation CF model is bet-
ter able to simulate CF behavior. 

Figure 13(f) is provided to further investigate the rela-
tionship between the trajectory and cumulative RMSE. The 
FV deceleration and acceleration phases are where the in-
tervals of a rapid increase in cumulative RMSE are most con-
centrated. In addition, asymmetric driving behavior (often 
referred to as a hysteresis loop) is a crucial aspect of CF be-
havior, revealing the asymmetric relationship between space 
headway and acceleration. Specifically, when the vehicle is 
in the acceleration state, its space headway is larger, where-
as when it is in the deceleration state, its space headway is 
smaller. Figure 13(g) and (h) demonstrates that the range of 
velocity and space simulated by the dynamic transformation 
CF model corresponds to the realistic data.

Mesoscopic Traffic Flow Simulation
The CF behavior is also significant for the mesoscopic traf-
fic flow, i.e., the vehicle platoon. For simulation experiments, 
the vehicle platoons with the preceding vehicle numbers 442 
and 1855 are extracted from the NGSIM dataset; these pla-
toons contain one and multiple stop-and-go waves, respec-
tively. In this section, first, the time-space diagrams of each 
platoon are presented to compare the performance of the 

proposed dynamic transformation CF model and the other 
three CF models when simulating the traffic oscillation. Sec-
ond, similar to the asymmetric driving behavior study of the 
microscopic flow simulation, the method that was proposed 
by literature [32] is used to plot the hysteresis loop of the ve-
hicle platoon. Third, the boxplot of RMSE for various CF mod-
els is provided.

The First Vehicle Platoon (Lead Vehicle 442)
Figure 14 illustrates the trajectory, trajectory heatmap, and 
hysteresis loop of four CF models. In terms of comparing 
the FV trajectories, the simulated trajectory by the dynamic 
transformation CF model is more consistent with the actual 
data. Moreover, compared to KNN, IDM, and Seq2seq, the 
dynamic transformation CF model reduces error by 7.71–
29.97%. Both indicate that the proposed dynamic transfor-
mation CF model has better platoon CF simulation stability.

The boxplot of the trajectory RMSE of the first vehicle pla-
toon is given in Figure 15(a). Figure 15(a) demonstrates that 
the interquartile range of the dynamic transformation CF 
model and IDM CF models is less than that of the KNN and 
Seq2seq CF models. Moreover, although the median of the 
RMSE of the IDM CF model is lower than that of the dynamic 
transformation CF model, the IDM has an outlier with a value 
of 21.20 m. It affected the IDM CF model’s stability. In contrast, 
the dynamic transformation CF model has no outliers, indicat-
ing that the dynamic transformation CF model simulates the 
CF behavior more stable than the IDM CF model.

The Second Vehicle Platoon (Lead Vehicle 1855)
The first vehicle platoon contains only one traffic oscil-
lation segment, while in real traffic scenarios, the vehi-
cle platoon may contain multiple traffic oscillations. The 

FIG 15 (a) and (b) The boxplot of the trajectory RMSE of two vehicle platoons.
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second vehicle platoon (lead vehicle 1855) is therefore 
extracted from lane 1 in the NGSIM dataset. Figure 16 
depicts the time-space diagram and hysteresis loop of 
the second vehicle platoon. Compared to KNN, IDM, and 
Seq2seq, the dynamic transformation CF model reduces 
error by 10.39–29.29%. The dynamic transformation CF 

model accurately simulates the trajectory of the fifth FV in 
Figure 16(a), whereas other models have larger errors. In 
addition, only the dynamic transformation CF model repli-
cates the two oscillations in the hysteresis loop simulation, 
and the other three models simulate them poorly in the 
hysteresis loop simulation.
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FIG 16 The time-space diagram and hysteresis loop of the second vehicle platoon (lead vehicle 1855). (a) Vehicle platoon (dynamic transformation CF 
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(KNN). (e) Vehicle platoon heatmap (KNN). (f) Hysteresis loop (KNN). (g) Vehicle platoon (IDM). (h) Vehicle platoon heatmap (IDM). (i) Hysteresis loop 
(IDM). (j) Vehicle platoon (Seq2seq). (k) Vehicle platoon heatmap (Seq2seq). (l) Hysteresis loop (Seq2seq).

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on May 31,2024 at 01:11:58 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  193  •  JANUARY/FEBRUARY 2024IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  192  •  JANUARY/FEBRUARY 2024

Figure 15(b) depicts a boxplot of the second vehicle platoon’s 
trajectory RMSE for each of the four CF models to determine 
the overall error of the second vehicle platoon. For the second 
vehicle platoon, the interquartile ranges of the dynamic trans-
formation CF model and IDM CF models were smaller than 
those of the KNN and Seq2seq models, and the interquartile 
range of the KNN CF model was the largest of the four CF mod-
els, indicating that the RMSE of the trajectory simulated by the 
KNN CF model for each vehicle is distributed unevenly. More-
over, the minimum and maximum RMSE values of the trajec-
tory simulated by the dynamic transformation CF model are less 
than those of the other three CF models.

The Virtual Vehicle Platoon Simulation
To further evaluate the performance of the dynamic 
transformation CF model in simulating a large number of 
FVs, simulation tests of virtual vehicle platoons were con-
ducted using the following simulation parameters. We as-
sume that the length of the road is 5,000 m, that the initial 
velocity is 40 km/h, and that 60 vehicles enter the ring road 
sequentially with a 30-m space headway between each 
vehicle. Additionally, two traffic disturbances are intro-
duced into the first vehicle. The velocity of the first vehicle 
will slow down to 0 km/h and idle for 10 s before accel-
erating when it is under traffic disturbance. Except for 
the first vehicle, all other vehicles follow the CF strategy 
planned by the dynamic transformation CF model, and no 
additional traffic disturbances are introduced. The simu-
lation was implemented, and Figure 17 (a) and (b) depict 
the time-space diagram and time velocity of the virtual 
vehicle platoon, respectively. The dynamic transformation 
CF model is found to accurately represent the entire traffic 
oscillation propagation process in traffic flow.

Local stability analysis and string analysis are typical 
methods for evaluating the stability of model-driven CF 

models. Due to the absence of a unique mathematical ex-
pression for the data-driven CF model, it is impossible to 
analyze the local stability and string stability of the dynam-
ic transformation CF model with mathematical methods. 
Nevertheless, the local and string stability of the dynamic 
transformation CF model could be analyzed according to 
the definition of local stability and string stability. As de-
picted in Figure 17(b), the FV’s velocity recovers gradually 
after encountering a traffic disturbance, indicating that 
the dynamic transformation CF model is locally stable. As 
depicted in Figure 17(a), the fluctuation amplitude of the 
FV simulated by the dynamic transformation CF model fol-
lowing a traffic disturbance decreased gradually over time. 
Taking the first traffic disturbance shown in the black el-
lipse as an example, the FVs encountered the disturbance 
at a minimum velocity of 0–10 km/h during the time range 
of 21–55  s, at a minimum velocity of 10–20  km/h during 
the time range of 55–75 s and at a minimum velocity of 
20–30 km/h during the time range of 75–115 s. The afore-
mentioned experimental results indicate that the dynam-
ic transformation CF model is string stable. On the other 
hand, as shown in Figure 17(b), during the speed recovery 
process, the speed of some vehicles may exhibit a sharp de-
celeration. This indicates that there is room for improve-
ment in our model.

Macroscopic Traffic Flow Simulation
In the virtual simulation of CAV testing, a large number of 
human-like background vehicles need to be generated to 
simulate the real traffic flow, and the CF model is a cru-
cial tool for simulating the real traffic flow. To evaluate 
the accuracy and effectiveness of the dynamic transforma-
tion CF model in simulating large-scale traffic flow, all CF 
pairs of lanes 1 and 4 were extracted from the NGSIM 
dataset between 7:50 a.m. and 8:05 a.m. Figure 18 (a)–(d) 
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FIG 18 The velocity-time-space diagram and flow-density diagram of real data and dynamic transformation CF model with Lane 1 and Lane 4 data were 
extracted from the NGSIM dataset.
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depicts the results of velocity-time-space diagrams for lanes 
1 and 4. It can be seen that the dynamic transformation CF 
model can replicate many traffic oscillations on lane 1 and 
few traffic oscillations on lane 4 well. Compared to KNN, 
IDM, and Seq2seq, the dynamic transformation CF model  
reduces the lane 1 error by 1.59–11.40%. Compared to KNN, 
IDM, and Seq2seq, the dynamic transformation CF model 
reduces the lane 4 error by 4.80–18.26%. The flow-density 
diagrams of lanes 1 and 4 are shown in Figure 18 (e) and (f) 
using the Greenshields model. They indicate that the veloc-
ity and trajectory simulated by the dynamic transformation 
CF model of lanes 1 and 4 are approximately the same as the 
actual velocity and trajectory.

Additionally, the flow, density, and average velocity of 
the remaining three CF models are calculated. According to 
Table 7, the RMSE of the three parameters calculated by the 

dynamic transformation CF model is smaller than that of the 
KNN, IDM, and Seq2seq models.

On the other hand, we evaluate the performance of 
four distinct CF models. In accordance with the defini-
tions of training time and inference time in DL models, 
the inference times of the dynamic transformation CF 
model and Seq2seq models are calculated as the runtime 
when simulating large-scale traffic flow. Table 8 provides 
a comparison of the runtime results of the four CF models. 
It demonstrates that the runtime of the dynamic transforma-
tion CF model (Inference) was less than the KNN and IDM 
models but higher than the Seq2seq (Inference) model. The 
possible reason is that the long-time prediction submodel 
and Seq2seq output the FV acceleration for multi-time steps 
simultaneously, whereas the short-time prediction sub-
model, KNN, and IDM output only the FV acceleration for a 
single time step at once. The difference between the com-
putational efficiencies of the different CF models is further 
magnified when simulating the large-scale traffic flow. In 
addition, if the training time of the DL model is calculated, 
the dynamic transformation CF model proposed in this ar-
ticle required an additional 258.03 s for training, while the 
Seq2seq CF model required an additional 44.09 s for train-
ing. This is because the dynamic transformation CF model 
contains the long-time prediction submodel and short-time 
prediction submodel. Thus, it is more complicated than the 
Seq2seq CF model.

Conclusion
This article investigates why the IDM CF model cannot 
accurately simulate the traffic oscillation and demon-
strates that data-driven CF models cannot simultane-
ously account for the inherent correlation between the 
various vehicle dynamic parameters at the same time 
step. A dynamic transformation strategy is proposed to 
divide the traffic oscillation into four phases: coasting, 
deceleration, acceleration, and stationary. In the pro-
posed framework, a novel dynamic transformation CF 
model based on the two submodels is proposed to simu-
late the various phases of the traffic oscillation. The first 
submodel is based on a modified Seq2seq and takes into 
account the inherent correlation between the various 
vehicle dynamic parameters at the same time step. The 
second submodel, which is based on the Transformer 
model, captures acceleration changes during accelera-
tion and deceleration phases more accurately than other 
data-driven CF models.

To validate the proposed dynamic transformation CF 
model, a DL- and traffic flow-based evaluation framework 
comprising various traffic parameters is developed. In the 
DL simulation test, the ability of various data-driven CF 
models to capture long-time sequence data is compared, 
with the results indicating that the proposed model per-
formed better. In addition, the dynamic transformation CF 

RMSE of Flow, Density, and Velocity of Dynamic Transformation

Lane 1 Lane 4

Q p V Q p V

500.54 20.16 17.56 598.7 21.19 16.07

RMSE of Flow, Density, and Velocity of KNN

Lane 1 Lane 4

Q p V Q p V

523.48 20.22 18.46 602 21.8 17.25

RMSE of Flow, Density, and Velocity of IDM

Lane 1 Lane 4

Q p V Q p V

544.26 20.82 19.64 771.88 24.89 18.08

RMSE of Flow, Density, and Velocity of Seq2seq

Lane 1 Lane 4

Q p V Q p V

518.43 20.68 20.11 762.98 24.86 18.38
The bold values are the results obtained by the proposed model.

Table 7. The RMSE of flow (vehicles/h), density (vehicles/km), 
and velocity (km/h) of four CF models.

Lane ID

Runtime of Dynamic 
Transformation CF 
Model (Inference)

Runtime 
of KNN

Runtime 
of IDM

Runtime of 
Seq2seq 
(Inference)

Lane 1 115.98 342.3 135.55 81.74

Lane 4 65.21 221.58 88.37 62.44 

Table 8. The comparison of different CF models.
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model is compared to three representative models (KNN, 
IDM, and Seq2seq) from micro, meso, and macro perspec-
tives. In the microscopic simulation, the acceleration, ve-
locity, trajectory, and space headway of various CF models 
are evaluated. In the mesoscopic simulation, a comparison 
is made in the trajectory generation of the vehicle platoon 
and hysteresis loop. Furthermore, the virtual vehicle pla-
toon generation simulation is conducted to validate the 
local and string stability of the dynamic transformation 
CF model. In the macroscopic simulation, all CF pairs are 
simulated for 15 minutes on a single road by four CF mod-
els; the trajectory, flow, and density are used to test the 
different CF models. In addition, the runtime of various 
CF models is compared. The experimental results demon-
strate that not only is the proposed dynamic transformation 
CF model more accurate than the other three CF models, 
but its simulation efficiency is also superior.

It is necessary to further combine other traffic dy-
namics parameters to divide the four phases of the traffic  
oscillation more accurately and dynamically so that it 
can be utilized more effectively for the simulation of real-
istic CF behavior and the generation of large-scale traffic  
f low. The framework proposed in this article is an impor-
tant foundation for future research.
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