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Abstract—Car-following (CF) behavior is a fundamental of traffic flow modeling; it can be used for the virtual test-
ing of connected and automated vehicles and the simulation of various types of traffic flow, such as free flow and
traffic oscillation. Although existing CF models can replicate the free flow well, they are incapable of simulating
complicated traffic oscillation, and it is difficult to strike a balance between accuracy and efficiency. This article
investigates the error variation when the traffic oscillation is simulated by the intelligent driver model (IDM). Then,
it divides the traffic oscillation into four phases (coasting, deceleration, acceleration, and stationary) by using the
space headway of multiple steps. To simulate traffic oscillation between multiple human-driven vehicles, a dynamic
transformation CF model is proposed, which includes the long-time prediction submodel [modified sequence-to-
sequence (Seq2seq)] model, short-time prediction submodel (Transformer), and their dynamic transformation strat-
egy]. The first submodel is utilized to simulate the coasting and stationary phases, while the second submodel is
utilized to simulate the acceleration and deceleration phases. The results of experiments indicated that compared
to K-nearest neighbors, IDM, and Seq2seq CF models, the dynamic transformation CF model reduces the trajectory
error by 60.79-66.69% in microscopic traffic flow simulations, 7.71-29.91% in mesoscopic traffic flow simulations,
and 1.59-18.26% in macroscopic traffic flow simulations. Moreover, the runtime of the dynamic transformation CF

model (Inference) decreased by 14.43-66.17% when simulating the large-scale traffic flow.

he car-following (CF) model is an essential compo-

nent of traffic flow simulation for the human-driven

vehicle (HV) and connected and automated vehicle

(CAV). Some CF models have been widely used in
mixed traffic flow modeling [1], virtual testing of CAV [2],
[3], [4], [5], [6], [7], [8], and the trajectory planning of CAV
(91, [10], [11], [12], [13], [14].

Introduction

Currently, even though the existing CF models [16], [17] can
simulate the free flow well, they suffer from the following
two issues. First, existing CF models may not perform well
when simulating traffic oscillation, also known as stop-and-
&go waves [17], [18], [19]. Because traffic oscillation exhibits
frequent acceleration and deceleration behavior, existing CF
models cannot accurately simulate the change in CF behav-
ior at each time step. In addition, there may be significant
errors when using the CF model to replicate traffic capacity,
vehicle energy consumption, and the formation and dissipa-
tion of stop-and-go waves in the traffic oscillation region.
The second issue is that the existing data-driven CF models
may necessitate costly computational resources and consid-
erahle computation time when generating large-scale traffic
flow [20]. They both severely restrict the applicability of the
CF models.

To resolve the issues mentioned previously, this article
investigates in depth the reasons why the model-driven
CF model and data-driven model cannot simulate the traf-
fic oscillation more accurately and uses the space headway
of multiple steps to classify the traffic oscillation into four
phases: coasting, deceleration, acceleration, and stationery.
A novel data-driven dynamic transformation CF model con-
sisting of the long-time prediction submodel based on the
modified sequence-to-sequence (Seq2seq) model and the

short-time prediction submodel based on the Transformer

[21] is then proposed to achieve a balance between accu-

racy and efficiency for the simulation of traffic oscillation

between multiple HVs. Among them, the long-time predic-
tion submodel is responsible for the coasting and stationary
phases simulation, and the short-time prediction submodel
is responsible for the acceleration and deceleration phases
simulation. To validate the proposed dynamic transforma-
tion CF model, CF pairs are extracted from the Next Gen-
eration Simulation (NGSIM) dataset to compare the ability
of different data-driven CF models to extract the features of

CF behavior at past multiple time steps and to comprehen-

sively and objectively evaluate the dynamic transformation

CF model and three other representative CF models from

micro, meso, and macro perspectives. In addition, the run-

time required to generate large-scale traffic flow for each of
the CF models is compared.
In summary, the contributions of this article are as follows:

1) This article provides an in-depth analysis of the error
variation in the IDM simulation of traffic oscillations. By
simplifying the expression of the IDM in the deceleration
phase, it is shown that the derivative function of the Ki-
nematic acceleration is a monotonically decreasing trend,
i.e., the simulated vehicle position is greater than the ac-
tual position. The error accumulation and inequality prop-
erty then prove that the trajectory error increases when
IDM simulates the vehicle acceleration behavior.

2) A transformation strategy that dynamically divides realis-
tic traffic oscillation into four phases, including coasting,
deceleration, acceleration, and stationary, is designed.
Analyzing the NGSIM dataset, the space headway of mul-
tiple steps as the more direct traffic parameter is selected
as the phase judgment condition of the traffic oscillation.
To the best of our knowledge, no previous studies have
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decomposed traffic oscillations into different phases us-

ing micro vehicle dynamic parameters.

3) A dynamic transformation CF model consisting of two
submodels is proposed. The long-time prediction sub-
model hased on the modified Seq2seq architecture is
utilized for the simulation of the coasting or stationary
phases, whereas the short-time prediction submodel
based on the Transformer model is utilized for the simu-
lation of the acceleration or deceleration phases. Our
proposed model is the first model that attempts to simu-
late traffic oscillation using multiple submodels as op-
posed to existing models.

The rest of the article is organized as follows. The “Re-
lated Work” section briefly reviews two different types of
CF models (data-driven and model-driven modeling) and
related research on traffic oscillation. The “Problem De-
scription” section describes two issues with existing CF
models; the IDM CF model is unable to accurately simulate
traffic oscillation, and the deep learning (DL) CF model
does not account for the inherent correlation between dif-
ferent vehicle dynamic parameters at the same time step. In
the “Methodology” section, the proposed dynamic transfor-
mation CF model is introduced in depth, and the dynamic
transformation strategy for the two submodels of the dy-
namic transformation CF model is designed. The dynamic
transformation CF model is validated and tested in the

Table 1. Major notations.

Parameters Definition

t Current time step

At Time step of two adjacent data points
T, Time steps of historical data

T; Time steps of prediction data

a Acceleration of the preceding vehicle
a Acceleration of the FV

vy Velocity of the preceding vehicle

7 Velocity of the FV

Dy Position of the preceding vehicle

D Position of the FV

Ap Space headway

Av Velocity difference

e Max acceleration of the FV

T Comfortable deceleration of the FV
S Space headway at stationary

T Desired time headway

Sy Desired space headway

Vy Desired velocity

ay Desired acceleration

“Experiments” section. The “Conclusion” section con-
cludes the article.

Related Work
Before delving into analysis, the notations used are defined
as shown in Table 1.

Model-Driven CF Models

The model-driven CF models reveal the mapping relation-
ships between the microscopic parameters of vehicle dy-
namics with the functional expressions. The well-known
model-driven CF models are the full velocity difference
CF model, the Newell CF model, and the intelligent driver
model (IDM) CF model [22], [23], [24]. They have been used
for traffic oscillation analysis because each parameter of
the model-driven model has an explicit physical meaning.
The Newell CF model was used on traffic oscillation mea-
surements in the frequency domain of the trajectory [25].
Then, with the help of the describing-function approach,
it was enhanced to mitigate the traffic oscillation and de-
crease the fuel consumption of vehicles [26]. Furthermore,
the time domain of the trajectory was considered to cali-
brate the parameters of the Newell CF model [27]. To alle-
viate the traffic oscillation, the IDM CF model was used as
the stability criterion to develop the oscillation criterion to
identify different categories of traffic oscillation [28].

Data-Driven CF Models

The data-driven CF model is primarily constructed using
machine learning (ML), reinforcement learning (RL), and
DL. K-nearest neighbors (KNN), fixed-radius NN (FRNN),
and deep deterministic policy gradient (DDPG), three
representative ML and RL algorithms, have been widely
used in CF behavior modeling [20], [29], [30], [31], [33],
[34], [35], [36], [37]. Compared to the CF models based on
ML and RL, DL-based CF model research has been used
longer and produced more results. Some of the represen-
tative data-driven CF models are summarized in Table 2.
Literature [38], [39], [40], [41], [42] used the artificial neu-
ral network (ANN) to simulate CF behavior. The major dif-
ferences between them are that the input and output of
each model differ due to the different influences consid-
ered by the model, such as instantaneous reaction delay
[41]. In addition, due to limitations imposed by the devel-
opment of DL, different models employed distinct optimiz-
ers. In the literature [42], for instance, the particle swarm
optimization algorithm and backpropagation were used to
train the model [38], [39], [40], [41].

As the cutting-edge architecture of the DL model,
the recurrent NN (RNN) has been widely implemented
in numerous research fields. Due to the internal state (or
memory) flow mechanism within the RNN, it processes
time-series data more efficiently. Zhou et al. [18] proposed
a CFmodel based on the RNN to simulate traffic oscillation
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more precisely. To overcome the gradient vanishing and
explosion problem of the vanilla RNN model, the gated re-
current unit (GRU) and long short-term memory (LSTM)
were utilized to simulate CF behavior, and asymmetric
driving behavior was also considered [43], [44]. However,
the RNN cannot process the input-output sequences of
unequal length. Therefore, Ma and Qu [19] applied the
Seq2seq architecture to predict the multi-time steps of
the CF. Considering the inefficiency of the conventional
CF model in generating vehicle platoon trajectory gener-
ation, Lin et al. [45] built a unidirectional interconnected
LSTM CF model to simulate CF behavior. Additionally,
Mo et al. [17] proposed a CF model that incorporated
model-driven modeling and DL and validated the model’s
performance under the condition of insufficient training
data samples. Several popular DL architectures, such as
graph attention networks, generative adversarial net-
works, and Transformer, are [16], [46], [47] are also used
for CF behavior modeling. Specifically, Zhou et al. [48]
proposed a data-driven framework that was composed of

Table 2. A summary of existing data-driven GF models.

a signal processing method and short-time Fourier trans-
formation and can be applied to analyze the disturbance
amplification in CF behavior.

The aforementioned CF models can be summarized as
follows. On the one hand, traffic oscillation studies based
on model-driven models may not always be applicable to
complicated environments, and more realistic or flexible
CF models should be employed to investigate the traffic os-
cillation. On the other hand, because the traffic oscillation
contains many acceleration and deceleration behaviors,
even though the existing data-driven CF models can simu-
late a more complex environment than the model-driven
CF models, the accuracy of simulating the traffic oscillation
with them still cannot be guaranteed. It can also be seen
from Table 2 that some proposed data-driven methods
have not been evaluated on the traffic oscillation. In ad-
dition, it is concluded that simulating the whole process of
traffic oscillation formation and dissipation with a single
CF model is difficult, as indicated by [49] that different CF
models should be used to simulate the different states of

Models Inputs Outputs Time Steps Tested on Traffic Oscillation
ML KNN [28] Ap, MD of PV MD of FV Single step Yes
Gipps + Random Forest [29] AD, AV, V, & vy Single step Yes
FRNN [30] Ap, MD of PV MD of FV Single step No
RL DDPG [31] Ap, AV, V; a Single step No
Improved DDPG [32] Ap, AV, v, 7 Single step No
DDPG [33] AD, AV, v a Single step Yes
DDPG [34] Ap, AV, V; a Single step Yes
DDPG [35] Ap, AV, V; a Multistep No
DL ANN [36] AD, AV, v, Vy a Single step No
ANN [37] Ap, V, 7 Single step Yes
ANN [38] Ap, AV, v, RD a Single step No
ANN [39] AD, AV, v a Single step No
ANN [40] Ap, Av a Single step No
GRU [41] Ap, AV, V; vy Single step No
LSTM [42] Ap, AV, v; 7 Single step Yes
Seq2seq [17] Ap, AV, V; a Multistep Yes
LSTM [43] State of FV/PV State of FV Single step Yes
Graph attention network [14] Vi @ Vi @ St 3 Vg AD a Single step No
IDM + ANN (or LSTM)/QVM + Ap, AV, v; a Single step No
ANN (or LSTM) [14]
RNN [16] MD of PV MD of FV Single step Yes
Transformer [44] Ap, AV, v, Vi Multistep No

The last column represents whether the model is tested on the traffic oscillation region. State includes the acceleration, velocity, and trajectory. GRU: gated recurrent unit; LSTM: long short-term
memory; MD: moving distance; RD, reaction delay; PV, preceding vehicle; FV, following vehicle; OVM: optimal velocity model.
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a realistic traffic oscillation. However, to the best of our
knowledge, few studies have considered how to decom-
pose the traffic oscillation and select the appropriate CF
model for each stage.

Problem Description
Analysis of IDM Simulated the Traffic Oscillation

Deceleration

The representative model-driven CF model, IDM, which is
formulated as the following equation, is used to simulate the
CF behavior of the following vehicle (FV):

_ _(VrY _(Sa Q]
as=ama1- (L) (] 1)
where the s4 is defined as follows:

@

vy AV
Sd:S()"r‘maX(O,UfT"F / )

2 v Amax d(‘()m

Typically, the FV first needs to decelerate and then ac-
celerate when passing through a traffic oscillation. When
traffic becomes more congested, the FV may come to a
complete stop. The deceleration phase occurs when the
velocity of the FV is gradually reduced to zero, and the sta-
tionary phase occurs when the velocity of the FV remains
at zero. The acceleration phase occurs when the velocity
of the FV accelerates to the desired velocity, i.e., acceler-
ates until the preceding vehicle and the FV are relatively
stationary. In addition, because the vehicle stopping posi-
tion is related to the vehicle deceleration phase, the errors
in the deceleration and acceleration phases are the focus
of this article.

Model-Driven Modeling Methods

When the vehicle is in the deceleration phase, the term
@max (1= (v, (1)/va)’) describing the free-flow CF behavior
in the IDM can be ignored. Then, (1) can be simplified to

7 B

According to the definition of the optimal space headway
sq, there are two functional expressions for acceleration

Ay = dmax

2
g (S0
amdx( Ap)
VAV

2 v A max dcom

Ap

ar=
/ so+v,T +
— A max

For the nonemergency braking deceleration phase, the
inequality v,7T + (U rAV/2Y amaxdmm) >0 is constant, and
the steady-state term so+v,7 can be ignored [50]. Then,
(4) can be further simplified to

(v,) M°
- 4'dcom(Ap)2 . (5)

vrAY )2 _

Ay = —max
( QAp v Amax d(‘om

When the FV is under traffic disturbance and the pre-
ceding vehicle is stationary, Av=wv,, and then () is trans-
formed into the following equation:

2

(6)

a
com

afZ—d

In (6), a=(v,F/2Ap is the kinematic deceleration,
which indicates that the braking distance is equal to the
space headway Ap. For the nonemergency braking decel-
eration phase, the absolute value of the actual deceleration
|ay|is less than the kinematic deceleration a. Thus, we can
get the following inequality: a?/dcom < a; simplifying the
inequality yields a < dcom. It indicates that the actual decel-
eration of the FV simulated by IDM is less than the comfort-
able deceleration at the beginning of the deceleration phase.
Furthermore, the partial derivative of a with respect to ¢ is

da _  va

i = Bpdem (Feom = @)- ™

Equation (7) and @ < dcom represent that the derivative
function of the kinematic acceleration is a monotonically
decreasing trend and indicate that the actual deceleration
gradually approaches the comfortable deceleration with
time. In contrast, human drivers usually adopt the larger de-
celeration rather than the comfortable deceleration during
the deceleration phase hecause they cannot accurately as-
sess the risk of collision with the FV.

According to the conclusion obtained from the analysis of
the deceleration phase, note that the simulated trajectory
of the FV by the IDM CF model is s{, and the real trajectory
of the FV is so. Then, the following equation holds:

§1> 82 ®)

Acceleration

In addition, according to the property that the direction of an
inequality does not change when both sides are multiplied
by a positive number but changes when multiplied by a neg-
ative number, the following holds:

2

2
— Sa _ Sa
am(55) < =amm 5] ©)

where the Ap, is the space headway simulated by the IDM
when the preceding vehicle and FV are stationary, and the
Ap: is the actual space headway when the preceding vehicle
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and FV are stationary. Thus, the vehicle position simulated
by IDM obtained by numerical integration is lower than the
ground-truth data.

Analysis of Existing DL CF Models
The existing DL CF models can be expressed by the follow-
ing function equation:

0=F(I) (10)

where the function /' is the abstract function expression,
and the set I is the input of CF models, which generally
consists of several vehicle dynamic parameters, such as ac-
celeration, velocity difference, space headway, etc. O is the
output of CF models, usually the velocity or acceleration. 7
and O can be defined as follows:

I={(si(t—10),...,sa(t—10))} (11)
O={(s1(t+i),...,sm(L +1)}. (12)

For the short-time prediction submodel based on
the DL, the index parameter i of sets I and O are
{t=T,t =T, +At,...,0} and ¢+ AL, respectively, which
indicates that it takes the historical 7, time-step vehicle
dynamic parameters to predict the vehicle dynamic param-
eter of the FV at the next time step. s is the different vehicle
dynamic parameters. n and m are the number of vehicle
dynamic parameters. One typical short-time prediction sub-
model consisting of the two-layer RNN is shown in Fig-
ure 1(a), and its formulation is as follows:

O(t+At)=F(I(t,t — At,...,t —T)p)). (13)

For the long-time prediction submodel, the index param-
eters i of sets I and O are {t—T),,t —T,+At,...,1} and
{t+At, 1 +2At,...,t + Ty}, respectively, which means that
it takes the 7}, historical time-step vehicle dynamic param-
eters to predict the acceleration or velocity of the FV at the
Ty time steps. One typical long-time prediction submodel
based on the Seq2seq with the RNN as the computing unit is
shown in Figure 1(b), and its formulation is as follows:

O(t+ At 1+ 2AL,...,t+Ty)= F(I(L,t = AL, ..., t = T)p)). (14)

It is concluded that the existing DL, CF models may not
consider the inherent correlation between the output (accel-
eration) and the inputs (velocity, space headway, and veloc-
ity difference) at the same time step.

Methodology

The overall framework diagram of this article is given in
Figure 2. Based on the analysis of the two issues mentioned
previously, it is necessary to divide the traffic oscillation into

distinct phases and simulate them using distinct CF mod-
els. Therefore, the data-driven dynamic transformation CF
model is proposed, which consists of two major submodels.
The first submodel is the long-time prediction submodel,
which is based on the modified Seq2seq architecture and
is used to predict the coasting and stationary phases. The
long-time prediction submodel is the multistep prediction
model. The second submodel is the short-time prediction
submodel, which is derived from the Transformer model
and is used to predict the acceleration and deceleration
phases. The short-time prediction submodel is the single-
step prediction model.

In terms of input and output selection for the model,
Table 2 reveals that most studies used velocity, space
headway, and velocity difference as model inputs and
acceleration as the model output. Consequently, the in-
puts and outputs of the long-time prediction submodel in
the dynamic transformation CF model proposed in this
article are the same as in most studies. In addition, the
inputs of the short-time prediction submodel include the
acceleration of the FV for the reasons explained in the
following sections.

A Dynamic Transformation Strategy for

the Traffic Oscillation Simulation

According to [51], the division of four phases of traffic oscil-
lation depends on the asymmetric traffic theory. However,
it remains unclear how micro vehicle dynamic parameters

r

| RNN-CU |
) )

| RNN-CU_[—»{ RNN-CU |>oee
L) )

| -1, |

| RNN-CU | eee

|I(t— Tp+ At)l YY)
(a)

| O(t+An) || O(t+2a1) | eee

A

Decoder

+ Encoder
| I(t=Tp) | (=T, *Al)  eee

FIG 1 An illustration of the short/long-time prediction CF model. (a) The
short-time prediction CF model (b) The long-time prediction CF model.
RNN-CU: recurrent neural network-computation unit.
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can be used for four-phase identification. The space head-
way of multi-time steps (7hawy) is used to try to distinguish
four phases of the traffic oscillation because it is more stable
in a time segment than velocity difference and acceleration.
As shown in Figure 3, by analyzing the distribution of the
space headway at the stationary phase in the NGSIM dataset,
the approximately normal distribution function of the space
headway of the stationary phase is X ~ N(24.72,627.0016).
As a determination condition for the stationary state in the
traffic oscillation, the 90% probability value of the approxi-
mately normal distribution is calculated, i.e., 31.23 ft, to im-
prove the generalization capability of the model.

Figure 4 is a schematic diagram illustrating the traffic
oscillation in relation to the 7hawy. The distinction between
the stationary state and the other states is based on whether
the space headway at each time step in 7hawy is fewer than
31.25 ft. The vehicle is in the deceleration phase when the
space headway at each time step in 7hawy is greater than
31.25 ft and 7hawy is monotonically decreasing. The vehicle
isin the acceleration phase when the space headway at each
time step in 7hawy is greater than 31.23 ft and 7hawy is mono-
tonically increasing. A vehicle is determined to be in a stable
state if the space headway at each time in 7hawy is greater
than 31.23 ft and there is no monotonicity in 7hawy-

The dynamic transformation mechanism is described
in Algorithm 1 with reference to the definitions of the four
phases of traffic oscillation.

The Long-Time Prediction Submodel Based

on the Modified Seq2seq

In this section, a novel framework based on the conventional
Seq2seq is designed, and then the conventional Seq2seq is
improved to obtain the long-time prediction submodel in the
dynamic transformation CF model.

Novel Long-Time Prediction Submodel Framework

As illustrated in Figure 5, the proposed long-time prediction
submodel framework comprises two modules, with the com-
putation layer (CL) being the conventional Seq2seq.

The first module predicts the velocity, space headway, and
velocity difference at 7'y time steps using the velocity, space
headway, and velocity difference at 7), time steps, respective-
ly. It can be formulated as follows:

O(ws(t+At),..,vr(t+Tp)=FI(vs(t),...,0r(t=Tp)))

(15)
O(Ap(t+AL),...,Ap(t+Ty) = F(I(Ap(L), ..., Ap(t = T))))
(16)
O(Av(t+AL),...,Av(t+Ty)) = F(I(Av(t),...,Av(t—T)))).
(17)
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FIG 3 The approximately normal distribution of the space headway at the
stationary phase. Normal Dist.; normal distribution.
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FIG 4 The schematic diagram of the traffic oscillation division according to the Thguy.
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The second module predicts the acceleration at 7'y time
steps with the velocity, space headway, and velocity differ-
ence at 7'y time steps obtained from the prediction of the first
module. It can he formulated as follows:

Algorithm 1: The dynamic transformation strategy.

Input: Velocity of the FV v;, space headway Ap, velocity difference Av, total
time steps of the trajectory of the preceding vehicle L,y

Output: Acceleration of the FV a; velocity of the FV v, the position of the
preceding vehicle py
i is the current time step, which is initially set to 0.
for i <Lp:
Picking the history of 20 time steps of Ap that is denoted as Thaw from
the current time step ¢
if (Tawy = 31.23) and ( Trgwy /)
a(t+ At)=STP(vi, Ap, AV)
else if (Thay >31.23) and (Thaw \)
a(t+ At)=STP(vi, Ap, AV)
else if (Thay = 31.23) and Trgwy has no monotonicity
ar(t+ At)=LTP(vi, Ap, AV)
else if ( Ty <31.23)
ar(t+ At)=LTP(v;, Ap, Av)
end if
Update v; and pr with ay
end for

O(as(t+Ar),...,ar(t+Tr)=F(O(v(t+At),...,a(t+Ty)),
O(Ap(L+AL),...,Ap(t+Ty)),

O(Av(t+AL),...,Av(t+T))).
(18)

The most critical issue in the proposed long-time pre-
diction submodel framework is how to construct a CL as a
CL can be constructed from various DL modules, such as
the backpropagation NN (BP-NN), RNN, and Seq2seq. Five
representative DL models [BP-NN, RNN, LSTM, Seq2seq,
and Seq2seq with attention mechanism (Seq2seq-Att)| are
used as the CL to build the long-time prediction submodel
to objectively evaluate their performance. The NGSIM
dataset, US101, lane 2 subset (the ID of the preceding
vehicle is 1989, and the ID of the FV is 2035) is extracted
for testing. In addition, the input data length and output data
length are both set as 10. The CF data preprocessing and
noise filtering processes can he seen in [52].

The min-max normalization that is expressed as follows
is used to speed up model convergence:

r X — Tmin

Zmax — Lmin

x (19)
where x represents the ground-truth data, 2’ denotes the
normalized data, and the Zmin and Zmax are the min value
and max value of z, respectively. In addition, the root mean
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FIG 5 The framework of the long-time prediction submodel.
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square error of trajectory (RMSET) is selected to compare
the performance of the different CLs. The formulation of the
MSET is as follows:

(20)

where N represents the number of samples, and y; and 3;
are the ith ground-truth trajectory, and prediction trajec-
tory, respectively.

MSET and time-space diagrams for different models or
CLs are given in Table 3 and Figure 6, respectively. The trajec-
tories of BP-NN CF and RNN CF are not provided due to their
excessive MSET and distorted simulated trajectories. Com-
pared to other data-driven CF models, the long-time predic-
tion submodel framework performed better. Specifically, the
MSET of the long-time prediction submodel, which is based
on the BP, outperformed the Seq2seq CF model and yielded
results similar to the Seq2seq-Att CF model. It demonstrated
the performance of the long-time prediction submodel.

On the other hand, Figure 6(a) demonstrates that even
the long-time prediction submodel, which is based on the
Seq2seq-Att, is incapable of simulating the trajectory accu-
rately when the stop-and-go wave emerged, and the MSET is
still relatively high. Here are two explanations.

1) The conventional attention mechanism (i.e., the dot prod-
uct) does not consider the inherent correlation between the
vehicle dynamic parameters at the same time steps.

2) The conventional Seq2seq simply repeats the hidden state
as the Decoder’s inputs, so the Decoder receives the same
input at each time step.

A New CL Based on the Seq2seq-Att

Figure 7 shows a new CL designed for the long-time pre-
diction submodel. The proposed CL utilizes the 1D convo-
lutional operation to extract the coupled temporal features
of the Encoder’s and the Decoder’s hidden state, and the
LLSTM is used as the computation unit. Then, instead of the
dot-product attention mechanism, bilinear transformation-
based attention is used [15]. It can be described as follows:

X =Convid(eon) 1)

Y =Convid(dou) (22)

W =softmax (X" W1Y) (23)
attentioney = tanh(concat(Y, W )Ws) + by (24)

where e, and dou are the output of the Encoder and
Decoder. The Wy and /7, are the parameter matrix.

In addition, the proposed CL employs a “step-by-step”
methodology as opposed to simply repeating the hidden
state. This means that the first input of the Decoder is the
same as the last output of the Encoder, and the remaining
inputs are the outputs of the computation unit from the pre-
vious time step.

The Short-Time Prediction Submodel Based
on the Transformer
Compared to the coasting and stationary states, the accel-
eration changes during the deceleration and acceleration
phases are more drastic. If only the long-time prediction sub-
model is utilized, it may result in significant errors. There-
fore, one of the most advanced frameworks, Transformer, is
used to predict the acceleration and deceleration of the FV in
a single time step.

The Transformer model, like the Seq2seq model, con-
sists of two components: the Encoder and the Decoder.

Table 3. An MSET comparison of the different CL/model.

Name of CL/ Structure of LTP: RMSET of RMSET of
Model (Number of Neurons) ~ Model (m) CL (m)
BP-NN 3-8-8-1 Nan 31.91
RNN 32-8-1 408.82 14.84
LSTM 32-8-1 92.53 14.39
Seq2seq 32-10-1 47.58 11.61
Seq2seq-Att 32-10-10-1 28.36 10.9
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FIG 6 A time-space diagram comparison of different CLs/models.
(a) A time-space diagram of different CLs. (b) A time-space diagram of
different models. Tra: trajectory.
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When processing time-series data, the Transformer
model does not store the temporal information of each
time step’s data. It requires position encoding to encode
the input data of the Encoder and Decoder. The architec-
ture of the Transformer is shown in Figure 8. The Encoder
can be seen to consist of three layers: the input layer, the
position encoding layer, and the Encoder layer. The En-
coder layer is the core of the Encoder, and it is built of a
multihead attention block and a residual block. Multihead
attention focus improves the Transformer model’s ability
to handle multidimensional data, while residual blocks in-
crease the model’s depth. The Encoder and the Decoder
are fundamentally similar in construction, with two ex-
ceptions. The first distinction is that the query and value
of multihead attention in the Decoder are derived from
the semantic vector output by the Encoder. The fully con-
nected (FC) layers are added after the Decoder layer in the

Decoder, which is the second distinction. The core part of
the Transformer can be formulated as follows:

O =Wz, K=W,V =Wz (25)
T
A= softmax( OK )V (26)
Jk
Louw = LayerNorm(x + ReLU(Ax + b1) W1 + b2)  (27)
Louwe = LayerNorm (Lot + Re LU(Loui W2) (28)

where x represents the output of the position layer. /W, Wi,
and W, are the number of columns of the weight of the K
value, and ReLU is the rectified linear unit.

Furthermore, as with [46], the inputs of the Encoder are
the acceleration, space headway, and velocity difference of
the FV over the previous 10 time steps, and the inputs of the
Decoder are the velocity of the preceding vehicle over the
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FIG 7 A new GL based on the Seq2Seq-Att.
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FIG 8 The architecture of the Transformer. ReLU: rectified linear unit.
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previous 10 time steps. Therefore, the output of the Decoder
of our model is the acceleration of the FV over the subse-
quent time step.

Experiments

To comprehensively and objectively evaluate the perfor-
mance of the dynamic transformation CF model, the experi-
mental system framework depicted in Figure 9 is developed
in this article. The framework consists of two major com-
ponents: DL, model testing and traffic flow simulation. The
“DL Model Test” section conducts hypermeter tuning for
the long-time prediction submodel and short-time predic-
tion submodel and chooses the optimal input-output length
for the long-time prediction submodel and short-time pre-
diction submodel. Referring to the classification of traffic
flow studies by Li et al. [32], the results of four different CF
models (dynamic transformation CF model, KNN, IDM, and
Seq2seq) are tested for a single CF pair (microscopic level),
multiple CF pairs (mesoscopic level), and all CF pairs in
one lane within 15 minutes (macroscopic level), and vari-
ous traffic metrics are used to evaluate the four CF models.
In addition, the runtime for generating large-scale traffic
flows using four CF models is compared.

DL Model Test

The model is calibrated using the 1,528 CF pairs extracted
from the NGSIM dataset in the subset of lane 1 at 8:05 a.m.
In the training process, 80% of the data are used for training
and 20% for validation. In addition, prior to training, all data
are normalized. The entire simulation experiment ran on an

ASUS computer (RAM: 24 GB; processor: Intel Core [7-8700K;
operating frequency: 3.70 GHz). Pytorch 1.10 on Windows 10
is deployed to build and test the proposed model.

The Hyperparameter Tuning of the Dynamic Transformation

CF Model and the Optimal Input-Output Length for the

Long-Time Prediction Submodel

Due to the variable length of the Seq2seq model’s input and
output variables, the candidate input and output lengths es-
tablished in this study with reference to the parameter set-
tings of other articles are as follows: input time steps (7" =
10, 20, 30, 40) and output time steps (7" = 20, 30, 40, 50). The
input time step is observed to be shorter than the output time
step. For example, if the input time step is 30, the output time
step may be 40 or 50. Therefore, 10 different input-output
time-step pairs are tested. Adam is selected as the optimiza-
tion algorithm to control the gradient descent rule during the
calibration process.

The predefined default settings for parameters in Pytorch
are adopted (learning rate=1e¢—3, 81 =0.9, 81 =0.999,
epsilon =1e -8, decay =0). The activation of an FC layer
is a ReLLU for the Encoder and Decoder. The performance of
the Seq2seq model is affected by two factors: the number of
neurons in the LSTM unit and model depth. Since these two
influencing factors are coupled, it is challenging to determine
the theoretically optimal combination of model parameters.
Therefore, the optimal values for parameters other than the
model depth and optimal input-output length are obtained
using the one-layer stacked long-time prediction submodel.
Then, the two-layer stacked long-time prediction submodel,
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FIG 9 The evaluation framework of the dynamic transformation CF model. Vel.-Diff.: velocity difference.
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three-layer stacked long-time prediction submodel, and bidi-

rectional long-time prediction submodel are tested. Table 4

contains the results of parameter tuning.

Table 5 provides the results for a long-time prediction
submodel with different layers stacked and different input
and output lengths. From Table 5, the following conclusions
can be drawn:

1) The mean values of MSE for the one-layer stacked/
two-layer stacked/three-layer stacked/bidirectional
long-time prediction submodels are 0.02323, 0.02118,
0.02081, and 0.02151, respectively. This indicates that
the MSE of the model further decreases with the in-
crease of the number of model layers, and the more
layers, the lower the model MSE. However, the mean
MSE at convergence (MSETC) of the three-layer stacked
long-time prediction submodel was 1.7% lower than that
of the two-layer stacked long-time prediction submodel,
whereas the mean one-epoch training time (OETT) in-
creased by 54.8%. Therefore, considering bhoth the al-
gorithm and the accuracy and computation efficiency,
a two-layer stacked long-time prediction submodel is
chosen as the optimal structure.

Table 4. The parameter settings of the long-time

prediction submodel.

Parameters Value
The number of neurons in each LSTM unit 32
Hidden neurons of the FC layer (two FC layers) 32.8
Data batch 512
Loss function MSE

2) For each layer-stacked architecture, the MSE of the model
increased gradually as the length of the input-output pair
increased gradually. This is reasonable because a longer
output length requires that the model predicts the long-
time variation in acceleration. The optimal structure for
long-time prediction is 10-20 input-output pairs in which
the last 1 s of velocity, space headway, and velocity differ-
ence is used to predict the next 2 s of acceleration based on
the aforementioned experimental results.

Two key parameters of the short-time prediction submod-
el based on the Transformer need to be calibrated in com-
parison to the long-time prediction submodel: the number of
the Encoder and Decoder layers and the number of attention
heads for multihead attention, respectively. For the short-
time prediction submodel, the input of the model is the last
10 time steps, and the output of the model is the next time
step. In addition, the remaining parameters are identical to
those of the long-term prediction model.

The results of the short-time prediction submodel of vari-
ous layers and the number of attention heads are presented
in Table 6. These results indicate that the optimal number of
attention heads and layers for the short-time prediction sub-
model is six and four, respectively.

The Seq2seq-Att model (dot product) is chosen for
comparison with the long-time prediction submodel to
assess the ability of different models to capture the inter-
action between multiple time steps of the same vehicle
dynamic parameter. Figures 10 and 11 depict a visual-
ization result of the attention weights for the long-time
prediction submodel and the Seq2seq-Att when predict-
ing velocity, space headway, and velocity difference. The
darker red color of the smaller squares indicates that
the vehicle dynamics parameters between the two time

Table 5. The performance of the results for the different length input and output.

One Stacked Layer

Two Stacked Layers

Three Stacked Layers Bidirectional

DTPI (0.1s) MSETC OETT CE MSETC OETT CE MSETC OETT CE MSETC OETT CE
10-20 0.0166 &7 20 0.0164 5.25 23 0.0162 6.76 27 0.0163 4.87 23
10-30 0.0182 3.93 29 0.0179 5.82 14 0.018 9.93 35 0.0182 5.29 17
10-40 0.0218 431 25 0.0209 6.57 22 0.0215 1.77 14 0.0213 5.87 17
10-50 0.0226 435 28 0.0233 9.30 29 0.0213 11.99 27 0.0229 6.12 22
20-30 0.0199 421 24 0.0194 8.65 29 0.0211 11.05 " 0.0183 552 19
20-40 0.0386 41 24 0.0203 6.54 33 0.0204 11.43 85 0.0194 6.12 23
20-50 0.0235 5.01 31 0.0226 7.02 24 0.0213 12.26 19 0.0228 6.4 23
30-40 0.0214 4.7 40 0.021 6.75 29 0.0206 11.87 20 0.0202 6.13 28
30-50 0.0234 4.55 35 0.0234 718 26 0.0221 10.99 20 0.0223 6.58 54
40-50 0.0263 1.29 43 0.0266 2.08 22 0.0256 2.85 20 0.0314 1.74 49
Mean value 0.02323 4.016 299  0.02118 6.516 251 0.02081 10.09 228 0.02131 5.464 275

DTPI: different time-step pairs of input-output; MSETC: MSE at Convergence; OETT: one epoch training time (unit: seconds); CE: convergence epoch.
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steps corresponding to the small square are more closely
linked. It can be seen that both the Seq2seq-Att model
and the long-time prediction submodel are able to de-
scribe the correlation of the same vehicle dynamic pa-
rameter at multiple time steps. However, the Seq2seq-Att
model pays attention to the few recent historical inputs,
whereas the long-time prediction submodel can pay at-
tention to many more historical inputs. Figure 11(b)
demonstrates, using the space headway as an example,
that the future space headway was influenced by the past
eight time steps’ space headway and that the influence
gradually increases with time. In contrast, the Seq2seq-
Att model identified only the effect of the past space
headway on the future space headway for the three most

Microscopic Traffic Flow Simulation

Two CF pairs (the IDs of the FVs are 442 and 1989) are ex-
tracted from the dataset to evaluate the performance of the
dynamic transformation CF model. Figure 12 illustrates the
trajectories generated by the dynamic transformation CF
model for vehicles 442 and 1989. It can be seen that the tra-
jectory of the FV is composed of the segmented trajectory
generated by the long-time prediction submodel and short-
time prediction submodel. When the FV state satisfies the
stability condition, the dynamic transformation CF model

Table 6. The results of the different layers and the number of

attention heads for the short-time prediction submodel.

recent time steps. Number of Attention
Heads Two Layers Four Layers Six Layers
The Comparison of Different Levels of Traffic Flow 9 0.0059 0.0063 0.0052
In this :stud'y, t'yplcal micro, meso, and macro traffic flow 4 0.0049 00048 0.0048
evaluation indicators are selected to evaluate the perfor-
mance of the proposed dynamic transformation CF model. 6 0.0067 0.0046 0.0057
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FIG 10 (a)—(c) The attention weights visualization of the Seq2seq with the attention model.
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uses the long-time prediction submodel to simulate the tra-
jectory of the FV; when the FV state satisfies the acceleration
or deceleration judgment condition, the dynamic transfor-
mation CF model uses the short-time prediction submodel
model to simulate the trajectory of the FV.

Due to the complexity of the actual traffic flow, it should
be noted that the traffic oscillation is not strictly divided
into four phases. However, we can use the dynamic trans-
formation strategy to switch between the different phases
flexibly. In addition, the RMSEs of the trajectory simulated
by the dynamic transformation CF model are 4.78 m and 3.96 m,
respectively, indicating that the dynamic transformation CF
model can simulate CF behavior with great accuracy.

To comprehensively evaluate the performance of the dy-
namic transformation CF model, the ground-truth data of
vehicle 1989 are used as the test benchmark, and several
performance evaluation indexes, such as velocity and space
headway, are chosen to test multiple models. Figure 13 (a)
and (b) shows the velocity and velocity difference com-
parison of vehicle 1989. The RMSE of the velocity of IDM is

1.60 m/s, the RMSE of the velocity of KNN is 2.07 m/s, the
RMSE of the velocity of Seq2seq is 2.08 m/s, and the RMSE
of the velocity of dynamic transformation CF is 1.18 m/s.
The results indicated that the dynamic transformation CF
model has a lower RMSE and better fitting performance
compared to the other three models. In addition, all models
are able to simulate the velocity of the FV accurately for the
first 30 s, but all models become unstable in the second 30 s.
Only the dynamic transformation CF model can consistently
and accurately simulate the velocity of the FV.

It can also be seen from Figure 13(a) that the Seq2seq
model showed a negative velocity. It is abnormal that the
Seq2seq model shows a negative velocity. The reason is that
the Seq2seq model is a long-time prediction model, and the
model outputs the acceleration for 10 time steps per run.
Therefore, the accuracy of the Seq2seq model in simulat-
ing CF behavior when the vehicle is in the region of traffic
oscillations cannot be guaranteed. This also proves that the
Seq2seq model is deficient and needs to be improved. On
the contrary, the dynamic transformation CF model outputs
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FIG 11 (a)—(c) The attention weights visualization of the long-time prediction submodel.
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— Short-Time Prediction Submodel (Deceleration)

— Long-Time Prediction Submodel (Stationary)
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FIG 12 The trajectories of vehicles 442 and 1989 generated by the dynamic transformation CF model. (a) Vehicle 442. (b) Vehicle 1989.
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FIG 13 (a)—(h) The dynamic transformation CF model is evaluated from the microscopic perspective (velocity, trajectory, space headway, cumulative
trajectory RMSE, and asymmetric driving behavior).
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only the acceleration for one time step per run in simulating FV, the IDM and Seq2seq CF models are unable to accurately
CF behavior when it is in the region of traffic oscillations, simulate the vehicle’s reacceleration when it encounters
which can increase the accuracy in simulating CF behavior. traffic oscillation. Compared to KNN, IDM, and Seq2seq, the

Figure 13 (c) and (d) compares the trajectory and space dynamic transformation CF model reduces the trajectory er-
headway of vehicle 1989. Figure 13(c) demonstrates that ror by 60.79-66.95%. Figure 13(d) also reveals that the space
while all models are able to simulate the trajectory of the headway errors of the IDM and Seq2seq CF models were

400
350 || — Dynamic Transformation CF
- Real
300
£ 250 Mean RMSE: 7.78
>
2 200
5]
2
©
£ 150
100
50
o /
100 200 300 400 500 600 100 200 300 400 500 600 700 0.04 0.06 0.08 0.1 0.12 0.14
Time (0.1's) Time (0.1's) p (veh/m)
(@) (b) (c)
3
KNN 60 KNN
300 20 3
E 250 w0 %% [
2 Mean RMSE: 8.7 = 5 1 Dgp,
S 200 02 S orat,
a S 502 n
2150 o B
100
0.1
Ac 5
10 Celergy:
50 era
tion 5 .
0 0
0 100 200 300 400 500 600 0 100 200 300 400 500 600 700 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
Time (0.1s) Time (0.1's) p (veh/m)
(d) (e) ®
400
vy 60
350 // / /4 04
300 / /// / // 50
E 250 E 250 N/ 02 Y
= Mean RMSE: 8.43 = LTI T I 777 £z
S 200 S 200 > S
g g 302 202
150 T 150 s
= = 20>
100 100 0.1
50 50 e ACCe/eranbn .
5
0 0 0 0
0 100 200 300 400 500 600 0 100 200 300 400 500 600 700 0.04 0.06 0.08 0.1 012 0.14 0.16
Time (0.1's) Time (0.1s) p (veh/m)
(9 (h) 0]
— Real
- Real
50
300 03
= 40
[E1250 Mean RMSE: 11.11 £3
5 200 302 202
3 S g
g 150 20 <
100 0.1
10 5
%0 2 / Accele’aﬁon 6
0 - 0 0
0 100 200 300 400 500 600 0.04 0.06 0.08 0.1 0.12 0.14
Time (0.1s) Time (0.1s) p (veh/m)
@ (k) ()

J

FIG 14 Time-space diagram and hysteresis loop of first vehicle platoon (Lead vehicle 442). (a) Vehicle platoon (Dynamic transformation CF model).
(b) Vehicle platoon heatmap (Dynamic transformation CF model). (c) Hysteresis loop (Dynamic transformation CF model). (d) Vehicle platoon (KNN).
(e) Vehicle platoon heatmap (KNN). () Hysteresis loop (KNN). (g) Vehicle platoon (IDM). (h) Vehicle platoon heatmap (IDM) (i) Hysteresis loop (IDM).

(j) Vehicle platoon (Seq2seq). (k) Vehicle platoon heatmap (Seq2seq). (1) Hysteresis loop (Seq2seq).
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significantly greater than those of the KNN and dynamic
transformation CF model during the 35-60-s time periods.
Moreover, although the KNN CF model performed well in
trajectory simulation, its space headway error was still
greater than that of the dynamic transformation CF model.
Figure 13(e) compares the cumulative trajectory RMSE with
other models. The cumulative RMSE of the dynamic trans-
formation CF model is approximately 2,000, whereas the
range for the other three models is between 4,000 and 5,000,
indicating that the dynamic transformation CF model is bet-
ter able to simulate CF behavior.

Figure 15(f) is provided to further investigate the rela-
tionship between the trajectory and cumulative RMSE. The
FV deceleration and acceleration phases are where the in-
tervals of a rapid increase in cumulative RMSE are most con-
centrated. In addition, asymmetric driving behavior (often
referred to as a hysteresis loop) is a crucial aspect of CF be-
havior, revealing the asymmetric relationship between space
headway and acceleration. Specifically, when the vehicle is
in the acceleration state, its space headway is larger, where-
as when it is in the deceleration state, its space headway is
smaller. Figure 13(g) and (h) demonstrates that the range of
velocity and space simulated by the dynamic transformation
CF model corresponds to the realistic data.

Mesoscopic Traffic Flow Simulation

The CF behavior is also significant for the mesoscopic traf-
fic flow, i.e., the vehicle platoon. For simulation experiments,
the vehicle platoons with the preceding vehicle numbers 442
and 1835 are extracted from the NGSIM dataset; these pla-
toons contain one and multiple stop-and-go waves, respec-
tively. In this section, first, the time-space diagrams of each
platoon are presented to compare the performance of the

proposed dynamic transformation CF model and the other
three CF models when simulating the traffic oscillation. Sec-
ond, similar to the asymmetric driving behavior study of the
microscopic flow simulation, the method that was proposed
by literature [32] is used to plot the hysteresis loop of the ve-
hicle platoon. Third, the boxplot of RMSE for various CF mod-
els is provided.

The First Vehicle Platoon (Lead Vehicle 442)
Figure 14 illustrates the trajectory, trajectory heatmap, and
hysteresis loop of four CF models. In terms of comparing
the FV trajectories, the simulated trajectory by the dynamic
transformation CF model is more consistent with the actual
data. Moreover, compared to KNN, IDM, and Seq2seq, the
dynamic transformation CF model reduces error by 7.71-
29.97%. Both indicate that the proposed dynamic transfor-
mation CF model has better platoon CF simulation stability.
The boxplot of the trajectory RMSE of the first vehicle pla-
toon is given in Figure 15(a). Figure 15(a) demonstrates that
the interquartile range of the dynamic transformation CF
model and IDM CF models is less than that of the KNN and
Seq2seq CF models. Moreover, although the median of the
RMSE of the IDM CF model is lower than that of the dynamic
transformation CF model, the IDM has an outlier with a value
0f 21.20 m. It affected the IDM CF model’s stability. In contrast,
the dynamic transformation CF model has no outliers, indicat-
ing that the dynamic transformation CF model simulates the
CF behavior more stable than the IDM CF model.

The Second Vehicle Platoon (Lead Vehicle 1855)

The first vehicle platoon contains only one traffic oscil-
lation segment, while in real traffic scenarios, the vehi-
cle platoon may contain multiple traffic oscillations. The
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FIG 15 (a) and (b) The boxplot of the trajectory RMSE of two vehicle platoons.
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second vehicle platoon (lead vehicle 1855) is therefore
extracted from lane 1 in the NGSIM dataset. Figure 16
depicts the time-space diagram and hysteresis loop of
the second vehicle platoon. Compared to KNN, IDM, and
Seq2seq, the dynamic transformation CF model reduces
error by 10.39-29.29%. The dynamic transformation CF

model accurately simulates the trajectory of the fifth FV in
Figure 16(a), whereas other models have larger errors. In
addition, only the dynamic transformation CF model repli-
cates the two oscillations in the hysteresis loop simulation,
and the other three models simulate them poorly in the
hysteresis loop simulation.

400 0.35 4 —Real
- 60 Dynamic
350 | — gi;amlc Transformation CF Model 600 / 05 Dmamic
300 500 20 0.25 Hysteresis Loops
_ Mean RMSE: 3.62 . = :
£2%0 £ 400 = W0E T oo
5 200 S z &
& 5 300 075 Fo.15
T 150 5 S
- = 200 20> 0.1
100 0o
5
50 100 10
0
0 0 0
0 100 200 300 400 500 600 0 200 400 600 800 002 004 006 008 01 012
Time (0.1's) Time (0.1's) p (veh/m)
(a) (b) (c)
400 0.35
o 7
300 500 20 0.25
= Mean RMSE: 4.04 = =
£ 250 £ 400 40 g 02
5 200 S = g
5 5 300 g 5015
T 150 5 S
= = 200 20~ 0.1
100
50 100 10 0.05
0 0 0 0
0 100 200 300 400 500 600 0 200 400 600 800 002 004 006 008 01 012
Time (0.1s) Time (0.1s) p (veh/m)
(d) (e) (f)
200 p 0.35 ‘1 ,
600 7 60
— DM 0.3
809 Real //
D 500 50 0.25 s Deg,
— Mean RMSE: 5.12 — = 3 - e/e’aﬁo
E 250 2 E400 w0E g 02 P 6 tlon
> > = .5
5 5 0.15
§ 200 % 300 302 g ,
© 150 = 2 014 4f
= £ 200 g 202
100 0.05 2
100 AW
50 10 0 elera,,bn .
0 0 0
0 100 200 300 400 500 600 0 200 400 600 800 002 004 006 008 01 012
Time (0.1's) Time (0.1's) p (veh/m)
(9) (h) (i)
Wy 60 Seq2seq
-----Real
300 500 7 S0 025
B 2501 Mean RMSE: 4.07 5400 0 % - 02
£ P > = 2
2 5 =
AL £ 300 302 o.15
° LON &8 =
8 150 ) S 3
= = 200 20> 0.1
100
50 100 10 0.05
0 0 0 v
0 100 200 300 400 500 600 0 200 400 600 800 002 004 006 008 01 012
Time (0.1's) Time (0.1's) p (veh/m)
0) (k) ()

FIG 16 The time-space diagram and hysteresis loop of the second vehicle platoon (lead vehicle 1855). (a) Vehicle platoon (dynamic transformation CF
model). (b) Vehicle platoon heatmap (dynamic transformation GF model). (c) Hysteresis loop (dynamic transformation CF model). (d) Vehicle platoon
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(IDM). (j) Vehicle platoon (Seq2seq). (k) Vehicle platoon heatmap (Seq2seq). (I) Hysteresis loop (Seq2seq).
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Figure 15(b) depicts a boxplot of the second vehicle platoon’s
trajectory RMSE for each of the four CF models to determine
the overall error of the second vehicle platoon. For the second
vehicle platoon, the interquartile ranges of the dynamic trans-
formation CF model and IDM CF models were smaller than
those of the KNN and Seq2seq models, and the interquartile
range of the KNN CF model was the largest of the four CF mod-
els, indicating that the RMSE of the trajectory simulated by the
KNN CF model for each vehicle is distributed unevenly. More-
over, the minimum and maximum RMSE values of the trajec-
tory simulated by the dynamic transformation CF model are less
than those of the other three CF models.

The Virtual Vehicle Platoon Simulation
To further evaluate the performance of the dynamic
transformation CF model in simulating a large number of
FVs, simulation tests of virtual vehicle platoons were con-
ducted using the following simulation parameters. We as-
sume that the length of the road is 5,000 m, that the initial
velocity is 40 km/h, and that 60 vehicles enter the ring road
sequentially with a 30-m space headway between each
vehicle. Additionally, two traffic disturbances are intro-
duced into the first vehicle. The velocity of the first vehicle
will slow down to 0 km/h and idle for 10 s before accel-
erating when it is under traffic disturbance. Except for
the first vehicle, all other vehicles follow the CF strategy
planned by the dynamic transformation CF model, and no
additional traffic disturbances are introduced. The simu-
lation was implemented, and Figure 17 (a) and (b) depict
the time-space diagram and time velocity of the virtual
vehicle platoon, respectively. The dynamic transformation
CF model is found to accurately represent the entire traffic
oscillation propagation process in traffic flow.

Local stability analysis and string analysis are typical
methods for evaluating the stability of model-driven CF

models. Due to the absence of a unique mathematical ex-
pression for the data-driven CF model, it is impossible to
analyze the local stability and string stability of the dynam-
ic transformation CF model with mathematical methods.
Nevertheless, the local and string stability of the dynamic
transformation CF model could be analyzed according to
the definition of local stability and string stability. As de-
picted in Figure 17(b), the FV’s velocity recovers gradually
after encountering a traffic disturbance, indicating that
the dynamic transformation CF model is locally stable. As
depicted in Figure 17(a), the fluctuation amplitude of the
FV simulated by the dynamic transformation CF model fol-
lowing a traffic disturbance decreased gradually over time.
Taking the first traffic disturbance shown in the black el-
lipse as an example, the FVs encountered the disturbance
at a minimum velocity of 0-10 km/h during the time range
of 21-55 s, at a minimum velocity of 10-20 km/h during
the time range of 55-75 s and at a minimum velocity of
20-30 km/h during the time range of 75-115 s. The afore-
mentioned experimental results indicate that the dynam-
ic transformation CF model is string stable. On the other
hand, as shown in Figure 17(b), during the speed recovery
process, the speed of some vehicles may exhibit a sharp de-
celeration. This indicates that there is room for improve-
ment in our model.

Macroscopic Traffic Flow Simulation

In the virtual simulation of CAV testing, a large number of
human-like background vehicles need to be generated to
simulate the real traffic flow, and the CF model is a cru-
cial tool for simulating the real traffic flow. To evaluate
the accuracy and effectiveness of the dynamic transforma-
tion CF model in simulating large-scale traffic flow, all CF
pairs of lanes 1 and 4 were extracted from the NGSIM
dataset between 7:50 a.m. and 8:05 a.m. Figure 18 (a)-(d)
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FIG 17 The time-space diagram and time-velocity graph of the virtual vehicle platoon simulation. (a) The time-space diagram of the virtual vehicle
platoon. (b) The time-velocity diagram of the virtual vehicle platoon (Acceleration).
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FIG 18 The velocity-time-space diagram and flow-density diagram of real data and dynamic transformation CF model with Lane 1 and Lane 4 data were



depicts the results of velocity-time-space diagrams for lanes
1 and 4. It can be seen that the dynamic transformation CF
model can replicate many traffic oscillations on lane 1 and
few traffic oscillations on lane 4 well. Compared to KNN,
IDM, and Seq2seq, the dynamic transformation CF model
reduces the lane 1 error by 1.59-11.40%. Compared to KNN,
IDM, and Seq2seq, the dynamic transformation CF model
reduces the lane 4 error by 4.80-18.26%. The flow-density
diagrams of lanes 1 and 4 are shown in Figure 18 (e) and (f)
using the Greenshields model. They indicate that the veloc-
ity and trajectory simulated by the dynamic transformation
CF model of lanes 1 and 4 are approximately the same as the
actual velocity and trajectory.

Additionally, the flow, density, and average velocity of
the remaining three CF models are calculated. According to
Table 7, the RMSE of the three parameters calculated by the

Table 7. The RMSE of flow (vehicles/h), density (vehicles/km),

and velocity (km/h) of four CF models.

RMSE of Flow, Density, and Velocity of Dynamic Transformation

Lane 1 Lane 4
aQ p 4 Q p Vv
500.54 20.16 17.56 598.7 21.19 16.07
RMSE of Flow, Density, and Velocity of KNN
Lane 1 Lane 4
0 b A
523.48 20.22 18.46 602 218 17.25
RMSE of Flow, Density, and Velocity of IDM
Lane 1 Lane 4
Q p 4 Q D 4

544.26 20.82 19.64 771.88 24.89 18.08

RMSE of Flow, Density, and Velocity of Seq2seq

Lane 1 Lane 4

Q p 4 Q p v
518.43 20.68 20.11 762.98 24.86 18.38

The bold values are the results obtained by the proposed model.

Table 8. The comparison of different CF models.

Runtime of Dynamic Runtime of
Transformation CF Runtime ~ Runtime  Seq2seq
Lane ID  Model (Inference) of KNN of IDM (Inference)
Lane 1 115.98 342.3 135.55 81.74
Lane 4 65.21 221.58 88.37 62.44

dynamic transformation CF model is smaller than that of the
KNN, IDM, and Seq2seq models.

On the other hand, we evaluate the performance of
four distinct CF models. In accordance with the defini-
tions of training time and inference time in DL models,
the inference times of the dynamic transformation CF
model and Seq2seq models are calculated as the runtime
when simulating large-scale traffic flow. Table 8 provides
a comparison of the runtime results of the four CF models.
[t demonstrates that the runtime of the dynamic transforma-
tion CF model (Inference) was less than the KNN and IDM
models but higher than the Seq2seq (Inference) model. The
possible reason is that the long-time prediction submodel
and Seq2seq output the FV acceleration for multi-time steps
simultaneously, whereas the short-time prediction sub-
model, KNN, and IDM output only the FV acceleration for a
single time step at once. The difference between the com-
putational efficiencies of the different CF models is further
magnified when simulating the large-scale traffic flow. In
addition, if the training time of the DL. model is calculated,
the dynamic transformation CF model proposed in this ar-
ticle required an additional 258.03 s for training, while the
Seq2seq CF model required an additional 44.09 s for train-
ing. This is because the dynamic transformation CF model
contains the long-time prediction submodel and short-time
prediction submodel. Thus, it is more complicated than the
Seq2seq CF model.

Conclusion

This article investigates why the IDM CF model cannot
accurately simulate the traffic oscillation and demon-
strates that data-driven CF models cannot simultane-
ously account for the inherent correlation between the
various vehicle dynamic parameters at the same time
step. A dynamic transformation strategy is proposed to
divide the traffic oscillation into four phases: coasting,
deceleration, acceleration, and stationary. In the pro-
posed framework, a novel dynamic transformation CF
model based on the two submodels is proposed to simu-
late the various phases of the traffic oscillation. The first
submodel is hased on a modified Seq2seq and takes into
account the inherent correlation hetween the various
vehicle dynamic parameters at the same time step. The
second submodel, which is based on the Transformer
model, captures acceleration changes during accelera-
tion and deceleration phases more accurately than other
data-driven CF models.

To validate the proposed dynamic transformation CF
model, a DL- and traffic flow-based evaluation framework
comprising various traffic parameters is developed. In the
DL simulation test, the ability of various data-driven CF
models to capture long-time sequence data is compared,
with the results indicating that the proposed model per-
formed better. In addition, the dynamic transformation CF
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model is compared to three representative models (KNN,
IDM, and Seq2seq) from micro, meso, and macro perspec-
tives. In the microscopic simulation, the acceleration, ve-
locity, trajectory, and space headway of various CF models
are evaluated. In the mesoscopic simulation, a comparison
is made in the trajectory generation of the vehicle platoon
and hysteresis loop. Furthermore, the virtual vehicle pla-
toon generation simulation is conducted to validate the
local and string stability of the dynamic transformation
CF model. In the macroscopic simulation, all CF pairs are
simulated for 15 minutes on a single road by four CF mod-
els; the trajectory, flow, and density are used to test the
different CF models. In addition, the runtime of various
CF models is compared. The experimental results demon-
strate that not only is the proposed dynamic transformation
CF model more accurate than the other three CF models,
but its simulation efficiency is also superior.

It is necessary to further combine other traffic dy-
namics parameters to divide the four phases of the traffic
oscillation more accurately and dynamically so that it
can be utilized more effectively for the simulation of real-
istic CF behavior and the generation of large-scale traffic
flow. The framework proposed in this article is an impor-
tant foundation for future research.
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